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Hybrid RANS/LES simulations of the turbulent flow over periodic hills at high 

Reynolds number using the PITM method

Bruno Chaouat a,⇑, Roland Schiestel b,1

aONERA, 92322 Châtillon, France
b IRPHE, Château-Gombert, 13384 Marseille, France

We apply the partially integrated transport modeling (PITM) method with a stress transport subfilter model [Chaouat B, Schiestel R. A new partially 
integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys Fluids 2005:17] to perform continuous 
hybrid non-zonal RANS/LES numerical simulations of turbulent flows over two-dimensional periodic hills at high Reynolds number Re = 37,000 on coarse 
and medium meshes. The fine scale turbulence is described using a subfilter scale stress transport model deduced from PITM. This work extends the 
previous simu-lations of the turbulent flow over periodic hills performed at the lower Reynolds number Re = 10,595 [Chaouat B. Subfilter-scale transport 
model for hybrid RANS/LES simulations applied to a complex bounded flow. J Turbul 2010:11] to the higher value 37,000 considering that studying the 
effects of the Reynolds number on the turbulence field constitutes a new material that deserves interest in CFD. So that, the aim of this paper is to explore 
the extension of a PITM subfilter model to high Reynolds num-bers where conventional LES is not any more accessible because of the highly consuming 
cost. The effects of the grid refinement at Re = 37,000 are investigated in detail through the use of different mesh sizes with a very coarse grid and with a 
several medium grids. For comparison purposes, the channel flow over 2D hills is also computed using a full statistical Reynolds stress transport model 
developed in RANS meth-odology. As a result of the simulations, it appears that the PITM simulations, although performed on coarse meshes, reproduce 
this complex flow governed by interacting turbulence mechanisms associated with separation, recirculation, reattachment, acceleration and wall effects 
with a relatively good agree-ment. The mean velocity and turbulent stresses are compared with reference data of this experiment at the flow Reynolds 
number Re = 37,000 [Rapp Ch, Manhart M. Flow over periodic hills – an experimental study. Exp Fluids 2011:51]. Some discrepancies are observed in the 
immediate vicinity of the lower wall for the coarse simulations but as it could be expected, the simulation performed on the medium mesh provides 
better results than those performed on the coarse meshes thanks to the higher resolution due to the grid refinement in the streamwise and spanwise 
directions that allows a better account of the three-dimensional character of the flow. As usual in LES calculations, the instantaneous large flow struc-
tures are investigated in detail providing some interesting insights into the structures of the present tur-bulent flow. Comparatively to the PITM 
simulation results, it is found that the RANS Reynolds stress model based on second moment closures fails to predict correctly this flow in several 
respects, although being one of the most advanced model in RANS methodology. Important discrepancies with the experi-mental data are noticed. This 
work suggests that the present subfilter-scale stress model derived form the PITM method is well suited for simulating complex flows at high Reynolds 
numbers, with a sufficient accuracy from an engineering point of view, even if the grids are not as so fine as those used in conven-tional LES, while at the 
same time allowing a drastic reduction of the computational cost. Beside, these calculations give some ideas on the influence of the Reynolds number on 
the flow.

1. Introduction

Usually, the Reynolds averaged Navier–Stokes (RANS) method-

ology based on a statistical averaging (or in practice a long-time

averaging which is sufficiently large in comparison with the turbu-

lence time scale [1]) and particularly the route of advanced
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Reynolds stress transport modeling (RSM) developed in the frame-

work of second-moment closures (SMC) [2,3], appears as an effi-

cient way for tackling engineering flows encountered in

aeronautics applications with reasonable computational costs [4].

However, although reaching a high level of sophistication in RANS

methodology, RSMmodels may show some weaknesses in simulat-

ing turbulent flows in which the unsteady large scales play an

important role. This happens in particular situations where the

mean flow quantities are strongly affected by the dynamic of large

scale turbulent eddies [5–7]. Indeed, RANS models seem working

well in flow situations where the time variations in the mean flow

are of much lower frequency than the turbulence itself. This is the

favored field of application of RANS and unsteady RANS (URANS).

On the other hand, highly resolved large-eddy simulation (LES)

which consists in modeling the more universal small scales while

the large scales motions are explicitly calculated, is a promising

route. It is now largely developed [8] when insight in the turbu-

lence structure is required. But, up to now, the LES approach is

not affordable for industrial applications involving large computa-

tional domains, even with the rapid increase of super-computer

power [9]. For instance, an LES simulation of the flow around an

entire aircraft still remains out of scope at present time. This prob-

lem is particularly acute at high Reynolds numbers since the Kol-

mogorov scale decreases according to the R�9=4
t law. For these

reasons related to high computational costs, new turbulence ap-

proaches that combine the advantages of both RANS and LES meth-

ods have been recently proposed to simulate engineering or

industrial flows. They are essentially based on hybrid zonal meth-

ods for which a thorough review conducted by Fröhlich et al. can

be found in reference [10]. Among these hybrid RANS/LES methods,

the detached eddy simulation (DES) developed by Spalart and co-

authors [9,11], or in an improved version, the delayed DES [12],

where the model is switching from a RANS behavior to an LES

behavior, depending on a criterion based on the turbulent length

scale, is certainly one of the most popular models. As a practical

method for handling aeronautical applications, DES is often used

to simulate flows around obstacles with the aim to access global

coefficients such as the drag, lift and pressure coefficients which

are useful in the aerodynamic design optimization of aircraft

wings. One can also mention the scale-adaptive simulation (SAS)

model developed recently [13]. Still from a practical point of view,

the DES technique was recently applied to derive the zonal SST-

DES model [14] inspired from the SST model developed by Menter

[15]. This model has been used for simulating flows around a com-

plete aircraft without and with engine nacelle. Some other RANS/

LES zonal methods have also been developed in this spirit but they

rely on two different models, a RANS model and a subgrid-scale

model, which are applied in different domains separated by an

artificial interface [16–18]. Although zonal hybrid RANS/LES mod-

els are of practical use in a general way, allowing a reduction of the

computational cost compared to conventional LES, the RANS/LES

interface still poses matching problems between the RANS and

LES regions. The interface is empirically located inside the compu-

tational domain and the turbulence closure suddenly changes from

one region to another adjacent one without continuity when cross-

ing the interface. Furthermore, these methods often require an

internal forcing produced by artificial instantaneous random fluc-

tuations for restoring continuity of turbulence levels at the cross-

flow between these domains. Extra terms introduced in the

equations are then necessary to get the correct velocity and stress

profiles in the boundary layer [10,19]. The question of the log-layer

mismatch velocity for hybrid RANS/LES simulations has been ad-

dressed in detail by Hamba in reference [20].

In the field of hybrid RANS-LES methods, Schiestel and Dejoan

[5], and Chaouat and Schiestel [6,21] have developed the partially

integrated transport modeling (PITM) method with seamless cou-

pling changing smoothly from RANS to LES in different regions in

order to overcome the difficulties raised by zonal models men-

tioned above. From this method, these authors have derived subfil-

ter turbulence models, the former one using an energy transport

model with a subfilter viscosity and the latter one using a stress

transport model based on second-moment closure (SMC). From a

physical standpoint, this method has been derived in the spectral

space by considering the Fourier transform of the dynamic equa-

tion for the two-point velocity fluctuating correlations [22]. Then,

partial integration of these spectral equation gives rise to subfilter

turbulence models including a new transport equation for the dis-

sipation rate which constitutes the main ingredient of the PITM

method. Contrarily to zonal hybrid RANS/LES models, the subfilter

models derived from the PITM method vary continuously from

RANS to LES with respect to a parameter formed from the ratio

of the turbulent length-scale to the grid-size Le/D so that there

are no discrete interfaces between the RANS and LES regions. Al-

most any usual statistical RANS model can be transposed into its

subfilter version, using the PITM method. In turbulence modeling,

subfilter scale stress transport models developed in the framework

of SMC [6,7,23,24] are probably among the most elaborated models

transposed from RSM models [25,26]. Indeed, the use of transport

equations for the subfilter-scale stress components allows to take

into account more precisely the turbulent processes of production,

transfer, pressure redistribution effects and dissipation, in a better

way than eddy viscosity models. Due to the presence of the mate-

rial derivative in the stress transport equations, the subfilter-scale

stress model is able to account for some history effects in the tur-

bulence interactions, and also due to the presence of pressure–

strain correlation terms, to describe more faithfully the anisotropy

of the turbulence field. Moreover, some backscatter effects can

possibly arise because the production term in the stress equations

can indeed become negative in some places, contrarily to what

happens in two equation closures based on eddy viscosity in which

the production term is strictly positive. Consequently, subfilter

stress models offer various interesting potentialities for simulating

non-equilibrium unsteady flows. Subfilter-scale stress models are

however more often used in research codes rather than in indus-

trial numerical simulation codes, the reason being that viscosity

models accounting for two transport equations are obviously eas-

ier to implement and to run in CFD codes than Reynolds stress

models accounting for seven strongly coupled equations in unstea-

dy flow evolution [27]. Moreover, second moment turbulence clo-

sure may pose some numerical difficulties. Indeed, in two equation

eddy viscosity models, the turbulence stresses are usually treated

numerically as diffusion terms that have a stabilizing effect in

the momentum equation, whereas in second moment closures,

the stresses are numerically integrated as external source terms

that have in the contrary a destabilizing effect on the motion equa-

tion. We will see in the following what stabilization techniques

have been used for overcoming these difficulties. The PITM concept

for the dissipation rate equation is also particularly appealing for

turbulent flows with some departures from the standard Kolmogo-

rov equilibrium law while using relatively coarse grids [21,23].

Furthermore, these models can also be used in the perspective to

investigate turbulent flows with emphasis on fundamental aspect

and structural aspects, together with statistical post-analysis based

on two-point correlations and spectral properties. Of course, it is

not expected to get the accuracy of conventional fine grid LES in

the structural description, but some useful trends are however pos-

sible, as exemplified further, the aim being to get acceptable re-

sults while reducing the computational cost. Another approach is

the PANS (partially averaged Navier–Stokes) method [28] based

on the self-similarity scale assumption which in fact leads to trans-

port equations that look very similar to the ones obtained from the

PITM method but they have been developed in a totally different
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line of thought and different arguments. Moreover, the PANS mod-

el does not provide a defined link between the model equations

and the filter size since the ratio of the subfilter-energy to the total

energy is arbitrarily prescribed. The results are then depending on

this prescribed ratio and the role of the filter is disconnected and

cannot be clearly interpreted from a physical point of view. This

is not satisfactory on the physical point of view, as it was discussed

in detail in reference [29].

