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Abstract: Investigating the information of the French National Soil
Tests database for soil monitoring produces multiple hypothesis testing prob-
lems with hundreds or thousands of test responses to consider simultane-
ously. A largely used concept of error control in such multiple testing is
the expected proportion of falsely rejected hypotheses, or False Discovery
Rate (FDR). A related notion of local FDR (ℓFDR) can be appropriately
represented by considering that the observed p-values come from a two-
components mixture model where the component corresponding to the null
hypothesis is known. In this work, we explore different solutions for FDR es-
timation. In particular, we introduce a specific version of a semi-parametric
Expectation-Maximization (EM) algorithm for ℓFDR estimation, and com-
pare it to classical ℓFDR estimation using parametric mixtures, and con-
ventional FDR approaches. The performances of the different models for
estimating the FDR and related criteria are first illustrated on the results
of simulated multiple comparison tests. These approaches are then applied
to soil carbon content monitoring on our database. The results show that
not taking into account the FDR estimation can lead to over-estimation of
the number of cantons (locations) subject to a significant change. However,
we have detected large numbers of significant changes in the database that
occured during the time period of this study. Globally, losses in organic
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carbon are observed in Northern France, along the Atlantic coastal regions,
and to a less extend for the data collected over the North-Eastern regions.
The OC increases are more scattered over the territory. We also use the
data to estimate the minimum number of samples needed at each period to
detect a given change.

Keywords: Carbon content, EM algorithms, FDR, finite mixture, France,
semi-parametric mixtures, soil monitoring.

1 Introduction

Political awareness that soil is threatened by increasing pressures has been
rising for several years (European Commission, 2002). Indeed, the demand
for soil information is increasing continuously (Richer de Forges and Ar-
rouays, 2010). Although rates of soil degradation are often slow and only
detectable over long timescales, they are often irreversible. Therefore, mon-
itoring soil quality is essential in order to detect adverse changes in their
status at an early stage (Morvan et al., 2008). There are many generic is-
sues that must addressed when establishing and operating such monitoring
systems. Of particular importance is the requirement to detect change in
soil over relevant spatial and temporal scales with adequate precision and
statistical power (Arrouays et al., 2008; Desaules et al., 2010; van Wesemael
et al., 2011; Arrouays et al., 2012). Analysing the results from existing soil
measurement exercises, such as operational soil testing by farmers or fer-
tiliser suppliers is one potential option for detecting large temporal trends
in soil characteristics. Therefore, legacy soil data testing results have often
been used to assess temporal changes at national and regional levels (eg.,
for phosphorus by Skinner and Todd (1998) in England and Wales, Cahoon
and Ensign (2004) in eastern North Carolina (USA), Wheeler et al. (2004)
in New Zealand, Lemercier et al. (2008) in France, Reijneveld et al. (2010)
in The Netherlands; and for carbon, Saby et al. (2008) in France; Reijn-
eveld et al. (2009) in The Netherlands). However, the conclusions drawn
using these kinds of data may be subject to several sources of bias that are
inherent in a non-controlled sampling strategy.

Since the exact locations of the carbon content observations are not
known, the only geographical information available is the name of the town
of the sampled location. A simple statistical framework consists then in
gathering the observations per group of commune (called canton) and time
period to perform inference tests. In this framework, the null hypothesis
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could be either that the means or the medians of the two groups are equal.
We assume here that the locations are distant enough, so that measure-
ments can be considered as independent (i.e. we do not consider a spatial
correlation in the present work). Hence, investigating the information of the
French National Soil Tests database for soil monitoring produces multiple
hypothesis testing problems with hundreds or thousands of test responses
to consider simultaneously. In this multiple inference setup, the unguarded
use of single-inference procedures results in an increased false positive rate
among the simultaneous tests. The consideration of a global type I er-
ror level (say α = 5%) when several tests are performed simultaneously,
has been considered first in the well-known context of analysis of variance
(Anova), where several levels of a factor are compared two-by-two, leading
to n simultaneous tests. It is easy to check that, if n independent tests with
level of significance α are applied simultaneously, the achieved FamilyWise
Error Rate (FWER), that is the probability of observing at least one false
rejection among the n tests, is 1− (1− α)n which quickly increases with n
and is already ≈ 99% for n = 100. The historical approach since the early
1950s, called the Bonferroni approximation procedure (see e.g. Benjamini
and Hochberg (1995) and references therein) consists in applying each test
at a level α/n, resulting in a FWER lesser than α. However, Bonferroni-
type procedures appear to be too conservative when n gets large because
α/n gets too small, leading to too few rejections (as will be illustrated in
Section 4). Since then, the point of view on the problem has changed, focus-
ing in the number (or ratio) of erroneous rejections instead of the question
wether any error was made, as for the FWER. In this vein, the most popular
and largely used concept of error control in such multiple testing inference is
nowaday the expected proportion of falsely rejected hypotheses among the
simultaneous tests, or False Discovery Rate (FDR, Benjamini and Hochberg,
1995).

