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Abstract: Long-range correlations have been evidenced in a number of experiments, generally 

using over-learned and over-practiced tasks. We hypothesized that long-range correlation 

could represent the byproduct of learning. We analyzed the series of periods produced by a 

group of expert and a group of novices during prolonged trials on a ski-simulator. Results 

showed a very low variability in expert’s series, as compared to novices. Fractal analyses 

showed that fluctuations were significantly more structured and correlated in experts. These 

results suggest that learning could be conceived as the progressive installation of complexity 

in the system.  
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Introduction 

Fractal fluctuations have been recently evidenced in series of performances collected in 

cyclical or repetitive tasks, such as serial reaction time [1], finger tapping [2,3], circle drawing 

[4], forearm oscillations [5], reciprocal aiming [6], bimanual coordination [7], walking, 

running [8,9], or in bimanual coordination tasks [10]. 

These fluctuations are characterized by specific properties, namely self-similarity, or scale 

invariance, meaning that statistical features in the series are similar whatever the scale of 

observation, and long-range correlation, revealed by the presence of positive serial 

correlations between successive values, which persist over time, often over dozens, 

sometimes over hundreds of observations [11,12].  

These ubiquitous and amazing statistical properties present a special interest for behavioral 

scientists, as they are conceived as theoretically closely linked to complexity, adaptability and 

health [13]. Long-range correlated series represent the typical output of complex and healthy 

organisms, characterized by essential properties of robustness and adaptability. In contrast, 

aging and disease seem marked by a loss of complexity, which is typically revealed by a 

decrease of long-range correlations in output series [8]. These close relationships between 

long-range correlations, robustness and adaptability are of special importance here, as the two 

latter represent the main properties of the skilled behavior, and the essential by-products of 

learning.  

Importantly, long-range correlations have been essentially evidenced in overlearned tasks, 

such as tapping, circle drawing, reciprocal aiming, walking or running. In all cases these tasks 

required the exercise of basic skills, acquired from years and extensively practiced. 

Obviously, seeking for long-range correlation in performance series requires the collection of 

very long time series of hundreds successive data points, supposing that participants are 

sufficiently familiar with the task at hand. On could hypothesize, however, that the presence 
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of such fractal fluctuation could be related to the fact that performance is underlain by a well 

established skill.  

An interesting result supporting the present claim has been reported by Wijnants, Bosman, 

Hasselman, Cox and Van Orden [14]. The authors analyzed serial correlations in series of 

movement times in a reciprocal aiming task. The task was performed with the non-dominant 

hand, and the experimental design included five successive blocks of 1100 trials. Results 

showed an increase of serial correlations in the series with practice, with a clearer evidence 

for 1/f fluctuation in the last block.  

It could be interesting here to clearly distinguish between learning and practice. Learning can 

be defined as the acquisition of a new skill, which is not initially present in the repertoire of 

the individual [15,16,17]. In contrast, practice refers to the repeated exercise of a task, leading 

to a refinement of an existing skill, but not necessarily to the adoption of a qualitatively 

modified behavior. Practice is essential for learning, but extensive practice is often required 

for an effective learning to occur [15]. From this point of view, the aforementioned results 

seem more related to the effects of practice and to those of effective learning.  

Practice and learning, however, often produce similar and related effects, such as the decrease 

of performance variability, an enhancement of efficiency, a better robustness facing external 

perturbations, and a better adaptation to related tasks [18]. As such, long-range correlation 

could be conceived a logical byproduct of practice and learning.  

In the present experiment, we analyzed performance series collected in novice and expert 

participants in a complex task. We hypothesized to evidence stronger long-range correlations 

in experts, suggesting that the expert behavior was characterized by a higher level of 

complexity than the initial, novice behavior.  

Material and Methods 

Participants 
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Nine volunteered participants (two females, seven males) participated in this study. There 

were separated in two experimental groups. The expert group included one female and three 

males (mean age: 39.2 years ±6.3, mean weight: 73.2 kg ± 8.46; mean height: 179.6 cm ± 

3.5). These participants were involved in a series of experiments on the ski-simulator task. 

