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ℓ2-ℓ0 regularization path tracking algorithms

Charles Soussen⋆, Jérôme Idier, Junbo Duan, and David Brie

Abstract

Sparse signal approximation can be formulated as the mixed ℓ2-ℓ0 minimization problem

minx J (x;λ) = ‖y−Ax‖22+λ‖x‖0. We propose two heuristic search algorithms to minimize J for a

continuum of λ-values, yielding a sequence of coarse to fine approximations. Continuation Single Best

Replacement is a bidirectional greedy algorithm adapted from the Single Best Replacement algorithm

previously proposed for minimizing J for fixed λ. ℓ0 regularization path track is a more complex

algorithm exploiting that the ℓ2-ℓ0 regularization path is piecewise constant with respect to λ. Tracking

the ℓ0 regularization path is done in a sub-optimal manner by maintaining (i) a list of subsets that are

candidates to be solution supports for decreasing λ’s and (ii) the list of critical λ-values around which

the solution changes. Both algorithms gradually construct the ℓ0 regularization path by performing single

replacements, i.e., adding or removing a dictionary atom from a subset. A straightforward adaptation of

these algorithms yields sub-optimal solutions to minx ‖y −Ax‖22 subject to ‖x‖0 ≤ k for contiguous

values of k ≥ 0 and to minx ‖x‖0 subject to ‖y −Ax‖22 ≤ ε for continuous values of ε. Numerical

simulations show the effectiveness of the algorithms on a difficult sparse deconvolution problem inducing

a highly correlated dictionary A.

Index Terms

Sparse signal estimation; ℓ0-constrained least-squares; ℓ0-penalized least-squares; ℓ2-ℓ0 regularization

path; stepwise algorithms; Orthogonal Least Squares; continuation.
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I. INTRODUCTION

Sparse approximation from noisy data is traditionally addressed as the constrained least-square problems

min
x

‖y −Ax‖22 subject to ‖x‖0 ≤ k (1)

or

min
x

‖x‖0 subject to ‖y −Ax‖22 ≤ ε (2)

where ‖x‖0 is the ℓ0-“norm” counting the number of nonzero entries in x, and the quadratic fidelity-to-

data term ‖y −Ax‖22 measures the quality of approximation. Formulation (1) is well adapted when one

has a knowledge of the maximum number k of atoms to be selected in the dictionary A. On the contrary,

it may arise that k is unknown but one has a knowledge of the variance of the observation noise, leading

to the choice of (2) with an appropriate value of ε, related to the noise variance. Since both (1) and (2)

are subset selection problems, they are discrete optimization problems. They are known to be NP-hard

except for specific cases [1].

When no knowledge is available on either k and ε, the unconstrained formulation

min
x

{J (x;λ) = ‖y −Ax‖22 + λ‖x‖0} (3)

is worth being considered, where λ expresses the trade-off between the quality of approximation and the

sparsity level [2]. In a Bayesian viewpoint, (3) can be seen as a limit maximum a posteriori formulation

where ‖y − Ax‖22 and the penalty ‖x‖0 are respectively related to a Gaussian noise distribution and

a prior distribution for sparse signals (specifically, a limit Bernoulli-Gaussian distribution with infinite

Gaussian variance) [3]. Moreover, (3) is well suited to the design of forward-backward (also called

“bidirectional”) algorithms that update the support of x by adding or removing a dictionary atom at each

iteration. Indeed, they can be naturally interpreted as descent algorithms to minimize J (x;λ) [3], [4].

A. Classification of methods

1) ℓ0-constrained least-squares: Let us first consider the constrained least-square problems (1) and (2)

for fixed k or ε. The dedicated discrete optimization algorithms can be categorized into two classes.

First, the forward greedy algorithms explore subsets of increasing cardinalities starting from the empty

set. At each iteration, a new atom is appended to the current subset, therefore gradually refining the

approximation [5]. Greedy algorithms include, by increasing order of complexity: Matching Pursuit

(MP) [6], Orthogonal Matching Pursuit (OMP) [7], and Orthogonal Least Squares (OLS) [8], also
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referred to as forward selection in statistical regression [9] and known as Order Recursive Matching

Pursuit (ORMP) [10] and Optimized Orthogonal Matching Pursuit (OOMP) [11]. The second category

of discrete algorithms dedicated to (1) are thresholding algorithms, where each iteration delivers a subset

of same cardinality k. Popular thresholding algorithms include Iterative Hard Thresholding [12], [13],

Subspace Pursuit [14] and CoSaMP [15], [16].

Among these two categories, greedy algorithms are specifically well-adapted to the resolution of (1)

and (2) for variable sparsity levels k. Indeed, they yield a series of subsets for consecutive cardinalities

k (i.e., for decreasing approximation errors ε) since at each iteration, the current subset is increased by

one element.

2) ℓ0-penalized least-squares: In [3], we evidenced that the minimization of J (x;λ) using a descent

algorithm naturally leads to bidirectional extensions of forward (orthogonal) greedy algorithms. To be

more specific, consider the ℓ0 constrained least-square problem (1) and a given selected support Q. It is

clear that the inclusion of a new element into Q yields a decrease of the least squared error EQ, defined

as the minimum of ‖y −Ax‖22 for x supported by Q. Conversely, an atom de-selection increases the

approximation error. Thus, a descent algorithm dedicated to (1) takes the form of a forward strategy where

no atom de-selection is allowed. On the contrary, the ℓ0-penalized cost function J (x;λ) may decrease

with both an atom selection or de-selection. Therefore, formulation (3) allows one to design a descent

scheme based on a bidirectional search strategy. The algorithms Single Best Replacement (SBR) [3] and

Bayesian OMP [4] have been proposed in this spirit. They are bidirectional descent algorithms adapted

from OLS and OMP, respectively, for ℓ0-penalized least-square minimization. At each iteration, they

modify the current subset by one element. This single replacement consists in appending or removing an

atom from the current subset. The advantage of bidirectional algorithms over forward greedy algorithms

is that an early wrong atom selection may be later cancelled. Bidirectional algorithms include the so-

called stepwise regression algorithms which are OLS forward-backward extensions [9], [17], [18], and

OMP based forward-backward extensions of lower complexity [4], [19].

In this paper, we will address the ℓ0-penalized formulation for various (continuous) sparsity levels λ

and propose new sub-optimal algorithms. The set of solutions to (3) for all λ-values will be referred to

as the ℓ0 regularization path.

3) Connection with the continuous relaxation of the ℓ0 norm: The algorithms described so far are

essentially discrete search algorithms to solve the problems (1), (2) or (3) involving the ℓ0 norm. A

popular alternative approach relies on (i) the relaxation of the ℓ0 norm by a continuous function, convex

or not, that is nondifferentiable at 0; and (ii) the continuous optimization of the resulting cost function.
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Fig. 1. Representation of lines λ 7→ EQ + λ|Q| for various subsets Q. The “ℓ0 curve”, in plain line, is the minimal curve

λ 7→ minQ{EQ + λ|Q|}. It is continuous, concave, and piecewise affine with a finite number of pieces. It characterizes the ℓ0

regularization path.

See, e.g., [20], [21] for ℓ1 minimization and [22]–[27] for nonconvex optimization. It is noticeable that the

ℓ1-norm relaxation leads to algorithms yielding sparse approximations for consecutive cardinalities [20],

[28]. In particular, the well-known homotopy algorithm recovers the ℓ1 regularization path. It reads as a

bidirectional greedy algorithm whose complexity is close to that of OMP [28], [29]. This algorithm will

be considered in the simulation section for comparison purposes (see Section V).