Several statistical algorithms have been proposed in the literature for
estimating the FDR, the recent and unified procedure based on a nonpara-
metric approach from Strimmer (2008) appearing to be one of the current
standard for practitioners. An alternative approach to FDR estimation con-
sists in viewing the problem as the statistical estimation of the parameters
of a finite mixture model. Parametric mixtures for FDR estimation have
been considered in, e.g., McLachlan et al. (2006), and semiparametric ver-
sions have also been considered recently, such as in Robin et al. (2007). The
alternative approach that we propose here belongs to that last framework,
but takes advantages of very recent developments of statistical algorithms
for estimating semi- or nonparametric mixtures. All these standard and new
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models will be detailed in Section 1.2. In particular, we implement and com-
pare new ideas pertaining to recent semi- and non-parametric extensions of
the well-known EM (Expectation-Maximization) algorithm commonly used
for estimating parametric mixtures. Some specific ingredients coming from
the multiple testing framework can be specified within the EM algorithm
machinery.

When monitoring soil quality, the estimation and control of the FDR is
of particular importance as false negative or false positive may lead to un-
warranted recommendations or to irrelevant policies (see, e.g., Lark et al.,
2007). Taking the example of organic carbon, such false positive or negative
results may lead to errors in national carbon accounting, or to wrong iden-
tification of areas at risks where protection policies should be implemented.
The basic motivations we have in this paper are thus twofold: (i) To improve
analysis of soil carbon content monitoring, in particular by applying recent
and new multiple testing procedures and FDR estimation and control, on
datasets issued from the French National Soil Tests database. This applica-
tion field is different than micro-array techniques for which the FDR is more
commonly applied. For instance, the proportion of null hypothesis in the
population is about 50%, smaller than what is usually observed in micro-
array setup (e.g., 80% in the gene experiment example studied in Robin
et al. (2007)). Our second objective is (ii) to compare recent methods for
FDR estimation, such as the challenging nonparametric approach available
in the fdrtool package (Strimmer, 2008), to approaches taking full advantage
of an underlying mixture model assumed for the vector of p-values. Note
that the alternative FDR control procedures that we develop here are im-
plemented in the software package mixtools (Benaglia et al., 2009b) for the
R statistical software (R Development Core Team, 2010), and are available
in the last public version.

1.1 The French National Soil Tests Database

The results of the soil analyses compiled in the French National Soil Test
Database are a consequence of requests from farmers and landowners for help
to improve the management of their crops and pastures. Samples were taken
from topsoil horizons of cultivated or pasture fields, but the specific reasons
individual farmers requested soil analysis are not known and therefore the
sampling strategy could not be controlled. In each sampled field, 10–15 sub-
samples of the ploughed layer (or the 0 to 30 cm topsoil layer in the case
of pasture) were collected with a hand auger and the extracted soil mixed
to provide a composite sample. Samples were sent to laboratories certified

4



by the French Ministry of Agriculture and the results from standardised
analytical procedures were stored in the national database.

In the study area, 1,220,039 soil samples were analysed for OC content
between 1990 and 2004. All samples were analysed by the wet chromic
acid digestion method, utilising an excess amount of potassium dichromate
with concentrated sulphuric acid at boiling-point. After the addition of
concentrated phosphoric acid, the excess dichromate was back-titrated with
ferrous ammonium sulphate. This method is known not to measure all
the organic carbon present but only that which is easily oxidisable, and
recovery factors have been recently studied by De Vos et al. (2007) who
recommend the use of dry combustion. This was not possible because the
study used historical data from samples which were not archived. The OC
that is not recovered by wet chromic acid digestion is mainly composed of
highly resistant compounds and thus our estimates of change are likely to
be little affected by the use of this wet digestion. Moreover, in previous
studies we showed that wet chromic acid digestion recovered on average
95% of the OC estimated by dry combustion on various French soils (Jolivet
et al., 1998; Arrouays et al., 2001). The raw data are spatially aggregated at
the cantonal level (in France, a canton is an administrative unit combining
several municipalities). They are also aggregated per time period, 1990–1997
and 1998–2005. In previous work, Saby et al. (2008) applied a different
approach regarding splitting the data over time by using 3 time periods.
This was adapted to the smallest region under study, where more data were
avaible than for the present Nationwide study. In this work, we then used
only 2 periods to optimise the number of data per canton. We refer to these
data as Carbon data in the following of this paper.

