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DEFORMATIONS OF REDUCIBLE REPRESENTATIONS OF

KNOT GROUPS INTO SL(n,C)

MICHAEL HEUSENER AND OUARDIA MEDJERAB

Abstract. Let K be a knot in S3 and X its complement. We study
deformations of non-abelian, metabelian, reducible representations of the
knot group π1(X) into SL(n,C) which are associated to a simple root of the
Alexander polynomial. We prove that some of these metabelian reducible
representations are smooth points of the SL(n,C)-representation variety
and that they have irreducible deformations.

February 13, 2015

1. Introduction

Let K be a knot in S3 and X = S3 \ V (K) its complement, where V (K)
is a tubular neighborhood of K. Moreover, let ΓK = π1(X) denote the funda-
mental group of X . The aim of this paper is to study deformations of reducible
metabelian representations of ΓK into SL(n,C). The metabelian representations
in question where introduced by G. Burde [Bur67] and G. de Rham [dR67]. Let
us recall this result: for each nonzero complex number λ ∈ C∗ there exists a
diagonal representation ρλ : ΓK → SL(2,C) given by

ρλ(γ) =

(
λϕ(γ) 0

0 λ−ϕ(γ)

)
.

Here ϕ : π1(X) → Z denotes the canonical surjection which maps the meridian
µ of K to 1 i.e. ϕ(γ) = lk(γ,K). Burde and de Rham proved that there exists
a metabelian, non-abelian, reducible representation

ρzλ : ΓK → SL(2,C), ρzλ(γ) =

(
1 z(γ)
0 1

)(
λϕ(γ) 0
0 λ−ϕ(γ)

)
(1.1)

if and only if λ2 is a root of the Alexander polynomial ∆K(t). Recall that a
representation ρ : G → GL(n,C) of a group G is called reducible if the image
ρ(G) preserves a proper subspace of Cn. Otherwise, ρ is called irreducible.
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The question whether or not the representation ρzλ is a limit of irreducible
representations of ΓK into SL(2,C) was studied in [HPSP01]. Theorem 1.1
of [HPSP01] states that a metabelian, non-abelian, reducible representation
ρzλ : ΓK → SL(2,C) is the limit of irreducible representations if λ2 is a sim-
ple root of ∆K(t). Moreover, in this case the representation ρzλ is a smooth
point of the representation variety R(ΓK , SL(2,C)); it is contained in a unique
4-dimensional component Rλ ⊂ R(ΓK , SL(2,C)).

This article studies the behavior of the representations in question under
the composition with the n-dimensional, irreducible, rational representation
rn : SL(2,C) → SL(n,C). (for more details see Section 4.1). It is proved in
Proposition 3.1 that generically for an irreducible representation ρ ∈ Rλ the
representation ρn := rn ◦ ρ ∈ R(ΓK , SL(n,C)) is also irreducible. The main
result of this article is the following:

Theorem 1.1. If λ2 is a simple root of ∆K(t) and if ∆K(λ2k) 6= 0 for 2 ≤
k ≤ n − 1 then the reducible metabelian representation ρzλ,n := rn ◦ ρzλ is a
limit of irreducible representations. More precisely, ρzλ,n is a smooth point of

R(ΓK , SL(n,C)); it is contained in a unique (n+2)(n− 1)-dimensional compo-
nent Rλ,n ⊂ R(ΓK , SL(n,C)).

Remark 1. Let ρλ,n : ΓK → SL(n,C) be the diagonal representation given
by ρλ,n = rn ◦ ρλ. The group SL(n,C) acts on the representation variety
R(ΓK , SL(n,C)) by conjugation, and the orbit O(ρλ,n) is contained in the clo-

sureO(ρzλ,n). Hence ρλ,n and ρzλ,n project to the same point χλ,n of the character
variety

X(ΓK , SL(n,C)) = R(ΓK , SL(n,C))� SL(n,C) .

Here R(ΓK , SL(n,C))� SL(n,C) denotes the GIT quotient of the action (see
[New78] for more details). Recall that the GIT quotient parametrizes the closed
orbits of the SL(n,C) action.

It is possible to study the local picture of the character variety at χλ,n as done
in [HPSP01] and [HP05]. Unfortunately, there are additional technical difficul-
ties, and the computations necessary are much more involved. These complica-
tions are due to the fact that the diagonal representation ρλ,n is contained in
2n−1 components of R(ΓK , SL(n,C)). Nevertheless, only the component Rλ,n

contains irreducible representations. We will address this topic in a forthcoming
paper.

P. Menal-Ferrer and J. Porti [MFP12] showed that the conclusions of the
above theorem hold for hyperbolic knots if ρzλ is replaced by a lift of the ho-

lonomy, h̃ol : π1(S
3 r K) → SL(2,C), of the hyperbolic structure of the com-

plement S3 rK. Note that Theorem 1.1 and Proposition 3.1 do apply to non-
hyperbolic knots. Irreducible metabelian representations and their deformations
are studied by H. Boden and S. Friedl in a series of articles [BF08, BF11, BF13,
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BF14]. In particular the deformations of irreducible metabelian representations,
which are not considered in this paper, are studied in [BF13].

This article is organized as follows: in Section 2 we will introduce nota-
tion and recall some facts which are used. In Section 3 we will prove that the
representation variety R(ΓK , SL(n,C)) contains an irreducible representation if
∆K(t) has a simple root (see Proposition 3.1). Moreover we give a stream-
lined proof of a slightly generalized version of the deformation result used in
[MFP12, BAHJ10, BF13] (see Proposition 3.3). The necessary cohomological
calculations and the basic facts about the representation theory of SL(2,C) are
presented in Section 4, in order to prove our main result, Theorem 1.1. Finally,
in Section 5 some examples are exhibited.

Acknowledgement. The authors thank Michaël Bulois and Simon Riche for
pointing out the references [Ric79] and [Pop08]. They also thank the anonymous
referee for helpful comments and hints.