This paper first briefly recalls the main principles of the par-

tially integrated transport modeling method developed in the

spectral space. Then hybrid RANS/LES numerical simulations of

the turbulent flow over periodic hills are performed on coarse

and medium meshes at a high Reynolds number Re = 37,000. This

test case of a channel with streamwise periodic constrictions and

separation is of practical interest in the field of aerodynamic appli-

cations because of the presence and interaction of turbulence

mechanisms associated with separation, recirculation, reattach-

ment, acceleration and wall vicinity effects that are often encoun-

tered in industrial and aerospace flows. A special attention is

therefore devoted to these mechanisms occurring in the flow at

the high Reynolds number Re = 37,000 comparatively to those pre-

viously studied at a lower Reynolds number Re = 10,595 [7,30,31].

For comparison purposes, RANS computations of the same channel

flow over 2D hills using a statistical Reynolds stress model are also

performed on the coarse mesh, also at the same Reynolds number

Re = 37,000. For each simulation, the mean velocity and turbulent

stresses components returned by the PITM simulation and the

RSM prediction are compared with the experimental data at

Re = 37,000 obtained by Rapp [32,33]. The conditions of realizabil-

ity of the turbulent stresses are checked from a few solution trajec-

tories projected onto the plane formed by the second and third

invariants in the diagram of Lumley [34]. This also allows to assess

the turbulence model in its capability to reproduce correctly the

flow anisotropy by determining the possible turbulence states in

this diagram. With the aim to investigate the flow from a spectral

point of view, energy spectrum densities are performed using the

Fourier transform of the instantaneous velocities. The two-point

fluctuating velocity correlations are computed in the spanwise

direction of the channel to get statistical information. Moreover,

interest is then placed on some structural aspects of this complex

flow.

2. The filtering and averaging processes

Turbulent flows of a viscous incompressible fluid are consid-

ered. In large eddy simulations, any flow variable / is decomposed

into a large scale (or resolved) part �/ and a subfilter fine scale (or

modeled) part />. Both are fluctuating. The large scale component

is defined by the filter function GD as

�/ðxÞ ¼
Z Z Z

D
GDðx� yÞ /ðyÞ d3

y ð1Þ

whereD denotes the filter width. In view of the statistical averaging

process, the instantaneous variable / can also be decomposed into

a statistical mean part h/i and a fluctuating part /0 leading to

/ = h/i + /0. The instantaneous fluctuation /0 contains in fact the

large scale fluctuating part /< and the small scale fluctuating part

/> such that /0 = /< + />. So that / can then be rewritten as the

sum of a mean statistical part h/i, a large scale fluctuating part /<

and a small scale fluctuating part /> as follows / = h/i + /< + />.

The first two terms correspond to the filtered velocity
�/ ¼ h/i þ /< implying that the large scale fluctuating part is simply

the difference between the filtered and the statistical quantities,

/< ¼ �/� h/i. In fact, the large scale fluctuations (resolved scales)

and the fine scales fluctuations (modeled scales) can be naturally

defined from the physical meaning of the Fourier transform of the

fluctuating quantities /0 using the cutoff wavenumber jc as the

lower bound of the integration interval. Indeed, if working in spec-

tral space, the large scale /< and the fine scale /> are then defined

from the Fourier transforms as [22]

/<ðxÞ ¼
Z

jjj6jc

c/0ðjÞ expðjjxÞdj ð2Þ

/>ðxÞ ¼
Z

jjjPjc

c/0ðjÞ expðjjxÞdj ð3Þ

where the Fourier transform c/0ðjÞ is defined as usually from

c/0ðjÞ ¼ 1

ð2pÞ3
Z

R3
/ðxÞ expð�jjxÞdx ð4Þ

Note that all the previous relations are exact only in homogeneous

turbulence and only approximate in locally homogeneous turbu-

lence [22]. Applying the filtering operation to the instantaneous Na-

vier–Stokes momentum equation yields the filtered equation

@�ui

@t
þ @

@xj
ð�ui�ujÞ ¼ � 1

q
@�p

@xi
þ m

@2
�ui

@xj@xj
�
@ðsijÞsfs
@xj

ð5Þ

where ui, p, m, (sij)sfs, are the velocity vector, the pressure, the molec-

ular viscosity and the subfilter-scale stress tensor, respectively. The

subfilter-scale tensor (sij)sfs is defined by the mathematical relation

ðsijÞsfs ¼ uiuj � �ui�uj ð6Þ

The presence of the turbulent contribution (sij)sfs in Eq. (5) indicates

the effect of the subfilter scales on the resolved field. The resolved

scale tensor is defined by the relation

ðsijÞles ¼ �ui�uj � huiihuji ð7Þ

It can be shown that for spectral cutoff filters defined from the Fou-

rier transform [35,36], the large scale and small scale fluctuations

are uncorrelated and the full Reynolds stress tensor sij including
the small and large scale fluctuating velocities can be computed

as the sum of the subfilter and the resolved stress tensors

sij ¼ hðsijÞsfsi þ hðsijÞlesi ð8Þ

whereas the statistical turbulent kinetic energy is obtained as the

half-trace of the stress tensor sij leading to

k ¼ hksfsi þ hklesi ð9Þ

The relationships (2) and (3) are strictly valid for homogeneous tur-

bulence and still remain however a good approximation in the case

of non-homogeneous turbulence. As usually made in LES simula-

tions, the statistical average of the resolved stresses h (sij)lesi which

corresponds to the velocity correlation in the large scale fluctua-

tions hu<
i u

<
j i appearing in Eq. (8) is computed by a numerical proce-

dure using the relation

hðsijÞlesi ¼ hu<
i u

<
j i ¼ h�ui�uji � h�uiih�uji ð10Þ

3. Application of the PITM method

3.1. General formalism

The PITM method finds its basic foundation in the spectral

space by considering the Fourier transform of the two-point fluctu-

ating velocity correlation equations in homogeneous turbulence

[5,22], the extension to non-homogeneous turbulence being devel-

oped within the framework of the tangent homogeneous space

[22,37]. Along the same guidelines, a formalism based on a tempo-

ral filtering has been also proposed recently to handle non-homo-

geneous flows leading to a variant of the PITM method using
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temporal filters and called temporal partial integrated transport

modeling (TPITM) method [24]. The resulting equations are similar

in practice. The PITM method is general and allows to derive sub-

filter scale models with the aim to perform continuous hybrid non-

zonal RANS/LES simulations regardless of the filter width. This is

particularly interesting for relatively coarse grids (as far as the grid

size is sufficient to describe correctly the mean flow!). These de-

rived subfilter models include both energy transport models using

a subfilter eddy viscosity coefficient [5,38,39] and stress transport

models [6,7,23,24], depending on the chosen level of closure. In the

present case, a Reynolds stress transport model inspired from the

Launder and Shima well known model [25] has been considered

and then turned into a subfilter scale stress transport model. It is

based on the transport equations for the subfilter-scale stresses

(sij)sfs and the subfilter transfer rate �sfs and constitutes therefore

in its formulation one of the most elaborated model used in LES

methodology [23]. As a result, it formally looks like the corre-

sponding RANS/RSM model but the coefficients used in the model

are no longer constants. They are now some functions of the

dimensionless cutoff parameter gc = jc Le involving the cutoff wave

number jc = p/D and the integral turbulent length scale Le = k3/2/�
built using the total turbulent kinetic energy k = hksfsi + hklesi, the
total dissipation rate � = h �sfsi + h�<i, itself composed of the subfil-

ter transfer rate �sfs and the resolved large scale dissipation rate �<

which becomes not negligible in low Reynolds number flows. In or-

der to account in a simple way for the anisotropy of the grid near

the walls, the effective filter D is defined by [40]

D ¼ fDa þ ð1� fÞDb ð11Þ

where the filters lengths Da and Db are defined by Da = (D1D2D3)
1/3

and Db ¼ ½ðD2
1 þ D2

2 þ D2
3Þ=3�

1=2
and where f is a parameter set to 0.8.

3.2. Subfilter scale stress transport equation

By using the material derivative operator in the filtered field

D=Dt ¼ @=@t þ �uk@=@xk, the transport equation for the subfilter

stress tensor can be written in the simple compact form as

DðsijÞsfs
Dt

¼ Pij þPij þ Jij � ð�ijÞsfs ð12Þ

where the terms appearing in the right-hand side of this equation

are identified as production, redistribution, diffusion and dissipa-

tion, respectively. The transport equation for the subfilter turbulent

energy is obtained as half the trace of Eq. (12)

DðksfsÞ
Dt

¼ P þ J � �sfs ð13Þ

where P = Pmm/2, J = Jmm/2, �sfs = (�mm)sfs/2. The precise expressions

of the terms Pij, Pij and Jij appearing in Eq. (12) are recalled in

Appendix A.

3.3. Subfilter dissipation-rate transport equation

Closure of Eq. (12) needs to model the subfilter tensorial trans-

fer rate (�ij)sfs which is approached by 2/3�sfsdij. The modeling of the

transfer-rate �sfs is made by means of its transport equation which

is obtained from the PITM method using spectral splitting tech-

niques and partial integrations. This transfer-rate equation for-

mally looks like the usual dissipation-rate equation used in

statistical models but the coefficients are no longer constants and

differ in their numerical values. As a result of the modeling proce-

dure [5,6], the transport equation for the subfilter transfer-rate

reads

D�sfs
Dt

¼ csfs�1
�sfs
ksfs

P � csfs�2
�sfs~�sfs
ksfs

þ J� ð14Þ

where J� denotes the diffusion term (see Appendix A) and where
~�sfs ¼ �sfs � 2mð@

ffiffiffiffiffiffiffi
ksfs

p
=@xnÞ

2
includes the usual empirical near wall

correction used in statistical models and in which xn denotes the

coordinate normal to the wall. In this equation, the coefficient

csfs�1 appearing in the source term of the transfer-rate equation is

the same as the one used in the corresponding RANS dissipation

equation csfs�1 ¼ c�1 whereas the coefficient csfs�2 appearing in the

destruction term of the transfer-rate equation is now given by

csfs�2 ¼ c�1 þ
hksfsi
k

ðc�2 � c�1 Þ ð15Þ

where c�2 is the constant used in the statistical RANS dissipation-

rate equation. The ratio hksfsi/k appearing in Eq. (15) is evaluated

by reference to an analytical energy spectrum E(j) inspired from

a Von Kármán spectrum considered as a limiting equilibrium distri-

bution. Analytical developments lead to the final result [23]

csfs�2 ðgcÞ ¼ c�1 þ
c�2 � c�1

1þ bgg3
c

h i2=9 ð16Þ

Eq. (16) indicates that the parameter gc acts like a dynamic param-

eter which controls the location of the cutoff within the energy

spectrum and the value of the function csfs�2 then controls the rela-

tive amount of turbulence energy contained in the subfilter range.