1.2 Mixture models in multiple testing FDR evaluation

In multiple testing, we observe a sample of p-values p = (p1, . . . , pn), where
each individual observation pi corresponds to the critical probability of the
ith test, for which either the null hypothesis H0 is true (not significant or
not interesting), or the alternative hypothesis H1 is true (interesting i.e.
rejection of H0). Since it is not observed whether each hypothesis is true or
false, we are in the general framework of statistical inference from missing
data: the critical probabilities can be viewed as a sample of observations in
[0, 1] coming from a finite mixture model.

Finite mixtures give a flexible way to model a wide variety of random ob-
servations (see, e.g., McLachlan and Peel, 2000). In such models, we assume
that n independent measurements X1, . . . , Xn are observed such that each
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Xi comes from one ofm possible sub-populations, called component distribu-
tions. Importantly, the component index, 1 though m, is not observed along
with Xi. It is common to associate to Xi the unobserved indicator vector
Zi = (Zi1, . . . , Zim) where Zij = 1 if observation i comes from component j
(hence Zi have (m− 1) zero’s and one 1). It is assumed that, unconditional
onXi, each P(Zij = 1) = λj , the proportion of individuals from component j
in the population, and that the probability density function (pdf) of an ob-
servation given that it belongs to component j is some density fj . Thus,
the pdf of an observation from the mixture is g(x) =

∑m
j=1 λjfj(x), where

the λj ’s are strictly positive and sum to unity. The vector Z = (Z1, . . . , Zn)
represents the missing data associated to the n observations.

Until recently, only parametric mixture models have been considered and
investigated, where parametric means that the fj ’s come from a (generally
single) parametric family indexed by some parameter ξ, i.e. fj(·) ≡ f( · ; ξj),
so that θ = (λ, ξ) = (λ1, . . . , λm, ξ1, . . . , ξm) is the (finite-dimensional)
model parameter to be estimated from the data. Normal mixtures, where
f( · ; ξj) is the density of the Gaussian N (µj , σ

2
j ) with parameters ξj =

(µj , σ
2
j ), are the most commonly used in this category.

In multiple testing, we thus associate to the sample of p-values p the
unobserved indicator variables Z where Zi will be the unobserved indicator
of the true hypothesis associated with the ith test. For ease of notation
we will index the components by {0, 1}, according to the hypotheses, i.e. fj
is the pdf of the p-value conditional of Hj being true, Zi = (1, 0) if H0 is
true, and Zi = (0, 1) if H1 is true, i.e. if H0 is rejected (interesting ith test).
Hence, pi typically comes from a two-components mixture model with pdf

gθ(p) = λ0f0(p) + (1− λ0)f1(p), (1)

where θ = (λ0, f0, f1) is the model parameter. Theoretically, given that H0

is true, the p-value is uniformly distributed over [0, 1],

(pi|“not interesting”) = (pi|H0 true) = (pi|Zi0 = 1) ∼ U[0,1],

whichever test is actually performed, so that f0(p) = I[0,1](p) is known and
the model parameter reduces to θ = (λ0, f1), which makes an important
difference between usual mixture model estimation and the present multi-
ple tests setting. The density of (pi|Zi1 = 1) ∼ f1 may be parametrically
specified, as in usual mixture modelling. In the multiple testing setup for in-
stance, Beta distributions have been considered, leading to the Beta-Uniform
mixture model (see, e.g. Robin et al., 2007). However, since often in practice
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very little is known about the distribution under the alternative hypothesis,
we propose here to relax the parametric assumption on f1.

Mixing parametric and nonparametric estimates in the FDR context is
not new (see Robin et al., 2007, and references therein). In other contexts,
extensions of mixture models where the component densities (fj ’s) are semi-
or non-parametrically specified have been considered quite recently in the
statistical literature (Hall and Zhou, 2003; Hall et al., 2005). Semi- and
non-parametric models and associated EM-like estimation algorithms have
recently been proposed, in Bordes et al. (2007) for the univariate case, Be-
naglia et al. (2009a) and Levine et al. (2012) for multivariate and fully
nonparametric situations. We extend here these algorithmic ideas to the
multiple testing estimation problem. For such a mixture with one compo-
nent known, the theoretical question of statistical identifiability has been
adressed in Bordes et al. (2006), where it is proved that identifiability is
satisfied at least if f1 is semi-parametrically specified, as will be detailed
later on.