Ten years ago, they were involved in a first longitudinal experiment including 390 1-min 

trials over 13 weeks, and were proven to have adopted a skilled behavior, qualitatively 

different than their initial behavior on the task [15]. They were also involved in two retention 

tests, the first one five months after the completion of the learning protocol [19], and the 

second ten years after [20]. In both cases the retention tests evidenced the persistence of the 

skilled behavior initially acquired by participants.  

The novice group (one female, four males, mean age: 23.2  years ± 2.5, mean weight: 70.5 kg 

± 4.2; mean height: 1.80 cm ± 5.8) was composed of occasional skiers (with average three 

days of practice per year), but none had specific training on the ski-simulator. All participants 

signed a consent form, and were not paid for their participation. 

Experimental device  

The task was performed on a ski-simulator (Skier's Edge Co., Park City, UT), which consisted 

of a platform on wheels, which moved back and forth on two bowed, parallel metal rails 

(Figure 1). We used a modified version of the simulator by replacing the two independent feet 

supports of the original apparatus with a 30-cm wide board, in unstable balance over a sagittal 

rotation axis (for more details see [15])  

- Insert Figure 1 - 

Procedure  

Participants were instructed to make cyclical sideways movements on the ski simulator, “as 

ample and frequent as possible”. They had to keep their hands behind their back at all times, 

and to fix their eyes on a point located on the floor, three meters in front of the apparatus. 



5 

 

They performed a unique session of 10 minutes, allowing the performance of approximately 

550 complete oscillations on the apparatus.  

Data collection 

A passive marker was fixed in the front of the simulator platform. The displacement of this 

marker was recorded in three dimensions by a VICON motion analyzer (Biometrics) with 

seven cameras (100 Hz). Analyses focused on the series of positions of the platform, along the 

transverse axis, computed from the collected 3-D data.  

The position time series were filtered with a dual-pass Butterworth filter with a cut-off 

frequency of 10 Hz. A peak-finding algorithm was used to localize the left reversal points of 

the platform motion and the period was calculated for each oscillation as the time interval 

between two successive reversal points. We retained for analysis the 512 last points of the 

series, for each participant.  

Statistical analysis 

We first characterized series in terms of descriptive statistics (mean and standard deviation). 

We then applied three analyses aiming at evidencing and measuring serial correlation in the 

series.  

Autocorrelation function 

Autocorrelation functions were computed up to lag 30. We extracted from these function two 

variables of interest: the lag-one autocorrelation [ACF(1)], and the average autocorrelation for 

lags comprised between 10 and 30 [<ACF>(10-30)]. As long-range correlated series are 

characterized by the persistence of correlations over time, <ACF>(10-30) was expected to be 

significantly higher in the expert group.  

Detrended Fluctuation Analysis (DFA) 
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DFA is a widely used method that allows to quantify correlation in time series [21]. The series 

x(t) is first integrated, by computing for each t the accumulated departure from the mean of 

the whole series:  

X(t) = x(i )- x[ ]
i=1

t

å  (1) 

This integrated series of length N is divided into k non-overlapping intervals of length n. The 

last N - (kn) data points are excluded from analysis. In each interval, a least squares line is fit 

to the data (representing the trend in the interval). The series X(t) is then locally detrended by 

substracting the theoretical values Xn(t) given by the regression. For a given interval length n, 

the characteristic size of fluctuation for this integrated and detrended series is calculated by: 

F(n) =
1

N - (kn)
X(t)- Xn(t)[ ]

2

t=1

N-kn

å  (2) 

This computation is repeated over all possible interval lengths. Typically, F increases with 

interval length n. A power law is expected, as 

F(n) µ na
 (3) 

 is expressed as the slope of the double logarithmic plot of F(n) as a function of n. The value 

α = 0.5 indicates the absence of correlations (white noise), α > 0.5 indicates persistent long-

range correlations, meaning that large (small) values are more likely to be followed by large 

(small) values. 

We considered interval lengths ranging from n = 10 to n = N/2. In order to avoid any bias due 

to the logarithmic distributions of the points in the diffusion plots, we divided the abscissa 

into intervals of 0.1(log10Δt), and computed the average points within each interval (13 points 

were obtained for an initial series length of 512 data points). Finally, in order to control for 

the effects of noisy perturbations that mainly affect short-term fluctuations and tend to flatten 

the diffusion plot, we focused on the long-term slope (i.e. the 6 last points [22].  
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Power spectral density analysis (PSD)  

This method works on the basis of the periodogram obtained by the Fast Fourier Transform 

algorithm. In the frequency domain, long-range correlated series are characterized by the 

following scaling law:  

S(f)  1/f 
β 

(4) 

where f is the frequency and S(f) the correspondent squared amplitude. β is estimated by 

calculating the negative slope (-β) of the line relating log(S(f)) to log f.  