B. Two main ideas

The first and main idea developed here is dedicated to ℓ0-penalized least-squares for various λ-values.

It allows us to design heuristic search strategies for tracking the ℓ0 regularization path. The second idea

is a straightforward adaptation to address (1) and (2) for various values of k and ε.

1) Approach for ℓ0-penalized least-squares: The cost function J (x;λ) handles the trade-off between

low residual ‖y −Ax‖22 and low cardinality ‖x‖0. Our approach is based on the following geometric

interpretation.

First, any subset Q yields a (set of) least-square solution x supported by Q. The cost J (xQ;λ)

associated to the solutions xQ having the sparsest supports is represented by the line of equation λ 7→

EQ + λ‖xQ‖0 (see Fig. 1) where EQ , ‖y −AxQ‖
2
2 stands for the least-square error.

Second, the ℓ0 regularization path is piecewise constant with respect to λ (see Appendix A for a

rigorous proof). Geometrically, this result can be easily understood by noticing that the minimum value

of J (x;λ) with respect to x is obtained for all λ-values by considering the concave envelope of the set
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of lines λ 7→ EQ + λ|Q| for all subsets Q, where |Q| denotes the cardinality operator1. The resulting

piecewise affine curve will be referred to as the “ℓ0 curve” (see Fig. 1). Its edges are related to the best

sparse approximation supports for all λ, and its vertices are the critical λ-values around which the set of

optimal solutions argmin
x
J (x;λ) is changing.

We take advantage of this geometric interpretation to propose two suboptimal search algorithms, named

“Continuation Single Best Replacement” (CSBR) and “ℓ0 regularization path track” (ℓ0-PT) to address (3)

for a continuum of λ-values. CSBR repeatedly minimizes J (x;λ) with respect to x for decreasing λ

values. It is a greedy bidirectional search where the current subset is locally modified at any iteration:

all the possible single replacements are tested. ℓ0-PT is a more complex search maintaining a list of

candidate subsets (for CSBR, only the current subset is updated), each corresponding to an edge of the

ℓ0 curve. Local searches are performed from subsets in the list so as to update the current evaluation

of the ℓ0 curve. Both algorithms yield sparse approximations for continuous sparsity levels λ that are

adaptively delivered by the algorithm.

2) Approach for ℓ0-constrained least-squares: We propose a straightforward adaptation of both algo-

rithms to address (1) and (2) for consecutive values of k or continuous ε. The adaptation simply amounts

to storing the “best subset” explored by the tracking algorithm for any cardinality, i.e., the explored subset

of cardinality k yielding the least squared error.

C. Related works

1) Connection with bi-objective optimization: The tracking problem introduced above can be linked

to the bi-objective optimization literature [30]. The formulations (1), (2) and (3) are related to the same

bi-objective optimization problem because they all intend to minimize both the approximation error

‖y−Ax‖22 and the sparsity measure ‖x‖0. Although x is continuous valued, the bi-objective optimization

problem should rather be considered as a discrete one where both objectives reread EQ and |Q|. Indeed,

there is a one-to-one correspondence between the solutions x and Q of both problems, x = xQ reading

as the least-square minimizer on support Q (2).

1When a line is “minimal”, it is easy to see that ‖xQ‖0 = |Q|, i.e., all least-squares coefficients xi are non-zero since

otherwise, Q could be reduced leading to a new line laying below the line related to Q. Thus, we now consider the lines

λ 7→ EQ + λ|Q| instead of λ 7→ EQ + λ‖xQ‖0.

2When the subdictionary AQ indexed by Q is not full column rank, there are several least-square minimizers. However, when

x is a global minimizer of (3) for some λ-value, the support Q of x yields a full rank matrix AQ [2].
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Fig. 2. Sparse approximation seen as a bi-objective optimization problem. The Pareto frontier gathers the non-dominated points:

no other point can strictly decrease both |Q| and EQ. Bullets and squares are all non-dominated points whereas ‘+’ denotes

dominated points. A supported solution is a minimizer of EQ + λ|Q| with respect to Q for some λ: see the representation of

Fig. 1 in the plane (λ,J ). Q1 and Q3 are supported contrary to Q2.

Fig. 2 is a classical bi-objective representation where each axis is related to a single objective [31],

namely |Q| and EQ. In bi-objective optimization, a point Q is called Pareto optimal when no other point

Q′ can decrease both objectives [30]. In the present context, |Q| takes integer values, thus the Pareto

solutions are obviously the minimizers over Q of EQ subject to |Q| ≤ k for some value of k. Equivalently,

they minimize |Q| subject to EQ ≤ ε for some ε. The Pareto frontier gathers the Pareto solutions, i.e.,

the optimal solutions to both (1) for all k and (2) for all ε. The Pareto solutions are usually classified

as supported and non-supported efficient solutions. The former lay in the convex envelope of the Pareto

frontier (the bullet points in Fig. 2) whereas the latter lay in the nonconvex areas (the square point).

It is well known that any supported solution can be reached by the weighted sum method, i.e., when

minimizing EQ+λ|Q| with respect to Q for some λ-value, while the non-supported solutions cannot [30].

2) ℓ0 regularization path tracking seen as a weighted sum method: In multi-objective optimization, the

weighted sum method is usually considered as a way to transform a difficult optimization problem with

multiple constraints into a simpler unconstrained mono-objective problem. However, the non-supported

solutions cannot be reached using the weighted sum method when some objectives are not convex.

Specifically, the weighted sum formulation (3) may not yield the same solutions as the ℓ0 constrained

formulations (1) and (2) because the ℓ0 norm is nonconvex [2]. Choosing between the weighting sum

method and a more complex method delivering non-supported solutions is a nontrivial question. The

answer depends on the problem at-hand and specifically, on the size of the nonconvex areas in the Pareto
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frontier.

We point out that the previous discussion assumes that an optimal algorithm is available for the weighted

sum method. In our context, the minimization of J (x;λ) is acknowledged to be difficult because J may

have a very large number of local minimizers. In the recent sparse approximation literature, many authors

actually discourage the direct optimization of J for this reason [22], [24]. In [3], however, we showed

that OLS bidirectional extensions are able to “escape” from some local minimizers of J (x;λ) for a

given sparsity level λ. This motivates us to propose efficient OLS based solutions for minimizing J for

variable λ-values.

3) Positioning with respect to other stepwise algorithms: In statistical regression, the word “stepwise”

originally refers to Efroymson’s algorithm [17], proposed in 1960 as an empirical extension of forward

selection (i.e., OLS). Other stepwise algorithms were proposed in the 1980’s [9, Chapter 3] among

which Berk’s and Broersen’s algorithms [18], [32]. All these algorithms perform a single replacement

per iteration and were originally applied to over-determined problems in which the number of columns

of A is lower than the number of rows. More recent forward-backward algorithms were designed as

either OMP [4], [19] or OLS extensions [33], [34]. Their common feature is that they aim to find subsets

of cardinality k yielding a low residual EQ for all k. Although our algorithms share the same objective,

they are based on the refinement of the ℓ0 regularization path. To the best of our knowledge, the idea of

tracking the ℓ0 regularization path is novel. Moreover, we design descent algorithms to minimize J (x;λ)

for a continuum of λ-values while most stepwise algorithms are empirical variations of OLS without any

obvious connection with the cost function J (x;λ).