The first author was supported by the ANR project SGT and ANR project
ModGroup. The second author acknowledges support from the Algerian Min-
istère de l’Enseignement Supérieur et de la Recherche Scientifique.

2. Notation and Facts

To shorten notation we write SL(n), GL(n) and sl(n) instead of SL(n,C),
GL(n,C) and sl(n,C).

Let ϕ : π1(X) → Z denote the canonical surjection which maps the meridian
µ of K to 1 i.e. ϕ(γ) = lk(γ,K). We associate to a nonzero complex number
α ∈ C∗ a homomorphism

αϕ : ΓK → C∗, αϕ : γ 7→ αϕ(γ) .

Note that αϕ maps the meridian µ of K to α. We define Cα to be the ΓK-
module C with the action induced by αϕ, i.e. γ · x = αϕ(γ)x for all γ ∈ ΓK and
all x ∈ C. The trivial ΓK-module C1 is simply denoted C. With this notation
it is easy to see that a map

ρzλ : ΓK → SL(2,C), ρzλ(γ) =

(
1 z(γ)
0 1

)(
λϕ(γ) 0

0 λ−ϕ(γ)

)

is a homomorphism if and only if the map z : ΓK → Cλ2 is a 1-cocycle i.e.
z(γ1γ2) = z(γ1) + λ2ϕ(γ1)z(γ2). Note also that ρzλ is abelian if λ = ±1. If
λ2 6= 1 then ρzλ is abelian if and only if z is a coboundary i.e. there exists an

element x0 ∈ C such that z(γ) = (λ2ϕ(γ)−1)x0. The general reference for group
cohomology is Brown’s book [Bro82].

In what follows we are mainly interested in the following situation: let X be
the complement of a knot K ⊂ S3 and let A be a π1(X)-module. The spaces X
and ∂X are aspherical and hence the natural homomorphisms H∗(π1(X);A) →
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H∗(X ;A) and H∗(π1(∂X);A) → H∗(∂X ;A) are isomorphisms. Moreover, the
knot complement X has the homotopy type of a 2-dimensional CW-complex
which implies that Hk(π1(X);A) = 0 and Hk(π1(X);A) = 0 for k ≥ 3. See
[Whi78] for more details.

The Laurent polynomial ring C[t±1] turns into a ΓK-module via the action
γ p(t) = tϕ(γ) p(t) for all γ ∈ ΓK and all p(t) ∈ C[t±1]. Recall that there are
isomorphisms of C[t±1]-modules

H∗(ΓK ;C[t±1]) ∼= H∗(X ;C[t±1]) ∼= H∗(X∞;C)

where X∞ denotes the infinite cyclic covering of the knot complement X (see
[DK01, Chapter 5]). The module H1(ΓK ;C[t±1]) is a finitely generated torsion
module called the Alexander module of K. A generator of its order ideal is called
the Alexander polynomial ∆K(t) ∈ C[t±1] of K. The Alexander polynomial is
unique up to multiplication with a unit in C[t±1].

For completeness we will state the next lemma which shows that the cohomol-
ogy groupsH∗(ΓK ;Cα) are determined by the Alexander moduleH1(ΓK ;C[t±1]).

Lemma 2.1. Let K ⊂ S3 be a knot and ΓK its group. Let α ∈ C∗ be a
nonzero complex number and let Cα denote the ΓK-module given by the action
γ z = αϕ(γ)z.

If α = 1 then Cα = C is a trivial ΓK-module and Hk(ΓK ,C) ∼= C for
k = 0, 1 and Hk(ΓK ,C) = 0 for k ≥ 2. If α 6= 1 then H0(ΓK ,Cα) = 0 and
dimH1(ΓK ,Cα) = dimH2(ΓK ,Cα). Moreover, H1(ΓK ,Cα) 6= 0 if and only if
∆K(α) = 0.

Proof. We have H0(X∞;C) ∼= C ∼= C[t±1]/(t − 1) and Hk(X∞;C) = 0 for
k ≥ 2 (see [BZH13, Prop. 8.16]). If α = 1 then Hk(ΓK ,C) ∼= C for k = 0, 1 and
Hk(ΓK ,C) = 0 for k ≥ 2 follows.

Now suppose that α ∈ C∗, α 6= 1, and notice that we have an isomorphism
Cα

∼= C[t±1]/(t − α). The cohomology group H0(ΓK ,Cα) vanishes, since the
ΓK-module Cα has no invariants, and Hk(ΓK ,Cα) = 0 for k > 2 since the knot
complementX has the homotopy type of a 2-complex. Recall that the Alexander
module H1(ΓK ;C[t±1]) is finitely generated torsion module and hence a sum of
non-free cyclic modules since C[t±1] is a principal ideal domain. The Alexander
polynomial is the order ideal of H1(ΓK ;C[t±1]). Since α 6= 1, it follows from the
universal coefficient theorem that H1(Γ;Cα) ∼= Hom(H1(ΓK ;C);Cα). Hence
H1(ΓK ,Cα) 6= 0 if and only if the module H1(ΓK ;C) has (t− α)-torsion which
is equivalent to ∆K(α) = 0. Finally, dimH1(ΓK ,Cα) = dimH2(ΓK ,Cα) follows
since the Euler characteristic of X vanishes. See also [BA00, Proposition 2.1]
for more details. �

In what follows we will also make use of the Poincaré-Lefschetz duality the-
orem with twisted coefficients: let Mm be a connected, orientable, compact
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m-dimensional manifold with boundary ∂Mm and let ρ : π1(M
m) → SL(n) be a

representation. Then the cup-product and the Killing form b : sl(n)ρ ⊗ sl(n)ρ →
C induce a non-degenerate bilinear pairing

Hk(Mm; sl(n)ρ)⊗Hm−k(Mm, ∂Mm; sl(n)ρ)
`−→

Hm(Mm, ∂Mm; sl(n)ρ ⊗ sl(n)ρ)
b−→ Hm(Mm, ∂Mm;C) ∼= C (2.1)

and hence an isomorphism Hk(Mm; sl(n)ρ) ∼= Hm−k(Mm, ∂Mm; sl(n)ρ)
∗, for

all 0 ≤ k ≤ m. See [JM87, Por95] for more details.

