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Abstract

We address here the problem of discontinuities of total orders in a

metric space and its implications for mathematical morphology. We

first give a rigorous formulation of the problem. Then, a new approach

is proposed to tackle the discontinuity issue by adapting the order to

the image to be processed. Given an image and a total order we define

a cost that evaluates the importance of the discontinuities for morpho-

logical processing. The proposed order is then built as a minimization

of this cost function. One of the strength of the proposed framework is

its generality: the only ingredient required to build the total order is

the graph of distances between values of the image. The adapted or-

der can be computed for any image valued in a metric space where the

distance is explicitly known. We present results for color images, dif-

fusion tensor images (DTI) and images valued in the hyperbolic upper

half-plane.

Keywords: Mathematical morphology on metric spaces, Total or-

ders, Color imaging, Diffusion Tensor Imaging, Gaussian-distribution

valued image, Information geometry image filtering

1 Introduction

Since its apparition in the sixties, mathematical morphology has become

one of the major theory of nonlinear image processing. Originally used for

binary images [8], the theory has followed the technical evolution of com-

puter science which has enabled the manipulation of more and more complex
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images [14]. The set theory was sufficient to study binary images. Later,

the apparition of gray-scale images required the introduction of the notion

of order. The theory of mathematical morphology is now fully based on the

lattice theory [15, 11]. Value spaces endowed with a total order form the

most comfortable framework for morphological processing. However, if it

is natural to endow gray-scale images with a total order, the task is more

difficult when the pixel values do not have an uni-dimensional structure [16].

Indeed, we show that the information contained in a total order is too weak

to completely represent the value space. In many situations, the use of a

partial order such as a product order on a vector space is preferred. Us-

ing a product order is equivalent to processing components independently.

Then this order structure becomes natural but some information about the

geometry of the original value space is lost. Both choices present a loss of

information.

The interest of product orderings in mathematical morphology is still a

matter of recent research [9, 5], mainly by considering the geometric and

invariant properties of the underlying space.

Other recent works on partial ordering for morphological operators on

vector images were motivated by the need of taking into account some prior

information to order vectors: either by learning the order from training

samples [18] or by building the order according to the outlierness distri-

bution [19]. Therefore, partial ordering can become image adaptive and

consequently leads to more relevant morphological operators.

On the other hand, the study of total orders remains mainly limited to

lexicographic orders [10, 2, 3]. Since the apparition of multivariate images,

very few papers have addressed the problem of total orders in a general

way [6] [12]. Previous approaches of total ordering focused exclusively on

building regular orders on cubes of vector spaces. The two new ideas of

this paper are the following. Firstly, given an image we restrict the value

space to the value that are actually present in the image. Secondly, we take

into account the locations of the values in the image. Given an image, these

considerations enable to find more regular orders. One can therefore consider

our approach as an image adapted total ordering. We formulate this task as

an optimization problem which cannot be solved using classical optimization

techniques. Thus, we introduce a hierarchical recursive algorithm aiming at

finding a possible solution.

This paper is an extended and improved version of the conference pa-

per [7]. It is organized as follows.

• Section 2 provides a background on notations and basic notions.
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• A discussion on existing ordering on vector spaces is given in Section

3. In particular, a strong theoretical result points out the limitation

of total orderings in terms of discontinuity of vector morphological

operators.

• Section 4 gives the motivation for introducting an order adapted to a

given image. A cost function is introduced to measure the quality of

a total order regarding the discontinuity issue.

• The recursive algorithm developed to minimize the cost function is

fully described in Section 5.

• A short discussion on the invariance properties of the adapted order

is given in Section 6.

• Section 7 presents some results of morphological image processing us-

ing the image adapted total order. We present results for color images,

diffusion tensor images (DTI) and images valued in the hyperbolic up-

per half-plane.

• Conclusions and perspectives close the paper in Section 8.

2 Notations and recalls

We set here a few notations and remind elementary operators of mathemat-

ical morphology [14, 17]. Let us consider an image I as a function:

I :

{
Ω→ V
p 7→ I(p)

where Ω is the support space of pixels p: typically Ω ⊂ Z2 or Z3 for discrete

images. The pixel values of the image belong to the space V. Typically we

have V ⊂ R for grey-scale images, V ⊂ Rn for multivariate vector images,

or V ⊂ M for manifold valued images. In this paper, we address images

where V is any metric space. Points in V will generally be called colors. We

denote by I(Ω) ⊂ V the set of colors of V presented in the image I(p).

