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Abstract: Non-orthogonal space-time block (STB) code structures used to be optimised considering a maximum-likelihood
detection, but depending on the modulation order and/or the antenna number, the prohibitive complexity of such a receiver
makes it infeasible in practice. Suboptimal low-complexity receiver structures like linear detectors can be applied instead,
yielding degradation of performance compared with the predictions. When a forward error correction (FEC) code is used
upstream of the STB code, an iterative receiver consisting of a FEC decoder and an interference canceller (IC) co-operating
according to the turbo equalisation principle, can achieve near-optimal performance. This study aims to define the
construction of full-rate full-diversity linear dispersion codes with reduced peak-to-average power ratio (PAPR), taking into
account the serial concatenation with a FEC at the transmitter and a minimum mean square error (MMSE) turbo equaliser at
the receiver. Optimisation criteria are mutual information maximisation, symbol error rate minimisation at the MMSE–IC
output, full-diversity thanks to the threaded algebraic space time concept and PAPR minimisation. Explicit constructions are
given and the resulting code efficiency is analysed through comparison with equivalent perfect STB codes.

1 Introduction

Space-time block (STB) coding has attracted much attention
in wireless multiple-input–multiple-output (MIMO)
communications as a solution to increase the data
throughput without sacrificing the bandwidth nor increasing
the average transmit power. It is known as a coding
technique to combat fading by exploiting transmit and
receive diversities. Tarokh et al. [1] developed criteria [for
the high signal-to-noise ratio (SNR) regime] to define full-
diversity and maximum coding gain STB codes, based on
the pairwise error probability minimisation under the
assumption of a maximum-likelihood (ML) decoding at the
receiver. Orthogonal STB (OSTB) [2, 3] codes satisfy
Tarokh design conditions with a ML linear detection. Their
weakness is a sub-optimal transmission rate, which decays
as the number of transmit antennas increases. As a
consequence, except for the Alamouti code with one receive
antenna, OSTB codes do not maximise the capacity. High-
rate linear dispersion codes have thus been proposed by
Hassibi and Hochwald [4] in order to achieve the ergodic
capacity of a MIMO system. A tradeoff between the
diversity gain and the multiplexing gain has been
established by Zheng and Tse [5]. Many full-diversity full-
rate linear dispersion codes among which [6–12] have been
developed to achieve the optimum diversity/multiplexing
tradeoff under a ML detection, which may not be feasible

in practice. Indeed the complexity of non-orthogonal STB
codes ML receiver increases exponentially with the number
of transmit antennas and the modulation efficiency. Many
works have been done [13, 14] to construct full-rate and
full-diversity STB code with low-ML decoding. However,
the receiver complexity remains high for large number of
transmit antennas and high-order modulation. Relaxing the
full-rate constraint, codes allowing reduced decoding
complexity have been proposed as single-symbol ML-
decodable space-time block codes (STBCs) [15, 16] or
asymmetric fast-decodable STBCs as in [17] or [18]. On
the other hand, fast ML decoders referred as sphere
decoders have been proposed [19] without any constraint on
the rate of the STB code, but their non-bounded latency is a
major drawback. An alternative is low-complexity linear
detection such as minimum mean square error (MMSE)
detection. Design of optimal linear dispersion STB codes
for MIMO systems equipped with linear MMSE receivers
has been studied in [20, 21]. Necessary and sufficient
conditions have been derived in order to construct MMSE
optimal linear dispersion STB codes.
Furthermore, standards recommend to serially concatenate

a forward error correction (FEC) code to the STB code at the
transmitter in order to enhance the quality of transmission as
proposed in [22, 23]. The optimisation of such schemes
assumes an entire ML detection of prohibitive complexity.
An alternative to an entire ML receiver achieving
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reasonable complexity and near-optimal performance is
MMSE turbo equalisation [24, 25]. It combines a MMSE–
STB code linear interference canceller (IC) MMSE–IC
with a FEC decoder, both involved in an iterative process.
In this paper, we propose to optimise the STB code
definition considering a MMSE turbo equaliser at the
receiver side, in addition to the serial concatenation with a
FEC, as design conditions. Assuming such a receiver, we
aim to construct a linear dispersion codes (LDC) satisfying
three conditions. The first condition is full-diversity and
full-rate (optimal diversity/multiplexing tradeoff), achieved
by applying the threaded algebraic space time (TAST)
principle [7]. The second one is the reduction of the symbol
error probability (SEP) at the MMSE–IC output, through
signal-to-interference-plus-noise maximisation and
correlation reduction between two noise-equivalent
components of the MMSE–IC output. The third one is the
peak-to-average power ratio (PAPR) minimisation. Indeed
LDC involves linear combinations of symbols resulting in
power variations, and thus necessary power back-off on the
amplifier. We note that in a turbo-like receiver setup,
consisting of a MMSE–IC and a FEC decoder, the
minimisation of the bit-error-rate (BER) at the output of the
entire system can be solved through some convergence
analysis based on the extrinsic information transfer chart
[25]. One inconvenient of such a method is the definition of
STB codes with coefficients depending on the optimisation
target SNR value. For this reason, we have chosen the
minimisation of the error probability at the MMSE–IC
output as a design constraint, assuming the equaliser has
converged to its lower bound, which makes the SEP
independent of both the FEC code and the SNR value, as
will be demonstrated later in the paper.
The major contributions of this paper are