2.1. Group cohomology and representation varieties. Let now Γ be a
finitely generated group. The set Rn(Γ) := R(Γ, SL(n)) of homomorphisms of Γ
in SL(n) is called the SL(n)-representation variety of Γ and has the structure of
a (not necessarily irreducible) algebraic set.

Let ρ : Γ → SL(n) be a representation. The Lie algebra sl(n) turns into a
Γ-module via Ad ρ. This module will be simply denoted by sl(n)ρ. A cocycle
d ∈ Z1(Γ; sl(n)ρ) is a map d : Γ → sl(n) satisfying

d(γ1γ2) = d(γ1) + ρ(γ1) d(γ2) ρ(γ1)
−1 , ∀ γ1, γ2 ∈ Γ .

It was observed by André Weil [Wei64] that there is a natural inclusion of
the Zariski tangent space TZar

ρ (Rn(Γ)) →֒ Z1(Γ; sl(n)ρ). Informally speaking,
given a smooth curve ρǫ of representations through ρ0 = ρ one gets a 1-cocycle
d : Γ → sl(n) by defining

d(γ) :=
d ρǫ(γ)

d ǫ

∣∣∣∣
ǫ=0

ρ(γ)−1, ∀γ ∈ Γ .

It is easy to see that the tangent space to the orbit by conjugation corresponds
to the space of 1-coboundaries B1(Γ; sl(n)ρ). Here, b : Γ → sl(n) is a coboundary
if there exists x ∈ sl(n) such that b(γ) = ρ(γ)x ρ(γ)−1 − x. A detailed account
can be found in [LM85].

Let dimρ Rn(Γ) be the local dimension of Rn(Γ) at ρ (i.e. the maximal di-
mension of the irreducible components of Rn(Γ) containing ρ [Sha77, Ch. II]).
So we obtain:

dimρRn(Γ) ≤ dimTZar

ρ (Rn(Γ)) ≤ dimZ1(Γ; sl(n)ρ) .

Wewill call a representation ρ ∈ Rn(Γ) regular if dimρRn(Γ) = dimZ1(Γ; sl(n)ρ).
The following lemma follows (for more details see [HPSP01, Lemma 2.6]):

Lemma 2.2. Let ρ ∈ Rn(Γ) be a representation. If ρ is regular, then ρ is a
smooth point of the representation variety Rn(Γ) and ρ is contained in a unique
component of Rn(Γ) of dimension dimZ1(Γ; sl(n)ρ).
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Note that there are discrete groups and representations ρ which are smooth
points of the representation variety without been regular. (See [LM85, Exam-
ple 2.10] for more details.)

3. Deforming representations

The aim of the following sections is to prove that the representation ρzλ,n from
the introduction is a smooth point of the representation variety. We present
a more streamlined and slightly generalized version of the deformation result
from [HPSP01, HP05, BAHJ10, MFP12, BF14] (see Proposition 3.3). For the
convenience of the reader we recall the setup.

First we will prove that the representation ρzλ,n ∈ Rn(ΓK) is the limit of

irreducible representations if λ2 is a simple root of of the Alexander polynomial
∆K(t). In what follows a property of an irreducible algebraic variety Y is said
to be true generically if it holds except on a proper Zariski-closed subset of Y ,
in other words, if it holds on a non-empty Zariski-open subset.

Let K ⊂ S3 be a knot, λ2 ∈ C a simple root of ∆K(t) and z ∈ Z1(ΓK ,Cλ2) a
cocycle representing a generator of H1(ΓK ,Cλ2). Following [HPSP01, Thm 1.1]
the representation ρzλ ∈ R2(ΓK) is a smooth point of the representation variety.
It is contained in an unique irreducible 4-dimensional component Rλ ⊂ R2(ΓK).
Note that generically a representation ρ ∈ Rλ is irreducible.

Proposition 3.1. Let K ⊂ S3 be a knot, λ2 ∈ C a simple root of ∆K(t) and
let z ∈ Z1(ΓK ,Cλ2) be a cocycle representing a generator of H1(ΓK ,Cλ2).

Then the representation ρzλ,n = rn ◦ ρzλ : ΓK → Bn is the limit of irreducible

representation in Rn(ΓK). More precisely, generically a representation ρn =
rn ◦ ρ, ρ ∈ Rλ is irreducible.

Proof. It follows from [HPSP01, Theorem 1.1] that ρzλ ∈ R2(ΓK) is the limit of
irreducible representations. Moreover, ρzλ ∈ R2(ΓK) is a smooth point which is
contained in a unique 4-dimensional component Rλ ⊂ R2(ΓK).

Let Γ be a discrete group and let ρ : Γ → SL(2,C) be an irreducible rep-
resentation. If the image ρ(Γ) ⊂ SL(2,C) is Zariski-dense then the repre-
sentation ρn := rn ◦ ρ ∈ Rn(Γ) is irreducible. Hence in order to prove the
proposition we show that there is a neighborhood U = U(ρzλ) ⊂ R2(ΓK) such
that ρ(Γ) ⊂ SL(2,C) is Zariski-dense for each irreducible ρ ∈ U . Let now
ρ : ΓK → SL(2,C) be any irreducible representation and let G ⊂ SL(2) denote
the Zariski-closure of ρ(ΓK). Suppose that G 6= SL(2). Since ρ is irreducible it
follows that G is, up to conjugation, not a subgroup of upper-triangular matrices
of SL(2). Then by [Kov86, Sec. 1.4] and [Kap57, Theorem 4.12] there are, up to
conjugation, only two cases left:

• G is a subgroup of the infinite dihedral group

D∞ =
{(

α 0
0 α−1

) ∣∣α ∈ C∗
}
∪
{( 0 α

−α−1 0

) ∣∣α ∈ C∗
}
.
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• G is one of the groups A
SL(2)
4 (the tetrahedral group), S

SL(2)
4 (the octa-

hedral group) or A
SL(2)
5 (the icosahedral group). These groups are the

preimages in SL(2) of the subgroups A4, S4, A5 ⊂ PSL(2,C).

