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Homotopy based algorithms for ℓ0-regularized

least-squares

Charles Soussen⋆, Jérôme Idier, Junbo Duan, and David Brie

Abstract

Sparse signal restoration is usually formulated as the minimization of a quadratic cost function

‖y−Ax‖22, where A is a dictionary and x is an unknown sparse vector. It is well-known that imposing

an ℓ0 constraint leads to an NP-hard minimization problem. The convex relaxation approach has received

considerable attention, where the ℓ0-norm is replaced by the ℓ1-norm. Among the many efficient ℓ1

solvers, the homotopy algorithm minimizes ‖y −Ax‖22 + λ‖x‖1 with respect to x for a continuum of

λ’s. It is inspired by the piecewise regularity of the ℓ1-regularization path, also referred to as the homotopy

path. In this paper, we address the minimization problem ‖y −Ax‖22 + λ‖x‖0 for a continuum of λ’s

and propose two heuristic search algorithms for ℓ0-homotopy. Continuation Single Best Replacement is a

forward-backward greedy strategy extending the Single Best Replacement algorithm, previously proposed

for ℓ0-minimization at a given λ. The adaptive search of the λ-values is inspired by ℓ1-homotopy. ℓ0

Regularization Path Descent is a more complex algorithm exploiting the structural properties of the

ℓ0-regularization path, which is piecewise constant with respect to λ. Both algorithms are empirically

evaluated for difficult inverse problems involving ill-conditioned dictionaries. Finally, we show that they

can be easily coupled with usual methods of model order selection.
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Index Terms

Sparse signal estimation; ℓ0-regularized least-squares; ℓ0-homotopy; stepwise algorithms; orthogonal

least squares; model order selection.

I. INTRODUCTION

Sparse approximation from noisy data is traditionally addressed as the constrained least-square problems

min
x

‖y −Ax‖22 subject to ‖x‖0 ≤ k (1)

or

min
x

‖x‖0 subject to ‖y −Ax‖22 ≤ ε (2)

where ‖x‖0 is the ℓ0-“norm” counting the number of nonzero entries in x, and the quadratic fidelity-to-

data term ‖y −Ax‖22 measures the quality of approximation. Formulation (1) is well adapted when one

has a knowledge of the maximum number k of atoms to be selected in the dictionary A. On the contrary,

the choice of (2) is more appropriate when k is unknown but one has a knowledge of the variance of

the observation noise. The value of ε may then be chosen relative to the noise variance. Since both (1)

and (2) are subset selection problems, they are discrete optimization problems. They are known to be

NP-hard except for specific cases [1].

When no knowledge is available on either k and ε, the unconstrained formulation

min
x

{J (x;λ) = ‖y −Ax‖22 + λ‖x‖0} (3)

is worth being considered, where λ expresses the trade-off between the quality of approximation and the

sparsity level [2]. In a Bayesian viewpoint, (3) can be seen as a (limit) maximum a posteriori formulation

where ‖y−Ax‖22 and the penalty ‖x‖0 are respectively related to a Gaussian noise distribution and a prior

distribution for sparse signals (a limit Bernoulli-Gaussian distribution with infinite Gaussian variance) [3].

A. Classification of methods

1) ℓ0-constrained least-squares: The discrete algorithms dedicated to problems (1)-(2) can be cate-

gorized into two classes. First, the forward greedy algorithms explore subsets of increasing cardinalities

starting from the empty set. At each iteration, a new atom is appended to the current subset, therefore

gradually improving the quality of approximation [4]. Greedy algorithms include, by increasing order of

complexity: Matching Pursuit (MP) [5], Orthogonal Matching Pursuit (OMP) [6], and Orthogonal Least
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Squares (OLS) [7], also referred to as forward selection [8] and known as Order Recursive Matching

Pursuit (ORMP) [9] and Optimized Orthogonal Matching Pursuit (OOMP) [10]. The second category are

thresholding algorithms, where each iteration delivers a subset of same cardinality k. Popular thresholding

algorithms include Iterative Hard Thresholding [11], Subspace Pursuit [12] and CoSaMP [13].

Among these two categories, greedy algorithms are well-adapted to the resolution of (1) and (2) for

variable sparsity levels k. Indeed, they yield a series of subsets for consecutive k (i.e., for decreasing

approximation errors ε) since at each iteration, the current subset is increased by one element.

2) ℓ0-penalized least-squares: In [3], we evidenced that the minimization of J (x;λ) using a descent

algorithm leads to bidirectional extensions of the forward (orthogonal) greedy algorithms. To be more

specific, consider a candidate subset S corresponding to the support of x. Including a new element into

S yields a decrease of the square error, defined as the minimum of ‖y−Ax‖22 for x supported by S. On

the other hand, the penalty term λ‖x‖0 is increased by λ. Overall, the cost function J (x;λ) decreases as

soon as the square error variation exceeds λ. Similarly, a decrease of J (x;λ) occurs when an element is

removed from S provided that the squared error increment is lower than λ. Because both inclusion and

removal operations can induce a decrease of J , the formulation (3) allows one to design descent schemes

allowing a “forward-backward” search strategy, where each iteration either selects a new atom (forward

selection) or de-selects an atom that was previously selected (backward elimination). The algorithms

Bayesian OMP [14] and Single Best Replacement (SBR) [3] have been proposed in this spirit. They are

extensions of OMP and OLS, respectively. Their advantage over forward greedy algorithms is that an

early wrong atom selection may be later cancelled. Forward-backward algorithms include the so-called

stepwise regression algorithms which are OLS extensions [8], [15], [16], and OMP based algorithms of

lower complexity [14], [17].

3) Connection with the continuous relaxation of the ℓ0 norm: The algorithms described so far are

discrete search strategies dedicated to ℓ0-regularized least-squares. A popular alternative relies on (i) the

relaxation of the ℓ0-norm by a continuous function that is nondifferentiable at 0; and (ii) the optimization

of the resulting cost function. See, e.g., [18], [19] for ℓ1-minimization and [20]–[25] for nonconvex

relaxation. It is noticeable that ℓ1 relaxation leads to stepwise algorithms [18], [26]. In particular, the

popular ℓ1-homotopy algorithm [26]–[28] is a forward-backward greedy search whose complexity is close

to that of OMP. It is closely connected to the Least Angle Regression (LARS), a simpler forward strategy

allowing only atom selections (ℓ1-homotopy is also referred to as “LARS with the LASSO modification”

in [28]). ℓ1-homotopy solves the Basis Pursuit Denoising (BPDN), i.e., minx ‖y −Ax‖22 s.t. ‖x‖1 ≤ t

for a continuum of values of t.
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Fig. 1. Representation of lines λ 7→ E(S) + λ|S| for various subsets S. The ℓ0-curve, in plain line, is the minimal curve

λ 7→ minS{E(S) + λ|S|}. It is continuous, concave, and piecewise affine with a finite number of pieces. The ℓ0-penalized

regularization path is composed of the supports (here, S⋆
0 , S⋆

1 , S⋆
2 ) that are optimal for some λ-values. For instance, S⋆

1 is

optimal for λ ∈ [λ⋆
2 , λ

⋆
1]. These supports S⋆ induce global minimizers of J (x;λ), defined as the least-square solutions xS⋆ .

For instance, xS⋆

1
is a global minimizer of J (x;λ) with respect to x whenever λ ∈ [λ⋆

2, λ
⋆
1].

B. Main idea

Our approach is dedicated to ℓ0-penalized least-squares. It is based on the following geometrical

interpretation.

First, for any subset S, we can define a linear function λ 7→ E(S) + λ|S|, where E(S) = ‖y −Ax‖22

is the corresponding least-square error and |S| stands for the cardinality of S. For each subset S, this

function yields a line in the 2D domain (λ,J ), as shown on Fig. 1.

Second, the set of solutions to (3) is piecewise constant with respect to λ (see Appendix A for a proof).

Geometrically, this result can be easily understood by noticing that the minimum of J (x;λ) with respect

to x is obtained for all λ-values by considering the concave envelope of the set of lines λ 7→ E(S)+λ|S|

for all subsets S. The resulting piecewise affine curve is referred to as the ℓ0-curve (see Fig. 1). Its edges

are related to the supports of the sparse solutions for all λ, and its vertices yield the breakpoints λ⋆
i

around which the set of optimal solutions argmin
x
J (x;λ) is changing.

We take advantage of this interpretation to propose two suboptimal greedy algorithms that address (3)

for a continuum of λ-values. Continuation Single Best Replacement (CSBR) repeatedly minimizes J (x;λ)

with respect to x for decreasing λ-values. ℓ0 Regularization Path Descent (ℓ0-PD) is a more complex

algorithm maintaining a list of subsets so as to improve (decrease) the current approximation of the ℓ0

curve.
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Fig. 2. Sparse approximation seen as a bi-objective optimization problem. The Pareto frontier gathers the non-dominated points:

no other point can strictly decrease both |S| and E(S). Bullets and squares are all Pareto solutions. A supported solution is a

minimizer of E(S) + λ|S| with respect to S for some λ. S⋆a and S⋆c are supported, contrary to S⋆b.

C. Related works

1) Bi-objective optimization: The formulations (1), (2) and (3) can be interpreted as the same bi-

objective problem because they all intend to minimize both the approximation error ‖y −Ax‖22 and the

sparsity measure ‖x‖0. Although x is continuous, the bi-objective optimization problem should rather be

considered as a discrete one where both objectives reread E(S) and |S|. Indeed, the continuous solutions

deduce from the discrete solutions, x reading as a least-square minimizer among all vectors supported

by S.