Unlike linear processing mainly based on linear convolution (i.e., weight-

ing averaging), mathematical morphology is based on sup and inf-convolution.

The choice of the convolution kernel offers a range of processing. Thus, the

two basic operators of mathematical morphology are the erosion and the
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dilation of an image I(p), I : Ω→ R, by B ⊂ Ω given respectively by

εB(I)(p) = inf
q∈B̌(p)

{I(q)} , (1)

δB(I)(p) = sup
q∈B(p)

{I(q)} , (2)

where the set B defines the structuring element (the equivalent of the con-

volution kernel), B̌ is the transpose of B (i.e., symmetric set with respect to

the origin), and B(p) defines the neighborhood of p according to the shape

of B. Note that here we only focuss on flat structuring elements. Other mor-

phological filters, such as the opening γB(I) and closing ϕB(I), are obtained

by composition of dilation and erosion; i.e,

γB(I) = δB (εB(I)) , (3)

ϕB(I) = εB (δB(I)) . (4)

More evolved filters and transforms are obtained from composition of open-

ings/closings. Another nonlinear operator particularly useful in image de-

noising, also based on ordering, is the median filter:

mB(I)(p) = med
q∈B(p)

{I(q)} . (5)

3 Existing total orders

The problem of total ordering for multivariate images is a relatively well

known problem in mathematical morphology. The essential difficulty is that

the topology induced by a total order on a multidimensional space can not

reproduce the natural topology of the vector space. Arising as a milestone

limitation, we have the following lemma.

Lemma 3.1 Let (X, d) be a metric space endowed with a total order ≤.

Suppose that there exists a positive real number R and three points x1, x2, x3 ∈
X such that xj ∈ B(xi, R) if and only if i = j and such that the complemen-

tary BC(xi, R) of each ball B(xi, R) is connected, as in Fig. 1. Then for all

r > 0, there exist three points a, b and c in X such that
a ≤ b ≤ c,
d(a, b) ≥ R,
d(a, c) ≤ r.

Proof. We can assume that x1 < x2 < x3. We argue by contradiction

and assume that there exists r > 0 such that for all a, b, c ∈ X one at least
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Figure 1: The metric space X is here a rectangle of the Euclidean plan

of the three above conditions doesn’t hold. It follows that a ≤ b, d(a, b) ≥ R
and d(a, c) ≤ r imply c < b. Without loss of generality we can assume that

r ≤ 1. Consider the set E of points a in BC(x2, R) such that a ≤ x2. We

recall the following property: let A be an open and closed subset of the

connected set B. Then A = ∅ or A = B. We use this assertion with A = E

and B = BC(x2, R) to exhibit a contradiction. The considered topology

is now the induce topology of BC(x2, R). If a point a is in E then all the

points in B(a, r)∩BC(x2, R) are in E. Since B(a, r)∩BC(x2, R) is a ball of

BC(x2, R), E is an open subset of BC(x2, R). If a point c ∈ BC(x2, R) is not

in E then the ball B(c, r)∩BC(x2, R) cannot contain a point a with a ≤ x2

because all the points x ∈ B(a, r) would satisfy x ≤ x2. It follows that E

is an open and closed subset of BC(x2, R). The point x1 is in E so E is a

non-empty set. The connectivity of BC(x2, R) implies that E = BC(x2, R),

contradicting x3 > x2.

Note that in the particular case where X = Rn>1 this result is not a

corollary of the fact that there is no continuous bijection between Rn>1 and

R. Indeed, not every order on Rn>1 can be represented by a bijection on R.

This lemma tells us that for any total order in Rn, functions supremum of

two points, Rn×Rn → Rn : (x, y) 7→ sup(x, y) and infimum inf(x, y) present

high irregularities with respect to the Euclidean metric. The result being

valid for any metric space and it has strong negative implications. Namely,

given a total order, it is always possible to find an image where the erosion

and dilation are highly irregular in local neighborhoods.

An illustration of this phenomenon is given by the following toy example

Fig. 2. The RGB image is composed of 3 different colors. Two close black

represented by a = (0, 0, 0) and b = (0.1, 0, 0), and a blue represented by
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c = (0, 0, 1). According to the lexicographic ordering on coordinates, we are

precisely in the situation described in the lemma. Fig. 2 shows us the result

of a dilation using a 3× 3 square as structuring element.