4) Connection with the Single Best Replacement algorithm: In [3], we proposed the SBR algorithm

to address (3) for a specific sparsity level λ. It is an OLS forward-backward extension in which at each

iteration, the single replacement yielding the largest decrease of J (. ;λ) is selected. Contrary to SBR, the

proposed CSBR and ℓ0-PT algorithms deliver sub-optimal solutions for a continuum of λ-values. They

yield subsets of increasing cardinalities, each being associated to an interval of λ-values in such a way

that the resulting intervals partition R+. SBR, CSBR and ℓ0-PT all read as descent algorithms in different

senses. SBR minimizes the cost J (. ;λ) for a specific λ whereas CSBR minimizes J (. ;λ) for decreasing

λ-values by repeatedly calling SBR. Finally, ℓ0-PT minimizes J (. ;λ) for any λ-value simultaneously

(an iteration does not match a specific λ anymore). Although CSBR and ℓ0-PT both perform a series

of single replacements from candidate subsets, ℓ0-PT is not a direct extension of SBR. Since our first

proposal of CSBR in the conference paper [35], we realized that CSBR can be enhanced by adopting

single replacement rules that differ from the SBR rules. This led us to elaborate the ℓ0-PT version. Also,
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the underlying idea of ℓ0-PT, namely tracking the ℓ0 curve was not developed in [35]. Nevertheless, the

structure of ℓ0-PT is more complex than that of CSBR. Because practical users may be interested in

simple (yet efficient) algorithms, and because CSBR outperforms SBR which is already acknowledged as

an efficient algorithm in the community [27], we feel that CSBR is worth being presented in the present

paper as well.

5) Positioning with respect to continuation algorithms: Generally speaking, the principle of contin-

uation is to handle a difficult problem by solving a sequence of simpler problems with warm start

initialization, and gradually tuning some hyperparameter [36]. In sparse approximation, the continuation

terminology often refers to relaxation methods replacing the ℓ0-norm by the ℓ1-norm. The resulting ℓ2-

ℓ1 optimization problem is solved for decreasing values of the hyperparameter using the solution for

each value as the starting point for the next value3 [5]. In particular, the homotopy algorithm [28],

[29], [39] takes into account that the ℓ2-ℓ1 regularization path is piecewise affine, and tracks the critical

hyperparameter values characterizing the changes in the solution support, i.e., the changepoints between

two consecutive affine intervals. CSBR is designed in a similar manner (although the ℓ2-ℓ0 minimization

steps are solved in a sub-optimal way) by repeatedly calling SBR for decreasing λ-values that are

recursively computed. On the contrary, ℓ0-PT may be seen as a continuation algorithm in some weak

sense only. Although sparse solutions are delivered for continuous hyperparameter values λ, ℓ0-PT does

not rely on sequential resolutions of (3) with decreasing λ’s. It is rather a fully discrete approach that

gradually improves the estimated ℓ0 regularization path.

The paper is organized as follows. In Section II, we properly define the ℓ2-ℓ0 regularization path

and establish its main properties. In Section III, we propose the CSBR algorithm extending SBR for a

continuum of decreasing λ-values. In Section IV, the ℓ0-PT algorithm is proposed based on the piecewise

constant property of the (optimal) ℓ2-ℓ0 regularization path. Although sub-optimal, ℓ0-PT also reconstructs

a piecewise constant path. In Section V, both proposed algorithms are analyzed on a difficult sparse

deconvolution problem. We show that the recovered ℓ0 regularization paths are more accurate than the ℓ1

regularization path obtained by homotopy, and that the performance of OLS and SBR are outperformed

as well. Finally, we investigate the automatic choice of the cardinality k using classical order selection

rules.

3Note that in [37], the word “continuation” has a totally different meaning. It is used to denote a Graduated Non Convexity

(GNC) like approach close to that of [38], where the ℓ0 pseudo-norm is relaxed by a series of concave metrics leading to the

resolution of a series of continuous optimization problems with warm start initialization.
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II. OPTIMAL ℓ2-ℓ0 REGULARIZATION PATHS

A. Basic definitions and working assumptions

Let m×n denote the size of the dictionary A (usually, m ≤ n in sparse approximation). The observation

signal y and the weight vector x are thus of size m × 1 and n × 1, respectively. We assume that any

min(m,n) columns of A are linearly independent so that for any subset Q, the submatrix of A gathering

the columns indexed by Q is full rank, and the least-square error EQ can be numerically computed.

This assumption is however not necessary for the theoretical results provided in the appendix. On the

algorithmic viewpoint, the full rank assumption may be relaxed provided that there exists a simple way

to check that a set of columns are linearly independent. Similar to [3], the proposed algorithm can be

straightforwardly adapted by forbidding to explore any subset associated to linearly dependent columns.

Given a subset Q ⊂ {1, . . . , n} of cardinality lower than min(m,n), we recall that xQ denotes the

related least squares solution and EQ = ‖y − AxQ‖
2
2. Obviously, we have ‖xQ‖0 ≤ |Q|. In [3], we

showed that in non trivial cases involving noisy data, ‖xQ‖0 = |Q| almost surely, i.e., all entries in xQ

are non-zero.

B. Definition and properties of the ℓ2-ℓ0 regularization path

We now properly define the ℓ2-ℓ0 regularization path and state its main properties. The piecewise

constant property (Theorem 1) is the starting point of the tracking algorithm presented in Section IV.

For k ≤ min(m,n), let Xc(k) denote the set of solutions to the ℓ0-constrained least-square problem:

Xc(k) = argmin
Q

EQ subject to |Q| ≤ k. (4)

In the same way, for λ > 0, let Xp(λ) gather the ℓ0-penalized least-square minimizers:

Xp(λ) = argmin
Q

{JQ(λ) , EQ + λ|Q|} (5)

with the implicit constraint |Q| ≤ min(m,n). By extension, let also Xp(+∞) = {∅}.

Theorem 1 Xp(λ) is a piecewise constant function of λ: there exists a decreasing sequence λ⋆
0 , +∞ >

λ⋆
1 > . . . > λ⋆

I > λ⋆
I+1 , 0 such that Xp(λ) is constant on each interval λ ∈ (λ⋆

i+1, λ
⋆
i ).

Proof: See Appendix A.

λ⋆
i will be referred to as the critical values (see Fig. 1). A direct consequence of Theorem 1 is that the ℓ0

curve is piecewise affine since all curves λ 7→ JQ(λ) are affine. We can now properly define the notion

of regularization path.
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Fig. 3. The estimated ℓ0 regularization path is parametrized by subsets Qj (with Q0 = ∅) and the critical λ-values λj around

which the solution changes. The ℓ0 curve is described by the 2D vertices vj : the edge linking vj and vj+1 is supported by the

line λ 7→ JQj
(λ).

Definition 1 The constrained regularization path is the finite set (of sets) Xc = {Xc(k), k = 0, . . . ,min(m,n)}.

Similarly, the ℓ2-ℓ0 regularization path is defined as Xp = {Xp(λ), λ > 0}. Xp contains a finite number

of sets Xp(λ) according to Theorem 1.

The regularization paths Xc and Xp may not coincide. This is actually a consequence of the non

convexity of the ℓ0-norm [2], [31]. Specifically, Xp ⊂ Xc as stated in Theorem 2 below, but the proposition

“Xc(k) ⊂ Xp” may be false. For the example of Fig. 2, one can easily check that Q2 ∈ Xc(k + 1) but

Q2 /∈ Xp since for any λ, JQ2
(λ) > min(JQ1

(λ),JQ3
(λ)).