Fig. 2 is a classical bi-objective representation where each axis is related to a single objective [29],

namely |S| and E(S). In bi-objective optimization, a point S is called Pareto optimal when no other

point S′ can decrease both objectives [30]. In the present context, |S| takes integer values, thus the Pareto

solutions are the minimizers of E(S) subject to |S| ≤ k for consecutive values of k. Equivalently, they

minimize |S| subject to E(S) ≤ ε for some ε. They are usually classified as supported or non-supported.

The former lay on the convex envelope of the Pareto frontier (the bullet points in Fig. 2) whereas the

latter lay in the nonconvex areas (the square point). It is well known that a supported solution can be

reached when minimizing the weighted sum of both objectives, i.e., when minimizing E(S) + λ|S| with

respect to S for some weight λ. On the contrary, the non-supported solutions cannot [30]. Choosing

between the weighting sum method and a more complex method is a nontrivial question. The answer

depends on the problem at-hand and specifically, on the size of the nonconvex areas in the Pareto frontier.
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2) ℓ1 and ℓ0-homotopy seen as a weighted sum method: It is important to notice that for convex

objectives, the Pareto solutions are all supported. Consider the BPDN; because ‖y −Ax‖22 and ‖x‖1

are convex functions of x, the set of minimizers of ‖y −Ax‖22 + λ‖x‖1 for all λ coincides with the

set of minimizers of ‖y −Ax‖22 s.t. ‖x‖1 ≤ t for all t [31]. Both sets are referred to as the (unique)

“ℓ1-regularization path”. The situation is different with the ℓ0-regularization. Now, the weighted sum

formulation (3) may not yield the same solutions as the constrained formulations (1) and (2) because the

ℓ0-norm is nonconvex [2]. This will lead us to define two ℓ0-regularization paths, namely the “ℓ0-penalized

path” and the “ℓ0-constrained path” (Section II).

On the algorithmic side, the ℓ0 problems are acknowledged to be difficult. In particular, the weighted

sum J (x;λ) may have a very large number of local minimizers. Many authors actually discourage the

direct optimization of J for this reason [20], [23]. In [3], however, we showed that forward-backward

extensions of OLS are able to escape from some local minimizers of J (x;λ) for a given λ. This motivates

us to propose efficient OLS-based strategies for minimizing J for variable λ-values.

3) Positioning with respect to other stepwise algorithms: In statistical regression, the word “stepwise”

originally refers to Efroymson’s algorithm [15], proposed in 1960 as an empirical extension of forward

selection (i.e., OLS). Other stepwise algorithms were proposed in the 1980’s [8, Chapter 3] among

which Berk’s and Broersen’s algorithms [16], [32]. All these algorithms perform a single replacement

per iteration, i.e., a forward selection or a backward elimination. They were originally applied to over-

determined problems in which the number of columns of A is lower than the number of rows. Recent

stepwise algorithms were designed as either OMP [14], [17] or OLS extensions [33], [34]. They all aim to

find subsets of cardinality k yielding a low approximation error E(S) for all k. Although our algorithms

share the same objective, they are inspired by (i) the ℓ1-homotopy algorithm; and (ii) the structural

properties of the ℓ0-regularization paths. To the best of our knowledge, the idea of reconstructing an

ℓ0-regularization path using ℓ0-homotopy procedures is novel.

4) Connection with the Single Best Replacement algorithm: In [3], we proposed the SBR algorithm

to address (3) for a specific λ. On the contrary, CSBR and ℓ0-PD deliver sub-optimal solutions for a

continuum of λ-values. The three algorithms all read as descent algorithms: SBR minimizes J (x;λ) for

a specific λ whereas CSBR repeatedly minimizes J (x;λ) for decreasing λ’s. Finally, ℓ0-PD minimizes

J (x;λ) with respect to x for any λ-value simultaneously by maintaining a list of candidate subsets.

Since our first proposal of CSBR in the conference paper [35], we have elaborated the ℓ0-PD version

which improves the performance of CSBR. Because the structure of CSBR is simpler and practitioners

may be interested in simple (yet efficient) algorithms, we feel that CSBR is worth being presented as
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well.

We note that the idea of maintaining a list of support candidates was recently proposed within the

framework of forward selection [36], [37]. Our approach is different, because a family of optimization

problems are being addressed together. In contrast, the supports in the list are all candidate solutions to

solve the same problem in [36], [37].

5) Positioning with respect to continuation algorithms: The principle of continuation is to handle a

difficult problem by solving a sequence of simpler problems with warm start initialization, and gradually

tuning some continuous hyperparameter [38]. In sparse approximation, the word continuation is used in

two opposite contexts.

In the first context, continuation refers to the BDPN involving the ℓ1-regularization. This problem is

solved for decreasing values of the hyperparameter using the solution for each value as a warm starting

point for the next value [4]. ℓ1-homotopy [26], [28], [39] takes into account that the ℓ1 regularization

path is piecewise affine, and tracks the breakpoints between consecutive affine pieces. CSBR is designed

in a similar spirit and can be interpret as an “ℓ0-homotopy” procedure (although the ℓ0 minimization

steps are solved in a sub-optimal way) working for decreasing λ-values. On the contrary, ℓ0-PD does not

work only for decreasing λ-values.

In the second context, continuation refers to the continuous approximation of the (discrete) ℓ0 pseudo-

norm [40]. It is related to Graduated Non Convexity (GNC) approaches [41] where the ℓ0 pseudo-

norm is relaxed by a series of continuous concave metrics leading to the resolution of a series of

continuous optimization problems with warm start initialization. Although the full reconstruction of the ℓ0-

regularization path has been rarely addressed, it is noticeable that a GNC-like approach, called SparseNet,

aims to gradually update some estimation of the regularization path induced by increasingly non-convex

sparsity measures [42]. This strategy basically relies on the choice of a grid of λ-values. Because the

influence of the grid is critical [31], an improvement of the basic version of SparseNet was proposed to

adapt the grid while the nonconvex measure is modified [42]. On the contrary, our approach does not

rely on a grid definition in the λ domain. The λ-values are rather adaptively computed similar to the

ℓ1-homotopy principle [26], [28].

The paper is organized as follows. In Section II, we define the ℓ0-regularization paths and establish their

main properties. The CSBR and ℓ0-PD algorithms are respectively proposed in Sections III and IV. In

Section V, both algorithms are analyzed and compared with the state-of-art algorithms based on nonconvex

penalties for difficult sparse deconvolution problems. Additionally, we investigate the automatic choice

of the cardinality k using classical order selection rules.
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II. ℓ0-REGULARIZATION PATHS

A. Definitions, terminology and working assumptions

Let m×n denote the size of the dictionary A (usually, m ≤ n in sparse approximation). The observation

signal y and the weight vector x are of size m×1 and n×1, respectively. We assume that any min(m,n)

columns of A are linearly independent so that for any subset S ⊂ {1, . . . , n}, the submatrix of A gathering

the columns indexed by S is full rank, and the least-square error E(S) can be numerically computed.

This assumption is however not necessary for the theoretical results provided hereafter.

We denote by |S| the cardinality of a subset S. We use the alternative notations “S+{i}” and “S−{i}”

for the forward selection S ∪ {i} and backward elimination S \ {i}. We can then introduce the generic

notation S ±{i} for single replacements: S ± {i} stands for S + {i} if i /∈ S, and S −{i} if i ∈ S. We

will frequently resort to the geometrical interpretation of Fig. 1. With a slight abuse of terminology, the

line λ 7→ E(S) + λ|S| will be simply referred to as “the line S”.

In subsection II-B, we start by defining the ℓ0-regularized paths as the set of supports of the solutions

to problems (1), (2) and (3) for varying hyperparameters. As seen in Section I, the solutions may differ

whether the ℓ0-regularization takes the form of a bound constraint or a penalty. This will lead us to

distinguish the “ℓ0-constrained path” and the “ℓ0-penalized path”. We will keep the generic terminology

“ℓ0-regularization paths” for statements that apply to both. The solutions delivered by our greedy algo-

rithms will be referred to as the “approximate ℓ0-constrained path” and “approximate ℓ0-penalized path”

since they are suboptimal algorithms.

B. Definition and properties of the ℓ0-regularized paths

The continuous problems (1), (2) and (3) can be converted as the discrete problems:

min
S
E(S) subject to |S| ≤ k, (4)

min
S
|S| subject to E(S) ≤ ε, (5)

min
S

{

Ĵ (S;λ) , E(S) + λ|S|
}

, (6)

where S stands for the support of x. The optimal solutions x of problems (1), (2) and (3) can indeed

be simply deduced from those of (4), (5) and (6), respectively, x reading as the least-square minimizers

among all vectors supported by S. In the following, the formulation (5) will be omitted because it leads

to the same ℓ0-regularization path as formulation (4) [2].
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Let us first define the set of solutions to (4) and (6) and the ℓ0-curve, related to the minimum value

of the cost function in (6) for all λ > 0.

Definition 1 For k ≤ min(m,n), let S⋆C(k) be the set of minimizers of the constrained problem (4).

For λ > 0, let S⋆P(λ) be the set of minimizers of the penalized problem (6). Additionally, we define

the ℓ0-curve as the function λ 7→ minS{Ĵ (S;λ)}. It is the concave envelope of a finite number of linear

functions. Thus, it is concave and piecewise affine. Let λ⋆
I+1 , 0 < λ⋆

I < . . . < λ⋆
1 < λ⋆

0 , +∞ delimit

the affine intervals (I + 1 contiguous intervals; see Fig. 1 in the case where I = 2).

Each set S⋆C(k) or S⋆P(λ) can be thought of as a single support (e.g., S⋆C(k) is reduced to the support

S⋆a in the example of Fig. 2). Formally, they are defined as sets of supports because the minimizers

of (4) and (6) might not be always unique. Let us now provide a key property of the set S⋆P(λ) when λ

is varying.