† We provide necessary, and if possible sufficient,
conditions to design a full-rate full-diversity LDC,
optimised so as to minimise the SEP at the MMSE–IC
output and with reduced PAPR.
† We make explicit the construction of such codes for two
and four transmit antennas. The proposed construction can
be extended to any number of transmit antennas.

Notations: Column vectors (resp. matrices) are denoted by
boldface lower (resp. capital) case letters. Superscripts (.)T

and (.)H stand for transpose and conjugate transpose,
respectively. In represents the n × n identity matrix. Z, C
and Z[i] denote, respectively, the ring of rational integers,
the field of complex numbers and the ring of complex
integers. 0ntimes;n (resp. 1n × n) denotes the n × n matrix
having all its elements equal to 0 (resp. 1). Subscripts of
matrices indicate their dimensions. The vec(.) operator
transforms a matrix to a column vector by stacking the
associated matrix columns. diag(a1, . . . , an) denotes the
n × n diagonal matrix with entries equal to ak, k ¼ 1, . . . ,
n. Al,. (resp. A.,l) represents the row l (resp. the column l )
of the matrix A. ⊗ denotes the Kronecker product of two
matrices A and B

A⊗ B =

A11B A12B . . . A1mB

A21B A22B . . . A2mB

.

.

.
.
.
.

. . .
.
.
.

An1B An2B . . . AnmB

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

2 System model and first design criteria

We consider a MIMO system, with nt transmit and nr receive
antennas, affected by a non-frequency selective Rayleigh
block-fading channel. We assume a coherent scenario where
the channel is perfectly estimated at the receiver. The
received signal is expressed as

Y nr×T = Hnr×nt
X nt×T + Nnr×T (1)

where T is the number of symbol durations to transmit a
space-time codeword denoted Xnt × T . Hnr×nt

represents the
channel matrix with independent and identically distributed
zero-mean unit-variance circularly symmetric Gaussian
complex entries. Nnr × T is the noise matrix assumed to be
circularly symmetric jointly Gaussian complex with zero
mean and covariance matrix s 2

Int.
A space-time codeword of a linear dispersion STB code

can be defined as follows

X nt×T =
∑Q

l=1

Alsl (2)

where sl, l ¼ 1, . . ., Q are the modulation symbols carved
from a constellation. Each modulation symbol sl is
precoded by a matrix Al of dimension nt × T. To simplify
the paper presentation and without loss of generality, we
only consider square STB codes where T ¼ nt.
Let us define the first constraints considered for the LDC

design.

2.1 Energy conservation constraint

We impose that the average transmitted power of the space-
time coded system be the same as the uncoded system,
leading to the first following constraint on the precoding
matrices

E(tr(XXH)) = Q ⇒
∑n

2
t

l=1

tr(AlA
H
l ) = Q

(3)

where tr(.) denotes the trace of a square matrix, E(.) denotes
the expectation and the average power of a modulation
symbol is normalised (s2

s = E(|sl|2) = 1, l ¼ 1, . . ., Q).

2.2 Information lossless constraint

To avoid any degradation of the channel capacity for the
coded system, linear dispersion STB codes must be
information lossless codes [6]. In other words, the mutual
information of the coded system must be the same as the
uncoded spatial multiplexing system. We need to model the
space–time transmission scheme (coded system) as an
equivalent spatial multiplexing scheme (uncoded system
with higher transmit and receive antenna numbers). We thus
apply the vec(.) operator to the (1). We obtain

ynrT = Hnr×nt
⊗ IntxntT + nnrT (4)

where ynrT = vec(Y ), xnrT = vec(X ), nnrT = vec(N)

and ⊗ denotes the Kronecker product. Let H̃ = H ⊗ Int and
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al ¼ vec(Al). We can thus write x as follows

x = [a1a2 · · · aQ]
︸





︷︷





︸

F

s1
s2

.

.

.

sQ

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

(5)

X = Fs (6)

Using (6) in (4), we obtain a new expression for y

y = H eqs+ n, where Heq = H̃F (7)

Thus the LDC-based MIMO system is equivalent to an
uncoded spatial multiplexing-based MIMO system with ntnr
receive antennas, Q transmit antennas and Heq as a channel
matrix.
To satisfy the information lossless property, we have to

solve

log det Inrnt +
s2
s

s2
HeqH

H
eq

( )

= log det Inr +
s2
s

s2
HH

H

( )

∀H (8)

As we consider full-rate linear dispersion STB codes,
Q = Tnt = n2t . A necessary and sufficient condition to
guarantee the information lossless property [6] is given as
follows

FF
H = I and Q = n2t (9)

By developing the above (9), we obtain a second constraint
that encompasses the one given by (3)

F
H
F =

a
H
1

a
H
2

.

