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Highlights:

 Raman imaging is an innovative analytical tool for pharmaceutical development.
 Independent component analysis was used to detect pure spectra of a formulation.
 The distribution of active and excipients was examined without prior knowledge.
 Innovative tools to select the number of components were explored.
 Limitations of the technique and future improvements were discussed.
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1. Introduction15

In recent years, chemical imaging has become an emerging technique that integrates conventional16

imaging and spectroscopy to combine spatial and spectral information from a sample [1]. The use of17

vibrational spectroscopies such as near infrared or Raman is particularly appreciated within the18

pharmaceutical research and development environment. Indeed, vibrational spectroscopy technologies19

on solid pharmaceutical samples have many advantages such as the rapidity of analysis, the non-20

destruction of the sample and the possibility to perform an analysis without using solvents. The spatial21

information provides useful information on product processing, for formulation development or to22

control the quality of an existing drug product. Indeed, the distribution of actives or excipients within a23

specific formulation becomes an important quality control parameter.24

Several applications of Raman spectroscopy have been published and the potential of this technique is25

widely accepted [2]. The use of Raman spectroscopy for the detection of trace cristallinity [3] and the26

determination of active content within pharmaceutical capsules [4], are of great interest for the27

development and the quality control of a formulation. Moreover, hyperspectral imaging shows 28

considerable promise for providing information in diverse fields such as remote sensing [5] for29

interpretation of experimental spectroscopic images from the geographical region of Cuprite, foods 30

and agriculture [6] for analysis of cucumber leaves and pharmaceuticals [7,8] for analysis of solid31

dosage forms or the detection of polymorphic forms in tablets.32

Coupling spectroscopy and imaging generates a huge amount of data. Most of the time, the image 33

cube is unfolded into a data matrix and to extract the maximum of information, it is necessary to use34

multivariate data analysis methods and spectral decomposition techniques [9]. Standard chemometric35

tools such as principal component analysis [10], cluster analysis [11], classical least squares [12] and36

multivariate curve resolution [13] have previously been described in the literature on Raman datasets.37

Independent component analysis (ICA) is a blind source separation algorithm [14] particularly38

appreciated for the decomposition of spectroscopic data. Its ability for spectral decomposition of UV-39

VIS spectra has already been evaluated [15]. Wang et al. [16] also highlighted that ICA can be used as40

a blind source separation technique to extract pure component information from various measured41

analytical signals such as mass spectra, mid-Infrared spectroscopy spectra or chromatograms. In this42

article, ICA was applied on a promising technique for pharmaceutical drug product analysis: the 43

Raman spectroscopy. In ICA, each row of the data matrix is considered to be a sum of pure source44
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signals, neither the source signals, nor their proportions being known. ICA aims to extract these pure45

sources, underlying the observed signals, as well as their concentration in each mixture. Source signals46

are assumed to have a definite structure, and so their intensity does not have a Gaussian distribution.47

On the other hand, although the distributions of independent signals are not Gaussian, their sum tends48

towards a Gaussian distribution. ICA aims to extract the pure source signals by maximization of their49

non-Gaussianity [17].50

In this paper, a commercial pharmaceutical tablet was analysed by Raman chemical imaging. The51

objective was to extract interpretable pure signals using ICA, in order to examine the distribution of52

active principal ingredients (API) and major excipients. ICA approach can be used without pure53

spectra knowledge. The direct data analysis of the image is a huge advantage comparing with the usual54

Chemometric algorithms. This approach can become a useful tool for quality control of a 55

pharmaceutical drug product or to analyse a product with an unknown composition. As a method56

based on decomposition of the original data matrix, the number of independent components is a57

critical step of this algorithm. Usually the number of independent components to extract is determined58

based on prior knowledge concerning the formulation [18]. In order to select the best number of59

independent components, innovative tools previously developed and published were used in this study.60

Each calculated source signal was compared with the pure spectra of the constituents and the61

distribution of the compound in the tablet determined. Being a critical parameter of the ICA model, the62

number of ICs was intentionally modified, simulating under-decomposition or over-decomposition, in 63

order to test the effect on results. 64

65

2. Materials and methods66

2.1. Samples67

A commercial coated tablet of Bipreterax® was used for the study. Bipreterax® is used for arterial68

hypertension treatment and is commercialised by “Les Laboratoires Servier”. It is also known as69

Perindopril (active principal ingredient 2 or API 2) / Indapamide (active principal ingredient 1 or API70

1) association and contains respectively 4mg of API 2 and 1.25mg of API 1 in the commercial drugs.71