Theorem 1 S⋆P(λ) is a piecewise constant function of λ, being constant on each interval λ ∈ (λ⋆
i+1, λ

⋆
i ).

Proof: See Appendix A.

This property allows us to define the ℓ0-regularization paths in a simple way.

Definition 2 The ℓ0-constrained path is the set (of sets) S⋆C = {S⋆C(k), k = 0, . . . ,min(m,n)}.

The ℓ0-penalized path is defined as S⋆P = {S⋆P(λ), λ > 0}. According to Theorem 1, S⋆P is composed

of (I + 1) distinct sets S⋆P(λ), one for each interval λ ∈ (λ⋆
i+1, λ

⋆
i ).

S⋆C gathers the solutions to (4) for all k. As illustrated on Fig. 2, the elements of S⋆C are the Pareto solutions

whereas the elements of S⋆P correspond to the convex envelope of the Pareto frontier. Therefore, both

ℓ0-regularization paths may not coincide [2], [29]. As stated in Theorem 2, S⋆P ⊂ S
⋆
C, but the reverse

inclusion is not guaranteed.

Theorem 2 S⋆P ⊂ S
⋆
C. Moreover, for any λ /∈ {λ⋆

I , . . . , λ
⋆
0}, there exists k such that S⋆P(λ) = S

⋆
C(k).

Proof: See Appendix A.

C. Approximate ℓ0-penalized regularization path

Let us introduce notations for the approximate ℓ0-penalized path delivered by our heuristic search

algorithms. Throughout the paper, the ⋆ notation is reserved for optimal solutions (e.g., S⋆P). It is removed

when dealing with numerical solutions. The outputs of our algorithms will be composed of a list λ =
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Ĵ (S;λ)

E(Sj)

S0

Sj

SJ

λλ1λjλj+1λJ+1

Fig. 3. Notations relative to our heuristic search algorithms. Their outputs are: (i) a sequence of values λj sorted in the decreasing

order; (ii) as many supports Sj , Sj being the solution associated to all λ ∈ (λj+1, λj). By extension, S0 = ∅ for λ > λ1.

{λ1, . . . , λJ+1} of decreasing λ-values, and a list S = {S0, . . . , SJ} of candidate supports, with S0 = ∅.

Sj is a suboptimal solution to (6) for λ ∈ (λj+1, λj). In the first interval λ > λ1, the solution is

S0 = ∅. The reader shall keep in mind that each output Sj induces a suboptimal solution xj to (3) for

λ ∈ (λj+1, λj). This vector is the least-square solution supported by Sj . It can be computed using the

pseudo-inverse of the subdictionary indexed by the set of atoms in Sj .

Geometrically, each support Sj yields a line segment. Appending these segments yields an approximate

ℓ0-curve covering the domain (λJ+1,+∞), as illustrated on Fig. 3.

III. GREEDY CONTINUATION ALGORITHM (CSBR)

Our starting point is the Single Best Replacement algorithm [3] dedicated to the minimization of

J (x;λ) with respect to x, or equivalently to Ĵ (S;λ) = E(S)+λ|S| with respect to S. We first describe

SBR for a given λ. Then, the CSBR extension is presented for decreasing and adaptive λ’s.

A. Single Best Replacement

SBR is a deterministic descent algorithm dedicated to the minimization of Ĵ (S;λ) with the initial

solution S = ∅. An SBR iteration consists in three steps:

1) Compute Ĵ (S ± {i};λ) for all possible single replacements S ± {i} (n insertion and removal

trials);

2) Select the best replacement Sbest = S ± {ℓ}, with

ℓ ∈ argmin
i∈{1,...,n}

Ĵ (S ± {i};λ); (7)

3) Update S ← Sbest.

October 27, 2014 DRAFT
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input : A, y, λ, Sinit

output: S, δEadd, ℓadd

1 Sbest ← Sinit;

2 repeat

3 S ← Sbest;

4 for i = 1 to n do

5 Compute Ĵ (S ± {i};λ);

6 end

7 Sbest ← S ± {ℓ} with ℓ computed from (7);

8 until Ĵ (Sbest;λ) ≥ Ĵ (S;λ);

9 Compute ℓadd according to (11);

10 Set δEadd = E(S)− E(S + {ℓadd});

Algorithm 1: SBR algorithm for minimization of Ĵ (S;λ) for fixed λ. By default [3], Sinit = ∅. The

input-output relation is written: [S, δEadd, ℓadd] = SBR(Sinit;λ) or simply S = SBR(Sinit;λ). The outputs

δEadd and ℓadd are optional. The single replacement tests appear at lines 4 to 6. The best replacement is

computed in line 7.

SBR terminates when Ĵ (Sbest;λ) ≥ Ĵ (S;λ), i.e., when no single replacement can decrease the

cost function. When λ > 0, this occurs after a finite number of iterations because SBR is a descent

algorithm and there are a finite number of possibilities for the active set S ⊂ {1, . . . , n}. In the limit

case λ = 0, we have Ĵ (S; 0) = E(S). Only insertions can be performed since any removal increases the

squared error E(S). SBR coincides with the well-known OLS algorithm [7]. Generally, the n replacement

trials necessitate to compute E(S ± {i}), i.e., E(S + {i}) for all insertion trials, and E(S − {i}) for all

removals. In [3], we proposed an efficient (fast and stable) recursive implementation based on the Cholesky

factorization of the Gram matrix AT
SAS when S is modified by one element (where AS stands for the

submatrix of A gathering the active columns). SBR is summarized in Algorithm 1. The output parameters

ℓadd and δEadd are optional, and unnecessary in the standard version. Their knowledge will be useful to

implement the extended version of SBR proposed in the next subsection.

Let us illustrate the behavior of SBR on a simple example using the geometrical interpretation of Fig. 4,

where a single replacement is represented by a vertical displacement (from top to bottom) between the

two lines S and S ± {ℓ}. Sinit = ∅ yields an horizontal line since Ĵ (∅;λ) = ‖y‖22 does not depend on

λ. At the first SBR iteration, a new dictionary element ℓ = a is selected. The line related to the updated
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λ

Ĵ (S;λ)

λ0

Sinit = ∅

S = {b, c}
+

+

+

–

{a}

{a, b}{a, b, c}

E({a, b})

E({b, c})

E({a, b, c})

E({a})

‖y‖22

Fig. 4. Step-by-step illustration of the call S = SBR(∅;λ). Each single replacement is represented by a vertical displacement

(from top to bottom) from lines S to S ±{ℓ}. The symbols ‘+’ and ‘-’ respectively refer to an atom selection and de-selection.

a, b and c denote three dictionary atoms that are being selected or de-selected. Specifically, four SBR iterations are carried out

from the initial support Sinit = ∅: the selections of a (the updated support is S ← {a}), b (S ← {a, b}), and c (S ← {a, b, c}),

and the de-selection of a. The final output S ← {b, c} is of cardinality 2.

support S ← {a} is of slope |S| = 1. Similarly, some new dictionary elements b and c are being selected

in the next two iterations, yielding the supports S ← {a, b} and S ← {a, b, c}. On Fig. 4, the dotted lines

related to the latter supports have slopes equal to 2 and 3. At iteration 4, the single best replacement is

an atom removal, namely ℓ = a. The resulting support S ← {b, c} is of cardinality 2, and the related

line is parallel to the line {a, b} previously found at iteration 2. During the fifth iteration, the n single

replacements tests are being performed as usual, but none of them decreases Ĵ ({b, c};λ). SBR stops

with output S = {b, c}.

B. Principle of the continuation search

Our continuation algorithm is inspired by ℓ1-homotopy which recursively computes the minimizers of

‖y−Ax‖22 +λ‖x‖1 when λ is continuously decreasing [26]–[28]. An iteration of ℓ1-homotopy consists

in two steps:

1) Find the next value λnew < λcur for which the ℓ1 optimality conditions are violated with the current

active set S (λcur denotes the current value);

2) Compute the single replacement S ← S ± {i} allowing to fulfill the ℓ1 optimality conditions at

λ = λnew.

Our ℓ0-homotopy strategy follows the same line of thought. The first step is now related some local

ℓ0-optimality conditions, and the second step consists in calling SBR at λ = λnew with the current active
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S3

S2

Ĵ (S;λ)

λ

S1

S0

SBR

SBR

SBR

λ1λ2λ3λstopλ40

Fig. 5. Step-by-step illustration of CSBR with the early stopping condition λj ≤ λstop. The initial support is S0 = ∅. SBR is

called for three decreasing values λ1, λ2 and λ3 (plain vertical arrows), with output Sj at λj . The search for the next value

λj+1 given the current configuration at λj is represented by a displacement along the line Sj (dashed, oblique arrows).

set as initial solution; see Fig. 5 for a general sketch. A main difference with ℓ1-homotopy is that the

ℓ0-homotopy solutions are suboptimal, i.e., local minimizers of J (x;λ) with respect to x.

1) Local optimality conditions: Let us first reformulate the stopping conditions of SBR at a given λ.

SBR terminates when a local minimum of Ĵ (S;λ) has been reached:

∀i ∈ {1, . . . , n}, Ĵ (S ± {i};λ) ≥ Ĵ (S;λ). (8)

This condition is illustrated on Fig. 6(a): all lines related to single replacements S ± {i} lay above the

black point representing the value of Ĵ (S;λ) for the current λ.