Theorem 2 Xp ⊂ Xc and for any λ /∈ {λ⋆
I , . . . , λ

⋆
0}, there exists k such that Xp(λ) = Xc(k).

Proof: See Appendix A.

C. Parametrization of the estimated ℓ0 regularization path

Because the optimal ℓ2-ℓ0 regularization path is piecewise constant, we impose that our tracking

algorithms always yield a piecewise constant (sub-optimal) regularization path, and that the related ℓ0

curve is a piecewise affine function with identical endpoints. Let us now introduce some notations.

Similar to the definition of the critical values λ⋆
i for the optimal ℓ2-ℓ0 regularization path, let λj refer

to the estimated regularization path. {λj , j = 0, . . . , J +1} is a decreasing sequence with λ0 , +∞ and

λJ+1 , 0 (see Fig. 3). Additionally, let Qj denote the sub-optimal solution to (5) for λ ∈ (λj+1, λj), and

by extension,Q0 , ∅ for λ > λ1. Using these notations, the ℓ0 curve is the 2D path v = {v1, . . . ,vJ+1} in
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the (λ,J ) domain, with vj = (λj, EQj
+λj |Qj |). Our ℓ0 regularization path tracking procedures estimate

the critical values λj and the corresponding subsets Qj by gradually refining the ℓ0 regularization path.

III. GREEDY CONTINUATION ALGORITHM (CSBR)

Our starting point is the Single Best Replacement algorithm [3] dedicated to the minimization of

J (x;λ) with respect to x, or equivalently to JQ(λ) = EQ + λ|Q| with respect to Q. We first briefly

recall the SBR algorithm for a given λ. Then, the CSBR extension is presented for decreasing and

adaptive λ-values.

A. Single Best Replacement

SBR is a deterministic descent algorithm dedicated to the minimization of JQ(λ) with the initial

solution Q = ∅. Let us denote by Q the active subset and by Q• i a single replacement, i.e., the insertion

or removal of a dictionary column i into/from the active set Q:

Q • i ,







Q∪ {i} if i /∈ Q,

Q\{i} otherwise.
(6)

An SBR iteration is based on (i) the computation of JQ•i(λ) for all i (n insertion and removal trials)

and (ii) the selection of the replacement Q • ℓ yielding the minimal value of JQ•i(λ):

ℓ ∈ argmin
i∈{1,...,n}

JQ•i(λ). (7)

SBR terminates when no replacement decreases the cost function. The stopping condition ∀i, JQ•i(λ) ≥

JQ(λ) rereads:

max
i/∈Q
{EQ − EQ∪{i}}

︸ ︷︷ ︸

λ+

≤ λ ≤ min
i∈Q
{EQ\{i} − EQ}

︸ ︷︷ ︸

λ−

. (8)

When λ > 0, SBR terminates after a finite number of iterations because it is a descent algorithm and

there are a finite number of possibilities for the active set Q ⊂ {1, . . . , n}. In the limit case λ = 0, we

have JQ(0) = EQ. Only insertions are performed since any removal increases the squared error EQ. SBR

thus coincides with the well known OLS algorithm [8]. Generally, the n replacement trials necessitate to

compute EQ•i for all i. In [3], we proposed an efficient (fast and stable) recursive implementation based

on the Cholesky factorization of the Gram matrix At
QAQ when Q is modified by one element (where

AQ stands for the submatrix of A gathering the active columns).

SBR is summarized in Tab. I (in the standard version, the lines within brackets are omitted) and

illustrated in Fig. 4(a). Geometrically, a single replacement yields to a vertical displacement (from top

February 18, 2014 DRAFT



TECHNICAL REPORT 12

TABLE I

SBR ALGORITHM FOR MINIMIZATION OF JQ(λ) WITH RESPECT TO Q FOR FIXED λ. IN THE STANDARD VERSION [3],

Qinit = ∅ AND THE BOLD LINES WITHIN BRACKETS ARE OMITTED. IN BOLD, WE MENTION THE SMALL ADAPTATIONS

WHEN SBR IS REPEATEDLY CALLED BY CSBR (SEE TAB. II). THE BEST SBR ITERATES ARE DENOTED BY QCSBR
k AND

THE RELATED LEAST SQUARED ERRORS BY ECSBR
k .

Inputs: A, y, λ, active set Qinit

[iinit /∈ Qinit and tables QCSBR
k and ECSBR

k ]

Step 0: Set iter = 1 and Q = Qinit.

[Set iter = 2 and Q = Qinit ∪ {iinit}]

Step 1: For i ∈ {1, . . . , n}, compute JQ•i(λ).

[If iter = 2]

[Compute ℓ ∈ argmini6=iinit
JQ•i(λ)]

[Else]

Compute ℓ ∈ argmini JQ•i(λ).

[End if]

If JQ•ℓ(λ) < JQ(λ),

Set Q = Q • ℓ.

Else,

Terminate SBR.

[Compute λ+ and i+ according to (9) and (10)]

End if.

Set iter = iter+ 1 and go to Step 1.

Outputs: • Q = SBR(Qinit;λ).

[[Q, λ+, i+] = SBR(Qinit; λ, iinit)] [Updated tables QCSBR
k and ECSBR

k ]

to bottom) between the lines λ 7→ JQ(λ) and λ 7→ JQ•ℓ(λ) associated to consecutive active sets. By

default, the initial active set is empty [3]. In the following, we propose a continuation strategy based on

recursive calls to SBR for decreasing λ-values (from infinity to 0) with the last SBR output as initial

solution. In subsection III-B, we propose a recursive solution to decrease λ adaptively to the data. The

proposed CSBR algorithm is finally detailed in subsection III-C.

B. Principle of the continuation algorithm

Consider the execution of SBR for a given λ = λj yielding the support Q = SBR(Qinit;λj) as output,

where Qinit stands for the initial support. The stopping condition (8) is thus fulfilled for active set Q and

λ = λj . Moreover, the output of SBR(Q;λ) is equal to Q whenever λ < λj is larger than λ+ defined

February 18, 2014 DRAFT



TECHNICAL REPORT 13

λ

JQ(λ)

λj0

Q0

Q4
+
+

+

–

Q1

Q2Q3

EQ2

EQ4

EQ3
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EQ0

λ

JQ(λ)

λj+1 = λ+

EQ∪{i+}

+

+/-

λj

Q∪ {i}
Q ∪ {i+}

Q

Q\{i}

EQ

0

(a) (b)

Fig. 4. Graphical interpretation of SBR and CSBR. (a) SBR: for a specific λ = λj , a single replacement Q • ℓ yields a

vertical displacement (from top to bottom) from lines JQ(λ) to JQ•ℓ(λ). The slope |Q| is increased (insertion) or decreased

(removal) by one. The initial active set is empty (horizontal line). Here, three insertions and a removal are being performed.