Actives are known to have several solid state forms, but only one of them is present in this72

formulation. Major core excipients are lactose monohydrate, microcrystalline cellulose (Avicel) and73

magnesium stearate. In order to analyse the tablet core, the coating was removed by eroding the74

sample with a Leica EM Rapid system (Leica, Wetzlar, Germany). A visual examination of the tablet75

did not provide any information concerning the distribution of the different compounds within the 76

tablet. 77

2.2. Raman imaging system78

The image was collected using a RS400 PerkinElmer system (Perkin Elmer, Waltham, MA) and the79

Spectrum Image version 6.1 software. The microscope was coupled to the spectrometer and spectra80

were acquired through it with a spatial resolution of 10µm in a Raman diffuse reflection mode. 81

Wavenumber range was 3200–100 cm-1 with a resolution of 2 cm-1. Spectra were acquired at a single82

point on the sample, then the sample was moved and another spectrum was taken. This process was83

repeated until spectra of points covering the region of interest were obtained.84

85
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A 785nm laser with a power of 400mW was used. Two scans of two seconds were accumulated for86

each spectrum. An image of 70 pixels per 70 pixels corresponding to 4900 spectra was acquired for a87

surface of 700µm by 700µm. 88

2.3. Pre-processing89

Data were pre-processed in order to remove non-chemical biases from the spectra (scattering effect90

due to non-homogeneity of the surface, interference from external light source, spikes due to cosmic 91

rays, random noise). First of all, data were spike-corrected in order to reduce the effect of cosmic rays. 92

Next, the spectral range was reduced in order to focus only on the region of interest, corresponding to93

a Raman shift from 1800cm-1 to 200 cm-1. Reduced spectra were pre-processed by standard normal94

variates correction (SNV) [19] in order to reduce the effect of baseline variations and uninformative95

variations in global spectral intensity.96

2.4. Independent Component Analysis (ICA)97

ICA is one of the most powerful techniques in blind source separation [20]. It has been developed to98

extract the pure underlying signals from a set of mixed signals in unknown proportions. Considering a99

noise-free ICA model, a matrix X (n x m) is decomposed as a linear generative model by the following100

expression:101

X = A.S (1)102

Where S is a (k x m) matrix of k independent source signals called the independent components and A103

is a (n x k) mixing matrix of coefficients or proportions of the pure signals in each mixed signal of X.104

The objective of ICA is to estimate a set of vectors that are as independent as possible, and the mixed105

signals in X can then be expressed as linear combinations of these independent components (ICs). It106

attempts to recover the original signals by estimating a linear transformation, using a criterion which107

reflects the statistical independence among the sources.108

To solve the previous equation (Eq. (1)), an unmixing matrix W based on the observation of X needs109

to be calculated. The output U, constituted by the independent component u1,u2, … un should be as110

independent as possible. For a noise-free ICA model, W should be the inverse of A, and U should be111

equal to S, according to the following equation:112

U = WX = W(AS) = S  (2)113

The mixing matrix A can then be calculated as:114

A = XST (SST)-1 (3)115

Lots of algorithms are available to perform ICA calculations such as FastICA [21] or Radical [22]. In 116

this paper, the JADE (Joint Approximate Diagonalization of Eigenmatrices) algorithm was used [23].117

Compared with other methods based on parameter optimization, the Jade algorithm performs matrix118

diagonalisations, and therefore does not involve an optimization procedure [24]. 119

The ICA_by_blocks algorithm [25] was used to determine the optimal number of signals to extract.120

This method starts by splitting the initial data matrix X into B blocks of samples (with approximately121

equal numbers of rows). Note that the samples in each block have to be representative of the whole 122

dataset. ICA models are then computed with an increasing number of ICs for each block. To ensure123
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the same signs of the ICs of the different models, the signs of the vector A (and therefore the124

corresponding S) are adjusted so that the most intense value in each vector of A is positive. ICs 125

corresponding to true source signals should be found in all representative subsets of samples, or row126

blocks, of the full data matrix. These ICs should be strongly correlated.127

2.5. Data analysis128

Data analysis was performed by using Matlab R2012a software. The Matlab code of the JADE 129

algorithm was downloaded from the web site in ref. [26]. 130

131

3. Results & discussion132

3.1. Selection of number of independent components133

Determination of the number of ICs for ICA decomposition is a critical step of the data analysis.134