(1) (2) (3)

Figure 2: (1): Original image, (2): grey-scale representation of the lexico-

graphic order, (3): Lexicographic dilation

Through the study of space filling curves [13], the work [6] proposes

several total orders on Zn that preserve as far as possible the notion of

neighbourhood. For each point of the discretized multidimensional vector

space, the spatial neighbourhood and the neighbourhood in the chain of the

order are compared, as shown in Fig. 3 extracted from [6].

Figure 3: Quantitative evaluation of the topological distortion (figure ex-

tracted from [6]).

The difference is averaged over all the points of the space. This gives a

measure of the preservation of the neighbourhoods. This measure enables

us to compare every total orders on Zn. [6] shows that the neighborhoods

are significantly better preserved by the Peano curve and the bit-mixing

paradigm than by the lexicographic order. Despite the fact that the Peano

curve gives slightly better results than the bit-mixing strategy paradigm,

authors of [6] chose not to use the Peano curve because this order does not

preserve the vectorial structure; i.e., in two dimensions, the point (0, 8) can

be greater than the point (15, 15). However, preserving the vector structure

is not necessarily an interesting property for mathematical morphology. In-

deed, the vector structure of the values is often not correlated with the

physical properties of the measured element.
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An image represents a scene through a specific physical attribute: a set

of wavelength for multi-spectral images, a covariance matrix for diffusion

MRI, etc. Spaces in which these physical quantities are represented may

have a standard algebraic structure, in most cases a vector structure. This

structure provides operations on physical quantities but has generally no

meaning regarding the physical quantities themselves or the objects that

they represent. In a color image each pixel contains a triplet of numbers.

The addition of two colors in a given representation has no meaning in terms

of objects in the image, except maybe in exceptional situations. In the same

way the multiplication of two covariance matrices has no meaning regarding

brain tissues. However, the notion of distance used on the representation

space is supposed to make sense in terms of objects of the original scene. A

modification of the acquisition device might correspond to an algebraic op-

eration on the representation space. Ideally, morphological operator should

be invariant to this operation. If distances in the representation space still

represent distances between objects after the change of coordinates, this

operation must be isometric or at least homothetic. Thus, morphological

operators should be invariant under isometric transformations. In the ab-

sence of specific algebraic requirement, which is the case in most situations,

the main criterion that an order has to respect for morphological purpose

is the preservation of neighbourhood and distances. Arising as a result, the

order has then to be based only on the topological structure of the repre-

sentation space.

4 An order adapted to a given image

4.1 Motivation

As we have discussed above, it is not possible to create a total order that

preserves neighbourhood on a multidimensional space. The philosophy of

[6][12] is to try to minimize the difference between spatial neighbourhoods

and neighbourhoods in the space of order. However it is possible to push

this idea further. Even for the best total order in the sense of the measure

previously defined, our Lemma tells us that the processing of a particular

image can give highly irregular results. As a consequence, it might be more

interesting to look for the best order being given an image, than to look for

the best order in general. Indeed, restricting the evaluation of a total order

to a particular image, largely enhance the potential quality of the order.

An order on a multidimensional space can present important discontinuities

that might not affect the processing of a particular image. Firstly, given a
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specific image, the evaluation of a total order only gives importance to colors

that lay in the image. Indeed, no other colors are introduced by flat erosion

or dilation. Decreasing the size of the set to be ordered can lead to more

regular orders. More precisely, it becomes easier to find orders that avoid

having two points close in the color space and far in the order. Secondly, this

situation can be tolerated to the extend that colors do not always appear

in same structuring elements. For instance if two colors never appear in the

same structuring element, their relative positions in the order has no impact

on the quality of the process.

As explained in [6] it is clear that if points are close in the color space,

they should remain close in the order. However, the reverse is not always

required. Let us consider a binary image represented on the real line, where

black and white are not represented by 0 and 1 but by 0 and 10. This situ-

ation presents two points close in the order chain and distant regarding the

metric of the color space. However, this does not introduce any irregularity

in the morphological operators.

In order to transpose this topological intuition of closeness both in value

space and in spatial space should imply closeness in the order, we introduce

a cost function to be minimized by the total ordering.