(b) CSBR: recursive computation of λ. Q is the output of SBR for λ = λj : all dashed lines JQ•i(λ) lay above JQ(λ) when

λ = λj . The line associated to Q∪ {i+} is located below all other parallel lines Q ∪ {i}. i+ is the first index to be appended

into Q during the call SBR(Q;λj+1).

in (8) since (8) is fulfilled again. Therefore, we propose to perform the next call to SBR(Q;λj+1) with

λj+1 = λ+ = λj + JQ(λj)−min
i/∈Q
JQ∪{i}(λj). (9)

When λ < λ+, the stopping condition (8) is violated, hence the cost JQ(λ) decreases with a single

replacement (insertion). For λ = λ+, the first inequality in (8) becomes an equality: JQ(λ) = JQ∪{i}(λ)

for some value of i, named i+. To avoid any confusion regarding the non-strict decrease of the cost

function, the SBR execution for λ = λ+ shall be understood as the limit case of the behavior of SBR

for λ → λ+, λ < λ+. In other words, we impose that in the first iteration of SBR(Q;λj+1), an atom

indexed by:

i+ ∈ argmax
i/∈Q

{EQ − EQ∪{i}} = argmin
i/∈Q

JQ∪{i}(λj) (10)

is selected. In the second iteration, the single replacement tests are all performed except the removal

of i+ to avoid infinite loops. This small adaptation of SBR is summarized (bold lines within brackets)

in Tab. I, together with the computation of λ+ and i+, now provided as algorithm outputs. Because all

values of JQ∪{i}(λj) are computed during the insertion trials, λ+ can be directly computed from (9)

with almost no additional cost at the last iteration of SBR. Fig. 4(b) illustrates that:
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TABLE II

CSBR ALGORITHM. THE BEST EXPLORED SUBSETS ARE DENOTED BY QCSBR
k AND THE SBR OUTPUTS BY Qj .

Inputs: A, y, K and/or ε

Set j = 1, λ0 = +∞, Q0 = ∅.

Compute λ1 and i+ using (11).

While (λj > 0), (|Qj−1| < K) and (EQj−1
> ε),

Call [Qj , λj+1, i
+] = SBR(Qj−1;λj , i

+).

Do j = j + 1.

End while

Outputs: • Best subsets QCSBR
k and related squared errors ECSBR

k (k = 0, . . . ,K).

• Estimated regularization path: lists of critical values λj , list of subsets Qj and the squared errors EQj
.

• for λ < λj , any removal increases the cost function JQ(λ): the dashed line related to Q\{i} lays

above the one related to Q;

• similarly, for λ ≥ λj , any insertion Q ∪ {i} increases the cost function JQ(λ);

• the lines Q and Q∪{i+} intersect for λ = λ+. The + label in the figure refers to the selection of i+

at the first iteration of SBR(Q;λ+). The +/- arrow represents further single replacements occurring

from the second iteration.

C. CSBR algorithm

The structure of CSBR is summarized in Tab. II. The calls Qj = SBR(Qj−1;λj) deliver subsets for

decreasing λj with λ0 = +∞ and Q0 = ∅. Qj is the sub-optimal solution corresponding to all λ-values

in (λj+1, λj ], and the λj values are updated according to (9) with Q ← Qj . At the very first iteration,

we have Q0 = ∅, and (10) yields:

i+ ∈ argmax
i∈{1,...,n}

|〈y,ai〉|

‖ai‖2
and λ1 =

〈y,ai+〉
2

‖ai+‖
2
2

. (11)

The CSBR stopping conditions involve a maximum cardinality (|Qj | ≥ K) and/or a threshold on

the squared error (EQj
≤ ε). Additionally, CSBR stops when λj+1 ≤ 0, which means that the whole

range of sparsity levels λ ∈ (0,+∞) has been scanned. This condition is however rarely met when

dealing with real noisy data. In any case, SBR is never stopped before convergence (here, recall that

SBR terminates after a finite number of iterations). In the pseudo-code version of Tab. II, CSBR yields

k-sparse approximations for consecutive k’s up to the storage of the best intermediate SBR iterates. A

subset Q is stored as the “best iterate” of cardinality k = |Q| if the squared error EQ is lower than that of
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the already stored iterate of same cardinality k. The sequence of best SBR iterates is updated whenever

SBR is called (see Tab. I). This yields sparse supports for contiguous k ∈ {0, . . . ,K} because the initial

support is empty and a series of single replacements are performed to explore nested subsets.

Note that a given support can never be explored twice while running SBR because SBR is a descent

algorithm for fixed λ. On the contrary, a support might be explored twice using CSBR (during two

calls to SBR for different λ-values) but never indefinitely. As illustrated in Fig. 4(b), each λj-value is

associated with the intersection between two lines λ 7→ JQ(λ) and λ 7→ JQ∪{i}(λ). Because there are a

finite number of such 2D lines, the number of possible intersections is finite.

IV. TRACKING THE ℓ0 REGULARIZATION PATH (ℓ0-PT)

As seen in Section II, the optimal ℓ2-ℓ0 regularization path is characterized by a polygonal and concave

ℓ0 curve (Fig. 1). Here, we propose to gradually refine some concave ℓ0 curve (represented in Fig. 3)

by updating the list of critical values {λ1, . . . , λJ} and the corresponding subsets {Q0, . . . ,QJ}. For

CSBR, the iteration number j identifies with the j-th subset Qj in the path because the path is gradually

constructed by working for decreasing λj values. Therefore, the interval (λj+1, λj ] found in the j-th

iteration is never updated in the subsequent iterations. On the contrary, at each iteration of the ℓ0-PT

algorithm, the ℓ0 regularization path is already constructed on λ ∈ (0,+∞). ℓ0-PT performs a path

refinement: some subset Qj is selected and a local search is performed to improve the ℓ0 regularization

path. When an improvement occurs, the refined ℓ0 curve lays below the former. Let us now specify how

the support Qj is selected (subsection IV-A) and explored (subsection IV-B).

A. Selection of the support Qj to be explored

Assume that some current estimation of the ℓ0 regularization path is available according to the concave

representation of Fig. 3. For any subsetQj in the path, let us define the Boolean indicator explored(j) =

1 if Qj has already been explored in the previous iterations (i.e., the path improvements induced by single

replacements from Qj have already been taken into account), and explored(j) = 0 otherwise. The

current iteration of ℓ0-PT selects the unexplored supportQj of lowest cardinality. Therefore,Q0, . . . ,Qj−1

have necessarily been already explored: indeed, the cardinality of Qj increases with j by concavity of

the estimated ℓ0 curve (Fig. 3).

B. Exploration of support Qj

Once Q = Qj has been selected, ℓ0-PT attempts to modify it by performing single replacements:
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Qj ∪ {i+}

λ

(a) (b)

Fig. 5. Best insertion into the subset Qj belonging to the ℓ0 regularization path. (a) When λ+ ≤ λj+1, the new line Qj∪{i+}

lays above the ℓ0 curve, which is thus not improved. (b) When λ+ > λj+1, Qj ∪ {i+} intersects one or two edges of the ℓ0

curve. Qj ∪ {i+} is inserted as a new edge and all edges laying above the line Qj ∪ {i+} are removed.

• Test all possible insertionsQ∪{i} and attempt to include the best subsetQ∪{i+} in the regularization

path.

• Test all possible removals Q\{i} and attempt to include the best subset Q\{i−} in the regularization

path.

• If Q still belongs to the ℓ0 curve, mark it as explored.

In particular, when no single replacement can improve the path, Qj is labeled as explored and the path

is unchanged.

1) Insertion tests: All possible insertions Q∪ {i} (i /∈ Q) are tested by computing the squared errors

EQ∪{i}. Similar to SBR and CSBR, this task amounts to solving n − |Q| least-square problems. The

best insertion i+ is given in (10). Geometrically, both lines JQ(λ) = EQ + λ|Q| and JQ∪{i+}(λ) =

EQ∪{i+} + λ(|Q| + 1) intersect at λ = λ+. Moreover, if λ+ ≤ λj+1, the latter lays above the ℓ0 curve

by concavity of the ℓ0 curve; see Fig. 5(a). Thus, no improvement of the ℓ0 curve is possible. When

λ+ > λj+1, there are one or two intersections between JQ∪{i+}(λ) and the ℓ0-curve. ℓ0-PT updates it

by inserting Q∪ {i+} as a new edge and removing all existing edges laying above it (see Fig. 5(b)).