Indeed, calculating too few ICs results in non-pure signals, whereas calculating too many ICs can 135

decompose pure signals into several contributions. The ICA_by_blocks method was applied by136

splitting the dataset row-wise into two blocks and by performing ICAs on each block. Sample 137

selection to create the two subsets was done by using a "venetian blind" procedure. ICA models were138

calculated for both blocks with from 1 IC to 20 ICs. ICs were compared in each block by calculating139

the correlation coefficients between all pairs of signals from both blocks for a given model. The140

highest-dimensional model for which ICs obtained in a block were similar to ICs obtained in another141

block indicates the optimal number of ICs to extract from the data under study. Figure 1 shows that the 142

lowest correlation between signals significantly decreases after 9 ICs, which was therefore considered143

as the optimal number of component for the decomposition of the dataset. The initial drop after 4 ICs144

and then after 7 ICs is assumed to be due to the fact that the ICs are not extracted from the two data145

blocks in exactly the same order.146

Since the sample contains five compounds and supposing that the five spectra are independent and that147

the acquired mixture spectra are linear combinations of the pure spectra, five ICs should have been148

sufficient. In this example, in contrast with the theoretical decomposition, four more components were149

used to build ICA models. Physical effects such as particle size variation or fluorescence of a150

compound could explain this “over-decomposition” of the dataset.151

3.2. Distribution of API152

An ICA model based on the JADE decomposition with 9 ICs was calculated on the unfolded, SNV153

pre-processed data cube. The matrices of the proportions, A, for each signal, S, were then folded back154

in order to obtain a representation of the spatial distribution of each independent component. In figure155

2, different textures of images can be observed. Indeed, IC1, IC6 and IC9 show very specific156

inhomogeneous distributions with agglomerates. Considering the different scales of score images, IC2, 157

IC3, IC4, and IC5 have similar textures (or distributions) such as IC7 and IC8 which are the same as158

that in IC1. It can also be seen that the distributions observed in these two sets of images are159

complementary, indicating that these two sets of Independent components occupy complementary160

regions in the tablet. In order to associate an independent component with a chemical compound, the161

calculated signals were examined.162
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Figure 3 shows the 9 signals calculated by ICA. Signals from IC1, IC2, IC3, IC4, IC5, IC6 and IC9163

look like well-defined Raman spectra with no baseline shift due to fluorescence effects whereas the164

signals in IC7 or IC8 contain noise and baseline variations which could be explained by a fluorescence165

effect. In theory, and supposing the independence of each spectrum within the formulation, 5 ICs166

should have been sufficient for the matrix decomposition. However, 9 ICs were determined to be167

present, possibly due to physical effects, or interactions between constituents. Considering the168

simplicity of the preprocessing method applied on the Raman spectra (spike correction, selection of a169

specific range and SNV), the quality of the calculated signals was sufficient and perfectly suitable for170

analytical interpretation.171

The spectra for the known constituents in the tablets are plotted in figure 4. Even though the spectra of172

all compounds are very different, lots of Raman bands are overlapped. A mixture spectrum is a173

combination of these spectra, given the presence of each constituent in any specific pixel of the image. 174

In order to interpret the ICA results, the correlation coefficients between the ICA signals and the pre-175

processed spectra of the compounds were calculated. Results can be found in table 1.176

177

The comparison between the calculated signals and the true spectrum of each compound shows that178

only two ICs are directly linked to the drug product constituents. For each component, the highest179

correlation was highlighted with bold characters in table 1.180

No high correlations were found for Magnesium stearate. Two very high correlations were highlighted181

between the pure spectra and the calculated signals (respectively 0.92 between IC9 and the active182

principal ingredient 1 and 0.96 between IC6 and the active principal ingredient 2). As is shown in183

figure 5 and figure 6, the calculated signals (IC9 and IC6) are in effect very similar to the pure spectra184

of API 1 and API 2. The refolded images of the corresponding proportions, A, therefore reflect the185

distribution of these two compounds. As can be seen in figure 2, the distribution of active principal186

ingredients is not perfectly homogeneous and agglomerates are observed.187

IC1 is mainly correlated with the spectrum of Avicel. Specific bands due to the chemical bond 188

vibrations are observed in this component (especially between 1250cm-1 and 1000cm-1, spectral range189

linked to CC ring bond stretches and CO stretches). IC7 and IC8 are mainly correlated with the190

spectrum of avicel (0.38 for IC7 and 0.61 for IC8) but the correlation with lactose (0.36 for IC7 and 191

0.45 for IC8), magnesium stearate (0.32 for IC7 and 0.23 for IC8) and API1 (0.21 for IC7 and 0.18 for192