The two-components mixture model given by equation (1) is assumed,
e.g., in Strimmer (2008) and Robin et al. (2007). However, one difference
with our approach is that the fdrtool estimation method in Strimmer (2008)
is grounded on an empirical (nonparametric) estimate of the model cumu-
lative density function (cdf). It does not rely on the missing data aspect
induced by the mixture, unlike any EM-based strategy does. In particular,
an EM-like algorithm delivers, together with estimates of the mixture pa-
rameters (in this case (λ0, f1)), estimates of the posterior probabilities that
each p-value comes from each component. In the present FDR context we
can estimate directly the so-called local FDR (ℓFDR, Efron et al., 2001)
from these posteriors

ℓFDR(pi) = P(“not interesting”|pi) = P(Zi0 = 1|pi),

for pi’s leading to rejection ofH0. The FDR can then be computed as the av-
erage of the ℓFDR(pi)’s over all the rejected pi’s. Robin et al (2007) approach
is very close to the semi-parametric EM approach we present here, except
that they estimate λ0 separately, and then estimate f1 using a weighted
kernel density estimate (wkde). It appears that this wkde itself is much
in the spirit of the density estimation step of our semi-parametric EM-like
strategy, following Benaglia et al. (2009a).

Another difference is that these recent FDR control approaches have
been compared, e.g. on Robin et al (2007) and Strimmer (2008), on synthetic
p-values coming from possibly unrealistic mixtures, typically Beta-Uniform,
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Uniform-Uniform, or Uniform-Truncated exponential distributions. The ad-
vantage being that in these cases, the pdf of p under H1 is parametrically
known in a simulation context. In an actual situation like in our setting con-
sidering the carbon data, the p-values come from two-sample tests that are
of different types due to the underlying assumed distribution for the popu-
lations that have to be compared (soil carbon levels). Typically, when these
can be assumed Gaussian, usual Student t-tests are performed, but when
this Gaussian assumption is inappropriate, Mann-Whitney (MW) nonpara-
metric (unpaired) tests are required. In addition, when rejection occurs, the
distribution of the critical value under the alternative hypothesis depends
on the actual difference (e.g., shift) between the two samples distributions,
which is varying and unknown. Our approach relies on the assumption that
the complexity of the pdf (p|H1 true) ∼ f1 is modelled by the flexibility
brought by our nonparametric assumption for it, even though the pdf of
(p|H0 true) remains U[0,1].

Finally, note that it is common to consider the probit transform of the
p-values since the known component pdf f0 simply becomes then the density
of the standard normal N (0, 1). This is also a good choice in our case for
technical reasons since one of our algorithms require kernel density estimates
that behave better for observations on the real line instead of [0, 1]. In the
present paper we will in practice consider the observed data x = (x1, . . . , xn)
where xi = probit(pi) for i = 1, . . . , n.

1.3 EM algorithms

The EM algorithm, as defined in the seminal paper of Dempster et al. (1977),
is more properly understood to be a class of algorithms, a number of which
predate even the Dempster et al. (1977) paper in the literature. These
algorithms are designed for maximum likelihood estimation in missing data
problems, of which finite mixture problems are canonical examples because
the unobserved Zij ’s give an easy interpretation of missing data. Intuitively,
EM algorithms replace the unfeasible maximization of the likelihood of the
observed data by the maximization of a pseudo likelihood that resembles
the likelihood of the complete data, which is itself easy to maximize. For a
comprehensive and recent account of EM algorithms, we refer to McLachlan
and Krishnan (2008); here we only briefly describe the finite mixture case.

We consider the complete data ((x1, Z1), . . . , (xn, Zn)) = (x,Z) associ-
ated with the actually observed sample denoted generically by x (which, for
us, represents the vector of probit-transformed p-values from the n statisti-
cal tests). In parametric mixture models, the complete data log-likelihood
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function is easy to maximize over θ. The EM algorithm takes advantage of
this by iteratively maximizing instead (since Z is not observed), its expecta-
tion conditionnally on x, under the assumption that the parameter driving
the random behavior of Z at iteration t is the current value θ(t). Computing
this expectation usually denoted Q(θ|θ(t)), reduces to the computation of
the already introduced posterior probabilities

P
(t)
ij = P

θ
(t) (Zij = 1 | Xi = xi) =

λ
(t)
j f(xi; ξ

(t)
j )

∑m
j′=1 λ

(t)
j′ f(xi; ξ

(t)
j′ )

, (2)

for i = 1, . . . , n and j = 1, . . .m. Each P
(t)
ij is the posterior probability

of individual i coming from component j, given the current θ(t) and the
observed data xi. The EM iteration θ(t) → θ(t+1) is defined by

1. E-step: compute Q(θ|θ(t)) i.e. compute the P
(t)
ij ’s by (2)

2. M-step: set θ(t+1) = argmaxθ Q(θ|θ(t)).

Conveniently, the M-step for finite mixture models always looks partly the
same: whatever the assumption on the fj ’s, the updates to the mixing
proportions are given by

λ
(t+1)
j =

1

n

n
∑

i=1

P
(t)
ij , j = 1, . . . ,m. (3)

The updates for the fj or the ξj parameters depend on the particular form
of the component densities and are easy for, e.g., Gaussian mixtures. These
will be precised below for our models.

