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Abstract

In this paper, we discuss the problem of total ordering for mathe-

matical morphology. We restrain the study to color images, but results

are valid in any metric space. The discontinuities issue of total orders

has already been evoked in mathematical morphology, but remains

rarely studied. This phenomenon is highlighted and formalised in this

paper. We propose a novel approach to avoid discontinuities based on a

recursive algorithm. The key point of the proposed method is to adapt

the order to the studied image. The proposed framework presents in-

variance to isometric transformations of the color space. Promising

results are presented.

1 Introduction

Since its apparition in the sixties, mathematical morphology has become

one of the major theory of nonlinear image processing. Originally used for

binary images [6], the theory has followed the technical evolution of com-

puter science which has enabled the manipulation of more and more complex

images [12]. The set theory was sufficient to study binary images. However,

the apparition of gray-scale images required the introduction of the notion

of order. The theory of mathematical morphology is now fully based on the

lattice theory [13, 9]. The case where the value space is endowed with a

total order is the most comfortable framework for morphological processing.

However, if it is natural to endow gray-scale images with a total order, it is

more difficult when the pixel values do not have an unidimensional struc-

ture [14]. Indeed, we show that the information contained in a total order is
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too weak to completely represent the value space. In many situations, one

prefers to use partial order such as product orders on vector spaces. Us-

ing a product order is equivalent to processing components independently.

The order structure becomes natural but we loose some information about

the geometry of the original value space. Both choices present a loss of

information. However, while partial orders are widely studied and used in

mathematical morphology, the study of total orders remains mainly limited

to lexicographic orders [3, 2, 8].

The interest of product orderings in mathematical morphology is still

subject of recent research [7, 4], mainly by considering the geometric and

invariant properties of the underlying space. Other recent works on partial

ordering for morphological operators on vector images were motivated by

the need of taking into account some prior information about how to order

vectors: either to learn the order from training samples [16] or to built

the order according to the outlierness distribution [17]. Therefore, partial

ordering can become image adaptive and consequently leads to more relevant

morphological operators.

Since the apparition of multivariate images, very few papers have ad-

dressed the problem of total orders in a general way [5] [10]. As we discuss

in the first part of the paper, previous approaches of total ordering focussed

exclusively on building a regular ordering on the value space of the image,

without taking into account how the corresponding values where located on

the image support. The aim of this paper is to introduce a total ordering

which is adapted to each image according to both the position of the values

on the space and the location of these values on the image support. One

can therefore consider our approach as an image adapted total ordering.

We formulate this task as an optimization problem which cannot be solved

using classical optimization techniques. Thus, we introduce an hierarchical

recursive algorithm aiming at finding a possible solution.

2 Notations and recalls

We set here a few notations and remind elementary operators of mathemat-

ical morphology [12, 15]. Let us consider an image I as a function:

I :

{
Ω→ V
p 7→ I(p)

where Ω is the support space of pixels p: typically Ω ⊂ Z2 or Z3 for discrete

images. The pixel values of the image belong to the space V. Typically we
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have V ⊂ R for grey-scale images, V ⊂ Rn for multivariate vector images,

or V ⊂ M for manifold valued images. In this paper, we address images

where V is any metric space. Points in V will be generally called colors. We

denote by I(Ω) ⊂ V the set of colors of V presented in the image I(p).

Unlike linear processing mainly based on linear convolution (i.e., weight-

ing averaging), mathematical morphology is based on sup and inf-convolution.

The choice of the convolution kernel offers a range of processing. Thus, the

two basic operators of mathematical morphology on are the erosion and the

dilation of an image I(p), I : Ω → R, by B ⊂ Ω given respectively by:

εB(I)(p) = infq∈B(p)(I(q)) and δB(I)(p) = supq∈B(p)(I(q)), where the set B

defines the structuring element (the equivalent of the convolution kernel) and

B(p) defines the neighbourhood of p according to the shape of B. Note that

here we only focuss on flat structuring elements. Other morphological filters,

such as the opening γB(I) and closing ϕB(I), are obtained by composition

of dilation and erosion; i.e, γB(I) = δB (εB(I)) and ϕB(I) = εB (δB(I)).