IC8) cannot be considered as non-significant. IC7 and IC8 signals are not well defined Raman spectra193

and contain principally noise or baseline variations which can explain these high correlations with194

several different products. As can be seen in figure 2, IC7 and IC8 have similar spatial distributions195

which are the same as that in IC1. Avicel is a microcrystalline cellulose powder which is known as a196

product providing a fluorescence effect with Raman, which could explain the contribution of IC7 and 197

IC8.198

As is shown in figure 7, IC2, IC3, IC4 and IC5 are linked to the lactose spectrum. Lots of lactose199

Raman bands are identified in these IC signals (for example band at 460cm-1 in signals 2, 3 and 5 due200

to various CCO and OCO bending modes, or band at 1088 cm-1 linked to the stretching vibration of201

the COC bridge). These 4 components gave their highest correlations with the lactose spectrum. 202

However, these correlations were low (from 0.23 to 0.47) reflecting the decomposition of the pure203

spectrum into 4 components. The signal decomposition was particularly significant in the low Raman 204

shift spectral range. In this spectral region, coupled CC and CO vibrations rather than single functional205
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group are mainly observed. By observing the refolded image of coefficients, note that the distribution206

of this product was very similar (considering the different image scales). 207

The observed decomposition of the lactose information into separate Independent Components could208

be due to two phenomena. The first one is the physical effect. Indeed, lactose is known to have209

important particle size variations which can modify the light scattering and as a consequence the210

Raman spectra. These slight modifications could behave as independent phenomena and thus result in211

separate ICs. Moreover, the different combinations of vibrations could be interpreted by ICA212

decomposition as an independent variation. The second hypothesis is that it is an artefact due to the213

ICA decomposition itself. Indeed, as the formulation contains 5 compounds, the model may have 214

mathematically over-decomposed the dataset by using 9 ICs.215

In order to explore the ability of ICA to extract a pure signal from lactose, an ICA model was216

calculated with 5 ICs, which was the known number of constituents used to manufacture the tablet. By217

comparing the 5 ICs with the pure spectra, a high correlation was found with lactose (R = 0.90), one218

with API1 (R = 0.95), one with API2 (R = 0.94), while a weak correlation was found with avicel (R =219

0.39) and one signal contained noise and mixed pure contributions. The lactose contribution was220

therefore not divided among several components, as was observed when using 9 ICs. As is shown in221

figure 8, the calculated signal IC3 was very similar to the pure lactose spectrum. With 5 ICs, the 222

decomposition of the original matrix was mainly due to chemical variations whereas the223

decomposition using 9 ICs included physical effects. 224

By observing ICA coefficients and signals, it can be seen that no information from the magnesium225

stearate was observed. The non-detection of this compound, frequently used as a lubricant in a226

pharmaceutical formulation, could be mainly due to its low concentration in the tablet (0.5 w/w%).227

Indeed, several hypotheses can be advanced to explain this lack of detection: the physical formulation228

of the product, the sensitivity of the spectroscopy or the failure of the ICA algorithm. As the analysed229

area does not represent the whole surface of the tablet and because of its low content, it is possible that230

the acquired spectra did not contain any magnesium stearate information. Moreover, the Raman231

contribution of the magnesium stearate could be hidden by the contribution of the other constituents.232

In order to test the ability of ICA to detect and extract the information related to magnesium stearate, 233

new models with more components and other preprocessing methods were tested (details not shown). 234

By using a Savitzky-Golay preprocessing [27] and a model with 15 ICs, one signal (figure 9) was235

highly correlated (r = 0.87) with the pure spectrum of magnesium stearate and the distribution of the 236

product can then be studied (figure 10). However, the quality of other signals significantly decreased.237

Pure spectra were divided among several components and the analytical meaning of each signal was238

not intuitive.239

240

4. Conclusions241

ICA was successfully applied on a Raman image of a commercial tablet. A representative image of the242

tablet was acquired and the spectrum of each pixel, which can be associated to a mixture of the243

different pure compounds, was pre-processed and analysed using the JADE algorithm to calculate244

signals and proportions with a specified number of components. This parameter was estimated by245

using the ICA_by_blocks method. This technique shows very good results to choose the most246

appropriate number of ICs on a real Raman dataset. It avoids arbitrary selection of this critical247

criterion. 248

Author-produced version of the article published in Journal of pharmaceutical and biomedical analysis, 2014, 90, 78-84. 
The original publication is available at http://www.sciencedirect.com/science/journal/07317085 
DOI :  10.1016/j.jpba.2013.11.025