We also used the improved version of PSD proposed by Eke et al. (2000)[12], which uses a 

combination of preprocessing operations: First the mean of the series is subtracted from each 

value, and then a parabolic window is applied: each value in the series is multiplied by the 

following function:  

)²1
1

2
(1)( 




N

j
jW

 for j = 1, 2, …, N.  (5) 

 

Thirdly a bridge detrending is performed by subtracting from the data the line connecting the 

first and last point of the series. Finally the fitting of β excludes the high-frequency power 

estimates (f > 1/8 of maximal frequency). This method was proven to provide more reliable 

estimates of the spectral index β, and was designated as 
low

PSDwe. 

Group comparisons 

Considering the low sample sizes and the strong inhomogeneity of variances, we used 

nonparametric Mann-Whitney U tests for comparing central tendencies between groups. The 

significance threshold was set at 0.05.  

Results 

Descriptive statistics 

We present in Figure 2 two example series obtained with a novice (top panel) and an expert 

(bottom panel). The samples of mean periods were as follows: Novices : {0.87, 1.13, 1.02, 
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0.96, 0.81} ; Experts : {0.82, 0.93, 0.87, 0.84}. There was no difference between the two 

groups (Experts: 0.87 sec ± 0.04; Novices: 0.96 sec ± 0.13; U = 6; Z = 0.98; p = 0.327; exact 

p = 0.413).  

This figure, however, suggests evident differences in terms of variance. Indeed, the samples 

of standard deviations were the following: Novices : {0.17, 0.24, 0.39, 0.10, 0.25} ; Experts : 

{0.02, 0.04, 0.04, 0.03}. There was a statistical difference between the two groups (Experts: 

0.03 sec ± 0.01; Novices: 0.23 sec ± 0.11; U = 0; Z = -2.45; p = 0.014; exact p = 0.016). As 

expected, experts performed the task with a very low variability, as compared with novices.  

- Insert Figure 2 -  

Autocorrelation functions 

We present in Figure 3 the point-by-point average autocorrelation functions for the two 

groups. There were evident graphical differences between these two average functions. In the 

novice group, the autocorrelation function present just significant values for the three first 

lags, and then reaches very quickly values close to zero. This kind of auto-correlation function 

is typical of short-range correlated processes [22]. In contrast, the average autocorrelation 

function of the expert group present presents a very slow decay, with significant values up to 

the 30
th

 lag. This kind of auto-correlation function corresponds to those obtained with long-

range correlated series.  

The following values were observed for ACF(1): Novices : {0.38, 0.03, 0.28, 0.11, 0.07} ; 

Experts : {0.40, 0.27, 0.38, 0.23}. There was no difference between the two groups, however, 

because of the large variability in the novice group (Experts: 0.32 ± 0.08; Novices: 0.17 ± 

0.15; U = 4; Z = -1.47; p = 0.142; exact p = 0.190).  

<ACF>(10-30) values were the following: Novices : {0.01, 0.02, 0.03, 0.00, 0.00} ; Experts : 

{0.31, 0.09, 0.24, 0.04}. There was a significant difference between the two groups (Experts: 

0.17 ± 0.12; Novices: 0.01 ± 0.01; U = 0; Z = -2.45; p = 0.014; exact p = 0.016).  
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- Insert Figure 3 -  

Detrended Fluctuation Analysis 

We present in Figure 4 the point-by-point average diffusion plots, for the two groups. In both 

case, the diffusion plots present a global linear shape. A clear flattening appears for the Expert 

group, suggesting the influence of a white noise component in the series. This influence is less 

apparent for the Novice group, essentially because the global shape is close to that expected 

for white noise processes (α = 0.5).  