4.2 Cost function

Given an image, we would like to define a cost function that measures the

quality of the order regarding rank based operators. We first need to quan-

tify the criteria of the previous section. We define the following notion of

co-occurrence of values a and b:

CI(a, b) = Card{p ∈ Ω,∃q ∈ B(p),

(I(p), I(q)) ∈ {(a, b), (b, a)}}
(6)

The computation of co-occurrences involves that one has fixed a typical

size/shape of the structuring element which will be used in subsequent pro-

cessing. Let a and c be two close points in the value space according to a

given metric distance d(a, c) in V such that a < c. Let b be a third point far

from a and c. If CI(a, b) or CI(c, b) is reasonably small, no irregularity is

created by the triplet a, b, c whatever the chosen order. However if CI(a, b)

and CI(c, b) are significant, it is important that a < c < b or b < a < c.

Thus the quality of a total order can be measured by evaluating to what
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extend the following property is respected:
a < c

CI(a, b) and CI(c, b) significant

d(a, c) small

d(a, b) significant

=⇒ a < c < b or b < a < c

(7)

Let suppose I(Ω) endowed with a total order ≤. We can define the

following quantity:

PI(≤) =
∑

a, b, c ∈ I(Ω),

a < c < b

g(a, b, c) · (CI(c, a) ∧ CI(c, b)) (8)

where ∧ stands for min, with,

g(a, b, c) = f ((d(c, a) ∧ d(c, b)), d(a, b))

and f(·, ·) an increasing function according to the first variable and decreas-

ing according to the second.

Given an image I(p), this adapted cost function is more tolerant for some

specific orders than the cost function defined in [6]. The cost function PI
has been designed to represent as well as possible what is expected of an

order. One of its main role is to show that what is required of an order is

weaker than what is required in [6]. However, as a standard image often

contains more than ten thousand different colors, this cost function presents

the serious drawback of not being computable. Thus, given two orders, it

is difficult to compare them using this cost function. Nevertheless, it is

possible to try to minimize this cost function using a recursive procedure,

without computing globally the cost for the full set of points.

5 Minimisation of the cost function

5.1 Overview of the algorithm

The idea is to divide the set I(Ω) into a collection C of clusters and to

compute an optimal order on on C considering each cluster as a single point.

Then each cluster is ordered individually. The orders on individual clusters

are merged according to the order on C to obtain an order on I(Ω). The

point of the clustering is to make this operation possible by reducing the

number of parameters of the minimization. Here are the main steps of the

algorithm.
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• Perform a clustering of the data I(Ω) in a given number n of clusters:

{Clusteri}1≤i≤n.

• Order the n clusters according to C(i, j), D(i, j), and the correspond-

ing cost function P where

– D(i, j) represents the minimum distances between clusters i and

j.

– C(i, j) represents the co-occurrence of clusters i and j in different

structuring elements.

• Perform the same procedure recursively on each cluster.

• After a given threshold, stop the recursion. For each remaining clus-

ter, order all its points according to a criterion based on distances to

previous and next clusters.

• Merge the orders: for x in Clusteri and y in Clusterj , x < y if and

only if Clusteri < Clusterj , or i = j and x < y in Clusteri.

In this short description we did not mention a significant source of com-

plications. Indeed, when the recursive procedure is applied to Clusteri, one

has to take into account neighbour clusters. Indeed, at the first step of the

recursion, nothing has to be taken into account except the considered set

of colors I(Ω). However, unlike the set I(Ω), Clusteri can no longer be

considered as isolated from the rest of the color values. If there exist colors

ck in Clusteri and colors cl in Clusterj such that d(ck, cl) is small, then

it is not possible to order Clusteri without taking into account Clusterj .

To order Clusteri, one needs to know the set of its neighbour clusters and

their relative ordering. These are the main ingredients of the recursive

algorithm. The algorithm uses five functions.

• A function Neighbour

input: a list S1 of clusters and a Clusterindex in S1

output: a sublist Sneighbour of S1

The elements of Sneighbour are selected from the list S1 according

to their co-occurrence with Clusterindex. We impose Clusterindex ∈
Sneighbour.

• A function IndexCutting

input: a list S1 of clusters and a Clusterindex in S1

output: a list SClusterindex
of sub-clusters
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of Clusterindex

Call the function Neighbour to replace S1 by the shorter list Sneighbour.