7

This method gave good results to provide pure spectra of the active substances. Contribution of avicel249

was spread among 3 ICs. The first one was very similar to the pure spectrum of avicel whereas the two250

others were mainly fluorescence signals. Being a microcrystalline cellulose, avicel is known to be251

prone to fluorescence effects. The contribution of lactose was shared over 4 ICs which may be due to252

an over-decomposition of the original dataset or to physical contributions. In order to improve the pure253

lactose signal quality and based on knowledge of the product formulation, an ICA model was254

calculated using fewer ICs. The lactose contribution was then no longer divided among several signals255

but, the physical effects were no longer observed.256

This should be contrasted with the fact that using an insufficient number of ICs leads to the non-257

detection of a low content compound, magnesium stearate. It has been shown here that using a very258

large number of components and another preprocessing method resulted in a well-defined ICA signal259

linked to magnesium stearate. It was then possible to examine the distribution of this low content260

product within the tablet. However, due to the over-decomposition of the dataset, other pure signals261

were divided among several components, which made the identification of each contribution within262

the tablet more difficult.263

The ICA_by_blocks method was therefore a compromise between under- and over- decomposition.264

Even if the contribution of lactose or avicel were divided among several components, the spatial265

information obtained could be very useful for formulation development or to improve the quality266

control of pharmaceutical samples. New approaches, based on data fusion from ICA calculations to267

gather information from the same constituent, are under development and will be detailed in a future268

work.269

270
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Figure captions333

334

Figure 1 - Lowest correlation between signals obtained using ICA_by_blocks335

The lowest correlation obtained using the ICA_by_blocks approach significantly decreases after 9 ICs, 336

which was considered as the optimal number of component for the decomposition of the dataset337

338

Figure 2 - Proportions coefficients (A) of each IC339

Images correspond to the proportions coefficients (A) of a 9 ICs model. A red color corresponds to a340

high value whereas a blue color corresponds to a low value.341

342

Figure 3 - Signals, S, of the ICA model343

These signals correspond to the calculated signals (S) of a 9 ICs model.344

345

Figure 4 - Pure spectra of the drug product constituents346

Pure spectra of the five tablet constituents. In blue API 1, in green API 2, in black lactose, in red avicel347

and in magenta the magnesium stearate. Relative intensities were used as the spectra were split for a348

better observation.349

350

Figure 5 - Calculated signal of independent component 9 superposed on the spectrum of API 1351

Comparison between API 1 spectrum and IC9 signal. The correlation between the two signals is equal352

to 0.92.353

354

Figure 6 - Calculated signal of independent component 6 superposed on the spectrum of API 2355

Comparison between API 2 spectrum and IC6 signal. The correlation between the two signals is equal356

to 0.96.357

358

Figure 7 - Calculated signal of independent component 2, 3, 4, 5 plotted with the spectrum of Lactose359

Comparison between lactose spectrum and IC2, IC3, IC4 and IC5 signals. The correlations between360

the signals are respectively equal to 0.44, 0.23, 0.25 and 0.47. The pure spectrum of lactose and the361

four calculated independent components are displayed. The pure spectrum was decomposed into four362

components.363

364
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Figure 8 - IC3 signal from a 5 components ICA model superposed on the spectrum of lactose.365

Comparison between lactose spectrum and IC3 signal from a 5 components ICA model. The366

correlation between the two signals is equal to 0.90.367

368

Figure 9 - IC12 superposed on the magnesium stearate spectrum from a 15 component ICA model369

Comparison between magnesium stearate spectrum and IC12 signal from a 15 components ICA370

model. The correlation between the two signals is equal to 0.87.371

372

Figure 10 - Distribution of IC12 (magnesium stearate) from a 15 component ICA model373

Distribution of IC12 from a 15 component ICA model. This component is highly correlated to374

magnesium stearate. 375
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Pure spectrum IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 IC9
API1 0.01 -0.09 0.07 0.14 -0.04 0.13 0.21 0.18 0.92
API2 0.06 -0.01 0.11 0.08 0.03 0.96 0.08 0.10 -0.06

Lactose 0.25 0.44 0.23 0.25 0.47 0.00 0.36 0.45 -0.17
Avicel 0.49 0.15 0.06 0.02 0.20 -0.07 0.38 0.61 -0.20

Magnesium Stearate 0.20 0.00 0.01 0.04 0.04 0.41 0.32 0.23 -0.12

Table(s)
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