By separating the conditions related to insertions (S+{i} for i /∈ S) and removals (S−{i} for i ∈ S),

(8) rereads as the interval condition:

λ ∈ [δEadd(S), δErmv(S)], (9)

where

δEadd(S) , max
i/∈S

{

E(S)− E(S + {i})
}

(10a)

δErmv(S) , min
i∈S

{

E(S − {i}) − E(S)
}

(10b)

refer to the maximum decrease of the squared error when an atom is added in the support S (respectively,

the minimum increase of E(S) when an atom is removed).
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λ

Ĵ ( . ;λ)

λ

S + {i}
︷ ︸︸ ︷

S

S − {i}

E(S)

0 λ

Ĵ ( . ; λ)

λnew

SBR

λcur

S + {ℓadd}

S

δEadd(S)

0

(a) (b)

Fig. 6. Termination of SBR and next call to SBR. (a) When S = SBR(Sinit;λ) terminates, no single replacement S±{i} can

decrease Ĵ (S;λ). The dotted lines corresponding to S + {i} (parallel lines of slope |S|+1) lay above the point (λ, Ĵ (S;λ)),

depicted with a black disk. Similarly, all parallel lines S − {i}, of slope |S| − 1, lay above this point. (b) Here, S is the SBR

output at λcur. The next call to SBR is done at λnew = δEadd(S) with the initial subset S + {ℓadd}. The line S + {ℓadd}

lays below all other parallel lines S + {i} (dotted lines). In this figure, the x-axis has been stretched by an arbitrary factor

for improved readability. Consequently, the horizontal length λnew does not match the vertical length δEadd(S), as it should

without any stretching. The same stretching process will be done in the following figures.

2) Violation of the local optimality conditions: Consider the current output S = SBR(Sinit;λcur). The

local optimality condition (9) is met for λ = λcur, but also for any λ ∈ [δEadd(S), λcur]. The new value

for which (9) is violated is λnew = δEadd(S) − c where c > 0 is arbitrarily small. The violation occurs

for i = ℓadd, with

ℓadd ∈ argmax
i/∈S

{E(S) − E(S + {i})}. (11)

In practice, λnew can be set to the limit value

λnew = δEadd(S) (12)

provided that S is replaced with S + {ℓadd}.

As illustrated on Fig. 6(b), the line S+ {ℓadd} lays below all other parallel lines S+ {i}. It intersects

line S at λnew. The vertical arrow represents the new call to SBR with inputs S + {ℓadd} and λnew.

Because both subsets S and S + {ℓadd} lead to the same value of Ĵ ( . ;λnew), the de-selection of ℓadd

is forbidden in the first iteration of SBR.
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input : A, y

output: S: list of supports Sj ; λ: list of λj .

1 S0 ← ∅;

2 Sinit ← {ℓadd} with ℓadd computed from (13);

3 Compute λ1 according to (13);

4 j ← 1;

5 while λj > 0 do

6 Call [Sj , δEadd, ℓadd] = SBR(Sinit;λj);

7 Sinit ← Sj + {ℓadd};

8 λj+1 ← δEadd;

9 j ← j + 1.

10 end

Algorithm 2: CSBR algorithm: SBR is run repeatedly for decreasing λj’s. At iteration j, both the next

value λj+1 and the next initial subset Sj + {ℓadd} are precomputed during the call to SBR, and provided

as SBR outputs.

C. CSBR algorithm

CSBR is summarized in Algorithm 2, where j denotes the iteration number. The repeated calls to SBR

deliver subsets Sj for decreasing λj . As shown on Fig. 5, the solution Sj covers the interval (λj+1, λj ].

At the very first iteration, we have S0 = ∅, and (11)-(12) reread:

ℓadd ∈ argmax
i∈{1,...,n}

|〈y,ai〉|

‖ai‖2
and λ1 =

〈y,aℓadd〉
2

‖aℓadd‖
2
2

. (13)

According to Algorithm 2, CSBR stops when λj = 0, i.e., the whole domain λ ∈ R+ has been

scanned. However, such a choice may not be appropriate when dealing with noisy data and overcomplete

dictionaries. In such cases, ad hoc early stopping rules can be considered [26], [43]. A natural rule takes

the form λj ≤ λstop, with λstop > 0. Alternative rules involve a maximum cardinality (|Sj | ≥ kstop)

and/or a minimum squared error (E(Sj) ≤ εstop).

We refer the reader to Fig. 5 for a step-by-step illustration of CSBR with the early stop λj ≤ λstop.

The initial support Sinit = {ℓadd} and λ1 are precomputed in (13). In the first call S1 = SBR(Sinit;λ1),

a number of single replacements updates S ← S±{ℓ} are carried out, the last single replacement leading

to S1 = S. This process is represented by the plain vertical arrow at λ1 linking both lines S0 and S1

(the line Sinit is not shown for readability reasons). Once S1 is obtained, the search for the next value
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λJ+1 = 0 λ1

SJ

Sj

λj+1 λj λ

Ĵ (S;λ)

E(Sj)

S0 = ∅

Fig. 7. ℓ0-PD algorithm: the candidate subsets Sj yield a concave polygon. Each subset is the current (sub-optimal) solution

to (6) for λ ∈ (λj+1, λj).

λ2 is being carried out. This process is represented by an oblique, dashed arrow joining λ1 to λ2. These

two processes are being repeated alternatively at the second and third iterations of CSBR. Finally, CSBR

terminates after λ4 has been found because λ4 ≤ λstop.

IV. ℓ0-REGULARIZATION PATH DESCENT (ℓ0-PD)

On the theoretical side, the ℓ0-penalized regularization path, defined in Section II, is piecewise constant

(Theorem 1). It yields the ℓ0 curve which is piecewise affine, continuous and concave (Fig. 1). The curve

related to the CSBR outputs does not fulfill this property, since: (i) there might be jumps in this curve;

and (ii) no constraint is imposed on the slope of the line Sj (see Fig. 5). In contrast, the slope of Sj is

increasing with j for the exact, concave ℓ0-curve. This motivates us to propose another algorithm whose

outputs are consistent with the structural property of the ℓ0-curve.

We propose to gradually update a list S of candidate subsets while imposing that the related curve

is a continuous and concave polygon (see Fig. 7). The subsets in S are updated so as to decrease at

most the concave polygonal curve at each iteration. Geometrically, the concave polygon is obtained as

the concave envelope of the set of lines Sj , as shown in Fig. 7. In particular, we impose that λJ+1 = 0

so that the concave envelope is computed over the whole domain λ ∈ R+.

A. Descent of the concave polygon

The general principle of ℓ0-PD is to perform a series of descents steps, where a new candidate subset

Snew is considered, and included in the list S only if the resulting concave polygon can be decreased.

This descent test is illustrated on Fig. 8 for two examples (left and right columns). For each example, the
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Snew = Sj + {ℓadd} Snew = Sj − {ℓrmv}

(a)

0 λj+1 λj

Ĵ (S; λ)

Sj

λ 0 λλj+1 λj

Sj

Ĵ (S; λ)

(b)

λinf λsup

Ĵ (S; λ)

Sj

δEadd

Snew

0 λλinf = δErmv λsup

Snew

Sj

Ĵ (S; λ)

(c)

λj+1 λj

Ĵ (S;λ)

Sj

λ 0 λλj+1 λj

Sj

Ĵ (S; λ)

Fig. 8. ℓ0-PD algorithm: descent of the concave polygon when a new support Snew = Sj+{ℓadd} (left) or Snew = Sj−{ℓrmv}

(right) is included. (a) Initial configuration of the concave polygon. (b) The intersection with line Snew is computed. This yields

an interval [λinf , λsup] for which Snew lays below the concave polygon. (c) When this interval is non-empty, the supports Sj

whose related edges lay above the line Snew are removed, and the support Snew is included in S . The supports of S are being

sorted by increasing cardinality, and the list of values λj (corresponding to the vertices of the new concave polygon) is being

updated. The number of polygon vertices may either increase or decrease when a descent step is completed.

initial polygon is represented in (a). It is updated when its intersection with the line Snew is non-empty

(b). The new concave polygon (c) is obtained as the concave envelope of the former polygon and the

line Snew. All subsets in S whose edges lay above the line Snew are removed from S .

This procedure is formally presented in Algorithm 3. Let us now specify how the new candidate subsets

Snew are built.
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Procedure: CCV Descent(S, Snew, λ)

1 Call [λinf , λsup] = intersect(S, Snew);

2 if λinf < λsup then

3 Include Snew as an unexplored support in S;

4 Remove any subset Sj from S such that [λj+1, λj ] ⊂ [λinf , λsup];

5 Include λinf and λsup in λ;

6 Remove any λj in λ such that λinf < λj < λsup;

7 Sort the subsets in S by increasing cardinality;

8 Sort λ in the decreasing order;

9 end

Algorithm 3: Concave polygon descent procedure. When a new subset is included, both lists S and λ are

updated. The function intersect computes the intersection between a line and a concave polygon. This

yields an interval [λinf , λsup]. By convention, λinf > λsup when the intersection is empty.

B. Selection of the new candidate support

We first need to assign a Boolean label Sj .expl to each subset Sj . It equals 1 if Sj has already

been “explored” and 0 otherwise. The following exploration process is being carried out given a subset

S = Sj: all the possible single replacements S±{i} are tested. The best insertion ℓadd and removal ℓrmv

are both kept in memory, with ℓadd defined in (11) and similarly,

ℓrmv ∈ argmin
i∈S

{E(S − {i}) − E(S)}. (14)

The related square error variations read δEadd(S) and δErmv(S); see (10).

At a given iteration of ℓ0-PD, the unexplored support Sj in S of lowest cardinality (i.e., of lowest

index j) is selected. ℓ0-PD attempts to include the two candidate subsets Sadd = Sj + {ℓadd} and

Srmv = Sj − {ℓrmv} in S , so that the concave polygon can be decreased at most. The CCV Descent

procedure (Algorithm 3) is first called with Snew ← Sadd leading to possible updates of S and λ. It is

called again with Snew ← Srmv. Fig. 8 illustrates each of these calls: the slope of Snew is |Sj |+ 1 and

|Sj | − 1, respectively. When a support Sj has been explored, the new supports that have been included

in S (if any) are tagged as unexplored.