For each cluster Clusteri in Sneighbour, find the point ci in Clusterindex
that minimizes the distance to Clusteri. If i = index, let ci be the

barycentre of Clusterindex. The set {ci} is completed with random

points in Clusterindex to reach a minimum number of points. Perform

a clustering of Clusterindex using a k-means algorithm initialized with

the {ci}. Return SClusterindex
the new set of clusters.

• A function MainOrder (To be used when the recursion depth is ≤
threshold)

input: a list S1 of clusters with an order <1, a Clusterindex in S1 and

a list SClusterindex
of sub-clusters of Clusterindex

output: an order <2, on

the list S2 = S1 ∪ SClusterindex
\ Clusterindex.

Perform a minimization of P on S2, using the co-occurrences of clusters

C(Clusteri, Clusterk) and the distance D(Clusteri, Clusterk), such

that the new total order <2 is compatible with the initial order <1. If

Clusteri and Clusterj are in S1,

(Clusteri <1 Clusterj)⇒ (Clusteri <2 Clusterj)

. Furthermore, for Clusteri in SClusterindex
and Clusterj in S′1 =

S1 \ Clusterindex,

Clusteri <2 Clusterj ⇔ Clusterindex <1 Clusterj

. The situation is summarized in Fig. 4.

Figure 4: Construction of <2 (see description of the algorithm).

• A function SimpleOrder (To be used when the recursion depth is >

threshold)

input: a list S1 of clusters with an order and a Clusterindex in S1

output: an order on Clusterindex.
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Select in S1 the nearest neighbour of Clusterindex greater than Clusterindex
and the nearest neighbour lower than Clusterindex. Order elements of

Clusterindex according to their distance to the two clusters selected

during the previous step.

• A function FuncRecursive

FuncRecursive;

input : An ordered list of clusters (S1, <1) , an Index Cluster

Clusterindex, a depth D

output: An order on Clusterindex given by a list

if D > threshold then
SimpleOrder (Clusterindex)

else

S′1 ← Neighbour(S1, Clusterindex);

Sindex ← IndexCutting(Clusterindex);

S2 ← S′1 ∪ Sindex\Clusterindex;

(<2)← MainOrder(S′1, Clusterindex, Sindex);

listorder ← empty list;

for all the sons in Sindex taken increasingly for <2 do
listorder ← Concat (listorder, FuncRecursive

(S2, son,D + 1))

end

end

The main program is just the function FuncRecursive called with the list

S1 reduced to I(Ω) with Clusterindex = I(Ω) and D = 0.

Fig. 5 presents the different steps on a simple example.
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(a) (b)

(c) (d)

Figure 5: This example shows the successive steps of the algorithm launched

with threshold = 2. (a) Initial point cloud; (b) depth = 1 ; (c) depth = 2;

(d) depth = threshold : points in each cluster are ordered according to their

distance to neigbhour clusters

5.2 Optimization over the permutation space

We note that, according to this algorithm the set to be ordered is no longer

the set of all colors present in the image, but the set of clusters S at each

level of recursion. The cost function P can be calculated if the cardinal n of

S is reasonable. If the set S does not exceed n = 9 elements, it is conceivable

to calculate the cost P of each permutation and select the minimum. How-

ever, this solution requires an important computation time. An alternative

solution consists in optimizing the cost function iteratively. It is well known

that from a permutation it is possible to reach any other permutation by

composing transpositions. Given a permutation, we select the transposition

that minimizes the cost function, and we repeat the process until we fall

in a minimum. As there is no proof that the cost function is convex, the

minimum might only be a local minimum. However, under n = 10 elements

it is possible to compare the result with the global exploration. In all tested

situations with n = 10 elements, the optimization by transposition do not

fall in a local minimum.

6 Order invariances

The cost function P (I) does not depend on the coordinates of colors but

only on their mutual distances and their co-occurrences. As the notion of

13



co-occurrences remains unchanged under bijective transformations, the cost

P (I) is invariant under any isometric transformation. However, the choice

of a particular function f(·, ·) can induce larger class of invariance. For

instance, the function:

f((d(c, ci) ∧ d(c, cj)), d(ci, cj)) =
(d(c, ci) ∧ d(c, cj))

d(ci, cj)
, (9)

also provides invariance of P (I) under homothetic transformations. We can

also note that for the function:

f((d(c, ci) ∧ d(c, cj)), d(ci, cj)) =
(d(c, ci) ∧ d(c, cj))

α

d(ci, cj)β
, (10)

homothetic transformations simply result in the multiplication of P (I) by

a positive constant. Consequently, as the notion of minimum is invariant

under increasing transformation, the minimization of P (I) should remain

relatively stable. If T is an isometric (or homothetic) transformation of the

value space V, and Φ a morphological operator {Ω,V} → {Ω,V}, then T

and Φ commutes for any image I, i.e.,

Φ(T (I)) = T (Φ(I)).