.

.

a
H
n2t

⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

[a1a2 · · · an2t ] = In2t
(10)

⇔ tr(AH
l Aq) = dl,q, l, q = 1, . . . , n2t (11)

Linear dispersion STB codes satisfying (11) are referred to as

full-rate trace orthogonal design (TOD) [21, 27]. Equation
(11) defines the first design condition.
In [20], the authors proved that a necessary and sufficient

condition for a full-rate TOD to achieve minimum BER at
the output of a MMSE detector, when the modulation
symbols are taken from a quadrature phase shift keying
constellation, is given as follows

AlA
H
l = 1

nt
Int (12)

3 Optimal STB codes for linear MMSE
receivers with a priori information

In this section, we deal with the construction of full-rate and
full-diversity linear dispersion STB codes for MIMO–FEC-
coded systems (see Fig. 1) equipped at the receiver side
with a MMSE turbo equaliser. We thus take into account
the FEC code serially concatenated with the STB code and
impose the receiver structure. Firstly, we derive the lower
bound of the SEP of the MMSE–IC output. Then, we
propose design criteria to construct optimised STB codes
for such a receiver.
A MMSE turbo equaliser is depicted in Fig. 2. This

receiver structure is based on the soft reliable information
exchange, according to the turbo principle, between the
MMSE–IC and the FEC decoder. Such an iterative receiver
structure can fully exploit the available diversity with low
complexity compared to the optimal ML decoding strategy
[24, 25].

3.1 MMSE–IC lower bound derivation

At each iteration, the MMSE–IC benefits from the channel
output and the estimated signal (a-priori information)
computed at the previous iteration from the soft FEC
decoder output. The MMSE–IC output can be expressed as

ŝl = glsl + hl, l = 1, . . . , n2t (13)

Fig. 1 MIMO–FEC-coded transmitter

Fig. 2 Turbo MMSE equaliser
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where

gl = W l,.H̃F.,l (the gain parameter)

hl =
∑

q=1,q=l

W l,.H̃F.,q(sq − �sq)+W l,.n

(the interference plus noise term)

(14)

with

W l,. = s2
sF

H
.,lH̃

H

(

(s2
s − s2

�s )
∑n

2
t

q=1

H̃F.,qF
H
.,qH̃

H

+ s2
�s H̃F.,lF

H
.,lH̃

H + s2
Inrnt

)−1

(15)

and �sq the estimate of sq calculated from the soft information
provided by the FEC decoder (variance s2

�s ).
When the iterative process reaches a steady state and

converges to the optimal solution, the interference term in
the expression of hl is equal to zero and the MMSE–IC
output is equivalent to the addition of the weighted
transmitted symbol vector with a noise-only-dependent
vector. The so-called genie bound corresponds to this
optimal convergence state of the MMSE turbo equaliser and
constitutes a lower bound of the MMSE–IC performance. It
is obtained when the interference term is perfectly estimated
at the MMSE–IC input and by considering that the symbol
to binary converter is feeded with perfect soft a priori
information. In such a case, �sl = sl, l ¼ 1, . . ., nt

2 and the

variance of estimated symbols s2
�s is equal to that of

modulation symbols ss
2. Thus, in the genie-aided case

W l,. = s2
sF

H
.,lH̃

H

.,l(s
2
s H̃F.,lF

H
.,lH̃

H + s2
Inrnt )

−1

= a
H
l H̃

H
H̃ala

H
l H̃

H + 1

g
Intnr

[ ]−1

, where g = s2
s

s2

(16)

Applying the Woodsbury’s equality, we obtain

W l,. = gaHl H̃
H

Inrnt −
gH̃ala

H
l H̃

H

1+ gaHl H̃
H
H̃al

[ ]

= gaHl H̃
H

1+ gaHl H̃
H
H̃al

(17)

Using (17), the gain parameter gl and the noise term hl can be
expressed as

gl =
gaHl H̃

H
H̃al

1+ gaHl H̃
H
H̃al

, l = 1, . . . , n2t (18)

hl = W l,.n (19)

where hl is a zero-mean circularly symmetric Gaussian
complex variable with variance s2

h = s2
W l,.W

H
l,. =

s2 gl(1− gl)g = s2
s gl(1− gl). [The inverse of a matrix

A ¼ B+ uuH is given as A21
¼ B21

2 ((B21uuHB21)/

(1+ uB21uH)).]