The theoretical value of the coefficient bg in Eq. (16) has been found

to be bgT ¼ ½2=ð3CKÞ�9=2 [5,22] where CK is the Kolmogorov constant.

4. Numerical method

4.1. Numerical schemes

The present numerical simulations are performed using an effi-

cient research code [41] based on a finite volume technique that

has been previously tested on several laboratory and aerodynamic

laminar and turbulent flows. The software can handle both com-

pressible flows and almost incompressible flows. The equations

are integrated in time using an explicit Runge–Kutta scheme of

fourth-order accuracy along with an implicit iterative scheme for

solving the source terms. The global scheme reads

Unþ1 ¼ Un þ dt
XK

k¼1

bkGðUðkÞÞ ð17Þ

with

U
ðkÞ ¼ U

ðk0Þ þ akdtSðUðkÞ;Uðk0ÞÞ ð18Þ

where

U
ðk0Þ ¼ U

n þ akdtGðUðk�1ÞÞ ð19Þ

In these equations, U is the vector for the mean and turbulent flow

variables, G denotes the convective and diffusive flux contributions,

S corresponds to the source terms, ak and bk are the Runge–Kutta

coefficient values given by a1 = 0, a2 = a3 = 1/2, a4 = 1, b1 = b4 = 1/6,

b2 = b3 = 1/3, and the index (k) denotes the step of the Runge–Kutta

method. At the beginning of the procedure, U(0) = Un. The numerical

method used to solve the instantaneous equations for the subfilter

scale turbulent stresses and transfer-rate equations deserves

specific attention. Indeed these equations are stiff and they are gov-

erned by highly non-linear source terms that evolve rapidly in time

and space in comparison with the convective and diffusive terms

that present a smoother variation. These equations pose some

numerical difficulties in terms of stability and accuracy so that

an implicit iterative algorithms in time have been especially devel-

oped. The first step in the numerical procedure consists in solv-

ing the equation for the subfilter turbulent energy (13) and the

equation for the subfilter transfer-rate (14) that are strongly
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coupled to each other. The equation for the subfilter turbulent en-

ergy is indeed mathematically redundant with the stress equations

but this practice improves numerical stability. Afterward, in a sec-

ond step, the individual subfilter turbulent stress equations (12)

are then solved using the preceding values found for ksfs and �sfs.
Considering the time advancement akdt of Eq. (18), the turbulent

equations for the subfilter turbulent energy ksfs and the dissipa-

tion-rate �sfs are discretized implicitly in time by linearizing the

source terms as follows

k
pþ1
sfs � k

ðk0Þ
sfs

akdt
¼ Pp �xp

sfs k
pþ1
sfs ð20Þ

and

�pþ1
sfs � �ðk

0Þ
sfs

akdt
¼ xp

sfs c�1P
p � csfs�2�

pþ1
sfs

� �
ð21Þ

wherexsfs = �sfs/ksfs is the characteristic frequency of the turbulence

leading to the solutions

k
pþ1
sfs ¼

k
ðk0Þ
sfs þ Ppakdt

1þxp
sfsakdt

ð22Þ

and

�pþ1
sfs ¼

�ðk
0Þ

sfs þ c�1x
p
sfsP

pakdt

1þ csfs�2x
p
sfsakdt

ð23Þ

where the turbulent variables are initialized by k
1
sfs ¼ k

ðk0Þ
sfs and

�1sfs ¼ �ðk
0Þ

sfs for p = 1. The question now is to solve the transport Eq.

(12) of the subfilter turbulent stress by an efficient iterative algo-

rithm. To do that, one can remark that this equation can be formally

rewritten into a linearized expression including only two different

contributions in a such a way that the temporal term @(sij)sfs/@t be-
comes a function of the stress (sij)sfs appearing in the right-hand

side of this equation as follows

@ðsijÞsfs
@t

¼ F ij � c1xsfsðsijÞsfs ð24Þ

where Fij denotes the tensorial function of the subfilter stress, dissi-

pation rate and main velocity gradient (see Appendix A) that reads

F ij ¼ Pij � c2 Pij �
2

3
Pdij

� �
þ 2

3
c1xsfsksfsdij �

2

3
�sfsdij ð25Þ

and where Pij is the production term caused by the interaction be-

tween the stresses and the velocity gradients

Pij ¼ �ðsikÞsfs
@�uj

@xk
� ðsjkÞsfs

@�ui

@xk
ð26Þ

In Eq. (25), c1 and c2 are some functions of the invariant tensors de-

fined in Appendix A. Eqs. (25) and (26) show clearly that Fij = Fij[ksfs,

�sfs, (sik)sfs, (sjk)sfs]. Eq. (24) is then discretized under an implicit

form with respect to the subfilter stress (sij)sfs taking into account

the preceding values k
pþ1
sfs and �pþ1

sfs already computed by Eqs. (22)

and (23) as follows

ðsijÞpþ1
sfs � ðsijÞðk

0Þ
sfs

akdt
¼ F ij k

pþ1
sfs ; �pþ1

sfs ; ðsikÞpsfs; ðsjkÞ
p

sfs

h i

� c1x
pþ1
sfs ðsijÞpþ1

sfs ð27Þ

leading to the solution ðsijÞpþ1
sfs that finally reads

ðsijÞpþ1
sfs ¼

ðsijÞðk
0Þ

sfs þ F ij k
pþ1
sfs ; �pþ1

sfs ; ðsikÞpsfs; ðsjkÞ
p
sfs

h i
akdt

1þ c1x
pþ1
sfs akdt

ð28Þ

or equivalently

ðsijÞpþ1
sfs ¼

ðsijÞðk
0Þ

sfs þ Pp
ij � c2 Pp

ij � 2
3
Pp
dij

� �
þ 2

3
ðc1 � 1Þ�pþ1

sfs dij

h i
akdt

1þ c1x
pþ1
sfs akdt

ð29Þ

where the subfilter stress is initialized by ðsijÞ1sfs ¼ ðsijÞðk
0Þ

sfs for p = 1.

The converged solutions of the iterative algorithms are obtained

when k
ðkÞ
sfs ¼ limp!1k

p
sfs; �

ðkÞ
sfs ¼ limp!1�psfs and ðsijÞðkÞsfs ¼ limp!1ðsijÞpsfs.

It has been checked that the numerical procedure allows to satisfy

the trace equality k
ðkÞ
sfs ¼ ðsmmÞðkÞsfs =2 which is practically verified with-

in two or three internal iterations in practice. Written in these

forms, the iterative algorithms 22, 23 and 29 remain stable because

of their denominators that are always greater than unity whatever

the ksfs and �sfs values. This numerical procedure is repeated at each

step (k = 1–4) of the Runge–Kutta method. The numerical algo-

rithms also present the advantage to ensure the positivity of the

normal stresses and is able to satisfy the weak form of the realiz-

ability constraints [42] in the mathematical sense given by the con-

dition [27]

c1 P 1� c2
P

�sfs
ð30Þ

In practice, the inequality (30) is verified for usual cases of turbu-

lent flows. Note however that in the framework of SMC, and con-

trarily to first order models using the Boussinesq hypothesis, the

positivity of the production term is not always guaranteed in all cir-

cumstances because some backscatter effects are still possible.

Regarding the discretization method in space, the numerical

scheme is based on a quasi-centered discretized formulation of

the mean flow variables. It has a fourth-order accuracy in space

capable to accurately simulate the large scales of the flow. Using

Eqs. 22, 23 and 29, it has been checked that the scheme remains

of fourth-order accuracy in time without introducing additional

numerical dissipation. Another point to mention is a convergence

enhancement procedure that proved to be useful in practice. The

aim of this procedure is to avoid the model to reach a purely RANS

or a purely LES limiting behavior during the transitional initial

phase of the calculation and also to accelerate the numerical con-

vergence towards the solution in the permanent state. This proce-

dure [21,43] consists in locally modifying the coefficient csfs�2 in

order to force the model to approach more rapidly the expected en-

ergy ratio, it has been activated during the computations presented

here. This procedure finds its physical meaning in reference [29].

This does not alter the accuracy of the instantaneous solution.

4.2. CPU time requirements

The question of CPU time requirements is essential when per-

forming LES simulations. As mentioned by Spalart [9], conventional

LES simulation is limited in Reynolds number and still remains out

of scope at present time for high Reynolds number. This is one of

the practical reasons that has initially motivated the development

of the PITM method. In the present case, the subfilter stress model

derived form the PITM method needs to solve seven equations for

the vector components

U ¼ ½ðs11Þsfs; ðs12Þsfs; ðs13Þsfs; ðs22Þsfs; ðs23Þsfs; ðs33Þsfs; �sfs�
T ; ð31Þ

in addition to the Navier–Stokes equations. In practice, it has been

found that the additional cost requires roughly 30–50% more CPU

time than conventional LES simulations using eddy viscosity models

such as, for instance, the dynamic Smagorinsky model (DSM) [44].

This additional time is not really excessive. This is due to the fact

that all the stress equations share the same mathematical structure

whatever the component (sij)sfs. All these equations can be written

in the same form including convection, diffusion and source terms.

So that the system solution can be efficiently optimized using vec-
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torization and parallelization techniques [27]. In the past, several

flows encountered in engineering applications have been simulated

using subfilter stress models and DSM models. These flow simula-

tions were performed on different grids and the computational

times required for these simulations were compared [6,7,21]. As a

result, it had been found that the higher cost necessary for solving

the seven equation system was in fact greatly compensated by

the possibility of coarsening the mesh because of a better modeling.