2) Removal tests: We adopt a similar analysis. The removal yielding the least squared error is given

by:

i− = argmin
i∈Q

{EQ\{i} − EQ} (12)
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0 λj+1 λj λ−

Qj

JQ(λ)

Qj\{i−}

λ 0 λλj+1 λjλ−

Qj\{i−}QjJQ(λ)

(a) (b)

Fig. 6. Best removal from subset Qj belonging to the ℓ0 regularization path. (a) When λ− ≥ λj , the new line Qj\{i
−} lays

above the ℓ0 curve, which is thus not improved. (b) When λ− < λj , Qj\{i
−} intersects one or two edges of the ℓ0 curve.

Qj\{i
−} is inserted as a new edge and all edges laying above the line Qj\{i

−} are removed.

and both lines JQ(λ) and JQ\{i−}(λ) intersect at

λ = λ− , EQ\{i−} − EQ. (13)

It is easy to check that if λ− ≥ λj , the line JQ\{i−}(λ) lays above the ℓ0 curve and does not intersect it,

thus the ℓ0 curve is not improved. On the contrary, when λ− < λj , an improvement occurs by inserting

Q\{i−}: see Fig. 6.

3) Refinement of the ℓ0 regularization path: When subset Qj is explored, either 0, 1, or 2 new

supports may be included in the regularization path depending on the values of λ+ and λ−. Whenever

new supports are included, their explored status is set to 0. The regularization path update simply relies

on the computation of line intersections in the plane. When a path refinement occurs, the edges of the

previous ℓ0 curve laying above the new one are erased whether the corresponding supports have been

already explored or not: see, e.g., Fig. 5(b). These erased supports are not kept in memory in the further

iterations of ℓ0-PT.

C. Comments on the ℓ0-PT algorithm

The ℓ0-PT algorithm is summarized in Tab. III. Similar to CSBR, the stopping conditions involve a

maximum cardinality |Qj−1| ≥ K and/or a minimum threshold EQj−1
≤ ε where j denotes the lowest

index such that Qj is unexplored.
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TABLE III

ℓ0-PT ALGORITHM. SUBSETS QPT
k ARE DELIVERED IN OUTPUT FOR ANY CARDINALITY k.

Inputs: A, y, K and/or ε

J = 0, Q0 = ∅, λ0 = +∞, λ1 = 0. Set explored(0) = 0 and j = 0.

While (|Qj | < K) and (EQj−1
> ε),

Compute i+ according to (10) and set λ+ = EQj
− EQj∪{i+}.

If |Qj | > 2, compute i− according to (12) and set λ− = EQj\{i
−} − EQj

.

Set explored(j) = 1.

If (λ+ > λj+1),

Add Qj ∪ {i+} to the regularization path with status explored set to 0.

Update the regularization path by removing subsets.

End if

If (λ− < λj),

/* When Qj ∪ {i+} has been included in the ℓ0 curve: */

If JQj\{i
−}(λ) intersects the edges of the ℓ0 curve,

Add Qj\{i
−} to the regularization path with status explored set to 0.

Update the regularization path by removing subsets.

End if

End if

Select the lowest j such that explored(j) = 0.

End while

Outputs: • Estimated ℓ0 regularization path {Qj , j = 0, . . . , J} and squared errors EQj
.

• Critical values λj , j = 0, . . . , J .

• Best explored subsets QPT
k and their squared errors EPT

k (k = 0, . . . , K).

Let us highlight the main differences between ℓ0-PT and CSBR. First, we stress that the current iteration

of ℓ0-PT is related to an edge of the ℓ0-curve, i.e., an interval (λj+1, λj) whereas the current iteration of

CSBR is related to a specific λj-value. Second, we remark that in CSBR, the computation of the next

value λj+1 = λ+ ≤ λj is only based on the violation of the lower bound of the stopping condition of

SBR (8), corresponding to atom insertions. In ℓ0-PT, the atom removals (λ− ≥ λj) are considered as

well. Therefore, the λ-values are not scanned in a decreasing order anymore. This may lead to substantial

improvement of the very sparse solutions found in the early iterations within an increased computation

time, as we will see hereafter.
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(a) Simulated data (17 Gaussian features) (b) λ = 500
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(c) λ = 10 (d) λ = 0.5

Fig. 7. Sparse deconvolution with a low-pass filter (results excerpted from [3]). (a) Simulated data with 17 Gaussian features.

The signal-to-noise ratio is equal to 20 dB. (b,c,d) Spike signals obtained as SBR outputs and related data approximation

signals with empirical tuning of λ: λ = 500, 10 and 0.5, respectively. The estimated amplitudes x are represented with vertical

bars. Their supports are of size 5, 12, and 18. The computation time remains below 3 seconds in a Matlab implementation

specific to deconvolution [3].

V. APPLICATION TO SPARSE SPIKE TRAIN DECONVOLUTION

The proposed algorithms are evaluated on a spike train deconvolution problem of the form y = h∗x⋆+b

where the impulse response h is a low-pass filter and the noise b is assumed to be i.i.d. and Gaussian.

The problem rereads y = Ax+ b where A is a Toeplitz matrix whose columns are shifted versions of

h. Specifically, h is a Gaussian filter of standard deviation σ = 50: the Gaussian pattern induced by a

spike x⋆i 6= 0 has a width equal to 301 samples. This yields a matrix A of size 3000× 2700. This sparse

signal restoration problem is difficult because the columns of A are highly correlated, and a number of

fast algorithms that are efficient for well-conditioned dictionaries fail in this situation.

Fig. 7 illustrates the behavior of SBR for decreasing λ-values. The simulated data y are related to an

unknown sparse signal x⋆ including 17 spikes. Some spike locations are close enough so that the resulting

Gaussian features overlap, and other spikes of small amplitudes are drowned in the noise. For the largest
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λ, only the main Gaussian features are recovered. While λ decreases, the other features are reconstructed

together with some false spike detections. In [3], we advocated that SBR behaves much better than

simpler and faster ℓ0 algorithms such as iterative thresholding algorithms (Iterative Hard Thresholding,

CoSaMP, Subspace Pursuit) which have been proposed in the context of compressive sensing, i.e., for

relatively well conditioned dictionaries. Unsurprisingly, SBR outperforms OMP based algorithms of lower

complexity as well as the basis pursuit denoising algorithms relying on the ℓ1 relaxation of the ℓ0 norm.

Other authors have drawn similar empirical conclusions regarding the efficiency of OLS based algorithms

for ill-conditioned problems [11], [34], [40]. We found that SBR is as efficient as the Iterative Reweighted

ℓ1 algorithm, associated to nonconvex continuous relaxations of the ℓ0 norm [22]. However, the structure

of SBR is simpler (no call to any ℓ1 subroutine is required) and the number of parameters to tune is

much lower: there is a single parameter λ and no arbitrary stopping condition. Although the cost per

iteration of SBR is relatively high given the large number of linear inversions per iteration, the number

of iterations is very limited (less than 25 iterations for the deconvolution problem of Fig. 7). On the

contrary, the cost per iteration of Iterative Hard Thresholding is low but the convergence necessitates at

least 10,000 iterations leading to an overall computation time larger than that of SBR.