In the first case it follows directly from [Nag07] that if ρ is an irreducible
metabelian representation then the trace of the image of a meridian tr(ρ(µ)) = 0
i.e. ρ(µ) is similar to ±

(
i 0
0 −i

)
. Now, tr(ρzλ(µ)) 6= 0 since ∆K(−1) 6= 0 and

∆K(λ±2) = 0. For the second case there are up to conjugation only finitely

many irreducible representations of ΓK onto the subgroups A
SL(2)
4 , S

SL(2)
4 and

A
SL(2)
5 . Note that these finitely many orbits are closed and 3-dimensional. Hence

the irreducible ρ ∈ Rλ such that rn◦ρ is reducible is contained in a Zariski-closed
subset of Rλ. Hence generically rn ◦ ρ is irreducible for ρ ∈ Rλ. �

Remark 2. Recall that a finite group has only finitely many irreducible repre-

sentations (see [Ser78, FH91]). Hence, the restriction of rn to the groups A
SL(2)
4 ,

S
SL(2)
4 and A

SL(2)
5 is reducible, for all but finitely many n ∈ N.

In order to prove that a certain representation ρ ∈ Rn(Γ) is a smooth point
of the representation variety we will prove that every cocycle u ∈ Z1(ΓK ; sl(n)ρ)
is integrable. In order to do this, we use the classical approach, i.e. we first solve
the corresponding formal problem and apply then a theorem of Artin [Art68].

The formal deformations of a representation ρ : Γ → SL(n) are in general
determined by an infinite sequence of obstructions (see [Gol84, BA00, HPSP01]).
In what follows we let C1(Γ; sl(n)) := {c : Γ → sl(n)} denote the 1-cochains of
Γ with coefficients in sl(n) (see [Bro82, p.59]).

Let ρ : Γ → SL(n) be a representation. A formal deformation of ρ is a homo-
morphism ρ∞ : Γ → SL(n,CJtK)

ρ∞(γ) = exp

(
∞∑

i=1

tiui(γ)

)
ρ(γ) , ui ∈ C1(Γ; sl(n))

such that ev0 ◦ ρ∞ = ρ. Here ev0 : SL(n,CJtK) → SL(n) is the evaluation
homomorphism at t = 0 and CJtK denotes the ring of formal power series.

We will say that ρ∞ is a formal deformation up to order k of ρ if ρ∞ is a
homomorphism modulo tk+1.

An easy calculation gives that ρ∞ is a homomorphism up to first order if and
only if u1 ∈ Z1(Γ; sl(n)ρ) is a cocycle. We call a cocycle u1 ∈ Z1(Γ; sl(n)ρ)
integrable if there is a formal deformation of ρ with leading term u1.

Lemma 3.2. Let u1, . . . , uk ∈ C1(Γ; sl(n)ρ) such that

ρk(γ) = exp

(
k∑

i=1

tiui(γ)

)
ρ(γ)
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is a homomorphism into SL(n,CJtK/(tk+1)). Then there exists an obstruction

class ζk+1 := ζ
(u1,...,uk)
k+1 ∈ H2(Γ, sl(n)ρ) with the following properties:

(i) There is a cochain uk+1 : Γ → sl(n)ρ such that

ρk+1(γ) = exp

(
k+1∑

i=1

tiui(γ)

)
ρ(γ)

is a homomorphism modulo tk+2 if and only if ζk+1 = 0.
(ii) The obstruction ζk+1 is natural, i.e. if f : Γ1 → Γ is a homomorphism then

f∗ρk := ρk ◦ f is also a homomorphism modulo tk+1 and f∗(ζ
(u1,...,uk)
k+1 ) =

ζ
(f∗u1,...,f

∗uk)
k+1 ∈ H2(Γ1; sl(n)f∗ρ).

Proof. The proof is completely analogous to the proof of Proposition 3.1 in
[HPSP01]. We replace SL(2) and sl(2) by SL(n) and sl(n) respectively. �

The following result streamlines the arguments given in [HP05] and [BAHJ10]:

Proposition 3.3. Let M be a connected, compact, orientable 3-manifold with
torus boundary and let ρ : π1M → SL(n) be a representation.

If dimH1(π1M ; sl(n)ρ) = n − 1 then ρ is a smooth point of the SL(n)-
representation variety Rn(π1M). Moreover, ρ is contained in a unique com-
ponent of dimension n2 + n− 2− dimH0(π1M ; sl(n)ρ).

Proof. First we will show that the map i∗ : H2(π1M ; sl(n)ρ) → H2(π1∂M ; sl(n)ρ)
induced by the inclusion ∂M →֒ M is injective.

Recall that for any CW-complex X with π1(X) ∼= π1(M) and for any π1M -
module A there are natural morphisms Hi(π1M ;A) → Hi(X ;A) which are iso-
morphisms for i = 0, 1 and an injection for i = 2 (see [HP05, Lemma 3.3]). Note
also that ∂M ∼= S1 × S1 is aspherical and hence H∗(π1∂M ;A) → H∗(∂M ;A) is
an isomorphism.