More precisely, the number of grid-points can be reduced by a fac-

tor 5 to 10 but the additional cost is only multiplied by a factor 1.5

so that the saving time is roughly 60–80%. The details of these engi-

neering simulations are summarized in table IV of reference [21].

5. Computational framework

5.1. Previous simulations on the flows over periodic hills

In the geometry under consideration, the hills constrict the

channel by about one third of its total height and they are spaced

at a distance of about 9 hill heights as shown in Fig. 1. The exact

dimensions of the computational domain are D1 = 9h, D2 = 4.5h

and D3 = 3.036h, where h denotes the hill height, respectively in

the streamwise, spanwise and normal directions. The flow is natu-

rally unsteady and is governed by the separation in wall boundary

layer and three dimensional wall effects. Initially, the flow over

periodic hills at the Reynolds number Re = Ubh/m = 10,595 based

on the hill height h and the bulk velocity Ub about the hill crest

was proposed as a benchmark case at the 10th joint ‘‘ERCOFTAC/

IAHR/COST Workshop on Refined Turbulence Modeling ’’ [45] for

assessing the turbulence models ranging from RANS to LES. This

benchmark has confirmed that RANS models performed badly for

this flow. Breuer et al. [31] performed direct numerical simulations

of this flow at Re = 700, 1400, 2800 and 5600 on several meshes

ranging from 13.1 � 106 to 231 � 106 grid-points using both Carte-

sian and curvilinear codes. Breuer et al. [31] as well as Fröhlich

et al. [30] then performed highly resolved LES on a refined grid

of 5 � 106 and 13.1 � 106 grid points, respectively, using the dy-

namic Smagorinsky model (DSM) [44] and the wall-adapted local

eddy-viscosity (WALE) model [46] at Re = 10,595. They provided

some interesting features of this turbulent flows and a useful refer-

ence data base. In the framework of turbulence modeling, Jakirlic

et al. [47] and Chaouat [7] more recently performed continuous

non-zonal hybrid RANS/LES simulations of this flow at

Re = 10,595 on relatively coarse meshes of 2.5 � 105 and 106 grid

points using subfilter transport models derived from the PITM

method. Although the coarse resolutions of the grids used in the

calculations, they all obtained promising results. In particular,

the mean flow variables, including the velocity, the shear stress

and the turbulent energy were successfully recovered and the flow

structures were also qualitatively well reproduced by the subfilter-

scale stress model [7]. The flow over periodic hills at the higher

Reynolds number Re = 37,000 has been investigated by experiment

carried out by Rapp and Manhart [32,33] in a water channel using

particle image velocimetry and laser-Doppler anemometry. These

authors have measured the mean velocity and turbulent stresses

in different sections of the channel. As a result of interest, these

authors found that the reattachment length decreases with

increasing the Reynolds number and that the streamwise velocity

develops an overshoot directly above the hill crest also with

increasing the Reynolds number. They observed that the mean

streamwise velocity profiles become flatter at a higher Reynolds

number as shown in figures 24, 25, 26 and 27 from reference

[33]. This effect is particularly pronounced close to the reattach-

ment point x/h = 4. Moreover, they found a reduction of the Rey-

nolds stresses level as the flow Reynolds number increases from

Re = 10,600 to 37,000 as shown in figures 29, 30, 33 and 34 of

the reference [33]. Manhart et al. [48] have performed numerical

simulations of this flow at Re = 37,000 on several meshes ranging

from 1.0 � 106 to 4 � 106 grid-points, using both Cartesian and

curvilinear codes, incorporating different turbulent models such

as the Smagorinsky model [49], the WALE model [46], the Lagrang-

ian dynamic model [50], the wavelet-based eddy-viscosity sub-

grid-scale model [51] and the model of Schumann based on one

transport equation for the subgrid energy [52]. In their paper, these

authors have plotted the mean velocity and shear stress profiles at

a few stations in the channel. Although the flow was not thor-

oughly investigated in all stations where experimental data

[32,33] are available, they mentioned certain key features of their

simulations in order to get a real comparative insight into these

model capabilities. At the Reynolds number Re = 37,000, these sim-

ulations performed on the refined Cartesian mesh of 4 � 106 grid-

points using both the WALE and the Lagrangian models (see Fig. 4

reference [48]) provided satisfactory velocity profiles at the sta-

tions x1/h = 0.05 and 4.0 but the results obtained for the medium

grid of 2 � 106 grid-points were however disappointing because

of the discrepancies observed with the reference data. Further-

more, these authors mentioned in their paper that the Reynolds

number dependence of the shear stress was hardly predicted by

all the LES simulations under consideration although the Lagrang-

ian and theWALE models provided however better results than the

other ones. As expected, the Smagorinsky simulations were unable

to satisfactorily predict this flow, even if performed on the refined

mesh including some 4 � 106 grid-points. This outcome is not

really surprising since the flow over periodic hills is out of spectral

equilibrium. That said, the present work will then focus on this

higher Reynolds number case Re = 37,000 giving rise to new com-

parisons of the PITM simulations with the available experimental

data [32,33].

5.2. Computational resources for DNS or highly resolved LES

As a direct numerical simulation of the flows over periodic hills

was already undertaken at the Reynolds number Re = Ubh/m = 5600

[31], it is worth evaluating, as a rough guide, the necessary com-

puter resources for the Reynolds number Re = 37,000 in terms of

number of necessary grid-points and computational times. A DNS

simulation requires that the grid-size is at least of order of magni-

tude of the Kolmogorov scale g computed as g = (m3/�)1/4. The com-

putational time is proportional to the number of grid points Ng, the

number of temporal iterations Nit and the time required by the

central processing unit tCPU per iteration and per grid-point, lead-

ing to the result t = NgNit tCPU. In this formula, the number of

grid-points Ng is given by

Ng ¼ 64 D1D2D3

g3
ð32Þ

in order to describe a ‘‘minimal’’ sine curve on a full period using at

least four grid points. The number of iteration is given by Nit = T/s
where T is the convective time allowing the eddies to move towards

the exit of the channel, whereas s is the Kolmogorov time scale gi-Fig. 1. Cross-section of the curvilinear grid 80 � 100 of the contracted channel.
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ven by s ¼
ffiffiffiffiffiffiffiffi
m=�

p
¼ g2=m. The convective time is computed from

T = D1/Ub where D1 denotes the dimension of the channel in the

streamwise direction so that the computational time is therefore gi-

ven by

t ¼ 64D1D2D3

g3

D1

Ub

m
g2

tCPU ð33Þ

Although giving a somehow complex expression, Eq. (33) can be

easily simplified if one considers that the turbulent Reynolds num-

ber Rt ¼ Le
ffiffiffi
k

p
=m ¼ ðLe=gÞ4=3 is proportional to the mean flow Rey-

nolds number Re = Ubh/m in a restricted range of values. Setting

Rt = fRe, where f is an empirical coefficient usually close to 1/10

in confined flows (and in usual Reynolds numbers range), and

assuming that the size of the energetic big eddies Le = k3/2/� is

roughly of order of magnitude of the characteristic geometrical size

of the flow itself, Eqs. (32) and (33) can be reduced to more tracta-

ble expressions. The number of grid-points and the computational

time are then given respectively by Ng ¼ 64 R9=4
t and

t ¼ 64 R11=4
t tCPU=f, clearly showing their dependence on the turbu-

lence Reynolds number. Thus, for the two Reynolds numbers con-

sidered Re1 = 5600 and Re2 = 37,000, one can find that the ratio of

the numbers of grid points is Ng2=Ng1 � 70 (Ng2 ¼ 1600� 106

grid-points if Ng1 ¼ 231� 106) whereas the ratio of the computa-

tional times is t2/t1 � 180. These numerical order of magnitudes

clearly shows that DNS (or even highly resolved LES) imply a huge

numerical task and still remains difficult to reach in practice at the

present time. Considering this fact, we have chosen to rely compar-

isons of the present PITM simulations completely on experimental

data. We stress again that this PITMmethod is particularly well sui-

ted for performing simulations at higher Reynolds numbers without

requiring very refined meshes.

5.3. The present simulation for the flows over periodic hills at

Re = 37,000

The objective is to perform PITM simulations of the flow over

periodic hills at Re = 37,000 on coarse and medium meshes and

to compare the present results with the experiment carried out

by Rapp [32,33], essentially for the mean velocity and turbulent

stresses. Note that to this day, there is no reference LES data for

Re = 37,000 so that PITM results can only be compared with exper-

imental data. In this study, a very coarse mesh is deliberately cho-

sen to highlight the ability of the PITM method to simulate large

scales of the flow with a sufficient accuracy for engineering com-

putations. The simulations are also performed on several medium

meshes for assessing the effects of the grid refinement and for

studying the sharing out of the turbulent energy when the filter

width is changed. As usually made, a mean pressure gradient term

is included in the momentum equations for balancing the viscous

friction at the walls and thus forcing the flow. However this forcing

is adjusted in time, at each instant, to reach the desired Reynolds

number value. So, globally, the numerical method supposes the

flow Reynolds number to be chosen at a given value. The statistics

of the fluctuating velocity correlations are achieved both in space

in the spanwise homogeneous direction and in time using a relax-

ation relation.

5.4. Boundary conditions

Different boundary conditions are applied on the limits of the

computational domain shown in Fig. 1. The simulated domain is

periodic in the streamwise and spanwise directions. The stream-

wise periodic condition removes the need to specify the inflow

and outflow conditions allowing the assessment of the subfilter

stress model without any contamination and potential sources of

errors in inlet or outlet. No-slip and impermeability boundary con-

ditions are used at the lower and upper walls. The wall sublayers

are fully calculated at low Reynolds number without any empirical

law of the wall.

5.5. Computational grids

In a previous investigation conducted by Fröhlich et al. [30] for

the flow simulated at the lower Reynolds number Re = 10,595, the

dimension in the spanwise direction of the computational domain

was set to D3 = 4.5h. In a first attempt, this dimension is also re-

tained for performing the PITM simulations at Re = 37,000. These

simulations used a very coarse curvilinear grid of 80 � 30 � 100

points (PITM1) � 1/4 million grid points, coarse grids

160 � 30 � 100 (PITM2) and 80 � 60 � 100 points (PITM3) � 1/2

million grid points, and a medium grid of 160 � 60 � 100 points

(PITM4) � 1 million grid points respectively in the streamwise,

spanwise and normal directions (x1,x2,x3). As mentioned earlier,

the aim is to appreciably reduce the computational cost while

reaching acceptable accuracy for applications by using improved

modeling. Fig. 1 shows the cross-section of the very coarse grid.