2 Two mixture models for FDR estimation

2.1 Gaussian mixture with one component known

This first model that we consider is a 2-component parametric Gaussian
mixture with component f0 forced to N (0, 1), which is a is a slight difference
with the Gaussian EM fit from McLachlan et al. (2006). The mixture pdf
is then

gθ(x) = λ0f0(x) + (1− λ0)φ(x;µ1, σ
2
1), (4)

where φ( · ;µ1, σ
2
1) denotes here the pdf of the Gaussian N (µ1, σ

2
1), and the

(parametric) model parameter is θ = (λ0, µ1, σ
2
1).
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The standard EM algorithm for Gaussian mixtures is straightforward to
implement (see, e.g., McLachlan and Krishnan, 2008) and we do not give it
here for brevity. The specific version of this algorithm for model (4) turns
out to be a very simple case of more general EM-type algorithms for mixtures
with constrained parameters, investigated recently by Chauveau and Hunter
(2013). Of course constraining here µ0 = 0 and σ2

0 = 1 is simple enough
that it does not really require these far more general extensions. We only
mention it because these new algorithms are already coded in the current
version of the mixtools package (Benaglia et al., 2009b), and we use it here
to run model (4) as a “parametric benchmark” in sections 3 and 4.

2.2 Semiparametric mixture with one component known

The purpose of this model is, while keeping f0 known to be N (0, 1) as be-
fore, to relax the parametric assumption on f1 as explained in Section 1.2.
We rename f1 simply f here, and assume that it is an even (f(x) = f(−x))
but otherwise unspecified density. With such partially nonparametric mod-
els, the question of identifiability arises. Basically, this statistical property
insures that different values of the parameter must generate different prob-
ability distributions of the observable variables. It turns out that identifia-
bility requires here an additional location-shift scalar parameter µ (Bordes
et al., 2006). The model pdf becomes then

gθ(x) = λ0f0(x) + (1− λ0)f(x− µ), (5)

with semi-parametric model parameter θ = (λ0, µ, f). This identifiable
mixture model may be viewed as a special case of the model for which
Benaglia et al. (2009a, section 4.3) have proposed a semi-parametric EM-like
algorithm (spEM), that was purely methodological and was called “EM-like”
because it does not satisfy a provable convergence property like a genuine
EM. We do not get here into details about this methodology, but this original
algorithm happened to be very similar to a recent modified version that
relies on more solid theoretical grounds, see Chauveau et al. (2011). The
algorithm we propose here for our semi-parametric FDR framework is in
addition specific for two reasons. First, it requires constraining f0 to the
normal density, and second, to adapt the M-step for the parametric part
(λ0, µ) and the nonparametric part f for which a weighted kernel density
estimate (wkde) is combined with a symmetrization step:

spEM algorithm with one component known Let K be a kernel
density function, and h a bandwidth chosen by the user or data-driven (see
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Section 3). For a current value θ(t) = (λ
(t)
0 , µ(t), f (t)) of the parameter, the

iteration θ(t) → θ(t+1) is as follows:

E-step: compute, for i = 1, . . . , n

P
(t)
i0 =

λ
(t)
0

λ
(t)
0 f0(xi) + (1− λ

(t)
0 )f(xi − µ(t))

, P
(t)
i1 = 1− P

(t)
i0

M-step 1: parametric part

λ
(t+1)
0 =

1

n

n
∑

i=1

P
(t)
i0 , µ(t+1) =

∑n
i=1 P

(t)
i1 xi

∑n
i=1 P

(t)
i1

(6)

M-step 2: nonparametric density estimation

f̂(u) =
1

nh

n
∑

i=1

P
(t)
i1 K

(

u− xi + µ(t+1)

h

)

(7)

and symmetrize, i.e. set f t+1(u) = (f̂(u) + f̂(−u))/2.

3 A simulation study

We illustrate the application of the two mixture models presented in Sec-
tion 2, fitted by these specific EM and spEM algorithms, together with the
fdrtool method (Strimmer, 2008). We compare the approaches on synthetic
data simulated from known models, intended to represent a similar set-up
to that presented by the actual Carbon data.