3.2 Additional design criteria

From now on we assume that the information lossless
condition given in (11) is satisfied (condition 1).
(1) Condition 2 – SEP optimisation at the MMSE–IC

output: Considering the optimal convergence state for the
MMSE–IC, the SNR for the lth output is given by

SNRl =
gl

(1− gl)
= gaHl H̃

H
H̃al, l = 1, . . . , n2t (20)

By taking the expectation of SNRl with respect to the channel
realisation, we obtain

SNRl = EH(SNRl) = gaHl (Int ⊗ E(HH
H))al = gaHl al

= gtr(AH
l Al) = g (21)

To minimise the SEP at the MMSE–IC output, we must
maximise SNRl and minimise the correlation between the
interference terms affecting two distinct equaliser output
components.
One can see that the average SNR is independent of the

precoded matrices when the condition given in (11) is
satisfied. The FEC decoder is all the more efficient as the
soft information provided at its input are less correlated. This
can be achieved by reducing the correlation between the
noise components relative to two MMSE–IC output
components, hq and hl whatever q= l. The crosscorrelation
between hq and hl is denoted rq,l and is equal to

rq,l = E(hqh
∗
l ) = E(W q,.nn

H
W

H
l,.) = s2

W q,.W
H
l,.

=
s2g2aHq H̃

H
H̃al

(1+ gaHq H̃
H
H̃aq)(1+ gaHl H̃

H
H̃al)

(22)

For high SNR values

|rq,l|2 ≃
|s2

a
H
q H̃

H
H̃al|2

|aHq H̃
H
H̃aq|2|aHl H̃

H
H̃al|2

= s4
|kal, aq l

H̃
H
H̃
|2

‖aq‖4H̃H
H̃
‖al‖4H̃H

H̃

(23)

where kx, y l
H̃

H
H̃
= y

H
H̃

H
H̃x.

Designing precoded matrices so as to minimise |rq,l|2
implies that the channel coefficient must be known at the
transmitter, as each precoded matrix coefficient is a function
of fading parameters in this case. As we assume no channel
state information at the transmitter, we have to focus on the
|rq,l|2 upper bound minimisation problem. In this case, a
necessary condition can be delivered in order to minimise the
crosscorrelation.
By applying the Cauchy–Schwarz inequality, we obtain

|rq,l|2 ≤ s4
‖aq‖2H̃H

H̃
‖al‖2H̃H

H̃

‖aq‖4H̃H
H̃
‖al‖4H̃H

H̃

= s4

‖aq‖2H̃H
H̃
‖al‖2H̃H

H̃

= s4

(zHqDzq)(z
H
l Dzl)

(24)
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where H̃
H
H̃ = U

H
DU is the eigenvalue decomposition of

the Hermitian matrix H̃
H
H̃ with U an unitary matrix,

D = diag(l1, . . . , ln2t
), lk ≥ 0, k = 1, . . . , n2t and zl ¼ Ual.

A necessary constraint to minimise the upper bound of
|rq,l|2 presented in (24) is

|zq(n)| = |zl(n)|, n = 1, . . . , n2t (25)

Proof: Let us consider z
opt
q and z

opt
l , l= q achieving the

minimum of the upper bound given in (24). Minimising the
upper bound of |rq, l|2 is equivalent to maximise

b(zq, zl) = (zHqDzq)(z
H
l Dzl). Using the definition of D,

b(zq, zl) =
∑

n ln|zq(n)|
2

( )
∑

n ln|zl(n)|
2

( )

. Let us take zl

and zq such that |zl(n)| = |zq(n)| = |zoptq (n)|. We can write

b(zq, zl)≤b(zoptq , z
opt
l )

⇔
∑

n

ln|zoptq (n)|2
( )2

≤
∑

n

ln|zoptq (n)|2
( )

∑

n

ln|z
opt
l (n)|2

( )

⇔
∑

n

ln|zoptq (n)|2
( )

≤
∑

n

ln|z
opt
l (n)|2

( )

(26)

Defining zl and zq such that |zl(n)| = |zq(n)| = |zoptl (n)|, with a
similar procedure, we obtain

∑

n

ln|z
opt
l (n)|2

( )

≤
∑

n

ln|zoptq (n)|2
( )

(27)

Considering (26) and (27) yields

∑

n

ln|z
opt
l (n)|2

( )

=
∑

n

ln|zoptq (n)|2
( )

(28)

As the condition given in (28) must hold whatever the
channel realisation, we deduce that |zoptl (n)| = |zoptq (n)|,
n = 1, 2, . . . , n2t .
By developing zq, we obtain

zq(n) = Un,.aq (29)

Using (25) and (29), we deduce that for l= q and
n [ {1, 2, . . . , n2t }, there exists uql(n) [ ]0, 2p[ such that

Un,.aq = Un,. exp(iuql(n))al (30)

As this condition must hold whatever the channel realisation,
and whatever the value of n, we deduce that there exists
uql [ ]0, 2p[ such that

aq = eiuqlal (31)

Such a constraint is not compatible with a
H
q al = dql given by

(11). As the priority is given to the information lossless
property, we replace the necessary and sufficient condition
of (31) by a necessary but not sufficient condition,

compatible with a
H
q al = dql. We impose that

|aq(n)| = |al(n)|q= l, n = 1, . . . , n2t (32)