More evolved filters and transforms are obtained from composition of open-

ings/closings. Another nonlinear operator also based on ordering, which

is particularly useful in image denoising, is the median filter: mB(I)(p) =

medq∈B(p)(I(q)).

3 Existing total orders

The problem of total ordering for multivariate images is a relatively well

known problem in mathematical morphology. The essential difficulty is that

the topology induced by a total order on a multidimensional space can not

reproduce the natural topology of the vector space. Arising as a milestone

limitation, we have the following lemma.

Lemma 3.1 Let (X, d) be a metric space endowed with a total order ≤.

Suppose that there exist a positive real number R and three points x1, x2, x3 ∈
X such that the three balls B(xi, R+ 1) are disjoint and such that the com-

plementary BC(xi, R+1) of each ball B(xi, R+1) is connected, as in Fig. 1.

Then for all r > 0, there exist three points a, b and c in X such that
a ≤ b ≤ c,
d(a, b) ≥ R,
d(a, c) ≤ r.
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Figure 1: The metric space X is here a rectangle of the Euclidean plan

Proof. We can assume that x1 < x2 < x3. We argue by contradiction

and assume that there exists r > 0 such that for all a, b, c ∈ X one at least

of the three above conditions doesn’t hold. It follows that a ≤ b, d(a, b) ≥ R
and d(a, c) ≤ r imply c < b. Without loss of generality we can assume that

r ≤ 1. Consider the set E of points a in BC(x2, R + 1) such that a ≤ x2.

We recall the following property: let A be an open and close subset of the

connected set B. Then A = ∅ or A = B. We use this assertion with A = E

and B = BC(x2, R+1) to exhibit a contradiction. If a point a is in E then all

the points in B(a, r)∩BC(x2, R+1) are in E. If a point c ∈ BC(x2, R+1) is

not in E then the ball B(c, r) cannot contain a point a with a ≤ x2 because

all points x ∈ B(a, r) would satisfied x ≤ x2. It follows that E is an open

and close subset of BC(x2, R + 1). The point x1 is in E: E is a non-empty

set. The connectivity of BC(x2, R + 1) implies that E = BC(x2, R + 1), a

contradiction with x3 > x2.

This lemma tells us that for any total order, functions sup(x, y) : Rn×Rn

→ Rn and inf(x, y) present high irregularities. This result has strong nega-

tive implications. Given a total order, it is always possible to find an image

where the erosion and dilation are highly irregular in local neighborhoods.

An illustration of this phenomenon is given by the following toy example

Fig. 2. The image is composed by 3 different colors. The black is mainly

composed of a = (0, 0, 0) with a few pixels b = (0.1, 0, 0). The blue is

represented by c = (0, 0, 1). According to the lexicographic ordering, we are

precisely in the situation described in the lemma. Fig. 2 shows us the result

of a 1× 1 square dilation.

Through the study of space filling curves [11], the work [5] propose several

total orders on Zn that preserve as far as possible the notion of neighbour-

hood. For each point of the discrete multidimensional space, they compare

the spatial neighbourhood and the neighbourhood in the chain of the order,

as shows Fig. 3 extracted from [5].
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(a) (b) (c)

Figure 2: (a): Original image, (b): Projection on the lexicographic order,

(c): Lexicographic dilation

Figure 3: Quantitative evaluation of the topological distortion (figure ex-

tracted from [5]).

The difference is averaged over all the points. This gives a measure of the

preservation of the neighbourhoods. This measure enables us to compare all

total orders. They obtain the interesting result that the Peano curve and the

bit-mixing paradigm preserve significantly better the neighbourhoods than

the lexicographic ordering. Despite the fact the Peano curve gives better

results than the bit-mixing strategy paradigm, they chose not to use the

Peano curve for their applications because this order does not preserve the

vectorial structure; i.e., in two dimensions, the point (0, 8) can be greater

than the point (15, 15).