3.1 Methodology

We have simulated a multiple testing procedure with n two-samples compari-
son tests. Let us denote for a single case these two samples by (Y k

1 , . . . , Y
k
nk
)

i.i.d.∼ F k, for k = 1, 2. For not interesting cases (H0 true), F 1 = F 2,
whereas for interesting cases we have simulated F 2 as the distribution F 1

shifted by some δ > 0. For 36% of the test cases, parametric Student
t-tests on Gaussian populations (F 1 normal) were simulated. For the re-
maining 64% cases, F 1 was set to a Student t(5) heavy-tailed distribution,
and unpaired nonparametric MW tests were performed. These 36% and
64% proportions correspond approximately to the observed proportions in
the carbon data. Each comparison has been based on two small samples
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(n1 = 5 and n2 = 7) where, for interesting cases, the distribution of the sec-
ond sample was shifted by δ = 3 so that the tests were not too powerful, i.e.
rejection of H0 was not too obvious. We also tried random shifted values δ.

We ran R = 500 replications of n = 2000 such tests, with the proportion
of true H0 set to λ0 = 0.4 and λ0 = 0.6, i.e. much larger than in usual
microarray experiments, but corresponding roughly to the possible observed
proportion in the carbon data. Both EM and semi-parametric EM need
an initial parameter value for their first E-step. It is a common practice
to provide initial centers from which a binning of the data is performed
using a K-means clustering algorithm. Since the probit transform results in
normally-distributed x values for not interesting cases, and negative values
for the small p-values corresponding to interesting cases, we set these initial
centers to (0,−3) for both algorithms, where the value −3 comes from the
leftmost peak of the typical histogram of x we obtained.

For comparing the methods on replications, we focused on two criterion
motivated by the end user concern: proportion of interesting/not interesting
cases and control of the FDR.

Error on the proportion λ0: The estimation of the proportion λ0 of not
interesting cases (H0 true) estimated by each method on the rth replication

is denoted λ̂
(r)
0 . We can then evaluate the empirical Mean Square Error for

each method by

MSE(λ0) =
1

R

R
∑

r=1

(λ̂
(r)
0 − λ0)

2.

Error on the target FDR level The error on the target level α which is
supposed to be achieved by an FDR control procedure may also be evaluated

in this simulation context. At replication r, let p(r) = (p
(r)
1 ≤ · · · ≤ p

(r)
n ) be

the n ordered p-values, and F̂DR(p) be the FDR estimated by one of the
competing methods for p ∈ [0, 1]. In practice, this estimate is used to define
how many of the smallest observed p-value have to be rejected, in order to
achieve an estimated error level smaller than α. Using the ordered p-values
this number of rejections can be defined by the index

d̂(r)α = d̂α := max
{

i ∈ {1, . . . , n} : F̂DR
(

p
(r)
i

)

≤ α
}

, (8)

where we will drop the superscript r below to avoid redundancy in some
notations. This index corresponds to the largest ordered p-value before
which the estimated FDR crosses the level α for the “last time” (note that

12



when this estimated FDR(p) is an increasing function of p, (8) is just the
index of the p-value after which the estimated FDR becomes greater than α).
Now in our simulation setup, since we observe the complete data (p,Z)(r),
we can compute the true FDR at each replication,

FDR(p
(r)
i ) =

1

i

i
∑

ℓ=1

I
Z

(r)
ℓ0 =1

,

from which we can evaluate the actual error FDR(p
(r)

d̂α
) achieved when the

d̂α smallest p-values are rejected at replication r, so that

∆(α) =
1

R

R
∑

r=1

(

FDR
(

p
(r)

d̂α

)

− α
)2

can be viewed as a MSE on the target level α over all the replications.

3.2 Results

An illustrative output from a single replication result of our Monte-Carlo
experiment is provided in Fig. 1, which displays the behavior of the three
FDR estimates we compare, together with the true FDR, BH and raw-
p-value approaches. The number of rejections for each method based on
definition (8) is given in the legend of Fig. 1, together with the value from
the true FDR. We can see that for this particular replication, fdrtool and
spEM suggest similar numbers of rejections d̂α = 793 and d̂α = 798 for
the target level α = 10%, both slightly conservative since the true FDR
available on these simulated data leads to 817 rejections. This figure also
shows graphically how these quantities d̂α and the error on α depend only on
the p-values p, the estimated FDR and the level α. The Benjamini-Hochberg
(BH) procedure suggests d̂α = 680 rejects, which results in an actual error
FDR(p680) = 3.82%, that is too conservative. The crude approach based
on the uncorrected p-values rejects the d̂α = 860 smallest p-values, that is
non-conservative (as expected) with an actual error FDR(p860) = 11.74%,
larger than the desired α = 10%.