The grid has been refined in the lower and upper wall regions for

accurately computing the boundary layers whereas it get coarser

in the center of the channel. As the region beyond the hill consti-

tutes a key region, the grids in the streamwise direction are more

refined beyond the hill crest than in the mid-distance of the chan-

nel in order to fairly well reproduce the flow separation caused by

the hill geometry, and to properly describe the flow recirculation as

well as the reattachment of the boundary layer. Fig. 2 displays the

dimensionless grid spacings in wall unit D+ = Dus/m in the stream-

wise, spanwise and normal directions where us ¼
ffiffiffiffiffiffiffiffiffiffiffi
sw=q

p
denotes

the shear stress velocity along the lower wall for the PITM1 simu-

lation performed on the very coarse grid. One can see that the com-

puted dimensionless distances Dþ
1 and Dþ

2 vary along the lower wall

with respect to the streamwise distance, showing a decrease be-

yond the first hill crest followed by an increase in the windward

slope of the second hill crest. From this Fig. 2, one can see that

these two dimensionless distances in the streamwise and spanwise

directions largely exceed the minimal limit recommendations for

wall-resolved LES given by Piomelli and Chasnov [53]. The dimen-

sionless distance Dþ
3 in the normal direction to the lower wall var-

ies between 0 and 4 along the streamwise direction except in the

windward region of the hill where it reaches higher values because

of the increasing friction velocity. These values appear to high to

properly describe the boundary layer but this requirement is not

crucial here. The results discussed in the next section will show

that the PITM simulations allows to obtain satisfactory results

without requiring extremely large memory and computing time

resources in comparison with those necessary for performing

highly resolved academic LES. The fact is that the loss in resolution

has to be compensated by improvedmodeling features. In the PITM

approach, the modeled part of the energy spectrum is far more ex-

tended than in conventional LES and more advanced models are

necessary, giving a renewal of interest for advanced RANS type for-

malism. In the following, the mean flow is obtained by averaging

the instantaneous flow in the different planes in the spanwise

direction where a periodic condition is applied and in time corre-

sponding to roughly six convective time scale T = D1/Ub where Ub

is the bulk velocity.

6. Numerical results

6.1. Large flow structures

With the aim to get qualitative insights into the turbulent flow

structures that develops inside the channel with periodic hills,
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large eddies have been depicted using the well known Q criterion

[54]. The value of the parameter Q ¼ 1
2
ðXijXij � SijSijÞ is defined as

the balance between the local rotation rate X and the strain rate

S of the instantaneous velocity, in order to identify packets of flow

vortices. As a result, Fig. 3a and b shows the Q isosurfaces of the

flows performed on the coarse and the medium grids,

80 � 30 � 100 and 160 � 60 � 100, respectively. This figure reveals

the presence of very large longitudinal roll cells that develop in the

entire channel and clearly demonstrates the three dimensional

nature of the flow. Due to the flow recirculation, a strong turbu-

lence activity is visible near the lower wall and particularly con-

centrated in the leeward region of the second hill. As expected,

the PITM4 simulation performed on the medium grid

160 � 60 � 100 captures more resolved scales than the PITM1 sim-

ulation leading to the emergence of smaller turbulent roll cells. In

that sense, it is clear that a more realistic description of the flow

requires a very refined mesh in streamwise, spanwise and normal

directions to get the right definition of the structures but as it can

be observed from Fig. 3, it is however remarkable that despite the

coarse grid resolution, the PITM simulations still succeeds in qual-

itatively reproducing these dynamic structures. Note that the full

statistical RSM computation can only provide mean organized

structures and not at all roll cell structures because of the RANS

physical foundations. This is true for all RANS models and proper

URANS models (which must calculate Reynolds averaged quanti-

ties even if unsteady in the mean).

6.2. Streamlines of the flow field

The purpose of this section is to access more practical details of

the flow through the study of the streamlines of the flow field with

a particular interest focused on the recirculation zone. Fig. 4 shows

the streamlines plot generated in two dimensions obtained by

averaging the PITM velocities both in the homogeneous planes in

the spanwise direction and in time as well as the statistical RSM

streamlines. The flow separation is caused by the adverse pressure

gradient which results from the strong streamwise curvature of the

lower wall. For all simulations, the location of the points of separa-

tion and reattachment are indicated in Table 1, including also the

experimental result given by Rapp and Manhart [33]. Relatively

to the experimental data, it appears that the PITM1 and PITM2 sim-

ulations predict a too large recirculation zone whereas the PITM3

and PITM4 simulations return a better estimate. More precisely,

the PITM3 and PITM4 simulations provide separation and reattach-

ment points that agree very well with the experimental data while

the PITM1 and PITM2 simulations slightly overpredict both the

separation and reattachment points. The reason of this noticeable

difference in the recirculation zone between these four simulations

and in particular in the misprediction of the reattachment point

may remain questionable at a first glance. But as a result when

comparing the mesh resolutions between these simulations, and

particularly the results associated with the PITM2 and PITM3 sim-

ulations, there is no doubt that the grid resolution in the spanwise

direction is the clue to understand this outcome. Indeed, it appears

that the PITM1 behaves likes the PITM2 simulation whereas the

PITM3 behaves like the PITM4 simulation. Both the PITM3 and

PITM4 simulations are performed on meshes with the same resolu-

tion in the spanwise dimension. The spanwise resolution is indeed

well identified in LES to play an important role in the vortex-

streaks mechanism of wall turbulence and therefore in the deter-

mination of the flow structure. It is also significant to address the
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Fig. 2. Dimensionless grid spacings in wall units D+ =D us/m where us is the friction velocity. (a) – normal direction Dþ
3 ; (b) – streamwise direction Dþ

1 ; – spanwise direction

Dþ
2 . PITM1 simulation (80 � 30 � 100). Re = 37,000.

Fig. 3. Vortical activity illustrated by the Q isosurfaces at Re = 37,000. (a) PITM1

simulation (80 � 30 � 100) Q = 2 � 105 s�2. (b) PITM4 simulation (160 � 60 � 100)

Q = 4 � 105 s�2.
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spatial extent of the recirculation bubble itself, determined as the

regions in which the mean velocity profile contains negative longi-

tudinal component of velocity. The upstream and downstream val-

ues denoted (x1/h)b1 and (x1/h)b2 respectively are included in

Table 1 together with the bubble length. Note that the streamwise

locations denoted (x1/h)sep and (x1/h)reat correspond to the usual

separation and reattachment points in which the friction factor

vanishes while the locations (x1/h)b1 and (x1/h)b2 denote the up-

stream and downstream limit positions of the main central recir-

culation bubble for which no inflexion point appear in the

streamline contour. These limits are defined by the location of

the vertical tangent in the front and in the rear of the bubble. From

this bubble length, it appears then that the grid simulations PITM1

and PITM2 behaves more or less like the RSM numerical modeling

while the other grid simulations PITM3 and PITM4 shows improve-

ment. This result is both expected and surprising! First at all, it is

expected because the modeled part in the PITM1 simulation is lar-

ger than in the PITM4 simulation and so the inheritance from the

RSM is also larger. So, if the use of stress transport equations as a

subfilter model is indeed beneficial when the filter cutoff is located

before the inertial spectral zone, some loss of accuracy happens

when the simulation runs too close to statistical modeling. The

grids of the mesh may appear too coarse to accurately capture

the three-dimensional effects. But this result is surprising because

the meshes associated with the PITM2 and PITM3 simulation con-

tain both the same number of grid points (1/4 million) and that the

modeled energy between these two simulations is roughly of the

same order. This last point will be studied in Fig. 12. So that the

only change between the PITM2 and PITM3 simulation lies in the

spanwise resolution which is different. Regarding the RANS model-

ing, it is found that the recirculation zone is strongly under-pre-

dicted in comparison with those measured from the experiment,

mainly because the separation is delayed. The modeling of the

low Reynolds number wall layer is probably involved in this find-

ing. Note that the authors have checked the grid independance

solution for the RANS computation which is not presented here

for the sake of simplicity of presentation. As for the flow computed

at the lower Reynolds number Re = 10,595 [7], this RSM mispredic-

tion is likely to be due to the RANS modeling itself that relies on

statistical means equivalent to a long-time averaging. Because of

this assumption, this method is not able to capture the effect of

instantaneous eddies issued from the streamwise curvature of

the lower wall. The occurrence of separation is noticeably delayed

downstream. The comparisons in the separated zone length and

the recirculation bubble length made in this section between pre-

dicted values from the simulations and the measured ones deserve

interest in order to get an appraisal of the PITM potential. However,

on the physical point of view, it can be noted that some uncertainty

remains and that no definite conclusion can be drawn from these

comparisons. Indeed, if one refers to the flow computed in the

same geometry but at the lower Reynolds number Re = 10,595,

the highly resolved LES performed by Breuer et al. [31] on a very

refined mesh (13.1 � 106 grid points) which constitutes the refer-

ence simulation for this benchmark has returned a reattachment

point at x1/h = 4.694 whereas the experiment conducted by Rapp

and Manhart [33] using PIV measurements has lead to the value

4.21. The origin of the slight discrepancies between these two val-

ues is not clear and raises some still open questions.
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Fig. 4. Streamlines of the average flowfield at Re = 37,000. (a) PITM1

(80 � 30 � 100). (b) PITM2 (160 � 30 � 100). (c) PITM3 (80 � 60 � 100). (d) PITM4

(160 � 60 � 100). (e) RSM (80 � 30 � 100).

Table 1

Simulations of flow over periodic hills at Re = 37,000 including separation, reattachment locations and bubble length.