This constraint is a necessary condition to minimise the
correlation between noise terms affecting two equaliser
output components. Moreover, it guarantees a uniform
distribution of the energy transmitted by each antenna and
each modulation symbol (we note that a transmitted symbol
is a linear combination of nt modulation symbols).
By satisfying (11) and (32), we ensure an improvement of

the error probability at the MMSE–IC output compared with
full-rate full-diversity LDC that do not fulfill these conditions.
(2) Condition 3 – full-diversity LDC: We assume that

condition 1 (11) and condition 2 (32) are fulfilled. To
further ensure a full-diversity LDC, we apply the TAST
approach [7]. For the self-completeness of this paper, we
recall briefly the threaded algebraic space-time code
definition.
A TAST codeword is composed of nt layers. Let ℓl denotes

the layer number l. It is generated by (s(l−1)nt+q)1≤q≤nt and
transmitted on time slot t, 1 ≤ t ≤ nt, by the th antenna.
Then we associate, to each layer, nt precoded matrices
A(l−1)nt+q = {flan,p,q}n,p=1,...,nt

where an,p, q is defined as
follows

an,p,q = 0, if (n, p) [ {(t + l − 2nt + 1, t)}t = 1, . . . ,

nt = 0, else

(33)

and fl (|fl| ¼ 1) is a diophantine number that ensures an
algebraic separation between threads to guarantee the full-
transmit diversity. We note that given q, A(k−1)nt+q and
A(l−1)nt+q associated to layers ℓk and ℓl, respectively, differ
only by the diophantine numbers fk and fl. The full-
transmit diversity is achieved if each thread ensures a full-
transmit diversity when the others are inactive, and by
selecting appropriate diophantine numbers that provide an
algebraic separation between threads [7].
Coming back to our design, assuming the LDC has the

threaded structure described above, the condition given by
(32) has to be satisfied inside the group of precoded
matrices that belong to a same thread indexed by l. Let
a
^

(l−1)nt+q be the vector associated to the nt non-equal to
zero elements of A(l−1)nt+q [according to (33), A(l−1)nt+q

contains only nt non-equal to zero entries]

a
^

(l−1)nt+q = fl[al,1,q al+1,2,q . . . ant,nt−l+1,q a1,nt−l+2,q

a2,nt−l+3,q . . . al−1,nt,q
]

(34)

Considering (11) and (32), we obtain

a
^

(l−1)nt+qa
^H

(n−1)nt+p = d(l,q),(n,p),

n, l, p, q = 1, . . . , nt (35)

|a^(l−1)nt+q(n)| = |a^(l−1)nt+p(n)|,

n, l, p, q = 1, . . . , nt (36)
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Each thread realises a full-transmit diversity if and only if

∀(s(l−1)nt+1, . . . , slnt)

= (0, . . . , 0) [ Snt |
∑nt

q=1

a
^

(l−1)nt+q(n)s(l−1)nt+q|= 0 (37)

where S is a ring that encompasses the modulation alphabet.
To have an additional energy efficiency, each antenna must
transmit the same average power, thus

E(|xp,q|2) = s2
s , p, q = 1, . . . , nt (38)

where xp,q is an entry of a STB codeword. Taking (35), (36)
and (38) into account, we can write each entry of a precoded
matrix as follows

a
^

k(n) =
1
��
nt

√ exp(iuk,n),

k = 1, . . . , n2t , n = 1, . . . , nt (39)

(3) Condition 4 – PAPR reduction: Last construction
criterion is the PAPR reduction. Indeed, STB codes
introduce a PAPR increase with respect to spatial
multiplexing as each transmitted symbol is a linear
combination of modulation symbols. High PAPR results in
high back-off on the power amplifier to keep it in its linear
regime. The PAPR minimisation allows to fix the values of
uk, n depending on the number of transmit antennas, by
solving this optimisation problem

min
{uk,n}

max
(s1 ,s2 ,...,snt )[Snt

|xp,q|2 (40)

In some transmit antenna configuration, both maximisation of
the diversity and minimisation of the PAPR are not
compatible. In that case, the priority is given to the
diversity and among the set of angles satisfying the
diversity constraint, we choose the ones that yield the lower
PAPR.