October 27, 2014 DRAFT



TECHNICAL REPORT 19

input : A, y

output: S; λ

1 λ← {λ1} with λ1 ← 0;

2 S0 ← ∅, S0.expl← 0;

3 S ← {S0};

4 while {∃j : Sj .expl = 0} do

5 Set j as the lowest index such that Sj .expl = 0;

6 Sj .expl← 1;

7 Compute Sadd ← Sj + {ℓadd} from (11);

8 if j = 0 then

9 Srmv ← ∅;

10 else

11 Compute Srmv ← Sj − {ℓrmv} from (14);

12 end

13 Call CCV Descent(S, Sadd, λ);

14 Call CCV Descent(S, Srmv, λ);

15 end

Algorithm 4: ℓ0-PD algorithm. The algorithm maintains a list S of supports Sj whose cardinality is

increasing with j. The unexplored support having the lowest cardinality is explored at each iteration. The

list λ = {λ1, . . . , λJ+1} is updated during the calls to CCV Descent and sorted in the decreasing order.

λJ+1 equals 0. During the first iteration, we have j = 0 leading to Srmv ← ∅ (line 9).

C. ℓ0-PD algorithm

ℓ0-PD is stated in Algorithm 4. Initially, S is formed of the empty support S0 = ∅. The resulting

concave polygon is reduced to a single horizontal edge. The corresponding endpoints are λ1 = 0 and

(by extension) λ0 , +∞. In the first iteration, S0 is explored: the best insertion is computed and the

new support Sadd = {ℓadd} is included in S . The updated set S is now composed of S0 = ∅ (explored)

and S1 = Sadd (unexplored). The new concave polygon has two edges delimited by λ2 = 0, λ1 and

λ0 = +∞, with λ1 given in (13). Generally, either 0, 1, or 2 new unexplored supports Sadd and Srmv

may be included in S at a given iteration while a variable number of supports may be removed from S .

ℓ0-PD terminates when all supports in S have been explored. When this occurs, the concave polygon

cannot decrease anymore with any single replacement Sj ± {i}, with Sj ∈ S . Practically, the ℓ0-PD
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stopping condition can be relaxed using the early stopping rule λj ≤ λstop, where j denotes the unexplored

subset having the least cardinality. This condition guarantees that all candidate subsets Sj corresponding

to the interval (λstop,+∞) have been explored when ℓ0-PD terminates. Similar to CSBR, alternative

stopping conditions of the form |Sj | ≥ kstop or E(Sj) ≤ εstop can be adopted.

D. Fast implementation

In the CCV Descent procedure, the subroutine intersect is called to compute the intersection between

a concave polygon S and a line Snew. In Lemma 1, we show that this intersection is empty in two simple

situations. Hence, the call to intersect is not needed in these situations. We do not mention this in

Algorithm 3 to keep the algorithm statement as simple as possible.

Lemma 1 Consider a list of J + 1 supports S associated to a continuous, concave polygon λ 7→

minj Ĵ (Sj;λ) with J + 1 pieces, delimited by λ ∈ RJ+1
+ . The following properties hold for all j:

• If δEadd(Sj) < λj+1, then the line Sadd = Sj + {ℓadd} lays above the current concave polygon.

• If δErmv(Sj) > λj , then the line Srmv = Sj − {ℓrmv} lays above the current concave polygon.

Proof: We give a sketch of proof using geometrical arguments. Firstly, δEadd(Sj) is the λ-value of

the intersection point between lines Sj and Snew = Sj + {ℓadd}; see Fig. 8(b). Secondly, we notice that

|Sj | ≤ |Sadd| ≤ |Sj+1| because the concave polygon is concave and |Sadd| = |Sj| + 1. It follows from

these two facts that if δEadd(Sj) < λj+1, the line Sadd lays above Sj+1 for λ ≤ λj+1, and above Sj for

λ ≥ λj+1.

This proves the first result. A similar sketch applies to the second result.

E. Main differences between CSBR and ℓ0-PD

First, we stress that contrary to CSBR, the index j in λj does not identify with the iteration number

anymore for ℓ0-PD. Actually, the current iteration of ℓ0-PD is related to an edge of the concave polygon,

i.e., a whole interval (λj+1, λj), whereas the current iteration of CSBR is dedicated to a single value λj

which is decreasing when the iteration number j increases.

Second, we remark that in CSBR, the computation of the next value λj+1 ≤ λj is only based on

the violation of the lower bound of condition (9), corresponding to atom selections. In ℓ0-PD, the upper

bound is considered as well. This is the reason why the λ-values are not scanned in a decreasing order

anymore. This may improve the very sparse solutions found in the early iterations within an increased

computation time, as we will see hereafter.
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Fig. 9. Generic deconvolution (a,b) and jump detection (c,d) problems. The data vectors y and the k nonzero amplitudes of

x⋆ are represented in plain lines and with small circles, respectively. (a) Sparse deconvolution problem with k = 10 spikes,

SNR = 25 dB, σ = 24 (Gaussian impulse response), and m = 900, n = 756 (size of dictionary A). (b) Sparse deconvolution

problem with k = 30, SNR = 10 dB, σ = 3, m = 300, n = 252. (c) Jump detection problem with k = 30, SNR = 25 dB,

m = n = 300. (d) Jump detection problem with k = 10, SNR = 10 dB, m = n = 300.

V. NUMERICAL RESULTS

The algorithms are evaluated on two kinds of problems involving ill-conditioned dictionaries. We first

introduce these generic problems in § V-A. Then, we analyze the behavior of CSBR and ℓ0-PD based on

empirical examples (§ V-B). Finally, we provide a detailed comparison with other nonconvex algorithms

for many scenarii (§ V-C).

A. Two generic problems

The sparse deconvolution problem takes the form y = h ∗ x⋆ + n where the impulse response h is

a Gaussian filter of standard deviation σ, and the noise n is assumed i.i.d. and Gaussian. The problem

rereads y = Ax⋆+n where A is a convolution matrix. In the default setting, y and x are sampled at the

same frequency. h is approximated by a finite impulse response of length 6σ by thresholding the smallest

values. A is a Toeplitz matrix of dimensions chosen so that any Gaussian feature h∗x⋆ if fully contained

within the observation window {1, . . . ,m}. This implies that A is slightly undercomplete: m > n with

m ≈ n. Two simulated data vectors y are represented in Fig. 9(a,b) where x⋆ are k-sparse vectors with
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(a) |S5| = 7, λ5 = 7.8e−2 (b) |S9| = 11, λ9 = 4.1e−2 (c) |S36| = 41, λ36 = 3.4e−4

Fig. 10. Jump detection example: processing of the data of Fig. 9(c) using CSBR. Three sparse solutions xj are shown, each

being related to some CSBR output Sj , with ‖xj‖0 = |Sj |. The original vector y is represented in dashed lines and the

approximation Axj is in plain line.

k = 10 and 30, and the signal-to-noise ratio (SNR) is equal to 25 and 10 dB, respectively. The SNR is

defined by SNR = 10 log(Py/Pn), where Py = ‖Ax⋆‖22/m is the average power of the noise-free data

and Pn is the variance of the noise process n.

The jump detection problem is illustrated on Fig. 9(c,d). Here, A is the squared dictionary (m = n)

defined by Ai,j = 1 if i ≥ j, and 0 otherwise. Each atom aj codes for the presence of a jump at location

j, and the amplitude x⋆j matches the size of the jump. When x⋆ is k-sparse, the product Ax⋆ yields a

piecewise constant signal with k pieces, x⋆ being the first-order derivative of the signal Ax⋆.

Both problems are difficult because adjacent columns of A are highly correlated, and a number of fast

algorithms that are efficient for well-conditioned dictionaries may fail to recover the true support. The

degree of difficulty of the deconvolution problem is controlled by the width σ of the Gaussian impulse

response and the sparsity level k: for large values of k and/or σ, the Gaussian features resulting from

the convolution h ∗ x⋆ strongly overlap. For the jump detection problem, all the step signals related to

the atoms aj have overlapping supports.

B. Empirical behavior of CSBR and ℓ0-PD

1) Example: Let us first consider the execution of CSBR for the jump detection problem shown on

Fig. 9(c). For this problem, ℓ0-PD provides very similar results as CSBR. We first recall that CSBR

delivers sparse solutions xj for varying sparsity levels λj , xj being the least-square solution supported

by the j-th output of CSBR (Sj). Three sparse solutions xj are represented on Fig. 10. For the first
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Fig. 11. Model order selection using MDLc: display of the selected sparse solution xj . The data of Fig. 9(b,c) (k = 30 true

spikes) are processed using ℓ0-PD and CSBR, respectively. (a) is a post-processing of the outputs of CSBR, shown on Fig. 10.

The MDLc solution is the output support S27, of cardinality 27. (b) corresponds to the 15-th output of ℓ0-PD, of cardinality

|S15| = 16. The order is under-estimated because the data are very noisy.

solution (lowest value of |Sj|, largest λj), only the seven main jumps are being detected (Fig. 10(a)).

The cardinality of Sj increases with j, and some other jumps are obtained together with possible false

detections (Figs. 10(b,c)).

2) Model order selection: It may often be useful to select a single sparse solution among the list

of solutions xj . The proposed algorithms are naturally compatible with most classical methods of

model order selection [44], [45] because they are greedy algorithms. Assuming that the variance of

the observation noise is unknown, we distinguish two categories of cost functions for the estimation of

the order ‖xj‖0 = |Sj |. The first take the form argmini{m log E(Sj)+α|Sj |} where m is the size of y

and α equals 2, logm, and 2 log logm for the Akaike, Minimum Description Length (MDL) and Hannan

and Quinn criteria, respectively [44]. The second are cross-validation criteria [46], [47]. The sparse

approximation framework allows one to derive simplified expressions of the latter up to the storage of

the intermediate solutions of greedy algorithms for consecutive cardinalities [8], [45].