The following simulations aim to show that (i) CSBR and ℓ0-PT improve the SBR efficiency, and (ii)

in a practical viewpoint, they may be simpler to use because the empirical tuning of λ (which is the

main difficulty when using SBR) is not a limitation anymore, and the use of automatic selection rules is

enabled. For simplicity reasons, algorithms are compared in terms of approximation error for the same

cardinality. An alternative viewpoint would be to evaluate the supports of the sparse signals in terms of

number of good spike detection and false alarms. See e.g., [41] for such comparison of sparse algorithms

including SBR. For difficult problems though, these tests may not be informative enough because a very

few spikes are exactly recovered by any algorithm. More sophisticated localization tests are non binary

and take into account the distance between the true spikes and their wrong estimates [42], [43].

A. Comparison SBR vs CSBR for fixed sparsity level

Let us first illustrate the benefit of CSBR over SBR. Fig. 8(a) compares the supports of cardinality k

yielded by OLS and CSBR, and the SBR outputs of same cardinality where SBR has been run for various

sparsity levels λ until the cardinality k is found. The results are represented in the plane (k, EQ). We

observe that the CSBR curve lays below the OLS and SBR curves (these three curves are almost identical

for k ≤ 16). Moreover, the SBR curve includes some irregularities indicating a strong sensitivity to small

variations of λ around specific λ-values. The cardinality of the SBR output does not systematically
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(a) OLS vs outputs of SBR(λ) vs CSBR (b) CSBR vs iterates of SBR(λ)

Fig. 8. Comparison of OLS, SBR and CSBR. The results are represented in the plane (|Q|, EQ). The star represents the

unknown solution: ‖x⋆‖0 = 17 and ‖y − h ∗ x⋆‖22 = ‖b‖22. (a) OLS and CSBR are run once with the stopping conditions

K = 25 and ε = 0. SBR is run repeatedly for all values λj obtained in output of CSBR (estimated regularization path). The

supports Qk (k ≤ K) yielded by OLS and CSBR are compared with the outputs Qj = SBR(∅;λj). (b) Same execution of OLS

and CSBR. SBR is run for two values λ1 > λ2. For each execution, the SBR iterates are all represented (squares/diamonds).

The output supports SBR(∅;λ1) and SBR(∅;λ2) are of cardinalities 18 and 24, respectively (in grey color).

increase while λ decreases: it is successively equal to 19, 18, 17, 18, and 21 (Fig. 8(a)).

The obvious advantage of CSBR over SBR is that a single execution of CSBR delivers solutions

(QCSBR
k , ECSBR

k ) for any k without empirical tuning of parameters (except for the usual stopping criteria

K and/or ε). On the contrary, the SBR output support is related to a single λ, whose tuning may be

tricky. Although SBR works for fixed λ, one could think of SBR as a continuation method in the

cardinality domain because consecutive supports are nested. In other words, storing the SBR iterates

obtained while running SBR(∅;λ) yields subsets QSBR
k for consecutive values of k. We found that this

strategy is ineffective: the best iterates provided by SBR have an approximation error substantially larger

than the CSBR solutions of same cardinality. See Fig. 8(b) where SBR has been run for two sparsity

levels λ1 > λ2.

B. Comparison of continuation algorithms for variable sparsity levels

We compare four strategies to reconstruct supports for all cardinalities k: OLS, CSBR and ℓ0-PT for ℓ2-

ℓ0 continuation and the homotopy algorithm solving the ℓ2-ℓ1 continuation problem. The ℓ1 regularization

not only induces a sparsity constraint but also a penalty on the amplitudes |xi|. Therefore, the squared

errors ‖y −Ax‖22 related to the homotopy solutions do not match the best possible approximation EQ,
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Fig. 9. Comparison of OLS, CSBR, and ℓ0-PT for ℓ2-ℓ0 continuation, and the homotopy algorithm for ℓ2-ℓ1 continuation

(LASSO).

where Q is the support of x. To make the comparison fair with the orthogonal greedy algorithms based

on the ℓ0-norm, a debiasing post-processing is necessary. The evaluation of EQ requires to compute an

orthogonal projection of the data y for any support Q obtained by ℓ1 homotopy. Fig. 9(a) illustrates that

even with debiasing, the homotopy solutions are less accurate than those of OLS, CSBR and ℓ0-PT. ℓ0-PT

substantially improves the OLS and CSBR performance but the computation cost is increased. With the

stopping parameters K = 34 and ε = 0, 34 iterations of OLS are proceeded versus 58 (number of single

replacements from the initial empty support) for CSBR and 113 for ℓ0-PT. Regarding ℓ0-PT, 8% of the

iterations are ineffective: no single replacement improves the current regularization path. For 62% of the

iterations, a new support is generated and included in the current regularization path. Finally, two new

supports are included for 30% of the iterations. Considering that the cost per iteration of ℓ0-PT is almost

identical to that of CSBR (except for the ℓ0-curve update), the price to pay for the better performance

with ℓ0-PT is roughly a double computation cost.

Fig. 10 provides an insight on the behavior of ℓ0-PT and CSBR. During the first 25 iterations, ℓ0-PT

mainly operates atom selections similar to OLS. The explored subsets are thus of increasing cardinality

and the sparsity level λ is decreasing (Figs. 10(c,d)). From iterations 25 to 40, the very sparse solutions

previously obtained (k = 20, 19, . . . , 7) are improved as the algorithm performs a series of atom de-

selections. They are being improved again around iteration 80. On the contrary, CSBR explores supports

of “globally” increasing cardinalities (although some de-selections are done). The sparsest solutions are

never improved because CSBR works for decreasing λ-values (Figs. 10(a,b)).
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Fig. 10. Empirical behavior of CSBR and ℓ0-PT. (a) CSBR: cardinality of the current support after each single replacement

(iteration number in horizontal axis) during the calls to SBR. (b) CSBR: critical values λj explored, represented in log-scale.

SBR is executed for each λj , and the number of single replacements for fixed λj matches the length of the horizontal steps

in the figure. (c) ℓ0-PT: cardinality of the supports appended to the regularization path during the ℓ0-PT iterations. At each

iteration, 0, 1 or 2 supports are included. Vertical steps appear whenever two supports are simultaneously included. (d) ℓ0-PT:

representation in log-scale of the sparsity interval (λj+1, λj) scanned during the current iteration (grey color). When the grey

bars reach the bottom of the image, the lower bound equals λj+1 = 0.

C. Model order selection

The proposed continuation algorithms are naturally compatible with most classical methods of model

order selection [44], [45] because they provide a single (sub-optimal) candidate solution QCSBR
k and

QPT
k for each cardinality k = 0, . . . ,K. Here, we assume that the variance of the observation noise is

unknown, and we consider two categories of cost functions for the estimation of k. The first take the
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form argmink{m log(Ek)+αk}, where m is the size of y and α equals 2, logm, and 2 log logm for the

Akaike (AIC), Minimum Description Length (MDL) and Hannan and Quinn criteria, respectively [44]4.

The second category are cross-validation criteria [46], [47]. In the leave-one-out version, they read

argmink ‖y − ŷ(k)‖22/m where the i-th entry of ŷ(k) is defined as the i-th entry of Ax(y[i], k) with

y[i] the reduced observation signal obtained by removing the single observation yi from y.