4 Explicit construction

As described in the previous section, the TAST concept is
applied to the LDC using the same set of precoding vectors
for all threads and choosing the appropriate diophantine
numbers to separate threads. Let a

^

k represent the precoding
vector associated to the kth symbol of the reference thread
(ℓ1). We select a

^

1 = 1/
��
nt

√( )( )

[1 1 . . . 1]T and f1 ¼ 1 to
simplify the construction. We have to determine the nt2 1
vectors a

^

k=1 such that (35), (36), (39) and (40) are
satisfied. To accomplish the construction, diophantine
numbers must be chosen according to the following
constraints

|fl| = 1

fl � the field that encompasses the following ring

St =
∑
nt

q=1

a
^

q(n)sq, sq [ S
{ }

, n, l = 1, . . . , nt

⎧

⎪⎪
⎪⎨

⎪⎪⎪
⎩

(41)

4.1 Application of the procedure for nt ¼ 2

We have to determine a
^

2 = 1/
��

2
√( )

[eiu1eiu2 ]. According to

(35) and (36), we have eiu2 = −eiu1 . Then

x11 =
1
��

2
√ (s1 + eiu1s2)

x22 =
1
��

2
√ (s1 − eiu1s2)

For PAPR minimisation, we must consider the modulation
type. Without any loss of generality, we are interested in
this paper in a quadrature amplitude modulation (QAM)
constellation. For such a modulation, the maximum
absolute value of a transmitted symbol |xq| is achieved
when |s1| ¼ |s2| ¼ Amax. Taking into account the diversity
constraint (37), which can be summarised in this case as
|xqq|= 0∀(s1, s2)= 0, q ¼ 1, 2, the PAPR constraint yields

u
optimal
1 = argmin

{u1}
max

a[{0,(p/2),p,(3p/2)}
|1+ ei(u1+a)|2 (42)

The solution of the optimisation problem defined by (42) is

u
optimal
1 = (p/4) (see the Appendix for the proof) and the
proposed 2 × 2 STB code can be written as

X2×2 =
1
��

2
√ s1 + ei(p/4)s2 f2(s3 − ei(p/4)s4)

f2(s3 + ei(p/4)s4) s1 − ei(p/4)s2

[ ]

(43)

4.2 Application of the procedure for nt ¼ 4

In order to simplify our construction, we consider a canonical
base {1, eiuk , e2iuk , e3iuk} for each symbol of a fixed thread.
We define a

^

k as

a
^

k =
1
��

4
√ ei(k−1)u1 ei(k−1)u2 ei(k−1)u3 ei(k−1)u4
[ ]

(44)

By applying (35) and (36), we obtain the following conditions

ei(k−1)u1ei(k−1)u2ei(k−1)u3ei(k−1)u4 = 0, k = 2, 3, 4 (45)

uq ¼ (i)q21u, q ¼ 1, 2, 3, 4 is a solution of (45). Thus

x11 =
1

2
(s1 + eius2 + ei2us3 + ei3us4)

x22 =
1

2
(s1 + ieius2 − ei2us3 − iei3us4)

x33 =
1

2
(s1 − ieius2 − ei2us3 + iei3us4)

x44 =
1

2
(s1 − eius2 + ei2us3 − ei3us4)

Taking the diversity maximisation and the PAPR
minimisation conditions, respectively, given by (37) and
(40), we obtain u ¼ (p/8) (see the Appendix for the proof).
As a result, the 4 × 4 proposed STB code is defined by

X 4×4 =
1

2

x11 x42 x33 x24
x21 x12 x43 x34
x31 x22 x13 x44
x41 x32 x23 x14

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦
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where

xlk = fl fk(s4l−3, s4l−2, s4l−1, s4l)

f1(a, b, c, d) = a+ eiub+ ei2uc+ ei3ud

f2(a, b, c, d) = a+ ieiub− ei2uc− iei3ud

f3(a, b, c, d) = a− eiub+ ei2uc− ei3ud

f4(a, b, c, d) = a− ieiub− ei2uc+ iei3ud

One can see that the design of the 4 × 4 code is more difficult
than the design of the 2 × 2 code. The definition of the
precoding matrix satisfying the conditions given in previous
sections is obtaining harder as the transmit antenna number
increases. The complexity lies in the construction (as it is
the case in most other LDC schemes). Once the LDC has
been defined according to our proposed procedure, neither
the transmitter nor the receiver exhibit any complexity
increase compared with other LDC.

5 Performance comparisons

This section is dedicated to the simulation of the proposed
scheme for nt ¼ 2 and nt ¼ 4. The PSTB code has full-rate,
achieves optimal diversity and satisfies the non-vanishing
determinant property [10]. Its optimisation assumes a ML
detection at the receiver. It is also known in the literature as
one of the best performing STB codes in terms of BER. For
that reason, we use it as a reference scheme in this section.

5.1 PAPR comparison

Compared with the 2 × 2 perfect space-time block code
(PSTBC) code (also known as the golden code), and
whatever the modulation order, the 2 × 2 proposed LDC
code achieves a gain in terms of PAPR equal to (see the

Appendix for the proof)

GPAPR2 = 10log10
2(1+ uGC)

2

2+
��

2
√( )

(1+ u2GC)
= 0.4522 dB,

uGC = 1+
��

5
√

2
(46)

In the 4 × 4 case, the proposed code has a 0.3072 dB PAPR
gain with respect to the PSTB code (see the Appendix) using
QAM constellation.