Experiment/simulation Grid points (x1/h)sep (x1/h)reat Separated length (x1/h)b1 (x1/h)b2 Recirculation bubble length

Exp [33] 0.05 3.76 3.71

RSM 2.5 � 105 0.50 4.00 2.15 0.70 3.70 3.00

PITM1 2.5 � 105 0.19 4.30 4.11 0.50 4.20 3.70

PITM2 5.0 � 105 0.24 4.26 4.02 0.40 4.20 3.80

PITM3 5.0 � 105 0.29 3.54 3.25 0.40 3.00 2.60

PITM4 106 0.05 3.68 3.63 0.40 2.80 2.40
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6.3. Friction coefficient

Fig. 5 displays the distribution of the friction coefficient

Cf ¼ sw=ð0:5qU2
bÞ along the lower wall for all PITM simulations to-

gether with the statistical computation. This information comple-

ments the analysis made in the previous section by showing

another indicator for separation reattachment phenomena. Some

deviations between these different curves are particularly ob-

served in the leeward region of the upstream hill. As a result of

interest, one can see that all PITM simulations performed on the

coarse and medium meshes yield similar evolutions with a rather

good location of the detachment and reattachment points for the

PITM3 and PITM4 simulations while the PITM1 and PITM2 simula-

tions show some delay in the location of reattachment point. For all

PITM simulations, the friction coefficient decreases rapidly in the

windward region of the first hill reaching a first minimum value

at x1/h � 0.40. From there, the friction increases again towards zero

and then undergoes small oscillations to attain a new local mini-

mum at x1/h � 2.61 that corresponds roughly to the location of

the maximum reverse flow. Afterward, the friction coefficient

slowly reincreases towards the second hill crest passing through

zero at the reattachment point at x1/h � 4.30 and 3.68 for all sim-

ulations. Finally, it reaches its maximum value shortly before the

second hill crest at x1/h � 8.56 where the flow strongly accelerates.

On the other hand, it appears that the friction coefficient associated

with the RSM computation strongly deviates from the PITM3 and

PITM4 results. In particular, the separation point is delayed far

downstream, leading to a too short length-scale of the separated

zone. Moreover, the friction coefficient is highly over-predicted

when moving from the reattachment point to the windward region

of the second hill. This study confirms the analysis made in the pre-

ceding section suggesting that the full statistical RSM treatment is

not sufficient to accurately predict such a type of flow.

6.4. Mean velocities

Figs. 6 exhibits the mean velocity profiles hu1i/Ub at six cross

stations x1/h = 0.05, 0.5, 2, 4, 6 and 8 including available experi-
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mental profiles [33]. The selected positions encompass the regions

in the entrance of the channel x1/h = 0.05, just upon separation

x1/h = 0.5, in the middle of the recirculation zone close to the lee-

ward hill face x1/h � 2, prior to the reattachment x1/h = 4, the

post-reattachment and flow recovery x1/h = 6, and finally, the

region of accelerating flow on the windward slope of the hill

x1/h = 8. At the position x1/h = 0.05, the streamwise velocity fea-

tures a near-wall peak due to the preceding flow acceleration along

the windward of the hill which is more and more pronounced as

the Reynolds number Re increases [33]. Recent studies suggest that

this overshoot in the velocity should be attributed to inviscid

effects [33,48] rather than to turbulent effects. At the position

x1/h = 2, the velocity near the wall is negative showing that the

boundary layer is detached (except for the RANS–RSM calculation).

The maximum reverse flow occurs in this region. In the post reat-

tachment region after x1/h = 4, the flow consists of the boundary

layer which develops from the reattachment point and the wake

originates from the separated shear layer further upstream. At

the position x1/h = 8, the flow is strongly accelerated due to the

presence of the second hill. One can see that the mean velocity pro-

files returned by the PITM4 simulation exhibit a very good agree-

ment with the reference data at almost each position except

perhaps at x1/h = 2. In particular, this simulation accurately cap-

tures the overshoot directly above the hill crest at x1/h = 0.05

which is very difficult to reproduce numerically [48]. The mean

velocity profiles at the sections x1/h = 4 and x1/h = 6 where the flow

reattaches are remarkably well recovered in accordance with the

experimental data. Only very slight discrepancies are observed in

the immediate vicinity of the upper wall. Overall, the mean veloc-

ity profiles predicted by the PITM1 and PITM2 simulations per-

formed on the coarse and medium grids show not too bad

agreement with the reference data, although some discrepancies

are clearly visible at almost each section and particularly at x1/

h = 0.05, 4 and 6. It appears that these first two simulations PITM1

and PITM2 are not really able to capture the overshoot that occurs

in the boundary layer of the lower wall at x1/h = 0.05. As it was

seen, both the PITM3 and PITM4 simulations provide much better

results than the PITM1 and PITM2 simulations because of the mesh

refinement in the spanwise direction. The question is then to con-

firm the influence of the streamwise and spanwise grid resolution,

respectively, on the solution. The answer to the above question is

given by mean velocity profiles associated with the PITM2 and

PITM3 simulations. The mean velocity profiles returned by the

PITM3 and PITM4 are sensibly the same and agree very well with

the experimental data in almost all the sections, even if some slight

differences are however visible at the locations x1/h = 2 and x1/

h = 8 for instance. In particular, the flow region in the lower wall

is perfectly well reproduced in agreement with the data although

the meshes associated with the PITM3 and PITM4 simulation are

of coarse resolution (1/2 and 1 million grid points) in comparison

with the those required for performing highly resolved LES (at least

3.8 millions grid-points as indicated in reference [48]). Fig. 6 also

confirms that the PITM1 and PITM2 simulations yield both similar

mean profiles despite the mesh is more refined in the longitudinal

direction for the PITM2 (160 grids points instead of 80 grid points).

If the PITM1 and PITM2 simulations do return acceptable velocity

profiles from a practical engineering point of view, while the

PITM3 and PITM4 provide very good ones, on the other hand, the

RSM computation yields several weaknesses in the predicted re-

sults on several aspects that show evident discrepancies with

the reference data. Firstly, the flatness of the mean velocity due

to the turbulence effects is not well reproduced. Secondly, the
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boundary layer on the lower wall is mispredicted in most stations

of the channel and particularly at x1/h = 6. As it was observed in the

preceding sections, the flow computed by the RSM reattaches too

early at the lower wall at the station x1/h = 3.60 indicating that

the RSM model does not succeed in reproducing satisfactorily the

recovery process. At this location x1/h = 3.60, the boundary layer

thickness is underpredicted by the RSM model. The origin of the

observed discrepancies with the experimental data is not clear un-

less to point out that this type of flow is essentially governed by

unsteady mechanisms of separation and reattachment of the

boundary layer in which very large three-dimensional eddying mo-

tions are very important. These cannot be correctly mimicked by

fully statistical RANS models, even if using sophisticated models

like advanced second-moment closures. Finally, relatively to the

flow previously studied at Re = 10,595 [7,40], it appears that the

RSM prediction deteriorates as the Reynolds number Re increases

from 10,595 to 37,000 confirming that high Reynolds number ef-

fects are very difficult to reproduce numerically.

6.5. Turbulent stresses

The authors have checked that the PITM2 behaves like PITM1,

and that the PITM3 behaves like PITM4, and that the mean velocity

and turbulent profiles returned by PITM1, PITM2, on the one hand,

and PITM3, PITM4, on the other hand, are almost the same. So that,

to alleviate the presentation of the following figures, only the pro-

files associated with the PITM1, PITM4 simulations and RSM com-

putation which substantially differ from each other are discussed

in this section. The total stresses sij are obtained as the sum of

the mean subfilter and resolved parts as indicated in Eq. (8).

Fig. 7 shows the turbulent shear stress s13=U
2
b profiles at different

positions of the channel. Overall, one can see that the shear stress

profiles returned by both PITM simulations present a quantitative

good agreement with the reference data. Relatively to the PITM1

profiles, the PITM4 profiles are marked by a turbulent peak occur-

ring at x1/h = 0.05 and especially at x1/h = 0.5, peak which is not

measured by the experimental device. Globally, the agreement be-

tween the PITM profiles and the experimental data is very encour-

aging considering simulations performed on such coarse grids. If

these results show a remarkably good degree of agreement, it ap-

pears on the contrary that the shear stress returned by the statis-

tical RSM model highly deviate from the reference data in most

positions of the channel. The shear stress is over-predicted in the

windward regions of the hill crest at the stations x1/h = 0.05 and

8, and under-predicted in the stations in the leeward regions at

x1/h = 2 and 4 but surprisingly, almost agrees with the experimen-

tal data in the stations x1/h = 0.5 and 6. Figs. 8 and 9 display the

profiles of the streamwise and vertical turbulent normal stresses

s11=U
2
b and s33=U

2
b , respectively, at the same successive locations.

A first sight to the figure plots reveals that the turbulent stresses

returned by the PITM simulations agree fairly well with the exper-

imental profiles for almost all positions even if some slight discrep-

ancies with the data still remain for the PITM1 simulation. The

agreement with the data for the PITM4 stress profiles is even more

satisfying. As for the turbulent shear stress, the normal stresses

predicted by the PITM4 simulation present a turbulent peak in

the boundary layer of the lower wall at the stations x1/h = 0.05

and x1/h = 0.5. In the present case, some of these peaks have been

actually measured by the experiment. For instance, the one occur-

ring at the station x1/h = 0.5 for the normal stress s11 is particularly
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visible and well recovered by the PITM4 simulation. But surpris-

ingly, there is no measured important turbulent peak at the same

station x1/h = 0.5 for the stress s22 while the PITM4 simulation

has predicted one. On the contrary to PITM simulations, the turbu-

lent stresses returned by the statistical RSM computation show

several disagreements with the experimental data even in the

shape of the individual profiles.

6.6. Sharing out of the turbulent energy

Fig. 10 describes the evolution of the cutoff wave number ver-

sus the normal direction to the wall at the location x1/h = 4 for

all PITM simulations. The cutoff wave number jc = p/D is com-

puted using the grid filter defined in Eq. (11) whereDa andDb have

been considered to handle anisotropic grids. As a result, all PITM

curves present the same evolution but only differ in regard with

the numerical value which is higher for PITM4, lower for PITM1

and almost the same for PITM2 and PITM3. Because of the grid

refinement, the cutoff wave number reaches its highest values near

the walls and its lower values in the center of the channel. Fig. 11

depicts the contours of the ratio of the subfilter viscosity to the

molecular viscosity lsfs=l ¼ clqk
2
sfs=ðl�Þ in the channel for all PITM

simulations. One can see that the ratio of viscosities lsfs/l is of rel-

atively high values for the PITM1 simulation performed on the very

coarse mesh, roughly of the same values for the PITM2 and PITM3

simulations but lower than for the PITM1, while of low values for

the PITM4. Moreover, the distribution of energy levels appears

more pronounced in the near lower wall region than in the center

of the channel according to previous studies [7]. In particular, the

level of the viscosity ratio lsfs/l is higher in the leeward region

of the second hill after the flow reattachment than in the wind-

ward region of the first hill before the flow detachment. Note that

the color panel levels are the main elements to learn from these

plots because the detailed field visualized here is instantaneous.