The sparse approximation framework allows one to derive simplified expressions of the cross-validation

criterion and its generalized versions. The interested reader is referred to the books [9, Chap. 5] and [45]

for more details. For sparse deconvolution problems, we found that the Akaike and cross validation criteria

severely over-estimate the expected number of spikes (45 and 50 spikes are detected with CSBR and

ℓ0-PT, respectively whereas the unknown signal x⋆ only includes 17 spikes). Their generalized versions

behave similarly. The MDL criterion yields the most realistic results (25 and 20 spikes are found with

CSBR and ℓ0-PT, respectively). Furthermore, the number of spikes is underestimated for higher noise

levels: 8 spikes are found with both CSBR and ℓ0-PT for a signal-to-noise ratio of 0 dB. This behavior

is relevant because for highly noisy data, the smallest spikes are drowned in the noise. Thus, one cannot

expect to detect them.

VI. CONCLUSION

The choice of a relevant sparse approximation algorithm relies on a trade-off between the desired

performance and the computation time one is ready to spend. The proposed bidirectional OLS-based

algorithms are relatively expensive but very well suited to inverse problems inducing highly correlated

dictionaries. A reason is that they have the capacity to “escape” from local minimizers of the cost function

J (x;λ) = ‖y−Ax‖22+λ‖x‖0 for a given sparsity level λ [3]. Actually, each iterate of the SBR algorithm

is a local minimizer of J . This behavior is in contrast with other classical sparse algorithms which cannot

escape from a local minimizer of J . The efficiency of SBR is acknowledged by other researchers [27].

Here, we have derived two new algorithms from SBR, namely CSBR and ℓ0-PT, and we have shown that

their efficiency is significantly increased over SBR. Moreover, the proposed algorithms provide solutions

for a continuum of λ-values and contiguous cardinalities, enabling the utilization of any classical order

selection method based on the optimization of a simple criterion depending on the order k. We found

that the MDL criterion specifically yields accurate estimates of the cardinality ‖x‖0 in contrast to the

4Note that when the noise variance is known, the first term log(Ek) appearing in the cost function is replaced by a quadratic

term proportional to Ek, leading to ℓ0 penalized least-square formulations.

February 18, 2014 DRAFT



TECHNICAL REPORT 25

other simple criteria we tested. Other more elaborate criteria proposed recently could be considered as

well [48].

Our perspectives include the proposal of bidirectional search algorithms for mixed ℓ2-ℓ0 optimization

that will be faster than SBR and potentially more efficient for specific inverse problems, e.g., sparse

deconvolution. In the standard version of SBR, CSBR and ℓ0-PT presented here, a single replacement

refers to the insertion or removal of a dictionary element. The cost of an iteration is essentially related to

the n linear system resolutions done to test the single replacements for all dictionary atoms. The proposed

algorithms obviously remain valid when working with a larger neighborhood, e.g., when testing the

replacement of two atoms simultaneously, but their complexity becomes huge. To avoid such numerical

explosion, one may rather choose not to carry out all replacement tests, but only some tests that are likely

to be effective. Monodirectional extensions of OMP and OLS were recently proposed in this spirit [34]

and deserve consideration for proposing efficient bidirectional algorithms.

APPENDIX A

PROPERTIES OF MIXED ℓ2-ℓ0 REGULARIZATION PATHS

In this appendix, we prove that the optimal ℓ2-ℓ0 regularization path Xp (see Definition 1) is piecewise

constant (Theorem 1) and is a subset of the ℓ0 constrained regularization path Xc (Theorem 2).

A. Proof of Theorem 1

Let λ 7→ J (λ) refer to the ℓ0 curve. For finite λ, J (λ) is the minimum of JQ(λ) over Q. Function

λ 7→ J (λ) is continuous, increasing and piecewise affine as the minimum of a finite set of increasing

and affine functions λ 7→ JQ(λ). The critical values λ⋆
i , introduced in Theorem 1 and Fig. 1, delimit

the intervals on which J is affine. In particular, for λ ≤ λ⋆
I , Xp(λ) gathers the supports of the sparsest

unconstrained least-square minimizers while for λ ≥ λ⋆
1, Xp(λ) reduces to the empty support and J (λ) =

‖y‖22.

Let us now prove Theorem 1. Simultaneously, we will prove the additional technical result.

Lemma 1 If λ⋆
i+1 > 0, Xp(λ) ⊂ Xp(λ

⋆
i+1)∩Xp(λ

⋆
i ) for λ ∈ (λ⋆

i+1, λ
⋆
i ), and when λ ∈ (0, λ⋆

I), Xp(λ) ⊂

Xp(λ
⋆
I).

Proof of Theorem 1 and Lemma 1: Function J (λ) is affine on a given interval [λ⋆
i+1, λ

⋆
i ] and reads

J (λ) = JQi
(λ) = EQi

+ λ|Qi| where Qi is a subset of {1, . . . , n}. Let us show that for λ ∈ (λ⋆
i+1, λ

⋆
i ),

Xp(λ) is a constant set.
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Let λ ∈ (λ⋆
i+1, λ

⋆
i ) and Q ∈ Xp(λ). Then, JQ(λ) = JQi

(λ). Both lines JQ and JQi
necessarily

coincide, otherwise they would intersect at λ, and JQ would lay below JQi
on either (λ⋆

i+1, λ) or

(λ, λ⋆
i ) which contradicts the definition of Qi.

We have shown that Q ∈ Xp(λ) implies that JQ(λ
′) = J (λ′), and hence Q ∈ Xp(λ

′) for all λ′ ∈

[λ⋆
i+1, λ

⋆
i ]. Thus, the content of Xp(λ) does not depend on λ when λ ∈ (λ⋆

i+1, λ
⋆
i ). Moreover, we have

shown that Xp(λ) ⊂ Xp(λ
⋆
i+1) ∩ Xp(λ

⋆
i ) since JQ(λ

′) = J (λ′) holds for λ′ = λ⋆
i+1 and λ⋆

i .

B. Proof of Theorem 2

Proof: The first result is obvious: for any λ and for Q ∈ Xp(λ), we have Q ∈ Xc(|Q|). Otherwise,

there would existQ′ with |Q′| ≤ |Q| and EQ′ < EQ. Then, JQ′(λ) < JQ(λ) would contradictQ ∈ Xp(λ).

Let us show that for any i, ∃ki : ∀λ ∈ (λ⋆
i+1, λ

⋆
i ), Xp(λ) ⊂ Xc(ki).

Let Q ∈ Xp(λ) for some λ ∈ (λ⋆
i+1, λ

⋆
i ). Theorem 1 implies that Q ∈ Xp(λ) for any λ ∈ (λ⋆

i+1, λ
⋆
i ).

Therefore, J (λ) = JQ(λ) for all λ ∈ (λ⋆
i+1, λ

⋆
i ) and the slope of JQ, i.e., |Q|, is constant whatever

Q ∈ Xp(λ) and λ ∈ (λ⋆
i+1, λ

⋆
i ). Let us denote this constant by ki = |Q|. According to the preceding

paragraph, Q ∈ Xp(λ) implies that Q ∈ Xc(|Q|) = Xc(ki).

Let us prove the reverse inclusion. Let λ ∈ (λ⋆
i+1, λ

⋆
i ) and Q ∈ Xc(ki). First, we have |Q| ≤ ki.

Second, for any Q′ ∈ Xp(λ), we have EQ = EQ′ because Xp(λ) ⊂ Xc(ki). Finally, JQ(λ) = EQ+λ|Q| ≤

EQ′ + λki = JQ′(λ). Q′ ∈ Xp(λ) implies that Q ∈ Xp(λ).
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