5.2 BER comparison

We assume that the proposed code and the PSTBC are serially
concatenated to the same outer FEC code (see Fig. 1) and that
the receiver consists of a MMSE–IC exchanging information
with the FEC decoder in an iterative manner as described in
previous sections (see Fig. 2). The BER is measured at the
FEC decoder output.
For our simulations, we consider a number of receive

antennas equal to the number of transmit antennas. We
study QAM constellations with Gray mapping. The
channel is a non-frequency selective Rayleigh block
fading channel, constant over t ¼ nt symbol durations.
The outer code is a half-rate convolutional code, decoded
by applying a soft-input–soft-output Bahl-Cocke-Jelinek-
Raviv (BCJR) decoder [26]. We consider the following
convolutional codes (CCs) CC(7, 5)oct, CC(13, 15)oct and
CC(133, 171)oct in our simulations. The information frame
at the encoder input of the FEC outer code is composed
of 4077 information bits in order to guarantee that the
BER performance do not change with a higher length
frame. We note that plotted curves correspond to the
convergence state of the iterative process (i.e. after a
given number of iterations, there is no additional
performance gain by increasing the iteration number).

Fig. 3 Performance comparison between the proposed STB codes and the PSTB codes for nt ¼ 2, 4

4-QAM, CC(13, 15)oct, t ¼ nt, nr ¼ nt 4077 information bits
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Fig. 3 shows that, for nt ¼ 2, both schemes reach their
respective genie bound after four iterations. Moreover, the
proposed code outperforms by 0.25 dB the golden code at a
BER ¼ 1026. For nt ¼ 4, similar conclusions can be drawn.
A gain of 0.2 dB at a BER ¼ 1025 is achieved by the
proposed code with respect to the PSTB code.
Fig. 4 compares the genie bounds of both schemes for

nt ¼ 2, using a 16-QAM constellation, for different half-rate
CCs. One can see that the scheme using the proposed
optimised code outperforms the scheme based on the
golden code, whatever the correction capability of the outer
convolutional code. This results confirm that the lower
bound performance of the proposed codes is better than the
existing codes independently of the error correction
capability of the outer code.

For all simulated configurations, both the genie bound and
the convergence state of the turbo equaliser are better for the
proposed code than for the PSTBC. This outperformance
comes from the SEP reduction criterion, used in the
construction of the proposed code. It allows the MMSE
turbo equaliser to fully exploit the available diversity.

6 Conclusion

In this paper, we have proposed a new approach to construct
full-rate full-diversity STB codes taking into account the
serial concatenation with an outer FEC code and assuming
an iterative receiver consisting of a MMSE–IC exchanging
information with the FEC decoder. We have considered full-
rate LDCs. The precoding matrices have been optimised so

Fig. 4 Genie bound comparison between the proposed STBC code (nt ¼ 2) and the golden code for different outer half-rate CCs

16-QAM, t ¼ nt, nr ¼ nt. 4077 information bits

Fig. 5 d(u) function
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as to satisfy four constraints. First, we have imposed that the
full-rate LDC be information lossless. This constraint
guarantee no capacity degradation compared to the
equivalent uncoded spatial multiplexing structure. Second,
necessary conditions have been established to reduce the
SEP at the MMSE–IC output, through noise-equivalent
component de-correlation. Third, full-diversity has been
achieved applying the threaded layering concept (TAST).
The two latest constraints ensure an improvement of the
performance in terms of BER. Fourth, the PAPR
mimimisation has been imposed to end the code definition.
Explicit construction of such codes has been presented for
nt ¼ 2 and 4. The simulations have shown that the resulting
codes, when concatenated to an outer FEC code and using a
MMSE–IC turbo equaliser, outperform the PSTB codes both
in terms of BER lower bound and achieved BER, without
any complexity penalty neither at the transmitter nor at the
receiver. The theoretical PAPR computation has exhibited a
gain for nt ¼ 2 and 4 whatever the modulation order.
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9 Appendix

Assuming a QAM constellation, we compute in this
Appendix optimal values of uk,n, k = 1, . . . , n2t ,
n = 1, . . . , nt defined in (40). We also calculate the PAPR
values for the golden code, the PSTB code (nt ¼ 4) and the
proposed STB codes (nt ¼ 2, 4).
Let us denote K the set defined by

K = {+ 1, + 3, . . . , + (
����

2mb

√
− 1)}. The 2mb-QAM

alphabet is defined as S ¼ K[i] ¼ {a+ ib|a, b [ K}. Let s
be a modulation symbol taking values with equal
probability in S. One can prove that E(|s|2) ¼ 2/3(2mb

2 1).