Global results of the experiment for λ0 = 0.6 are displayed in Fig. 2 and
Table 1. The semi-parametric EM (spEM) with component 1 constrained to
the normal N (0, 1) returns better estimates than the Gaussian EM with the
same constraint (which is not surprising), but also more precise estimates
in terms of bias and variance, for both λ0 and the target FDR of 10%,
than fdrtool. We can see in Table 1 and the right-hand pane of Fig. 2 that
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spEM is on average less conservative for the target level α than fdrtool,
and considerably better than BH or the Gaussian EM. We observed similar
results in our second experiment, based on λ0 = 0.4 (results not presented
for conciseness).

We also tried different experiments allowing the distribution F 2 for in-
teresting cases to be shifted by a random variable uniformly distributed.
This results in a more complicated component density for interesting cases,
rendering it more difficult to recover. When the shift is not too small, e.g.,
δ ∼ U[3,5], results are similar to those in Fig. 2. However, this aspect warrants
further investigation since for other random shift settings such as δ ∼ U[1,5]

we cannot tell which method is preferable between spEM and fdrtool.

4 FDR estimation for the carbon data

In this section, we detail the numerical results on the carbon data. We
applied our two mixture models together with the fdrtool method and the
Bonferroni and BH (Benjamini and Hochberg, 1995) historical procedures
that are expected to be too conservative. Numerically, the procedures are
identical to the one used in Section 3.1, with respect to the initialization of
the EM and spEM algorithms from an empirical binning of the data.

Figure 3 displays the estimated FDR(·)’s together with their associated
number of rejected smallest p-values d̂α as in Fig. 1, except that here we
do not know the truth and of course cannot compute the error with respect
to the level α. The range of the numbers of rejected hypotheses for a ten
percent level α (i.e. less than ten percent of false positives within rejected
H0 among all the n = 2714 tests performed) is somewhat important. In-
deed, the Bonferroni procedure suggests 317 rejections among the 2714 tests
performed while the fdrtool method suggests 1339 rejections. Moreover, we
should reject 1312 null hypothesis on the raw p-values, i.e. without control-
ling the FDR, 1041 with BH and 1144 with the spEM algorithm.

It is somewhat surprising that fdrtool and spEM seem to behave differ-
ently here than in the Monte-Carlo experiment of Section 3, where fdrtool

appeared slightly more conservative than spEM. Moreover, the (normally
non-conservative) raw p-values approach is here slightly more conservative
than fdrtool with 1312 rejects. This comparison with the raw p-values sug-
gests that the estimation given by fdrtool should be taken with caution for
these particular data, that may be due to a more complex density of p under
the alternative hypothesis.

These results show that not taking into account the FDR estimation can
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lead to over-estimation of the number of cantons subjected to a significant
change (for both increase or decrease). For instance, the difference between
the spEM method and more classical one (Saby et al., 2008; Lemercier et al.,
2008) concerns 168 cantons, that is 12.8 % of the area. This over-estimation
represents about 16 % for the canton showing an OC increase, and 10% for
an OC decrease. Given the need to accurately quantify SOC change for
national carbon accounting, this difference is of great importance.

Fig 4 maps the results of three of the six procedures tested: raw p-
values, fdrtool and spEM procedures. The Bonferroni and BH (Benjamini
and Hochberg, 1995) historical procedures and gaussEM are not plotted.
The spatial structures of the area where the tests suggest significant changes
in the carbon content are quite similar on the three maps. This suggests
that the spatially isolated cantons where significant changes are detected
in the database are more expected to show a false positive test. Globally,
losses in organic carbon are observed in Northern France, along the Atlantic
coastal regions, and to a lesser extent in the North-Eastern regions. The OC
increases are more scattered over the territory.

We also tried to estimate the minimum sample size required at each
campaign in order to have a reasonable probability of detecting a given
change in the carbon level of a canton between two time periods. For each
canton i = 1, . . . , n here, denote by Di the relative difference between the
medians of the two samples (between the two time periods), and by Si the
smallest size of the corresponding two samples. We tried to fit an Analysis of
Covariance model for the predictor D, response variable S, and a categorical
factor with two levels, “evolution” or “no evolution” based on the decision
rule at a 10% level of the spEM estimate of the FDR. For the numerical
predictor, a linear regression model of a log transform, log(Si) = α log(Di)+
β seemed appropriate. Fig. 5 gives (on the linear scale) the upper prediction
intervals for typical levels 50%, . . . , 90%, for the level “evolution” of the
categorical predictor. As a matter of example, if we apply the mean yearly
decline of 0.6% found by Bellamy et al. (2005) in England and wales over a 25
yr period (1978-2003), the cumulative relative difference between 1978 and
2003 is about 14% and therefore the 50% or 90% upper prediction interval of
the sample sizes needed to detect the changes are 190 and 470, respectively.