First we will prove that for every representation ̺ ∈ Rn(Z ⊕ Z) we have

dimH0(Z⊕ Z; sl(n)̺) =
1

2
dimH1(Z⊕ Z; sl(n)̺) ≥ n− 1 . (3.1)

Moreover, we will prove that ̺ ∈ Rn(Z ⊕ Z) is regular if and only if equality
holds in (3.1). It follows from Poincaré duality (2.1) that for every ̺ ∈ Rn(Z⊕Z)
we have

dimH0(∂M ; sl(n)̺) = dimH2(∂M ; sl(n)̺) ,

and since the Euler characteristic of M vanishes we obtain the first equality
in (3.1):

dimH1(∂M ; sl(n)̺) = 2 dimH0(∂M ; sl(n)̺) = 2 dim sl(n)Z⊕Z

̺ .
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Now, R.W. Richardson proved in [Ric79, Thm. C] that the representation variety
Rn(Z⊕Z) is an irreducible algebraic variety of dimension (n+2)(n− 1). Hence
we obtain for every ̺ ∈ Rn(Z⊕ Z) that

dimZ1(∂M ; sl(n)̺) ≥ (n+ 2)(n− 1) = n2 + n− 2

where the equality holds if and only if ̺ is regular (see Lemma 2.2). At the same
time, we have:

dimZ1(∂M ; sl(n)̺) = dimH1(∂M ; sl(n)̺) + dimB1(∂M ; sl(n)̺)

and the exactness of 0 → H0(∂M ; sl(n)̺) → sl(n) → B1(∂M ; sl(n)̺) → 0 gives

dimB1(∂M ; sl(n)̺) = dim sl(n)− dimH0(∂M ; sl(n)̺) .

This together with dimH1(∂M ; sl(n)̺) = 2 dimH0(∂M ; sl(n)̺) gives for all
̺ ∈ Rn(Z⊕ Z):

dimZ1(∂M ; sl(n)̺) = dimH0(∂M ; sl(n)̺) + n2 − 1 ≥ n2 + n− 2 .

It follows that

dimH0(∂M ; sl(n)̺) ≥ n− 1, for all ̺ ∈ Rn(Z⊕ Z), (3.2)

and ̺ ∈ Rn(Z ⊕ Z) is regular if and only if dimH0(Z ⊕ Z; sl(n)̺) = n− 1 (see
also [Pop08]).

Now, the exact cohomology sequence of the pair (M,∂M) gives

→ H1(M,∂M ; sl(n)ρ)

→ H1(M ; sl(n)ρ)
α−→ H1(∂M ; sl(n)ρ)

β−→ H2(M,∂M ; sl(n)ρ)

→ H2(M ; sl(n)ρ)
i∗−→ H2(∂M ; sl(n)ρ) → H3(M,∂M ; sl(n)ρ) → 0 .

Poincaré-Lefschetz duality (2.1) implies that α and β are dual to each other.
This together with (3.2) gives:

n− 1 = dimH1(M ; sl(n)ρ) ≥ rk(α) =
1

2
dimH1(∂M ; sl(n)ρ)

= dimH0(∂M ; sl(n)ρ) ≥ n− 1 .

Therefore, dimH0(∂M ; sl(n)ρ) = n−1 holds in Equation (3.1), and consequently
i∗ρ = ρ ◦ i# ∈ Rn(∂M) is regular (here i : ∂M → M is the inclusion). Note also
that β is surjective, and hence

i∗ : H2(M ; sl(n)ρ) → H2(∂M ; sl(n)ρ)
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is injective. The following commutative diagram shows that i∗ : H2(π1M ; sl(n)ρ) →
H2(π1∂M ; sl(n)ρ) is also injective:

H2(M ; sl(n)ρ)
i∗−−−−→ H2(∂M ; sl(n)ρ)x

x∼=

H2(π1M ; sl(n)ρ)
i∗−−−−→ H2(π1∂M ; sl(n)ρ) .

In order to prove that ρ is a smooth point of Rn(π1M), we show that all
cocycles in Z1(π1M, sl(n)ρ) are integrable. In what follows we will prove that
all obstructions vanish, by using the fact that the obstructions vanish on the
boundary. Let u1, . . . , uk : π1M → sl(n) be given such that

ρk(γ) = exp

(
k∑

i=1

tiui(γ)

)
ρ(γ)

is a homomorphismmodulo tk+1. Then the restriction i∗ρk : π1(∂M) → SL(n,CJtK)
is also a formal deformation of order k. Since i∗ρ is a smooth point of the rep-
resentation variety Rn(Z ⊕ Z), the formal implicit function theorem gives that
i∗ρk extends to a formal deformation of order k+1 (see [HPSP01, Lemma 3.7]).
Therefore, we have that

0 = ζ
(i∗u1,...,i

∗uk)
k+1 = i∗ζ

(u1,...,uk)
k+1

Now, i∗ is injective and the obstruction ζ
(u1,...,uk)
k+1 vanishes.

Hence all cocycles in Z1(Γ, sl(n)ρ) are integrable. By applying Artin’s theo-
rem [Art68] we obtain from a formal deformation of ρ a convergent deformation
(see [HPSP01, Lemma 3.3] or [BA00, § 4.2]).

Thus ρ is a regular point of the representation variety Rn(π1M). Hence,
dimH1(π1M ; sl(n)ρ) = n− 1 and the exactness of

0 → H0(π1M ; sl(n)ρ) → sl(n)ρ → B1(π1M ; sl(n)ρ) → 0

implies

dimρRn(π1M) = dimZ1(π1M ; sl(n)ρ) = n2 + n− 2− dimH0(π1M ; sl(n)ρ) .

Finally, the proposition follows from Lemma 2.2. �

Proposition 3.4. Let K ⊂ S3 be a knot, λ ∈ C∗ and n ≥ 3. Suppose that λ2

is a simple root of the Alexander polynomial ∆K(t) and let ρzλ : ΓK → SL(2) be
a non-abelian representation as in (1.1).

If ∆K(λ2i) 6= 0 for 2 ≤ i ≤ n − 1 then for ρzλ,n := rn ◦ ρzλ : ΓK → SL(n) we
have

dimH1(ΓK ; sl(n)ρz
λ,n

) = (n− 1) and H0(ΓK ; sl(n)ρz
λ,n

) = 0 .