For the sparse deconvolution and jump detection problems, we found that the Akaike and cross

validation criteria severely over-estimate the expected number of spikes. On the contrary, the MDL

criterion yields quite accurate results. We found that the modified MDLc version dedicated to short data

records (i.e., when the number of observations is moderately larger than the model order) [48] yields the

best results for all the scenarii we have tested. It reads:

min
j

{

log E(Sj) +
log(m)(|Sj |+ 1)

m− |Sj | − 2

}

. (15)

Fig. 11(a) illustrates that the number of spikes found using MDLc is very accurate when the SNR is
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Fig. 12. Typical approximate ℓ0-curves found for the deconvolution problem of Fig. 9(a): zoom in for small and large λ. The

ℓ0-PD curve is concave and continuous on λ ∈ R+. The CSBR curve is continuous only for large λ-values (black circles). For

low λ’s, there can be discontinuities at breakpoint locations (white circles). Here, both curves almost coincide for large λ’s. The

ℓ0-PD curve lays below the CSBR curve for low λ’s.

high (27 spikes are found, the unknown order being 30). It is underestimated for low SNRs: 16 spikes

are found (instead of 30) for the simulation of Fig. 11(b). This behavior is relevant because for noisy

data, the spikes of smallest amplitudes are drowned in the noise. One cannot expect to detect them.

3) Further empirical observations: Fig. 12 is a typical display of the approximate ℓ0-curves yielded

by CSBR and ℓ0-PD. The ℓ0-PD curve is structurally continuous and concave. The CSBR curve is mostly

continuous and concave for large λ’s but not for low λ’s. There are actually two kinds of breakpoints

depicted with black and white circles. The curve is continuous around the former breakpoints. This

occurs when no single replacement is done during the call to SBR (SBR(Sinit;λj) returns Sj = Sinit; see

Algorithm 2). On the contrary, a discontinuity point appears when at least one SBR iteration is carried

out. In Fig. 12, both curves related to CSBR and ℓ0-PD almost coincide for large λ’s. Only the CSBR

curve is represented in the right subfigure for readability reasons. For low λ’s, the ℓ0-PD curve lays

below the CSBR curve as shown in the left subfigure.

Fig. 13 provides some insight on the iterations of CSBR and ℓ0-PD for a sparse deconvolution problem

of size 3000 with ‖x⋆‖0 = 17 and SNR = 20 dB. For the CSBR subfigures, the horizontal axis represents

the number of single replacements: 60 replacements are being performed from the initial empty support

during the successive calls to SBR. For ℓ0-PD, the horizontal axis shows the iteration number. Either 0,

1 or 2 new supports are being included in the list of candidate subsets at each iteration. The number

of effective single replacements is therefore increased by 0, 1 or 2. During the first 25 iterations, ℓ0-PD

mainly operates atom selections similar to CSBR and OLS (not shown here). The explored subsets are thus
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Fig. 13. Series of single replacements performed by CSBR and ℓ0-PD. (a) CSBR: cardinality of the current support after each

single replacement during the calls to SBR. (b) Breakpoints λj found by CSBR, represented in log-scale. SBR is executed

for each λj , and the number of single replacements for fixed λj matches the length of the horizontal steps in the figure. (c)

ℓ0-PD: cardinality of the supports appended to the regularization path during the iterations. At each iteration, 0, 1 or 2 supports

are included. Vertical steps appear whenever two supports are simultaneously included. (d) ℓ0-PD: representation in log-scale

of the current interval (λj+1, λj) (grey color). When the grey bars reach the bottom of the image, the lower bound equals

λj+1 = 0.

of increasing cardinality and the sparsity level λ is decreasing (Figs. 13(c,d)). From iterations 25 to 40,

the very sparse solutions previously obtained (k = 20, 19, . . . , 7) are improved as the algorithm performs

a series of atom de-selections. They are being improved again around iteration 80. On the contrary, CSBR

explores subsets of globally increasing cardinalities (although some de-selections are made). The sparsest

solutions are never improved because CSBR works for decreasing λ-values (Figs. 13(a,b)). For ℓ0-PD, it

is noticeable that decreasing the value of the early stopping parameter λstop may have a strong influence
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TABLE I

SETTINGS RELATED TO EACH SCENARIO: k IS THE SPARSITY LEVEL OF x⋆ . THE FACTOR f CONTROLS THE DICTIONARY

SIZE (m,n): m = f mDEF, n = f nDEF . BY DEFAULT, nDEF ≈ mDEF = 300, AND f = 1. THE UNDERSAMPLING

PARAMETER ∆ IS EQUAL TO 1 BY DEFAULT (mDEF ≥ nDEF). IT IS INCREASED TO GET PROBLEMS WITH OVERCOMPLETE

DICTIONARIES (m ≈ n/∆). THE GAUSSIAN IMPULSE RESPONSE WIDTH IS SET TO σ = f σDEF WITH σDEF = 3 OR 8.

Scenario Type SNR k f ∆ m n σ

A Deconv. 25 30 1 1 300 282 3

B Deconv. 10 10 1 1 300 252 8

C Deconv. 25 10 3 1 900 756 24

D Deconv. 25 30 6 1 1800 1692 18

E Jumps 25 10 1 1 300 300 ∅

F Jumps 25 30 1 1 300 300 ∅

G Jumps 10 10 1 1 300 300 ∅

H Deconv. +∞ 10 3 2 450 756 24

I Deconv. +∞ 30 3 2 450 756 24

J Deconv. +∞ 10 1 4 75 252 8

on the improvement of the sparsest solutions and the overall computation time. This point will be further

analyzed in the next subsection.

C. Extensive comparisons

We compare the proposed algorithms with other recent nonconvex algorithms for the two kinds of

problems introduced in subsection V-A with several parameter settings: problem dimension (m,n), ratio

m/n, signal-to-noise ratio, cardinality of x⋆, and width σ of the Gaussian impulse response for the

deconvolution problem. The settings are listed on Table I for the 10 scenarii we consider.

1) Competing algorithms: We focus on the comparison with algorithms based on nonconvex penalties.

It is indeed increasingly acknowledged in the recent literature that the BPDN estimates are less accurate

than sparse approximation estimates based on nonconvex penalties, as produced by recent methods. We

do not consider forward greedy algorithms either. We already showed that SBR is (unsurprisingly) more

efficient than the simpler OMP and OLS algorithms [3]. Among the recent acknowledged nonconvex

algorithms, we consider:

1) Iterative Reweighted Least Squares (IRLS) for ℓq minimization, q < 1 [49];

2) Iterative Reweighted ℓ1 (IRℓ1) coupled with the penalty log(|xi|+ ε) [20], [23], [50];
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3) ℓ0 penalized least squares for cyclic descent (L0LS-CD) [51];

4) Smoothed ℓ0 (SL0) [41], [52].

We resort to a penalized least-squares implementation for all the algorithms, the only algorithm directly

working with the ℓ0 penalty being L0LS-CD. We do not consider simpler thresholding algorithms (Iterative

Hard Thresholding, CoSaMP, Subspace Pursuit) proposed in the context of compressive sensing since

we found that SBR behaves much better than these algorithms for ill-conditioned dictionaries [3]. We

found that L0LS-CD is more efficient than thresholding algorithms. The cyclic descent approach is

becoming very popular in the very recent sparse approximation literature [42], [53]. However, its speed

of convergence is sensitive to the quality of the initial solution. Here, we use a BPDN initial solution.

The three other considered algorithms work with sparsity measures depending on an arbitrary parameter.

Regarding IRLS, we did experiments with q = 0.5 and q = 0.1, as suggested in [49]. We chose to

run IRLS twice, i.e., with q = 0.5 and then with q = 0.1 (with the previous output at q = 0.5 as

initial solution) so that the algorithm is less sensitive to local solutions at q = 0.1. SL0 is a GNC-like

algorithm working for increasingly non-convex penalties (i.e., Gaussian functions of decreasing widths).

For simplicity reasons, we set the lowest width relative to the knowledge of the smallest nonzero amplitude

of the ground truth solution x⋆. The basic SL0 implementation is dedicated to noise-free problems [41].

There exist several adaptations in the noisy setting [52], [54] including the precursory work [55]. We

chose the efficient implementation of [54] in which the original pseudo-inverse calculations are replaced

by a quasi-Newton strategy using limited memory BFGS updates. Finally, the IRℓ1 implementation relies

on both the setting of the parameter ε (which controls the degree of nonconvexity) and the choice of the

ℓ1 solver. We have tested two kinds of solvers: the in-crowd algorithm proposed in [56] together with an

empirical setting of ε > 0, and the ℓ1 homotopy algorithm in the limit case ε → 0 following [50]. We

found that ℓ1 homotopy is faster than in-crowd, mainly because the Matlab implementation of in-crowd

(provided by the authors) makes calls to the quadprog built-in function, which is computationally

expensive for large dimension problems.

2) Numerical protocol: Because the competing algorithms work for a single λ value, we need to

define a grid, denoted by {λG
i , i = 1, . . . , Nλ}, for comparison purposes. Such grid is built for each

of the 10 scenarii (k,A,SNR) defined in Table I. It is defined in logscale, and λG
i is increasing with

i. The number of grid points is Nλ = 11. For a given scenario, T = 30 trials are being performed in

which k-sparse vectors x⋆(t) and noise vector n(t) are randomly drawn. This leads us to simulate T

observation vectors y(t) = Ax⋆(t)+n(t), with t ∈ {1, . . . , T}. Specifically, the location of the nonzero

amplitudes in x⋆(t) 6= 0 are uniformly distributed and the amplitude values are drawn according to an
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Fig. 14. Comparison of algorithms for the noisy deconvolution problem, i.e., for the first scenarii reported on Table I. For each

scenario, the algorithms are being evaluated in terms of J -value and of CPU time for Nλ = 11 values λG
i . Evaluations are

averaged over 30 trials. The overall and mean (normalization by Nλ = 11) CPU times related to CSBR (respectively, ℓ0-PD)

are shown as two parallel horizontal lines.

i.i.d. Gaussian distribution. For each trial t, all competing algorithms need to be run Nλ times with

y(t) and λG
i as inputs whereas CSBR and ℓ0-PD are run only once since they deliver estimates for a

continuum of values of λ. Their solution for each λG
i directly deduces from their set of output supports

and the knowledge of the two breakpoints surrounding λG
i .