The individual values were the following: Novices : {0.69, 0.63, 0.65, 0.53, 0.45} ; Experts : 

{1.30, 0.69, 1.16, 1.08}. There was a significant difference between the two groups (Expert: 

1.06 ± 0.26; Novices: 0.59 ± 0.10; U = 0; Z = -2.45; p = 0.014; exact p = 0.016).  

- Insert Figure 4 -  

Power Spectral Density analysis 

We present in Figure 5 the point-by-point average bi-logarithmic power spectra, for the two 

groups. The flattening of the spectra in the high g-frequency region revealed for both group 

the influence of a white noise component. The individual values of the β exponent, computed 

over the low-frequency region, were: Novices : {-0.16, 0.24, 0.74, 0.14, 0.17}; Experts : 

{1.57, 1.04, 1.55, 1.14}. There was a significant difference between groups (Experts: 1.32 ± 

0.28; Novices: 0.23 ± 0.33; Z = -2.45; p = 0.014; exact p = 0.016).  

- Insert Figure 5 -  

 

Discussion 

Motor learning has been classically assumed to be characterized by the selection of the most 

efficient behavioral solutions, a decrease of performance variability, and an increase of 

smoothness in movement trajectories [18]. This point of view tends to induce the idea that 
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learning yields a kind of simplification of the system, through the selection of proper 

procedures and the elimination of errors.  

The present results confirm these classical assumptions, and especially the very low 

variability of cyclical performance in experts. The most important result, however, is the 

increase of serial correlations in experts, with regards to the levels observed in novices. 

Expert performance seems characterized by a more complex and structured dynamics that that 

of novices.  

This result could be interestingly related to a recent work that linked long-range correlation 

and degeneracy [24]. Degeneracy is a design principle of complex systems which has been 

proposed for explaining the co-existence of the a priori paradoxical properties of robustness 

and evolvability [25]. Robustness refers to the capacity to maintain a function despite internal 

or external perturbations, and evolvability to the capacity to adapt to perturbations by 

adopting new behavior and functions. The concept of degeneracy refers to a partial overlap in 

the functions of the multiple components within the system. In degenerate systems, 

structurally different components can perform similar functions under certain conditions, but 

can also assume distinct roles in others conditions [26,27].  

Delignières and Marmelat [24] propose a model of degenerate neural network composed of a 

chain of partially overlapping pathways. They manipulated degeneracy through the number of 

alternative pathways in the model. A simulation study showed that (1) such a degenerate 

model produces long-range correlated series, (2) the strength of correlations in the output 

depends on the level of degeneracy in the model, and (3) a minimal threshold in degeneracy is 

necessary for producing long-range correlations.  

The present experiment suggests that learning could be understood as the progressive 

installation of degeneracy in the system. Learning is not the selection of the most appropriate 

solution, but the coordination of a complex network composed of multiple, alternative and 
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overlapping pathways for producing a given outcome. Learning can then be conceived as an 

increase in complexity of the neural networks that underlie performance, and the overlapping 

between alternative pathways explains the presence of long-range correlations in output 

series. This enrichment of neural networks could explain the property of robustness of motor 

skills, essentially revealed in retention tests, but also the properties of generalizability and 

transfer, which are considered essential for the completeness of learning [18].  

Schöllhorn, Hegen, and Davids [28] recently developed innovative ideas about learning that 

could be in resonance with the previous finding. They proposed a so-called differential 

learning approach, that explicitly aimed to exploit the system’s complexity by its 

confrontation to complex and changeable environments and constraints. It is noteworthy to 

note, however, that this enrichment in complexity also occurs during the practice of very close 

and simple tasks, such as the reciprocal aiming task used by Wijnants and coll. [20]. 
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Figure Captions 

 

Figure 1: The ski simulator 

Figure 2: Example period series. Top: novice participant; Bottom: Expert participant.  

Figure 3: Mean autocorrelation functions. Top: Novice group (N = 5); Bottom: Expert group 

(N = 4). The dashed line represents the level of significance (p<0.05).  

Figure 4: Mean DFA diffusion plots for the Novice (grey) and Expert (white) groups. Dashed 

lines represent the mean slopes of the long-term region of the diffusion plots.  

Figure 5: Mean Log-log power spectra for the Novice (top) and Expert (bottom) groups. 

Dashed lines represent the mean negative slopes in low frequency-region of the power 

spectrum. 
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