Proof. A proof of the cohomological calculation will be given in Section 4. �
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Proof of Theorem 1.1. It follows directly from Propositions 3.3 and 3.4 that ρzλ,n
is a smooth point of Rn(ΓK) which is contained in a unique component Rλ,n ⊂
Rn(ΓK), dimRλ,n = n2 + n− 2.

That ρzλ,n is the limit of irreducible representations which are contained in
the component Rλ,n follows from Proposition 3.1. �

4. Cohomological calculations

For the convenience of the reader we recall some facts from the representation
theory of SL(2). The general reference for this topic is Springer’s LNM [Spr77].

4.1. Representation theory of SL(2). Let V be an n-dimensional complex
vector space. In what follows we will call a homomorphism r : SL(2) → GL(V )
an n-dimensional representation of SL(2). The vector space V turns into an
SL(2)-module. Two n-dimensional representations r : SL(2) → GL(V ) and
r′ : SL(2) → GL(V ′) are called equivalent if there is an isomorphism φ : V → V ′

which commutes with the action of SL(2) i.e. r′(A)φ = φ r(A) for all A ∈ SL(2).
It is clear that equivalent representations give rise to isomorphic SL(2)-modules.

We let SL(2) act as a group of automorphisms on the polynomial algebra
R = C[X,Y ]. If

(
a b
c d

)
∈ SL(2) then there is a unique automorphism r

(
a b
c d

)
of

R given by

r
(
a b
c d

)
(X) = dX − b Y and r

(
a b
c d

)
(Y ) = −cX + a Y .

We let Rn−1 ⊂ R denote the n-dimensional subspace of homogeneous polyno-

mials of degree n − 1. The monomials e
(n−1)
l = X l−1Y n−l, 1 ≤ l ≤ n, form a

basis of Rn−1 and r
(
a b
c d

)
leaves Rn−1 invariant. In what follows we will identify

Rn−1 and Cn by fixing the basis (e
(n−1)
1 , . . . , e

(n−1)
n ) of Rn−1. We obtain an

n-dimensional representation rn : SL(2) → GL(Rn−1) ∼= GL(n).
The representation rn is rational i.e. the coefficients of the matrix coordinates

of rn
(
A) are polynomials in the matrix coordinates of A. We will make use of

the following theorem.

Theorem 4.1. (1) The representation rn is irreducible i.e. there is no SL(2)-
stable invariant subspace V , {0} ( V ( Rn−1 and any irreducible ratio-
nal representation of SL(2) is equivalent to some rn.

(2) For an arbitrary rational representation r : SL(2) → GL(V ) the SL(2)-
module V is isomorphic to a direct sum of Rn,

V ∼=
⊕

d≥0

R
m(k)
d .

Proof. See Lemma 3.1.3 and Proposition 3.2.1 of [Spr77]. �

It is easy to see, and it follows also from the general theory, that rn maps
an unipotent matrix

(
1 b
0 1

)
and

(
1 0
c 1

)
onto an unipotent element of SL(Rn−1).
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Moreover, an explicit calculation shows that the image of a diagonal matrix
is the diagonal matrix rn

(
diag(a, a−1)

)
= diag(an−1, an−3, . . . , a−n+3, a−n+1).

Hence the image of rn is contained in SL(Rn−1) ∼= SL(n).

Example 1. The representation r1 : SL(2) → SL(1) = {1} is the trivial represen-
tation. The representation r2 : SL(2) → SL(2) is equivalent to the identity:

r2

(
a b
c d

)
=

(
a −b
−c d

)
=

(
i 0
0 −i

)(
a b
c d

)(
−i 0
0 i

)
.

Moreover, it is easy to see that the adjoint representation Ad: SL(2) → Aut(sl(2))
is equivalent to r3.

The Lie algebra sl(n) of SL(n) turns into an SL(2)-module via Ad ◦ rn where
Ad: SL(n) → Aut(sl(n)) denotes the adjoint representation. For this action we
have the classical formula of Clebsch–Gordan:

Ad ◦ rn ∼=
n−1⊕

i=1

r2i+1 . (4.1)

Let Bn ⊂ SL(n) denote the Borel subgroup of upper triangular matrices. The
vector space Rn−1 turns into a B2-module via the restriction of rn to B2. An
explicit calculation gives

rn
(
λ λ−1b
0 λ−1

)
. e

(n−1)
l = λn−2l+1

l−1∑

j=0

(−b)j
(
l − 1

j

)
e
(n−1)
l−j . (4.2)

Hence rn(B2) is contained in Bn ⊂ SL(n) and the one-dimensional vector space

〈e(n−1)
1 〉 is B2 invariant: rn

(
λ λ−1b
0 λ−1

)
.e

(n−1)
1 = λn−1e

(n−1)
1 . For a given integer

i ∈ Z we let χi : B2 → C∗ = GL(1,C) denote the rational character given by

χi

(
λ λ−1b
0 λ−1

)
= λi .

Now C turns into a B2-module via χi i.e.
(
λ λ−1b
0 λ−1

)
.x = λi x for x ∈ C. We will

denote this B2-module by Cχi
. It follows that the B2-module 〈e(n−1)

1 〉 ∈ Rn−1

is isomorphic to Cχn−1
and we obtain a short exact sequence of B2-modules

0 → Cχn−1
→ Rn−1 → R̄n−1 → 1 (4.3)

where R̄n−1 denotes the quotient Rn−1/〈e(n−1)
1 〉. For a given element x ∈ Rn−1

we let x̄ ∈ R̄n−1 denote the class represented by x i.e. x̄ = x+ 〈e(n−1)
1 〉.