Fig. 12 gives the values of the ratio of the subfilter energy to the to-

tal energy hksfs i/k for all simulations, PITM1, PITM2, PITM3 and

PITM4 at the locations x1/h = 0.05, 0,5, 2, 4, 6, and 8. As expected,

it appears that the sharing out of the turbulence energy is governed

by the filter size (in practice the mesh spacing) in relation with the
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turbulence length-scale. All of these quantities appear in the defi-

nition of the parameter g introduced in the section describing the

general PITM formalism. This is merely a consequence of the par-

ticular choice of the meshes. This result comes from the fact that

the core flow is strongly characterized by the turbulent large scales

whereas the wall region is dominated by smaller scales and at the

same time the grid-size is smaller in the wall region than in the

center of the channel but in a different ratio than the turbulence

macroscales. In the PITM concept, the ratio of the modeled energy

to the total energy hksfs i/k continuously varies between the two ex-

treme limits, zero and unity. As a result of interest, one can see that

the level of the modeled energy associated with the PITM2 simula-

tion performed on the coarse mesh 80 � 60 � 100 is roughly the

same as the one associated with the PITM3 simulation

160 � 30 � 100 although the mean flow and turbulence highly dif-

fer from one simulation to the other one. This important outcome

suggests that it is not only the ratio of the modeled energy to the

total energy, as identified as a the key parameter in PITM, that gov-

erns the simulation evolving itself between the RANS and LES re-

gimes but also the particular choice of the mesh refinement

either in the streamwise direction or in spanwise direction. For

each location, one can see that the subfilter turbulent energy is

of higher intensity near the upper wall region than in the lower

wall region confirming that the PITM behaves more like LES in

the lower wall region where the flow is dominated by large scales.

Moreover, we have checked that in the recirculation zone, the tur-

bulence length-scale is relatively high so that the reference equilib-

rium ratio hksfsi/k defined in references [5,6] becomes lower.
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Consequently, the model behaves more like LES. Nevertheless, the

grid remains adequate because of the larger turbulence length-

scale. The differences observed between the lower and higher re-

gions in the evolution of h ksfsi/k results from a stronger spectral

non-equilibrium turbulence in the lower wall region. In the pres-

ent case, the refinement in the spanwise direction allows the

PITM3 to mimic the acting mechanisms in the turbulent flow that

develop because of the three dimensional component, leading to a

better flow prediction than the PITM2 simulation which is per-

formed on the mesh including only a refinement in the streamwise

direction. Fig. 13 displays separately the subfiter and resolved parts

of the turbulent shear stress at six locations of the channel for both

PITM1 and PITM4 simulations. For the PITM4, one can see that the

subfilter part reduces to zero apart from small subfilter contribu-

tions near the wall regions while for the PITM1, both contributions,

modeled and resolved parts, are appreciable even if the subfilter

part is lower than the resolved one.

6.7. Flow anisotropy

Figs. 14–16 describe the solution trajectories along vertical lines

starting from the lower wall towards the upper wall at different

streamwise locations, that are projected onto the second and third

invariants plane formed from the subfilter, resolved and total
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anisotropy tensors, respectively. In this framework, Lumley [34]

has indicated that the possible states of turbulence must remain

inside a curvilinear triangle delimited by the straight line of the

two-dimensional state satisfying equation A3 � A2 + 8/9 = 0 and

by two limiting curves of axisymmetric states of equations

jA2j ¼ 61=3 A2=3
3 . For isotropic flows, we recall that the flatness

parameter A goes to unity since the invariants A2 and A3 are zero

whereas near the walls, A is close to zero because of the two com-

ponent limit turbulence states. Each diagram of these figures at the

stations x1/h = 0.05, 0.5, 2, 4, 6 and 8 shows that the solution trajec-

tories do remain inside the curvilinear triangle of realizability, con-

firming that the realizability conditions associated with the

subfilter, resolved and total or Reynolds stresses [55] are well sat-

isfied. For the subfilter scale stresses, this result was expected since

it has been demonstrated in reference [23] that the present subfil-

ter scale stress model satisfies the weak form of the realizability

conditions from a physical standpoint [42]. In that sense, the solu-

tions trajectories plotted in each diagram of Fig. 14 allow to verify

this point in some particular cross sections of the channel. The fact

that these conditions are also satisfied for the resolved and total

stress tensors simply means that the turbulent energy initially

splitted into modeled and resolved parts can be fairly well recon-
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structed as a whole from each different contributions of energy

according to the physics of turbulence. Let us now analyze the

solutions trajectories in the realizability triangle projected onto

the plane formed by the second and third invariants of the subfilter

scale anisotropy ðaijÞsfs ¼ hðsijÞsfsi � 2
3
hksfsidij

h i
=hksfsi. From Fig. 14,

one can see that the trajectories start from the straight line of

two-component limit corresponding to the lower or the upper wall

regions and these curves reach a more isotropic state near the ori-

gin of the diagram associated with the centered region of the chan-

nel. As a result of interest, it appears that the flow anisotropy

resulting from the subfilter part of the turbulent energy observed

all along its trajectory is more pronounced near the upper wall

than near the lower wall. This outcome is not surprising since

the lower boundary layer is modified by the wake of the flow

which has separated from the first hill. The solutions trajectories

computed from the resolved anisotropy tensor ðaijÞles ¼ hðsijÞlesi�
�

2
3
hklesidij�=hklesi are represented on Fig. 15. As for the subfilter

anisotropies viewed in Fig. 14, one can remark that the resolved

anisotropies trajectories computed from the resolved scales still

lie within the curvilinear triangle implying also that the constraints

of realizability are satisfied. But the solution trajectories differ from

one diagram to another one, suggesting that the flow anisotropy
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Fig. 16. Solutions trajectories along vertical lines at different locations (x1/h = 0.05, 0.5, 2, 4, 6, 8) projected onto the second-invariant/third-invariant plane formed by the

anisotropy tensor aij ¼ ðsij � 2
3
kdijÞ=k. lower wall; upper wall. PITM1 (80 � 30 � 100).
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strongly varies in space when moving from the windward region of

the first hill at x1/h = 0.05 to the leeward region of the second hill at

x1/h = 8. In the sections located at x1/h = 4 and x1/h = 6, the anisot-

ropy is more pronounced than in the other sections. Fig. 15 indi-

cates also that the resolved anisotropy tensor is of lower

intensity in the recirculation zone at x1/h � 2 than in the reattach-

ment zone at x1/h � 4 where the wall effects are more pronounced.

The solution trajectories computed from the total anisotropy ten-

sor aij ¼ sij � 2
3
kdij

� 	
=k are then shown in Fig. 16. These trajectories

can be compared with those computed by Frohlich et al. [30] when

performing highly resolved LES, the subfilter part in their case

being neglected in comparison with the resolved one. As a result,

one can see that the present trajectories compare very well with

those plotted in Fig. 16 of reference [30] at the cross sections

x1/h = 0.50, 2, 6 and 8 although some minor differences can be

however observed in the immediate vicinity of the walls, as for in-

stance for the trajectories computed at x1/h = 6. As a consequence,

this section demonstrates in some particular cases that the PITM

simulation is able to reproduce the flow anisotropy in the whole

channel as well as to satisfy the realizability conditions [55].

6.8. Energy spectrum densities

An example of the time evolution of the instantaneous velocity

components u<
1 ;u

<
2 and u<

3 is given in Fig. 17. This plot displays the

time signal recorded during the time interval corresponding to

roughly six convective time scale T = D1/Ub taken in the center of

the recirculation zone at the point of coordinates x1/h = 2,

x3/h = 0.5 located in the mid-plane x2/h = 2.25 in the spanwise

direction. In this flow recirculation zone, note that the mean veloc-

ity is close to zero hu1i � hu2i � hu3i � 0. At a first sight, it can be

seen that the recorded signal presents very low frequencies undu-

lations of the order of m = 1/0.01 � 100 Hz, or in dimensionless fre-

quency normalized by the bulk velocity Ub and the channel height

h, m⁄ = mh/Ub � 0.13, that are similar to those observed in Fig. 18 of

reference [30] but at the lower Reynolds number Re = 10,595. This

frequency corresponds to the return time of the turbulent large

eddies and its order of magnitude is roughly the same as the char-

acteristic frequency obtained assuming a frozen turbulence con-

vected in the center of the plane channel. In regard with this

figure, the present signal appears smoothed because of the filtering

produced by the coarse grids used for performing these PITM sim-

ulations. Indeed, the more the grids are coarse, the more the fine

grained turbulence is weak and smoothed out, the mesh acting like

a low-pass filter reducing the high frequencies. A more detailed

analysis of the signal is worked out by computing the energy
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Fig. 17. Evolution of the large scale fluctuating velocity u<
i ¼ �ui � huii computed in

the center of the recirculation zone at x1/h = 2, x3/h = 0.5 versus the time

advancement. u1: ; u2: ; u3: ; PITM1 simulation

(100 � 30 � 100) performed at Re = 37,000.
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Fig. 18. Energy spectrum density of one-dimensional spectra of the three velocity

components computed in the center of the recirculation zone at x1/h = 2, x3/h = 0.5.

E11: ; E22: ; E33: ; m�5/3: —; PITM1 simulation (100 � 30 � 100)

performed at Re = 37,000.
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Fig. 19. Spanwise two-point correlation function computed at x1/h = 6 and x3/

h = 1.1. R11: ; R22: ; R33: ; PITM4 simulation (160 � 60 � 100) performed at

Re = 37,000.

Table 2

Functions used in the subfilter stress model.

Functions Expressions

Rt k2sfs=ðm�sfsÞ
c1 ð½1þ 2:30 A A1=8

2 ½1� expð�ðRt=140Þ2Þ�ÞaðgÞ
c2 0:60A1=2ð1� expð�

ffiffiffiffiffi
Rt

p
ÞÞ

c1w � 2
3 c1 þ 5

3

c2w maxð23 c2 � 1
6 ;0Þ=c2

fw minð0:4k3=2sfs =ð�sfsxn), 2.50)
a ð1þ a1g2

c Þ=ð1þ a2g2
c Þ
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spectrum densities of one dimensional spectra of the three velocity

components. As usually made in signal processing, the one dimen-

sional time spectrum is obtained by taking the windowed fast Fou-

rier transform (FFT) with a Hann window H(t) [56] of the

fluctuating velocity correlation tensor as follows

EiiðmÞ ¼ FFT u<
i ðtÞu<

i ðt þ sÞ

 �

HðtÞ
� �

ð34Þ

for i = 1, 2, 3 (no summation). The three spectra E11, E22 and E33 are

presented in Fig. 18 versus the dimensionless frequency m⁄ = mh/Ub.