The algorithms are first evaluated in the optimization viewpoint: the related criteria are the accuracy

of optimization algorithms, i.e., their capacity to reach a low value of J (x;λ) and the corresponding

CPU time. To do this, we need to store the minimum value of J (x;λG
i ) found for each trial and each

λG
i , and average this value over the trials t. This yields a table TabJ(a, λG

i ) where a denotes a candidate

algorithm. Similarly, the CPU time is computed for each λG
i and averaged over the trials t, leading to

another table TabCPU(a, λG
i ). Each table is represented separately as a 2D plot with a specific color for

each algorithm: see, e.g., Fig. 14(A) for scenario A. CSBR and ℓ0-PD are represented with continuous

curves because the averaged minimum value J (x;λ) is computed for a continuum of λ’s, and the CPU
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time is computed only once.

The algorithms are also evaluated in terms of support recovery errors and support cardinality. For

each trial, the support error is defined as the minimum over i of ‖x⋆(t) − x(a, λG
i )‖0, where x(a, λG

i )

stands for the sparse reconstruction at λG
i with algorithm a. Averaging the support errors over the T trials

yields the support error score SE(a). The average order, denoted by Order(a), is computed similarly by

considering the cardinality of the vector x(a, λG
i ) that is the closest to x⋆(t) in the ℓ0 sense. Additionally,

the MDLc estimator defined in (15) is computed for each algorithm and each trial. It is defined as one of

the solutions x(a, λG
i ) for i ∈ {1, . . . , Nλ}. For CSBR and ℓ0-PD, all the output supports are considered

as described in § V-B2. The average MDLc support error MDLc-SE(a) and order MDLc-Order(a) are

finally computed similar to SE(a) and Order(a); see, e.g., Tab. II where the average number or true

detections is reported as well.

3) Technical adaptations for comparison purposes: Small adaptations must be done to make the

comparisons of competing algorithms with CSBR and ℓ0-PD fair enough. First, IRLS and SL0 do not

deliver sparse vectors in the strict sense. It is necessary to sparsify their outputs before computing their

SE(a) score. This is done by running one iteration of cyclic descent (L0LS-CD): most of the small

nonzero amplitudes are then thresholded to 0. Regarding the comparisons in terms of values of J (x;λ),

a post-processing is systematically performed for algorithms that do not rely on the ℓ0-norm. This post-

processing can be interpreted as a local descent of J (x;λ). It consists in: (i) running one iteration

of cyclic descent (L0LS-CD); (ii) computing the squared error related to the output support. L0LS-CD

is indeed a local descent algorithm dedicated to J (x;λ), but the convergence towards a least-square

minimizer is not reached in one iteration.

4) Analysis in the optimization viewpoint: CSBR and ℓ0-PD are always among the most accurate to

minimize the cost function, as illustrated on Figs. 14, 15 and 16. We can clearly distinguish two groups of

algorithms on these figures: IRLS, L0LS-CD and SL0 one the one hand, and the OLS-based algorithms

(SBR, CSBR, ℓ0-PD) and IRℓ1 on the other hand, which are the most accurate. We cannot establish

a clear distinction between the accuracy of SBR and CSBR: one may behave slightly better than the

other depending on the scenarii. On the contrary, SBR and CSBR are often outperformed by ℓ0-PD. The

obvious advantage of CSBR and ℓ0-PD over SBR and IRℓ1 is that they are ℓ0-homotopy algorithms, i.e.,

a set of solutions are delivered for many sparsity levels, and the corresponding λ-values are found in an

adaptive manner. On the contrary, the SBR output support is related to a single λ whose tuning may be

tricky. Another advantage over IRℓ1 is that the structure of forward-backward algorithms is simpler, as

no call to any ℓ1 subroutine is required. Moreover, the number of parameters to tune is also lower: there

October 27, 2014 DRAFT



TECHNICAL REPORT 30

TABLE II

JUMP DETECTION PROBLEM IN THE NOISY SETTING. THE ALGORITHMS ARE EVALUATED IN TERMS OF SUPPORT ERROR

(SE), NUMBER OF JUMPS DETECTED, AND CAPACITY TO RECOVER THE CORRECT ORDER. THE RESULTS RELATED TO THE

MDLC ESTIMATOR ARE INDICATED SIMILARLY.

Scenario E ℓ0-PD CSBR SBR ℓ0LS-CD Sℓ0 IRℓ1 IRLS

SE 1.6 1.6 1.6 5.3 4.0 1.5 1.8

True detection 8.6 8.7 8.6 5.2 7.8 8.7 8.7

Order (true: 10) 8.8 9.0 8.9 5.7 9.6 8.9 9.1

MDL-SE 4.7 4.3 4.1 22.7 5.6 4.1 3.5

True detection 8.7 8.8 8.8 6.9 8.6 8.8 8.8

MDL-Order 12.2 11.9 11.6 26.6 12.7 11.7 11.0

Scenario F ℓ0-PD CSBR SBR ℓ0LS-CD Sℓ0 IRℓ1 IRLS

SE 11.1 11.9 11.8 22.5 11.6 10.9 11.6

True detection 21.2 20.6 20.7 9.2 20.3 20.8 20.7

Order (true: 30) 23.6 23.2 23.2 10.9 22.2 22.5 23.1

MDL-SE 13.7 13.4 13.4 39.2 14.0 13.1 13.3

True detection 21.8 21.8 21.4 12.9 21.6 22.1 21.5

MDL-Order 27.3 27.0 26.3 35.0 27.2 27.2 26.4

Scenario G ℓ0-PD CSBR SBR ℓ0LS-CD Sℓ0 IRℓ1 IRLS

SE 7.3 7.5 7.5 8.9 10.3 7.2 7.5

True detection 4.0 3.6 3.6 3.1 2.9 3.9 4.0

Order (true: 10) 5.23 4.73 4.73 5.17 6.07 4.97 5.57

MDL SE 11.4 10.7 10.9 11.7 15.1 11.2 10.7

True detection 4.2 4.2 4.2 3.0 3.9 4.2 4.4

MDL-Order 9.8 9.1 9.3 7.6 12.8 9.6 9.5

is a single (early) stopping parameter λstop.

Generally speaking, the price to pay for a better performance is an increase of the computation burden.

On Figs. 14, 15 and 16, two lines are drawn for CSBR (respectively, for ℓ0-PD). These lines are horizontal

because the algorithm is run only once per trial, so there is only one computation time measurement.

The first line corresponds to the overall computation time, i.e., the elapsed time from the start to the

termination of CSBR / ℓ0-PD. This time is often more expensive than for other algorithms. However,

the latter times refer to a single execution for some λG
i value. If one wants to recover sparse solutions

for many λG
i ’s, the times must be cumulated. This is the reason why we have drawn a second line for

CSBR and ℓ0-PD corresponding to a normalization (by Nλ = 11) of the overall computation time. In
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Fig. 15. Comparison of algorithms for the jump detection problem, i.e., for the scenarii E, F and G of Table I.

this viewpoint, the CPU time of CSBR and ℓ0-PD are very reasonable.

The computation time depends on many factors among which the implementation of algorithms

(including the memory storage) and the chosen stopping rules. We have followed an homogeneous

implementation of algorithms to make the CPU time comparisons meaningful. We have defined two

sets of stopping rules depending on the problem dimension. The default parameters apply to medium

size problems (m = 300). They are relaxed for problems of larger dimension (m > 500) to avoid huge

computational costs. The stopping rule of CSBR and ℓ0-PD is always λ ≤ λstop = αλG
1 ; α is set to 1

for CSBR and to 0.5 (medium size) or 0.8 (large size) for ℓ0-PD. For L0LS-CD, the maximum number

of cyclic descents (update of every amplitude xi) is set to 60 or 10 depending on the dimension. For

SL0, we have followed the default setting of [41] for the rate of deformation of the nonconvex penalty.

Regarding the local minimization for each penalty, the number of BFGS iterations is set to L = 40 or

L = 5. It is set to 5L for the last penalty (which is the most nonconvex). Regarding IRLS and IRLℓ1, we

keep the same settings whatever the dimension since the computation times remain reasonable for large

dimensions. Finally, SBR does not require any arbitrary stopping rule. The problems of large dimensions
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Fig. 16. Comparison of algorithms for the noise-free deconvolution problem, i.e., for the scenarii H, I and J of Table I. Some

markers do not appear for low λ’s (L0LS-CD, SL0) in the upper figures because they do not lay in the zoom-in window (their

performance is poor).

correspond to the scenarii C and D. We observe on Fig. 14 that the comparison with other algorithms

(trade-off performance vs computation time) is now clearly in favor of CSBR and ℓ0-PD. It is noticeable

that IRℓ1 remains very competitive although the average numerical cost becomes larger.