7 Results of morphological image processing

Explicit calculation of P is not possible for standard images. Then exact

comparison between orders produced by our minimization and classical lex-

icographic order or bit-mixing order proposed in [6] is not possible. At the

first step of the recursion, the initial set Ω is divided into n clusters, with

n reasonably small. Assimilating clusters and centroids enables us to order

them according to the lexicographic or the bit-mixing paradigm. It is then

possible to compare the cost of each order by computing the corresponding

values P on the set of centroids. This parameter is computed to quantita-

tively compare the three orders when the set of points is too important for

a direct calculation.

For each image, the minimization is launched with the following param-

eters:

• Function f :

f(x, y) = x ·G(y)

whereG(.) is a gate function with linear decrease. The cost P becomes:

P =
∑

a < c < b

(d(a, c) ∧ d(a, b)) ·G(d(a, b)) · ...

...(CI(c, a) ∧ CI(c, b))
, (11)
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• The set S is divided into n ≤ 10 clusters

• The recursion is stopped when depth = 2.

7.1 2D points set

Before going into morphological operations, we present here a comparison

of the lexicographic, the bit-mixing, and the adapted order on a few sets of

20 points in a cube of R2, without introducing co-occurrences. The mini-

mization on 20 points can be launched without clustering.

4 5 6 7
Lexicographic

bit-mixing
Adapted order

4 6 8
1
4
7

4 5 6
1
4
7

Figure 6: First raw: Lexicographic order; Second raw: Bit-mixing order;

Third raw: Adapted order; Fourth raw: Cost P for each order.

This set of examples tends to confirm two things. On the one hand,

the minimization of the cost function P produces satisfying results. On the

other hand, the bit-mixing often gives results significantly more continuous

than the lexicographic order.

15



(a) (b)

(c) (d)

Figure 7: Projection of the total order on the image support: (a) original

RGB image I(p); (b) lexicographic order (R → G → B); (c) bit-mixing

order; (d) our image adapted total order.

7.2 Color Imaging

We present results of morphological color processing obtained for two dif-

ferent RGB images. The first one is a microscopic blood vessel from a

fluorescence microscope, the second one is a natural color image. For both

of them P is minimized by the recursive algorithm discussed in previous

sections. The distance d(ci, cj) between colours is the Euclidean distance of

the RGB colour space.

Fig. 7 represents the RGB color image together with the projection of

the total order on the image support for the three studied total order. As

we can see, the blue spots are totally invisible to the lexicographic ordering.

Note that the lexicographic ordering starts with red, and ends by blue. The

bit-mixing paradigm and the image adapted total order give different results

but are both coherent with the original image.

0 2 4 6

·106

Lexicographic
bit-mixing

Adapted order

2 4 6

·105

Adapted order
bit-mixing

Lexicographic

(a) (b)

Figure 8: Evaluation of the cost function P at the first step of the recursion:

(a) image I(p) from Fig. 7, (b) image I(p) from Fig. 10.

Using now each total order, we can compute morphological color opera-

tors. Fig. 9 gives the corresponding openings and closings using as structur-
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ing element a square of 7×7 pixels. As expected, the lexicographic ordering

produces important discontinuities around the blue spots. The bit-mixing

paradigm and the image adapted total order give different results but both

preserve the regularity of boundaries. Besides the visual comparison of these

results, we compare the cost P at the first step of the recursion for each or-

der, as shown in Fig. 8(a).

(a) (b) (c)

Figure 9: Morphological processing of image from Fig. 7: openings (top row)

γB(I) and closings (bottom row) ϕB(I) using lexicographic order in (a), bit-

mixing order in (b) and our image adapted total order in (c). Structuring

element is B is a square of 7× 7 pixels.

The same study is performed on the second example. Fig. 10 provides

the original RGB image and the image representation of the three orders.

Unlike the previous examples, lexicographic order is able to distinguish all

the interesting objects of the image. Furthermore, it seems to give an order

smoother than the bit-miximg paradigm and the image adapted total order.