9.1 PAPR minimisation for the 2 × 2 proposed
STB code

For nt ¼ 2, the optimal value of u is defined as

uopt = arg min
{u1}

max
a[{0,p/2,p,3p/2}

|1+ ei(u1+a)|2 (47)

To solve the above optimisation problem, four cases can be
considered

a= 0⇒ d1(u)= |1+ ei(u+a)|2 = |1+ eiu|2 = 2+ 2cos (u)

a=p

2
⇒ d2(u)= |1+ ei(u+a)|2 = |1+ ieiu|2 = 2− 2sin (u)

a=p⇒ d3(u)= |1+ ei(u+a)|2 = |1− eiu|2 = 2− 2cos (u)

a= 3p

2
⇒ d4(u)= |1+ ei(u+a)|2 = |1− ieiu|2 = 2+ 2sin (u)

⎧

⎪⎪
⎪⎪
⎪⎪⎨

⎪⎪
⎪⎪⎪
⎪⎩

(48)

Thus

uopt = min
0≤u≤p/2

max(d1(u), d4(u)) (49)

For 0 ≤ u ≤ p/2, the function d1(u) decreases from d1(0) ¼ 4
to d1(p/2) ¼ 2, and the function d4(u) increases from
d4(u) ¼ 2 to d4(p/2) ¼ 4. Then, the solution of (49)
corresponds to the intersection point between d1(0) and
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d4(u), and it can be determined by solving

d1(uopt)= d4(uopt)⇒ cos (uopt)= sin (uopt),

0≤ u≤p

2

(50)

We obtain uopt ¼ p/4. Calculating the PAPR for the proposed
code (nt ¼ 2) taking into account that the maximum modulus
of any STB code matrix entry corresponds to a linear
combination of modulation symbols with maximum
modulus, we have

PAPR=
max(s1,s2)[S2 |s1+ eip/4s2|2

E(|s1+ eip/4s2|2)

such that |s1|2 = |s2|2 = 2(
����

2mb

√
− 1)2 (51)

= (4+ 2
��

2
√

)(
����

2mb

√
− 1)2

4/3(2mb − 1)
(52)

= 3(2+
��

2
√

)(
����

2mb

√
− 1)2

2(
����

2mb

√
+ 1)

(53)

9.2 PAPR for the golden code

We recall that a STB codeword for the golden code can be
written as follows

X2×2 =
1
��

5
√ a(s1 + us2) a(s3 + us4)

�a(s1 + �us2) �a(s3 + �us4)

[ ]

(54)

where sk [ S, k = 1, . . . , 4, u = 1+
��

5
√

/2, �u = 1− u, a =
1+ i�u and �a = 1+ iu. Thanks to the symmetry in the
entries of a STB code matrix, the PAPR can be obtained as

PAPRGolden =
max(s1,s2)[S2 |as1+us2)|2

E(|a(s1+us2|2)
(55)

=
maxd[{0,+p/2,p}2(

����

2mb

√
−1)2|1+ueid|2

2/3(2mb −1)(1+u2)
(56)

= (1+u)2

(1+u)2
3(

����

2mb

√
− 1)

(
����

2mb

√
+ 1)

= (1−�u)2

(1+�u)2
3(

����

2mb

√
− 1)

(
����

2mb

√
+ 1)

(57)

9.3 PAPR for the 4 × 4 proposed STB codes

For nt ¼ 4, each layer can be expressed as

x = 1

2
f(s1 + aeius2 + bei2us3 + gei3us4) (58)

where (s1, s2, s3, s4) [ S4, |f| = 1 and a,b, g[ {1, −1,
i, − i}. Taking into account that the modulus of any STB
code matrix entry is maximum when all modulation symbol
moduli are maximum, the minimisation of the PAPR
imposes that u must be chosen as follows

uopt=arg max
0≤u≤p/2

max
(s1,s2,s3 ,s4)[S4

|x|2 (59)

=arg min
0≤u≤p/2

max
(a,b,c,d)[{1,−1,i,−i}4

|(a+eiub+bei2uc+ei3ud)|2

(60)

By plotting the function d(u) = max(a,b,c,d)[{1,−1,i,−i}4 |(a +
eiub + ei2uc + ei3ud)| (see Fig. 5), two solutions of
equation (59) can be determined uopt = p/8 or uopt = 3p/8.

Since, we deal with eiu, ei2u and ei3u terms, we obtain two
equivalent STB codes. According to Fig. 5, the minimal
value of d(u) is equal to d(uopt) ¼ 3.6245, which
corresponds to (a, b, c, d) ¼ (1, 1, 1, 1). Therefore the
PAPR of the proposed STB code is equal to

PAPR = 3.62452
2(

����

2mb

√
− 1)2

2/3(2mb − 1)
(61)

= 13.1371
3(

����

2mb

√
− 1)

(
����

2mb

√
+ 1)

(62)

9.4 PAPR for the 4 × 4 PSTB code

Using exhaustive computer search and focusing on maximum
modulus modulation symbols as they maximize the modulus
of any PSTB code matrix entry, we obtain

PAPR = 3.7552
2(

����

2mb

√
− 1)2

2/3(2mb − 1)
(63)

= 14.1
3(

����

2mb

√
− 1)

(
����

2mb

√
+ 1)

(64)
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