5) Analysis in the support recovery viewpoint: The support recovery errors are only shown for the

scenarii E to J (tables II and III). For noisy deconvolution problems, they are omitted because the true

support is never exactly recovered (for any algorithm). For such difficult problems, the exact recovery

tests are not informative enough. More sophisticated localization tests are non binary and would take

into account the distance between the true spikes and their wrong estimates [57]. It is noticeable, though,

that the MDLc estimator delivers subsets of realistic cardinality for scenarios A to D (e.g., the subsets

found with CSBR are of cardinalities 33, 9, 15 and 38, the true cardinalities being 30, 10, 10 and 30).

The model orders are also quite accurate for the noisy jump detection problem (table II), and the true

support is often partially detected by several of the considered algorithms. CSBR and ℓ0-PD are among

the best algorithms in terms of support error (SE).
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TABLE III

SPARSE DECONVOLUTION PROBLEM IN THE NOISE-FREE SETTING: EXACT SUPPORT RECOVERY.

Scenario H ℓ0-PD CSBR SBR ℓ0LS-CD Sℓ0 IRℓ1 IRLS

Best SE 2.5 3.6 4.8 11.4 13.0 0.8 6.1

True detection 8.3 8.2 6.8 0.4 0.1 9.5 9.4

Order (true: 10) 9.1 10.0 8.3 2.2 3.2 9.8 14.9

MDL SE 3.6 3.8 5.8 168.5 343.8 1.1 9.0

True detection 8.6 8.6 7.9 3.3 6.6 9.5 9.6

MDL order 10.8 11.0 11.6 153.5 347.0 10.1 18.2

Scenario I ℓ0-PD CSBR SBR ℓ0LS-CD Sℓ0 IRℓ1 IRLS

Best SE 0.9 1.3 2.1 36.7 48.5 3.8 9.4

True detection 29.4 29.3 29.1 0.7 0.8 28.0 27.7

Order (true: 30) 29.7 29.8 30.2 8.2 20.1 29.8 34.8

MDL SE 3.8 3.5 3.7 686.0 444.9 9.5 114.3

True detection 29.5 29.4 29.2 28.6 17.5 28.5 26.4

MDL order 32.8 32.3 32.1 437.0 449.8 36.5 137.2

Scenario J ℓ0-PD CSBR SBR ℓ0LS-CD Sℓ0 IRℓ1 IRLS

Best SE 0.3 3.5 5.3 10.3 10.4 2.4 4.3

True detection 9.8 7.3 5.8 0.6 2.6 8.8 9.2

Order (true: 10) 9.8 8.1 6.9 1.4 5.6 10.0 12.7

MDL SE 2.6 7.7 12.4 176.2 78.6 7.2 69.0

True detection 9.7 8.9 8.0 8.6 3.0 8.9 4.1

MDL order 12.0 15.5 18.5 73.0 74.6 14.9 67.2

The results of Table III and Fig. 16 correspond to the noise-free setting. Here, the deconvolution

problem is considered. The data y are undersampled so that the dictionary A is overcomplete. The

undersampling rate ∆ ≈ m/n is set to 2 in scenarii H and I and 4 in scenario J. Again, CSBR and ℓ0-PD

are among the best (SE, true detection, MDL-order), especially for the most difficult problem J.

VI. CONCLUSION

The choice of a relevant sparse approximation algorithm relies on a trade-off between the desired

performance and the computation time one is ready to spend. The proposed stepwise extensions of OLS

are relatively expensive but very well suited to inverse problems inducing highly correlated dictionaries. A

reason is that they have the capacity to “escape” from local minimizers of J (x;λ) = ‖y−Ax‖22+λ‖x‖0

for a given sparsity level λ [3]. This behavior is in contrast with other classical sparse algorithms.
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We have shown the usefulness and efficiency of the two SBR extensions. For a single λ, CSBR is as

efficient as SBR, and ℓ0-PD improves the SBR and CSBR performance within a larger computation cost.

The main benefit over SBR is that the proposed algorithms provide sparse solutions for a continuum

of λ-values, enabling the utilization of any classical order selection method. We found that the MDL

criterion yields very accurate estimates of the cardinality ‖x‖0.

Our perspectives include the proposal of forward-backward search algorithms that will be faster than

SBR and potentially more efficient for specific inverse problems, e.g., sparse deconvolution. In the standard

version of SBR, CSBR and ℓ0-PD, a single replacement refers to the insertion or removal of a dictionary

element. The cost of an iteration is essentially related to the n linear system resolutions done to test

the single replacements for all dictionary atoms. The proposed algorithms obviously remain valid when

working with a larger neighborhood, e.g., when testing the replacement of two atoms simultaneously,

but their complexity becomes huge. To avoid such numerical explosion, one may rather choose not to

carry out all replacement tests, but only some tests that are likely to be effective. Extensions of OMP

and OLS were recently proposed in this spirit [34] and deserve consideration for proposing efficient

forward-backward algorithms.

APPENDIX A

PROPERTIES OF THE ℓ0 REGULARIZATION PATHS

In this appendix, we prove that the ℓ0-penalized path S⋆P (see Definition 2) is piecewise constant

(Theorem 1) and is a subset of the ℓ0-constrained regularization path S⋆C (Theorem 2). We will denote

the ℓ0-curve by λ 7→ J ⋆(λ) = minS{Ĵ (S;λ)}. Let us recall that it is a concave function, and it is affine

on each interval (λ⋆
i+1, λ

⋆
i ), with i ∈ {0, . . . , I} (Definition 1). Moreover, λ⋆

I+1 = 0 and λ⋆
0 = +∞.

A. Proof of Theorem 1

We prove Theorem 1 together with the following lemma, which is informative about the content of

S⋆P(λ) for the breakpoints λ = λ⋆
i .

Lemma 2 Let i ∈ {1, . . . , I − 1}. Then, for all λ ∈ (λ⋆
i+1, λ

⋆
i ), S

⋆
P(λ) ⊂ S

⋆
P(λ

⋆
i+1) ∩ S

⋆
P(λ

⋆
i ).

For the first and last intervals, we have:

• For all λ ∈ (0, λ⋆
I), S

⋆
P(λ) ⊂ S

⋆
P(λ

⋆
I).

• For all λ ∈ (λ⋆
1,+∞), S⋆P(λ) = {∅} ⊂ S

⋆
P(λ

⋆
1).
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Proof of Theorem 1: By definition, the ℓ0-curve λ 7→ J ⋆(λ) is the concave envelope of the (finite)

set of lines S for all possible subsets S. Because it is affine on the i-th interval (λ⋆
i+1, λ

⋆
i ), J

⋆(λ)

coincides with Ĵ (Si;λ) = E(Si) + λ|Si|, where Si is some optimal subset for all λ ∈ (λ⋆
i+1, λ

⋆
i ).

Let λ ∈ (λ⋆
i+1, λ

⋆
i ) and S ∈ S⋆P(λ). Then, Ĵ (S;λ) = Ĵ (Si;λ). It follows that both lines S and Si

necessarily coincide; otherwise, they would intersect at λ, and line S would lay below the line Si on

either interval (λ⋆
i+1, λ) or (λ, λ⋆

i ), which contradicts the definition of Si. We conclude that S ∈ S⋆P(λ
′)

for all λ′ ∈ (λ⋆
i+1, λ

⋆
i ).

We have shown that the content of S⋆P(λ) does not depend on λ when λ ∈ (λ⋆
i+1, λ

⋆
i ).

Proof of Lemma 2: The first result S⋆P(λ) ⊂ S
⋆
P(λ

⋆
i+1) ∩ S

⋆
P(λ

⋆
i ) is obtained by slightly adapting

the proof of Theorem 1: replace (λ⋆
i+1, λ

⋆
i ) by the closed interval [λ⋆

i+1, λ
⋆
i ], and set λ′ to both endpoints

of this interval.

The second and third results are obtained similarly, by considering the intervals (0, λ⋆
I ] and [λ⋆

1,+∞),

and setting λ′ ← λ⋆
I and λ′ ← λ⋆

1, respectively. It is obvious that S⋆P(λ) reduces to the empty support

for λ > λ⋆
1 since the ℓ0-curve is constant for λ > λ⋆

1.

B. Proof of Theorem 2

The first result is straightforward: for any λ and for S ∈ S⋆P(λ), we have S ∈ S⋆C(|S|). Otherwise,

there would exist S′ with |S′| ≤ |S| and E(S′) < E(S). Then, Ĵ (S′;λ) < Ĵ (S;λ) would contradict

S ∈ S⋆P(λ).

To prove the second result, let us first show that for any i, ∃ki : ∀λ ∈ (λ⋆
i+1, λ

⋆
i ), S

⋆
P(λ) ⊂ S

⋆
C(ki).

Let S ∈ S⋆P(λ) for some λ ∈ (λ⋆
i+1, λ

⋆
i ). Theorem 1 implies that S ∈ S⋆P(λ) for any λ ∈ (λ⋆

i+1, λ
⋆
i ).

Therefore, J ⋆(λ) = Ĵ (S;λ) for λ ∈ (λ⋆
i+1, λ

⋆
i ) and the slope of line S, i.e., |S|, is constant whatever

S ∈ S⋆P(λ) and λ ∈ (λ⋆
i+1, λ

⋆
i ). Let us denote this constant by ki = |S|. According to the first paragraph

of the proof, S ∈ S⋆P(λ) implies that S ∈ S⋆C(ki).

Let us prove the reverse inclusion S⋆C(ki) ⊂ S
⋆
P(λ). Let λ ∈ (λ⋆

i+1, λ
⋆
i ) and S ∈ S⋆C(ki). First, we

have |S| ≤ ki. Second, for any S′ ∈ S⋆P(λ), we have |S′| = ki by definition of ki. We also have

that E(S′) = E(S) because S⋆P(λ) ⊂ S
⋆
C(ki). Finally, Ĵ (S′;λ) ≥ Ĵ (S;λ). S′ ∈ S⋆P(λ) implies that

S ∈ S⋆P(λ). This concludes the proof of the second result.
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