On our side, we think that preserving the vector structure is not nec-

essarily an interesting property for mathematical morphology. Indeed, the

vector structure is often not correlated with any property of colors. Gener-

ally an image represent a scene composed of different objects. The image

represents the scene through a specific physical attribute: a set of wave-

length for multi-spectral images, a covariance matrix for diffusion MRI, etc.

The space where these physical quantities are represented may have an al-

gebraic structure, in most cases a vector structure. This structure provides

operations on physical quantities but has generally no meaning regarding

the objects that the physical quantities represent. In a color image each

pixel contains a triplet of numbers. The addition of two colors in a given

representation has no meaning in terms of objects in the image, except

maybe in exceptional situations. In the same way the multiplication of two

covariance matrices has no meaning regarding the brain tissues. However,
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the topology and the notion of distance used on the representation space is

supposed to make sense in terms of objects of the original scene. A modifica-

tion of the acquisition device might correspond to an algebraic operation on

the representation space. In the ideal case, morphological operator should

be invariant to this operation. If distances in the representation space still

represent distances between objects after the change of coordinates, this

operation must be isometric or at least homothetic. Thus, morphological

operators should be invariant to isometric transformations. We think that

in most cases, the only criterion that an order has to respect for mathemati-

cal morphology is the preservation of neighbourhood and distances. Arising

as a result, the order has then to be based only on the topological structure

of the representation space.

4 An order adapted to a given image

4.1 Motivation

As we have discussed above, it is not possible to create a total order that

preserves neighbourhood on a multidimensional space. The philosophy of

[5][10] is to try to minimize the difference between spatial neighbourhoods

and neighbourhoods in the space of order. However it is possible to push

this idea further. Even for the best total order in the sense of the measure

previously defined, our Lemma tells us that the processing of a particular

image can give highly irregular results. As a consequence, it might be more

interesting to look for the best order, being given an image, than to look for

the best order in general. Indeed, restricting the evaluation of a total order

to a particular image, largely enhance the potential quality of the order. An

order on a multidimensional space can present important discontinuities that

might not affect the processing of a particular image. Firstly the evaluation

of a total order given a specific image only gives importance to colors that

lay in the image. Indeed, no other colors are introduced by flat erosion or

dilation. Decreasing the size of the set to be ordered often enables to find

total orders way more regular. More precisely, it becomes much easier to

find orders that avoid having two points close in the color space and far in

the order. Secondly, this situation can be tolerated to the extend that colors

do not always appear in same structuring element. For instance if two colors

never appear in the same structuring element, their relative positions in the

order has no impact on the quality of the process.

We agree with [5] on the fact that if points are close in the color space,

they should remain close in the order. However, we think the reverse is not
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always necessary. Let us consider a binary image represented on the real

line, where black and white are not represented by 0 and 1 but 0 and 10.

In this situation there are two points close in the order chain and distant

regarding the metric of the color space. However, this does not introduce

any irregularity in the morphological operators.

In order to transpose this topological intuition of “closeness in color space

implied closeness in the order”, specially where the involved colors are near

on the image support space, we introduce a cost function to be minimised

by the total ordering.

4.2 Cost function

Given an image, we would like to define a new cost function that measure

the quality of the order regarding rank based operators. We first need to

clarify what criterion has to be respected. Let a and b be two close colors

according to a given metric distance d(a, b) in V. Let c be a third color far

from a and b. Let us define a notion of co-occurrence of colors:

CI(a, b) = Card{p ∈ Ω,∃q ∈ B(p), (I(p), I(q)) ∈ {(a, b), (b, a)}} (1)

If CI(a, c) or CI(b, c) is reasonably small, no irregularities will be created

by the colors a, b, c. If CI(a, c) and CI(b, c) are significant, it is important

that a < c⇔ b < c.