5 Discussion

We applied a large scale Monte-Carlo experiment to compare the recent and
standard fdrtool method with mixture models, and in particular the new
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spEM approach. We have shown that, at least in some cases, spEM performs
better in terms of FDR precision and number of rejected null hypotheses.
This suggests that in real applications, it would be sensible to at least test
both methods to see whether or not they agree. Indeed, for the carbon
data, spEM and fdrtool did not agree. The somewhat bizarre results given
by fdrtool (less conservative than the raw p-values themselves) can be viewed
as an argument to claim that our spEM approach may be more robust in
such a case based on a complicated dataset (this complexity may be induced
here by p-values coming from two kinds of tests).

Some technical computational details deserves further work. In particu-
lar the bandwidth choice in the kernel density estimate involved within the
spEM algorithm has been done using Silverman’s rule (R default) on the
leftmost part of the sample of the probit transform of the p-values, since the
values y < c for some c < 0 are mostly associated with the interesting cases
(rejections). The tuning of c itself, empirically done here, may be improved.

In this paper, we have detected large areas in France where significant
changes of carbon contents occurred during the fifteen years period of this
study. Differences in soil carbon content were observed between our two
sampling periods. However, the sampling design used does not allow to
draw statistical conclusions Nationwide. Indeed, soil carbon changes have
already been shown by various studies using numerous paired samples taken
exactly at the same location, which is not the case in our study (e.g., Bel-
lamy et al., 2005). Therefore, some effective changes might not have been
detected using our dataset. Our conclusions might be affected by a bias
inherent in the unsupervised sampling strategy associated with the French
soil test database: farmers’ intentions towards C testing could have changed
over time. Moreover, sampling practices may have changed over time (e.g.,
sampling depth, numbers of subsamples, etc). The spatial and temporal
trends described from the national soil test database should be compared
with data from two other French soil survey programmes: first, the French
Soil Monitoring Network (RMQS) Arrouays et al. (2002), to confirm these
trends and assess biases, and second, the inventory programme (IGCS) to
take into account the pedological context of soil test values. Indeed, the
RMQS grid is more appropriate to a statistical assessment of changes over
the national French territory, however it will take at least 10 years before the
second sampling campaing is achieved. The IGCS data might be a useful
tool since it includes older data (from the 1950’s up to now) but it needs to
address spatio-temporal correlations effects as the sampling date is related
to soil mapping programmes progresses and therefore, the age of data from
a given area may be very different to another one.
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spEM Gaussian EM fdrtool

λ̄0 0.603 0.64 0.609
MSE(λ0) 0.000149 0.00341 0.000307

ᾱ 0.0928 0.0424 0.0868
∆(α) 0.000124 0.00353 0.000350

Table 1: Mean and MSE’s for λ0 and α from 500 replications of n = 2000
tests, true λ0 = 0.6.
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gaussEM: 724 rejects (5.94%)
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BH actual FDR 3.82 % (conservative)
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raw actual FDR 11.74 % (non conservative)

raw: 860 rejects

Figure 1: Example of FDR(p) estimates from five methods, for n = 2000
tests as detailed in Section 3.1. The number of rejections d̂α defined in (8)
for the target level α = 0.1, and actual error achieved by each method are
given in the legend. Graphical illustration of computation of d̂α and er-
ror on α are given for the Benjamini-Hochberg (BH) conservative procedure
(black dashed) and the non conservative approach using the raw p-values
(grey dashed). For each method, d̂α corresponds to the index (vertical line)

located where F̂DR(·) crosses the level α. Then the level of the horizontal
line drawn from each true FDR(p

d̂α
) indicates the actual FDR achieved.
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Figure 2: Results from R = 500 replications of n = 2000 multiple tests,
among which 36% are t-tests and 64% MW tests, for λ0 = 0.6 and constant
shift under H1. Left: Boxplots of λ0 estimates; Right: actual FDR after

rejection of p̂
(r)
α smallest p-vlues, for the three methods and the Benjamini-

Hochberg procedure (BH). Horizontal dashed line are true values.
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Figure 3: FDR estimates from six approaches for the carbon data. Bonfer-
roni and BH (Benjamini and Hochberg, 1995) historical procedures are also
displayed for comparison.
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Figure 4: Maps of the results of the multiple tests procedures at the cantonal
level for a target level α = 0.1. The upper left map corresponds to the raw
p-values. The upper right map corresponds to the number of samples used
in the procedure. The lower left map uses the FDR estimated by spEM.
The lower right uses the FDR estimated by fdrtool. Und corresponds to the
cantons where H0 cannot be rejected. ND corresponds to the cantons where
there are not enough data to compute the test.
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Figure 5: Upper prediction intervals of levels 50%,. . . ,90%, for the minimim
sample sizes needed at each campaign to detect a given change expressed in
median relative difference between two time intervals, at a 10% FDR level.
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