However, this visual impression is not corroborated by the computation of

the cost P , see Fig. 8(b). As we can observe from the opening/closing

operators depicted in Fig. 11, the regularity of the grey-scale projection on

lexicographic order is only “an illusion”. Both lexicographic and bit-mixing

order present high discontinuities on blue and yellow boundaries. On this

example, our image adapted total order is the only one of the three orders

that provides satisfying results in terms of regularity for opening and closing.
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(a) (b)

(c) (d)

Figure 10: Projection of the total order on the image support: (a) original

RGB image I(p); (b) lexicographic order; (c) bit-mixing order; (d) our image

adapted total order.
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(a) (b) (c)

Figure 11: Morphological processing of image from Fig. 10: openings (top

row) γB(I) and closings (bottom row) ϕB(I) using lexicographic order in (a),

bit-mixing order in (b) and our image adapted total order in (c). Structuring

element is B is a square of 7× 7 pixels.

7.3 Diffusion Tensor Imaging (DTI)

We recall that in DTI, each pixel of the image contains a symmetric positive

definite matrix of size 3×3, that is a point in the space SPD(3). A matrix of

SPD(3) can be represented as an ellipsoid, thus DTI image can be visualized

using ellipsoids, see the example in Fig. 12.
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Figure 12: Example of DTI image.

As the matrix is symmetric, it can be parametrized by the 6 upper-

diagonal coefficients:

Figure 13: Standard parametrization of a symmetric matrix.

This parametrization of SPD(3) induces a lexicographic and a bit-mixing

order named respectively LEX1 and BMIX1 in what follows. Another ap-

proach consists in representing SPD(n) matrices with rotations and eigen-

values. A symmetric matrix can be diagonalized in an orthonormal basis.

Then each SPD(3) matrix can be represented by 3 eigenvalues and a rota-

tion matrix. Using any angular representation of the rotation matrix, the

SPD(3) matrix can be represented by 3 eigenvalues and 3 angles. Let us

consider such a parametrization where the eigenvalues are sorted decreas-

ingly. The associated lexicographic order is called LEX2 and the bit-mixing

order BMIX2.

Using our framework, the image adapted total order is calculated ac-

cording to two metrics:
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• the metric associated with the Frobenius scalar product, i.e., 〈A,B〉 =

tr(ABt);

• the Log-Euclidean metric [20], i.e., d(A,B) = ‖ log(A)− log(B)‖.

In every processing example, the structuring element B is a square of

5 × 5 pixels. Fig. 14 and Fig. 15 show respectively the results of openings

and closings for the different total orders. As in standard morphological

processing, opening and closing removes small objects form the image.

(a) (b) (c)

(d) (e) (f)

Figure 14: Morphological opening of a DTI image (original image in Fig. 12):

using LEX1 in (a), LEX2 in (b), BMIX1 in (c), BMIX2 in (d), image

adapted total order using Frobenius norm in (e), and using Log-Euclidean

norm in (f).
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(a) (b) (c)

(d) (e) (f)

Figure 15: Morphological opening of a DTI image (original image in Fig. 12):

using LEX1 in (a), LEX2 in (b), BMIX1 in (c), BMIX2 in (d), image

adapted total order using Frobenius norm in (e), and using Log-Euclidean

norm in (f).

Using the openings from Fig. 14 as markers, the geodesic reconstruc-

tion [17] has also been computed . The results are depicted in Fig. 16 and

as expected, this operator based on geodesic dilations will recover the con-

tours of the objects which have not been suppressed by the opening.
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(a) (b) (c)

(d) (e) (f)

Figure 16: Morphological reconstruction of a DTI image (reference image in

Fig. 12 and marker images are the openings in Fig. 14): using LEX1 in (a),

LEX2 in (b), BMIX1 in (c), BMIX2 in (d), image adapted total order

using Frobenius norm in (e), and using Log-Euclidean norm in (f).

Finally, the comparative result of median filtering is presented in Fig. 17.
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(a) (b) (c)

(d) (e) (f)

Figure 17: Median filtering of a DTI image (reference image in Fig. 12 and

marker images are the openings in Fig. 14): using LEX1 in (a), LEX2

in (b), BMIX1 in (c), BMIX2 in (d), image adapted total order using

Frobenius norm in (e), and using Log-Euclidean norm in (f).