For abbreviation, we will drop the representation rn from the notation and
write for x ∈ Rn−1

(
λ λ−1b
0 λ−1

)
.x instead of rn

(
λ λ−1b
0 λ−1

)
. x .
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Lemma 4.2. The linear map φn−3 : Rn−3 → R̄n−1 defined by

φn−3(e
(n−3)
l ) =

1

l
ē
(n−1)
l+1 , l = 1, . . . , n− 2,

is an injective B2-module morphism i.e. for all x ∈ Rn−3 we have

(
λ λ−1b
0 λ−1

)
.φn−3(x) = φn−3

((
λ λ−1b
0 λ−1

)
.x
)
.

Proof. The linear map φn−3 is injective since the vectors ē
(n−1)
l , 2 ≤ l ≤ n, form

a basis of R̄n−1. Now

(
λ λ−1b
0 λ−1

)
. φn−3(e

(n−3)
l ) = λn−2l−1 1

l

l∑

j=0

(−b)j
(
l

j

)
ē
(n−1)
l−j+1 .

Since
(
l
j

)
(l − j) = l

(
l−1
j

)
and ē

(n−1)
1 = 0 it follows

(
λ λ−1b
0 λ−1

)
. φn−3(e

(n−3)
l ) = λ(n−2)−2l+1

l−1∑

j=0

(−b)j
(
l − 1

j

)
1

l − j
ē
(n−1)
l−j+1

= φn−3

((
λ λ−1b
0 λ−1

)
. e

(n−3)
l

)
.

Hence φn−3 is a B2-module morphism. �

Lemma 4.3. There is a short exact sequence of B2-modules

0 → Rn−3
φn−3−−−→ R̄n−1 → Cχ−n+1

→ 0. (4.4)

Proof. Again the lemma follows from Equation (4.2):

(
λ λ−1b
0 λ−1

)
.e(n−1)

n ≡ λ−n+1e(n−1)
n mod 〈e(n−1)

1 , . . . , e
(n−1)
n−1 〉 . �

Let us fix a representation ρzλ : ΓK → B2. Then Rn turns into a ΓK-module
and the exact sequences (4.3) and (4.4) are exact sequences of ΓK-modules. Note
that Cχk

∼= Cλk since for all γ ∈ ΓK and k ∈ Z the equation χk

(
ρzλ(γ)

)
= λkϕ(γ)

holds.

Lemma 4.4. Let λ ∈ C∗, λ 6= 1, and n > 3 be given. If ∆K(λn−1) 6= 0 and if
λn−1 6= 1 then

H∗(ΓK ;Rn−1) ∼= H∗(ΓK ;Rn−3) .

Proof. The long exact cohomology sequences [Bro82, III.§6] associated to the
short exact sequences (4.3) gives:

Hk(ΓK ;Cλn−1) → Hk(ΓK ;Rn−1) → Hk(ΓK ; R̄n−1) → Hk+1(ΓK ;Cλn−1)
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is exact for k = 0, 1, 2. Now H0(ΓK ;Cλn−1) = 0 since λn−1 6= 1 and for k = 1, 2
the group Hk(ΓK ;Cλn−1) = 0 since ∆K(λn−1) 6= 0 (see Lemma 2.1). Hence

Hk(ΓK ;Rn−1)
∼=−→ Hk(ΓK ; R̄n−1) for k = 0, 1, 2.

Finally, the short exact sequence (4.4), Lemma 2.1 and the assumptions
∆K(λn−1) 6= 0 with λn−1 6= 1 give that

Hk(ΓK ;Rn−3)
∼=−→ Hk(ΓK ; R̄n−1) for k = 0, 1, 2

are isomorphisms (note that ∆K(t) is symmetric). �

Proposition 4.5. Let λ ∈ C∗ such that ∆K(λ2) = 0, n ≥ 3 and ρzλ : ΓK → B2

be given as in (1.1). If ∆K(λ2k) 6= 0 and λ2k 6= 1 for 2 ≤ k ≤ n − 1 then for
ρzλ,n := rn ◦ ρzλ : ΓK → Bn ⊂ SL(n) we have

dimH∗(ΓK ; sl(n)ρz
λ,n

) = (n− 1) dimH∗(ΓK ;R2) .

Proof. It follows from (4.1) that we have an isomorphism of ΓK-modules:

sl(n)ρz
λ,n

∼=
n−1⊕

k=1

R2k .

Now Lemma 4.4 implies that dimH∗(ΓK , R2k) = dimH∗(ΓK , R2) since ∆K(λ2k) 6=
0 and λ2k 6= 1 for 2 ≤ k ≤ n − 1. Hence the assertion of the proposition fol-
lows. �

Proof of Proposition 3.4. Let λ ∈ C∗ and n ∈ Z, n ≥ 3. Suppose that λ2 is
a simple root of the Alexander polynomial ∆K(t) and let ρzλ : ΓK → B2 be a
non-abelian representation as in (1.1).

In order to apply Proposition 4.5 we have to show that λ2k 6= 1 for 2 ≤ k ≤
n − 1. Suppose that there exists k ∈ Z, 2 ≤ k ≤ n − 1, such that λ2k = 1.
Next note that λ−2 = λ2k−2 is a root of the Alexander polynomial since ∆K(t)
is symmetric. Therefore the assumption of the proposition implies that k = 2
i.e. λ4 = 1 and hence λ2 = ±1. At the same time, ±1 is not a root of ∆K(t)
since ∆K(1) = ±1 and ∆K(−1) is an odd integer. This gives a contradiction
and hence λ2k 6= 1 for 2 ≤ k ≤ n− 1. Therefore, Proposition 4.5 implies that

dimH∗(ΓK ; sl(n)ρz
λ,n

) = (n− 1) dimH∗(ΓK ;R2) .