To improve the accuracy of the data without any dispersion of the

spectrum results, the signals are recorded at 11 different spanwise

locations at each temporal iteration d t over which the statistical

treatment is performed. The time energy spectra densities shown

in Fig. 18 refer to the center of the flow recirculation zone. As a re-

sult, the energy spectrum E11 associated with the streamwise veloc-

ity component u1 appears of higher intensity than the other ones

E22 and E33 at very low frequencies. One can observe that the spec-

tra E11, E22 and E33 present the same regular decay for at least two

decades of low frequencies that agree very well with the slope de-

cay �5/3 of the Kolmogorov law corresponding to the inertial zone

of the spectrum. This outcomes means that the flow in the recircu-

lation zone is close to spectral equilibrium and behaves more or less

like locally isotropic turbulence. Afterward, as the frequencies in-

crease, the spectra are characterized by a rapid drop of energy be-

cause of the subfilter scale model and of the viscous dissipation

process acting in the flow itself. Fig. 18 compares very well with

Fig. 17a of reference [30] showing the energy spectra density

although the spectra are computed at the lower Reynolds number

Re = 10,595. The two set of curves follow similar trends. But the

length of the inertial zone should be shorter for the PITM simula-

tions because the physical processes associated with the high fre-

quencies are modeled and consequently not resolved as it is for

highly resolved LES.

6.9. Two-point velocity correlation functions

Fig. 19 shows an example of the evolutions of two-point corre-

lation functions of the large scale fluctuating of the resolved veloc-

ities defined here by

Riiðx1; x2; x3Þ ¼
hu<

i ðx1; x2; x3Þu<
i ðx1; x2 þ r2; x3Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hu<2
i ðx1; x2; x3Þi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu<2

i ðx1; x2 þ r2; x3Þi
q ð35Þ

for i = 1, 2, 3 (no summation), R11, R22 and R33, versus the spanwise

distance x2 where r2 ranges from 0 to D2/2. The correlation tensor

appearing in the numerator is computed using Eq. (10) applied in

the case of two different point locations. The correlation is plotted

at the streamwise station x1/h = 6.0 at the distance from the wall

x3/h = 1.1 allowing a comparison with the curves given on figure

25(d) of reference [30] corresponding to highly resolved LES at

the lower Reynolds number Re = 10,595. Even if the Reynolds num-

ber is different, the present calculated evolutions of the two-point

correlation functions present qualitative agreements with the data

of Fröhlich et al. [30]. But as already observed in reference [30], it

appears from Fig. 19 that the spanwise dimension of the channel

is too short because the streamwise tensor correlation R11 doesn’t

return to zero at the mid position of the channel. As the Reynolds

number increases from 10,590 to 37,000, this effect seems more

aggravated since R11 reaches lower values close to �0.25. However,

if the spanwise dimension of the channel appears to be somehow

too shortened because the streamwise tensor correlation R11
doesn’t return exactly to zero at the mid position of the channel,

one must ascertain that the overall PITM results agree fairly well

with the reference data so that one can consider that the impact

of this too short spanwise dimension on the results is not crucial

in the present case.

Regarding the two-point correlation profiles, the slow decay of

the curves associated with R22 and R33 in that region suggests the

presence of elongated eddies in the spanwise direction. This

outcome is moreover confirmed by Fig. 3 showing the longitudinal

roll cells in the leeward region of the second hill. Once more, the

PITM simulation has provided realistic information on the two-

point correlation functions although being performed on coarse

meshes.

7. Conclusion

A subfilter stress model derived from the PITM method has

been applied to simulate the separated flow in a channel with

streamwise periodic constrictions at high Reynolds number. In

comparison to highly resolved LES requiring refined meshes, the

present simulations have been performed on several meshes

including a very coarse mesh, two coarse meshes and a medium

mesh. As a result, it has been found that the PITM simulations per-

formed on the meshes 80 � 60 � 100 points (PITM3) � 1/2 million

grid points, and 160 � 60 � 100 (PITM4) � 1 million grid points,

respectively in the streamwise, spanwise and normal directions

(x1,x2,x3) reproduce fairly well this flow with complex physics

involving turbulence mechanisms associated with separation,

recirculation, reattachment, acceleration and wall effects. In partic-

ular, the mean velocity profiles are in very good agreement with

the experimental data although the meshes are coarse, the degree

of the mesh refinement used for performing PITM simulations still

remaining far away from the one required to perform highly re-

solved LES. These remarks are particularly true as the Reynolds

number increases. In this case, the computational time can be

appreciably reduced compared to the one of an highly resolved

LES. The main outcome of this study is also to show numerically

that the PITM simulations may be damaged if using too coarse

mesh resolution, especially in the spanwise direction of the flow.

More precisely, it appears that the grid in this direction can indeed

be coarse as in the other grid directions in the longitudinal and

normal directions, but a sufficient resolution in the spanwise

direction is however required to allow the PITM simulation to mi-

mic correctly the turbulent mechanisms induced by three dimen-

sional component. Concerning the other PITM simulations

performed on the meshes 80 � 30 � 100 points (PITM1) � 1/4 mil-

lion grid points, and 160 � 30 � 100 points (PITM2) � 1/4 million

grid points, the mean velocity and turbulent stresses are found in

acceptable agreement with the experimental profiles, some dis-

crepancies being however observed in the immediate vicinity of

the lower wall. But we have proven that the origin of this mispre-

diction is essentially due to the spanwise grid resolution and not at

all to the model itself. In contrast with the PITM simulations, the

statistical RSM computation, whatever the mesh considered,

shows important weaknesses in the prediction of this particular

flow, mainly because in the statistical approach, no account can

be taken of the very large unsteady eddies. This conclusion pertains

however only to a particular flow and a particular stress transport

closure [25].

Appendix A. Low Reynolds number formulation of the subfilter

scale model

The present subgrid stress PITM model based on the transport

Eqs. (12) and (14) has been used in a low Reynolds number form.

The modeled expressions of each individual terms of these equa-

tions are briefly recalled in the following, the principle of the mod-

eling being developed in references [7,23]. The production term

represents the source due to the interaction between the stresses

and the velocity gradients
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Pij ¼ �ðsikÞsfs
@�uj

@xk
� ðsjkÞsfs

@�ui

@xk
ð36Þ

The redistribution term Pij is decomposed into a slow part P1
ij , a ra-

pid part, P2
ij and a wall reflection part P3

ij. The slow term P1
ij (Rotta

term) characterizes the return to isotropy due to the action of tur-

bulence on itself

P1
ij ¼ �c1

�sfs
ksfs

ðsijÞsfs �
1

3
ðsmmÞsfsdij

� �
; ð37Þ

the rapid term P2
ij (isotropization of production term) involves the

velocity gradients

P2
ij ¼ �c2 Pij �

1

3
Pmmdij

� �
; ð38Þ

and the wall reflexion term P3
ij accounts for the wall effects caused

by the reflection of the pressure fluctuations from rigid walls

P3
ij ¼ c1w

�sfs
ksfs

ðsklÞsfsnknldij �
3

2
ðskiÞsfsnknj �

3

2
ðskjÞsfsnkni

� �
fw

þ c2w P2
klnknldij �

3

2
P2

iknknj �
3

2
P2

jknkni

� �
fw ð39Þ

In these expressions, c1 and c2 are some functions depending on the

Reynolds number and on the anisotropy tensor

ðaijÞsfs ¼ ðsijÞsfs � 2
3
ksfsdij

h i
=ksfs, the subgrid-scale invariants A2 = (aij)-

sfs(aji)sfs, A3 = (aij)sfs (ajk)sfs(aki)sfs and the flatness parameter

A ¼ 1� 9
8
ðA2 � A3Þ. The quantity ni is the unit vector perpendicular

to the wall and fw is a near wall damping function. The diffusion

terms Jij and J� appearing in equations (12) and (14), respectively,

are modeled assuming a well-known gradient law

Jij ¼
@

@xm
m
@ðsijÞsfs
@xm

þ cs
ksfs
�sfs

ðsmlÞsfs
@ðsijÞsfs
@xl

� �
ð40Þ

and

J� ¼
@

@xj
m
@�sfs
@xj

þ c�
ksfs
�sfs

ðsjmÞsfs
@�sfs
@xm

� �
ð41Þ

where cs and c� are constant coefficients. Relatively to its previous

value [7], the coefficient c�1 appearing in the subfilter dissipation

rate Eq. (14) is slightly recalibrated to the value c�1 ¼ 1:5 instead

of c�1 ¼ 1:45. The value c�1 ¼ 1:5 also comes almost naturally in

the analytical developments performed in the spectral space

[5,6,22], although this value is not a theoretical requirement [29].

The functions used in the subgrid-scale model stress at low Rey-

nolds number are listed in Table 2. These functions are inspired

from the statistical Launder and Shima model [25] when gc goes

to zero (RANS behavior) but are modified to remain consistent with

the logarithmic law of the wall in the turbulent boundary layer.

Moreover, the constant coefficients appearing in the function c1
have been optimized to 2.30 and 140 instead of 2.58 and 150

and the dependence with respect to the second invariant is

proposed as A1=8
2 instead of A1=4

2 in order to vary more slowly.

According to the rapid distortion theory for homogeneous strained

turbulence in an initially isotropic state [57], the function c2 has

been also modified with the aim to satisfy the limiting condition

limRt!1 c2ðRtÞ ¼ 0:60. These new functions are also listed in Table 2.

The constants values used in the diffusion terms are cs = 0.22 and

c� = 0.18. The numerical coefficients used in the function csfs1 are

a1 = 1.3/400 and a2 = 1/400, bg = [2/(3CK)]
9/2 is computed for

CK = 1.4. In the present calculations, the PITM subfilter model ex-

actly reduces to the corresponding RSM model formulation when

used in statistical mode when gc goes to zero.
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