Visually, the image adapted total order based on the Frobenius norm

gives results at least as good as other orders, and better ones in several

situations. Surprisingly, the adapted total order based on the Log-Euclidean

distance is sometimes worst than the lexicographic or bit-mixing approaches.

7.4 Total order in the Poincaré upper half plane

As discussed in previous sections, the proposed order is based only on the

notion of distance, independently from the algebraic structure. This frame-

work suits perfectly to the case of images whose pixels lies in a Riemannian

manifold, where the distance is known. We present here a situation where

the image is valued in such a manifold.

Mathematical morphology for images valued in Gaussian laws has al-

ready been studied in [4]. One of the most common distances on Gaussians

is the distance induced by the Riemannian metric called the Fisher metric.
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This is a simple example where the valued space is not a vector space. In

the case of one dimensional Gaussian parametrized by their means µ and

their standard deviation σ, the distance between two Gaussians G1 and G2

is given by:

d(G1, G2) = cosh−1(1 +
1
2(µ1 − µ2)2 + (σ1 − σ2)2

2σ1σ2
).

In the mean/standard deviation half-plane, the shortest paths of the Fisher

metric are half ellipses centered on the µ-axis.

The studied example is a sequence of grey-scale retinal images. At each

pixel, we dispose of 20 successive acquisitions. By assuming a Gaussian

distribution on the successive acquisition, we obtain a Gaussian valued image

represented in Fig. 18. The observation of the distribution of Gaussians in

the upper half plane presented in Fig. 19 strongly suggests to endow the

space of Gaussian laws with the Fisher metric. The proposed solution to

obtain total orders is currently the only total order framework that takes

the geometry of the space into account.

(a) (b)

Figure 18: (a): mean image, (b): standard deviation image

Figure 19: Point cloud in the uni-dimensional Gaussian laws space of Fig. 18

Note that to minimize P one has now to perform a clustering on the

hyperbolic upper half plane. We choose to use the model centroids proposed

in [21] which enables a simple implementation of the k-means algorithm. The
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adapted order is computed with respect to the Euclidean and the Fisher

metric. Figures 20, 21, 22, 23 shows that the Riemannian framework might

lead to better results. The central black spot of the retinal image is for

instance easier extract, see Fig. 22, 23.

(a) (b)

Figure 20: (a): total order projection using Euclidean metric, (b): total

order projection using Fisher metric

(a) (b)

Figure 21: Top row: mean image, Bottom row: standard deviation im-

age,(a): closing in the Euclidean framework, (b): closing in the Riemannian

framework
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(a) (b) (c)

Figure 22: Top row: mean image, Bottom row: standard deviation image,

(a): original image, (b): closing by reconstruction in the Euclidean frame-

work, (c): closing by reconstruction in the Riemannian framework

(a) (b)

Figure 23: residual image of the closing by reconstruction in the Euclidean

framework in (a), and in the Riemannian framework in (b)

8 Conclusions and Perspectives

To our knowledge, this paper is the first that rigorously formulates and

demonstrates the discontinuity issue of total orders. Given a total order,

the lemma tells us there are always images where morphological operators

introduce discontinuities. Given an image and a total order, we exhibit the

triplets of values that induce discontinuities. The identification of problem-

atic triplets leads us to a cost function measuring the quality of a total order

regarding the discontinuity problem. Due to the restriction of the problem

to a specific image and to a precise identification of the problematic situ-
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ations, we know that the order minimizing the cost function produces less

discontinuities than the existing propositions [6][12]. As the cost function is

not explicitly computable due to the size of the set to order, we propose a

recursive minimization procedure based on successive clustering of the set

to order, so as to find a total order adapted to the image. A strength of the

proposed framework is its generality. Indeed, for a large majority of images,

the value space is equipped with a metric. The image adapted order can

thus be computed for almost any image. If it is possible to show the interest

of our method on a set of example, the bit-mixing total order proposed in

[6] remains an interesting solution in the Euclidean case. Indeed our current

minimization procedure does not provide yet average results significantly

better than the bit-mixing, while the latter is independent from the image

and requires no pre-processing. The minimization of the cost function is

subject to several potential improvement, on its accuracy on the one hand,

and on the computation speed on the other hand. The use of techniques such

as genetic algorithms might for instance enable to significantly enhance the

number of clusters at each step of the recursion. Thus our future research

will be essentially focused on the minimization of the cost function.
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