Finally, observe that sl(2)ρz
λ

∼= R2 (see Example 1) and dimH1(ΓK ;R2) = 1
follows from [HP05, Corollary 5.4] or [HPSP01, 4.4]. It is easy to see that
H0(ΓK ;R2) = 0 since ρzλ is non-abelian. �
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5. Examples

Let K ⊂ S3 be a knot and λ2 a simple root of ∆K(t). Theorem 1.1 implies
that if ∆K(λ2k) 6= 0 for all k ∈ Z, k 6= ±1, then for all n ≥ 2, n ∈ Z, the
representation space Rn(ΓK) contains a component Rλ,n of dimension n2+n−2.
Moreover, Proposition 3.8 of [New78] shows that if a component contains an
irreducible representation, then generic representations on that component are
irreducible.

Corollary 5.1. Let K ⊂ S3 be a knot with the Alexander polynomial of the
figure-eight knot.

Then the representation variety Rn(ΓK) contains an (n2+n−2)-dimensional
component and the irreducible representations form an Zariski-open subset of this
component.

Proof. The Alexander polynomial of the figure-eight knot is ∆(t) = t2 − 3t+ 1

and its roots are λ±2 = 3/2 ±
√
5/2 and no power λ±2k, k 6= ±1, is a root of

∆(t). �

The situation for the trefoil knot 31 is more complicated since the roots of
its Alexander polynomial, ∆31(t) = t2 − t + 1, are the primitive 6-th roots
of unity λ±2 = e±iπ/3. Hence Rn(Γ31) contains an (n2 + n − 2)-dimensional
component Rλ,n, for n ∈ {2, 3, 4, 5}, since e±iπ/3 is a simple root of ∆31(t) and

since ∆31(e
±ikπ/3) 6= 0, for k ∈ {2, 3, 4}.

Let us study the case n = 6: the group Γ31 is free product with amalgamation

Γ31 = 〈S, T | STS = TST 〉 ∼= 〈x, y | x2 = y3〉 ∼= 〈x | −〉 ∗〈c|−〉 〈y | −〉
where x = STS, y = TS, and c = x2 = y3 generates the center of Γ31 . Note that
a meridian µ of 31 is represented by the Wirtinger generator µ = S = xy−1. Let
ρ : Γ31 → SL(6) be an irreducible representation. It follows from Schur’s lemma,
that if ρ is irreducible then the generator of the center x2 = c = y3 has to be
mapped into the center

C6 := {exp(2πk
6
)I6 | 1 ≤ k ≤ 6} ⊂ SL(6)

of SL(6). Notice that for each element of the center C6 there are only finitely
many square and cube roots up to conjugation in SL(6). This implies that if
R ⊂ R6(Γ31) is an irreducible component of the representation variety then the
conjugacy classes represented by the elements ρ(c), ρ(x), ρ(y) in SL(6) do not
vary with ρ ∈ R. Now let λ = eiπ/6 be a primitive 12-th root of unity. A
cohomological non-trivial cocycle z ∈ Z1(Γ31 ;Cλ2) is given by z(S) = 0 and
z(T ) = 1. Therefore the representation ρzλ : Γ31 → SL(2) is given by

ρzλ(S) =

(
λ 0
0 λ−1

)
and ρzλ(T ) =

(
λ λ−1

0 λ−1

)
.
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Hence

ρzλ(x) =

(
i λ−1

0 −i

)
, ρzλ(y) =

(
λ2 λ−2

0 λ−2

)
and ρzλ(c) = −I2 .

Proposition 3.1 implies that ρzλ,6 = r6 ◦ ρzλ is a limit of irreducible represen-

tations. Computer supported calculations show that dimH1(Γ31 ;R10) = 3
and Lemma 4.4 implies that dimH1(Γ31 ;R2k) = dimH1(Γ31 ;R2) = 1 for k ∈
{2, 3, 4}. Hence Formula 4.1 implies that

dimH1(Γ31 ; sl(6)ρz
λ,6

) = 7 i.e. Z1(Γ31 ; sl(6)ρz
λ,6

) = 42 .

In order to see that ρzλ,6 is contained in a 42-dimensional component of R6(Γ31)

we proceed as follows: let A = ρzλ,6(x) and B = ρzλ,6(y) denote the image of x

and y respectively. Notice that the matrices A and B are conjugate to r6
(
i 0
0 −i

)

and r6
(
λ2 0
0 λ−2

)
. Hence

A ∼




i 0

i
i

−i
−i

0 −i




and B ∼




−1 0

−1
λ2

λ2

λ−2

0 λ−2




.

Further note that a choice of eigenspaces EA(i), EA(−i), EB(−1), EB(λ
2),

EB(λ
−2) such that EA(i)⊕EA(−i) ∼= C6 and EB(−1)⊕EB(λ

2)⊕EB(λ
−2) ∼= C6

determines a representation ρ : Γ31 → SL(6) completely.
Let Gr(p, n) denote the Grassmannian which parametrizes all p-dimensional

subspaces of Cn. Hence the choice of two elements in Gr(3, 6) in generic position
determines A and the choice of three elements in Gr(2, 6) in generic position
determines B. The representation will be irreducible if the eigenspaces of A and
B are in general position and reducible if not.

It is well known that dimGr(p, n) = p(n− p) and hence

dim
(
Gr(3, 6)×Gr(3, 6)

)
= 18 and dim

(
Gr(2, 6)×Gr(2, 6)×Gr(2, 6)

)
= 24 .

Therefore, we constructed a 42-dimensional component of representations C ⊂
R6(Γ31) which contains ρzλ,6 = r6 ◦ ρzλ and which also contains irreducible repre-

sentations. Note that 62 + 6− 2 = 40 < 42. In conclusion we have:

Corollary 5.2. The representation variety R6(Γ31) contains a 42-dimensional
component C. The generic representation of C is irreducible and ρzλ,6 ∈ C ⊂
R6(Γ31) is a smooth point.

Proof. Computer supported calculations give that dimZ1(Γ31 , sl(6)ρz
λ,6

) = 42.

Additionally, we constructed a 42-dimensional component C containing ρzλ,6.
Now, the assertion follows from Lemma 2.2. �
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