The computation of co-occurrences involves that one has fixed a typical

size/shape of the structuring element which will be used in subsequent pro-

cessing. Let consider we have endowed I(Ω) with a total ordering ≤. We

can define the following quantity:

P (I) =
∑

a, b, c ∈ I(Ω),
a < c < b

(f (d(c, a), d(c, b), d(a, b)) ·

CI(c, a) · CI(c, b) · CI(a, b)),
(2)

where f(·, ·, ·) is an increasing function of its two first variables and

decreasing according to the third variable.

Given an image I(p), this adapted cost function is more tolerant for

some specific orders than the cost function defined in [5]. Cost function

P (I) has been designed to represent as well as possible what is expected

of an order. However, as a standard image often contains more than ten

thousand different colors, this cost function presents the serious drawback

of not being computable. Thus, given two orders, it is difficult to compare

them using this cost function. One of the main role of this cost is to show

that what is required from an order is much weaker than what is required

7



in [5]. However, it is possible to try to minimize this cost function using

a recursive procedure, without computing globally the cost of the full set

of points. It might not be possible to compare explicitly the cost of the

bit-mixing paradigm or the Peano curve with the cost of an order obtained

by the following algorithm. Nevertheless, we expect it to be much lower due

to its construction.

5 Minimisation of the cost function

5.1 Overview of the algorithm

Here are the main steps of the algorithm.

• Perform a clustering of the data I(Ω) in a given number of clusters:

{Clusteri}1≤i≤n.

• Compute the following quantities,

– Minimum distances between clusters: D(i, j), 1 ≤ i, j ≤ n,

– Co-occurrence of clusters in different structuring elements: C(i, j),

1 ≤ i, j ≤ n.

• Order the n clusters according to C(i, j), D(i, j), and the correspond-

ing cost function P . The point of the clustering is to make this oper-

ation possible by reducing the number of parameters of the minimiza-

tion. If Clusteri < Clusterj we impose that ∀(ck, cl) ∈ Clusteri ×
Clusterj involves ck < cl.

• Perform the same procedure recursively on each cluster.

• After a given threshold, stop the recursion. For each cluster, order all

its points according to a criterion based on distances to previous and

next clusters.

In this short description we did not mentioned a significant issue which

makes the algorithm a bit complicated. When the recursive procedure is

applied to Clusteri, one has to take into account the result of the ordering

from other clusters. Indeed, at the first step of the recursion, nothing has to

be taken into account outside of the considered set of colors {I(Ω)}. How-

ever, contrary to global set {I(Ω)}, Clusteri can no longer be considered

as isolated from the rest of color values. If there exist colors ck in Clusteri
and colors cl in Clusterj such that d(ck, cl) is small, then it is not possible

to order Clusteri without taking into account Clusterj . To order Clusteri,
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Figure 4: The point cloud is recursively ordered

one needs to know the set of its neighbour clusters and their relative or-

dering. These are the main ingredients to the recursive function. For the

first iteration, the recursive function is called with a unique cluster without

neighbours.

The recursive function funt recursive, take the following arguments:

an image I, a set of cluster S1 = {Clusteri} from {I(Ω)}, a total order on

this set of clusters <1, the index of a specific cluster index, and a number

that represents the level of recursion depth. S′1 will denote S1 \Clusterindex.

Then funt recursive returns an order on Clusterindex.

If depth is lower than a given threshold:

• For each cluster Clusteri find the point ck in Clusterindex that mini-

mizes the distance to Clusteri. If i = index, let ck be the barycentre

of Clusterindex.

• Set {ck} is completed with random points in Clusterindex to reach

minimum number of points. Perform a clustering of Clusterindex using

a k-means algorithm initialized with the ci. Let SClusterindex
be this

new set of clusters.

• Let us consider the set S2 of clusters composed of clusters in S′1, and

clusters created during the previous instruction. S2 = S′1∪SClusterindex
.

Compute D, the minimum distances between pairs of clusters of S2

and C, the co-occurrence of pairs of clusters in I.

• Perform a minimization of P on S2, using C and D, such that the

new total order <2 is compatible with <1. If Clusteri and Clusterj
are in S, (Clusteri <1 Clusterj)⇒ (Clusteri <2 Clusterj). Further-

more, for Clusteri in SClusterindex
and Clusterj in S′1, Clusteri <2

Clusterj ⇔ Clusterindex <1 Clusterj . The situation is summarized

in Fig. 5.
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• Initialize an empty array total order.

• For each cluster in SClusterindex
, taken successively according to <2:

– Select a set S3 of neighbour clusters in the set S2, in terms of

co-occurrence. The current cluster is part of S3.

– Let <3 be the order induced on S3 by the <2.

– Then total order=total order concatenated with the output of

funt recursive, which is called with the following arguments: I,

S3, <3, the index of the current cluster and depth+ 1.

If depth equals the given threshold:

• Compute the minimal distances between each pair of clusters.

• Select in S the nearest neighbour of Clusterindex greater than Clusterindex
and the nearest neighbour lower than Clusterindex.

• Order elements of Clusterindex according to their distance to the two

clusters selected during the previous step.

Figure 5: Construction of <2 (see description of the algorithm).

5.2 Optimization over the permutation space

We note that, according to this algorithm the set to be ordered is no longer

the set of all colors present in the image, but the set of clusters S at each

level of recursion. The cost function P can be calculated if the cardinal

n of S is reasonable. If the set S does not exceed n = 10 elements, it is

conceivable to calculate the cost of all the permutations and select the one

associate to the order which minimizes P . However, this solution requires an

important computation time. An alternative solution consists in optimizing

the cost function iteratively. It is well know that from a permutation it is

possible to reach any other permutation by composing transpositions. Given

a permutation, we select the transposition that minimize the cost function,

and we repeat the process until we fall in a minima. As we do not know
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whether the cost function has any convex property, the minima might only

be a local minima. However, under n = 10 elements it is possible to compare

the results with the global exploration. In all tested situations with n = 10

elements, the optimization by transposition did not fall in a local minima.

6 Order invariance

Cost function P (I) does not depend on coordinates of colors but only on

their mutual distances and their co-occurrences. As the notion of co-occurrences

remains unchanged under bijective transformations, the cost P (I) is invari-

ant to any isometric transformation. However, the choice of a particular

function f(·, ·, ·) can induce larger class of invariance. For instance the fol-

lowing cases:

f(d(c, ci), d(c, cj), d(ci, cj)) =
d(c, ci) + d(c, cj)

d(ci, cj)
, (3)

or

f(d(c, ci), d(c, cj), d(ci, cj)) =
d(c, ci)d(c, cj)

d(ci, cj)2
, (4)

also provides invariance of P (I) to homothetic transformations. We can also

note that for the function:

f(d(c, ci), d(c, cj), d(ci, cj)) =
d(c, ci)d(c, cj)

d(ci, cj)
, (5)

homothetic transformations simply result in the multiplication of P (I) by

a positive constant. Consequently, as the notion of minimum is invariant

under increasing transformation, the minimization of P (I) should remain

relatively stable.

If T is an isometric (or homothetic) transformation of the value space V,

and Φ a morphological operator {Ω,V} → {Ω,V}, then T and Φ commutes

for any image I, i.e.,

Φ(T (I)) = T (Φ(I)).

7 Results of morphological image processing

As we just discussed, explicit calculation of P is not possible for standard

images. Exact comparison between orders produced by our minimization

and classical lexicographic order or bit-mixing order proposed in [5] is un-

fortunately not possible. At the first step of the recursion, the initial set

Ω is divided into n clusters, with n reasonably small. Assimilating clusters
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and centroids enables us to order them according to the lexicographic or the

bit-mixing paradigm. The, it is then possible to compare the cost of each

order by computing the corresponding values P on the set of centroids. This

is just the parameter which has been computed to quantitatively compare

the three orders.

We present results obtained for two different RGB color images. The

first one is a microscopic blood vessel from a fluoresce microscope, the sec-

ond one is a natural image. For both of them we have minimized P using

the recursive algorithm discussed in previous section with the following pa-

rameters:

• Color distance d(ci, cj) is the Euclidean distance of the RGB color

space;

• Function f corresponds to model (4):

f(d(c, ci), d(c, cj), d(ci, cj)) =
d(c, ci)× d(c, cj)

d(ci, cj)2
;

• The set S is divided into n = 10 clusters;

• We stop the recursion when depth = 2.

(a) (b)

(c) (d)

Figure 6: Projection of the total order on the image support: (a) original

RGB image I(p); (b) lexicographic order; (c) bit-mixing order; (d) our image

adapted total order.

Fig. 6 represents the RGB color image together with the projection of

the total order on the image support for the three cases of total order. As
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we can see, the blue spots are totally invisible to the lexicographic ordering.

Note that the lexicographic ordering starts by red, then green and finally

blue. The bit-mixing paradigm and the image adapted total order gives

different results but are both coherent with the original image.

Figure 7: Evaluation of the cost function P at the first step of the recursion:

(a) image I(p) from Fig. 6, (b) image I(p) from Fig. 9.

Using now each total ordering, we can compute morphological color oper-

ators. Fig. 8 gives the corresponding openings and closing using as structur-

ing element a square of 7× 7 pixels. As expected the lexicographic ordering

produces important discontinuities around the blue spots. The bit-mixing

paradigm and image adapted total order gives different results but both pre-

serve the regularity of boundaries. Besides the visual comparison of these

results, we compare the cost P at the first step of the recursion for each or-

der, which for the current example are given in Fig. 7(a), which are coherent

with the visual results.
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γB(I)

ϕB(I)

(a) (b) (c)

Figure 8: Morphological processing of image from Fig. 6, top row, opening

γB(I) and bottom row, closing ϕB(I) using lexicographic order in (a), bit-

mixing order in (b) and our image adapted total order in (c). Structuring

element is B is a square of 7× 7 pixels

.

For the second studied example, we applied the same approach. Fig. 9

provides the original RGB image and the image representation of the three

orders. Unlike to the previous example, the lexicographic order is able to

distinguish all interesting objects of the image. Furthermore, it seems to give

an order smoother than the bit-miximg paradigm and the image adapted

total order. However this visual impression is not corroborated by the com-

putation of the cost P , see Fig. 7(b).

In fact, as we can observe from the opening/closing operators depicted in

Fig. 10, the regularity of the grey-scale projection on lexicographic order is

only an illusion. Both lexicographic order and the bit-mixing order present

high discontinuities on blue and yellow boundaries. On this example, our

image adapted total order is the only one of the three orders that provides

satisfying results in terms of regularity for the opening and closing.
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(a) (b)

(c) (d)

Figure 9: Projection of the total order on the image support: (a) original

RGB image I(p); (b) lexicographic order; (c) bit-mixing order; (d) our image

adapted total order.
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γB(I)

ϕB(I)

(a) (b) (c)

Figure 10: Morphological processing of image from Fig. 9, top row, opening

and bottom row, closing using lexicographic order in (a), bit-mixing order

in (b) and our image adapted total order in (c). Structuring element is B is

a square of 7× 7 pixels.

8 Conclusions and Perspectives

Despite the fact that no exact numerical quantification of the order regular-

ities are brought, experimental results show the relevance of the proposed

method. If it is not possible to prove the pertinence of a framework from

only a limited set of examples. We can nevertheless conclude that on every

tested images, the image adapted total order gives results at least as good

as the lexicographic ordering or the bit-mixing paradigm.

On the one hand, our future research will intend to improve the algorithm

of the minimization of the cost function. On the second hand, we will study

the stability of the total order regarding modification of the studied image.
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