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We consider an X -valued Markov chain X1, X2, . . . , Xn belonging to a class of iterated random functions, which is "one-step contracting" with respect to some distance d on X . If f is any separately Lipschitz function with respect to d, we use a well known decomposition of Sn = f (X1, . . . , Xn) -E[f (X1, . . . , Xn)] into a sum of martingale differences d k with respect to the natural filtration F k . We show that each difference d k is bounded by a random variable η k independent of F k-1 . Using this very strong property, we obtain a large variety of deviation inequalities for Sn, which are governed by the distribution of the η k 's. Finally, we give an application of these inequalities to the Wasserstein distance between the empirical measure and the invariant distribution of the chain.

A class of iterated random functions

Let (Ω, A, P) be a probability space. Let (X , d) and (Y, δ) be two complete separable metric spaces. Let (εi) i≥1 be a sequence of independent and identically distributed (iid) Y-valued random variables. Let X1 be a X -valued random variable independent of (εi) i≥2 . We consider the Markov chain (Xi) i≥1 such that Xn = F (Xn-1, εn), for n ≥ 2, (

where F : X × Y → X is such that

E d F (x, ε1), F (x ′ , ε1) ≤ ρd(x, x ′ ) (1.2)
for some ρ ∈ [0, 1), and d(F (x, y), F (x, y ′ )) ≤ Cδ(y, y ′ ) (1.3) for some C > 0. This class of Markov chains, that we call "one-step contracting", is very restrictive, but still contains a lot of pertinent examples. Among them, in the case where X is a separable Banach space with norm | • |, let us cite the functional auto-regressive model Xn = f (Xn-1) + g(ξn) , where f : X → X and g : Y → X are such that |f (x)f (x ′ )| ≤ ρ|xx ′ | and |g(y)g(y ′ )| ≤ Cδ(y, y ′ ) .

We refer to the paper by Diaconis and Freedman [START_REF] Diaconis | Iterated random functions[END_REF] for many other interesting examples. Note also that this class of Markov chains contains the iid sequence Xi = εi, by taking Y = X and F (x, y) = y (note that ρ = 0 in that case).

This class possesses the property of exponential forgetting of the starting point: If X x n is the chain starting from X1 = x, then one has

E d(X x n , X x ′ n ) ≤ ρ n d(x, x ′ ) .
Hence is has an unique stationary distribution µ (see for instance Theorem 1 in Diaconis and Freedman [START_REF] Diaconis | Iterated random functions[END_REF]), meaning that if X1 is distributed as µ, then the chain (Xi) i≥1 is strictly stationary. Moreover, one can easily prove that, if (Xi) i≥1 is strictly stationary, then, for any (x0, y0) ∈ X ×Y, and any positive measurable function H,

E[H(d(Xn, x0))] ≤ E H ∞ i=0
ρ i d(F (x0, y0), x0) + Cδ(εi+1, y0) .

(1.4)

Although the one-step contraction is a very restrictive condition, this class of iterated random functions contains a lot of non Harris-recurrent Markov chains. For instance, if X = Y = [0, 1] the chain Xn = 1 2 (Xn-1 + εn)

with X1 uniformly distributed over [0, 1], and εi ∼ B(1/2) is strictly stationary, but it is not mixing in the sense of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF].

The class of iteretad random function satsifying (1.2) has been studied in Section 3.1 of Djellout et al. [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF] (as a particular case of a general class of Markov chains which are contracting with respect to Wasserstein distances, see their Condition C1). Combining McDiarmid method and a result by Bobkov and Götze [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF], Djellout et al. [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF] proved in their Proposition 3.1 a subgaussian bound for separately Lipschitz functionals of the chain provided

sup x∈X E exp a d(F (x, ε1), F (x, ε2)) 2 < ∞ , (1.5) 
for some a > 0. Because of the supremum in x, this condition is quite delicate to check. However, if (1.3) holds, it is implied by the simple condition E exp a Cδ(ε1, ε2)

2 < ∞ .
As we shall see in Section 2, this is due to the fact that the martingale differences from McDiarmid's decomposition are bounded by a random variable η k independent of F k-1 = σ(X1, . . . , X k-1 ).

From this simple remark, we can obtain many deviation inequalities for separately Lipschitz functionals of the chain by applying known inequalities for martingales.

A more restrictive class of iterated random function, satisfying (1.3) and the one-step contraction d F (x, y), F (x ′ , y) ≤ ρd(x, x ′ ) , has been studied by Delyon et al. [START_REF] Delyon | Moderate deviation principle for ergodic Markov chain. Lipschitz summands[END_REF] when X = R ℓ and Y = R k . These authors have proved a moderate deviation principle for additive and Lipschitz functionals of the chain, under a condition on the Laplace transform of the euclidean norm of εi.

McDiarmid's martingale

2.1 Separately Lipschitz functions of X 1 , . . . , X n .

Let f : X n → R be separately Lipschitz, such that

|f (x1, x2, . . . , xn) -f (x ′ 1 , x ′ 2 , . . . , x ′ n )| ≤ d(x1, x ′ 1 ) + • • • + d(xn, x ′ n ) .
(2.1)

Let then

Sn := f (X1, . . . , Xn) -E[f (X1, . . . , Xn)] .

(2.2)

We also introduce the natural filtration of the chain, that is F0 = {∅, Ω} and for k ∈ N * , F k = σ(X1, X2, . . . , X k ). Define then

g k (X1, . . . , X k ) = E[f (X1, . . . , Xn)|F k ] , (2.3) 
and

d k = g k (X1, . . . , X k ) -g k-1 (X1, . . . , X k-1 ) . (2.4) For k ∈ [1, n -1], let S k := d1 + d2 + • • • + d k ,
and note that, by definition of the d k 's, the functional Sn introduced in (2.2) satisfies

Sn = d1 + d2 + • • • + dn .
Hence S k is a martingale adapted to the filtration F k . This representation was introduced by McDiarmid [START_REF] Mcdiarmid | On the method of bounded differences[END_REF] in the iid case, when Xi = εi (see also Yurinskii [31] in a different context).

The following Proposition collects some interesting properties of the functions g k and of the martingale differences

d k . Proposition 2.1. For k ∈ N and ρ in [0, 1), let K k (ρ) = (1 -ρ k+1 )/(1 -ρ) = 1 + ρ + • • • + ρ k .
Let (Xi) i≥1 be a Markov chain satisfying (1.1) for some function F satisfying (1.2). Let g k and d k be defined by (2.3) and (2.4) respectively.

1. The function g k is separately Lipschitz and such that

|g k (x1, x2, . . . , x k ) -g k (x ′ 1 , x ′ 2 , . . . , x ′ k )| ≤ d(x1, x ′ 1 ) + • • • + d(x k-1 , x ′ k-1 ) + K n-k (ρ)d(x k , x ′ k ) .
2. Let PX 1 be the distribution of X1 and Pε be the common distribution of the ε k 's. Let GX 1 and Hε be the two functions defined by

GX 1 (x) = d(x, x ′ )PX 1 (dx ′ ) and Hε(x, y) = d(F (x, y), F (x, y ′ ))Pε(dy ′ ) .
Then, the martingale difference d k is such that

|d1| ≤ Kn-1(ρ)GX 1 (X1) and for k ∈ [2, n], |d k | ≤ K n-k (ρ)Hε(X k-1 , ε k ) .
3. Assume moreover that F satisfies (1.3), and Let Gε be the function defined by Gε(y) = Cδ(y, y ′ )Pε(dy ′ ) .

Then Hε(x, y) ≤ Gε(y), and consequently, for k ∈ [2, n],

|d k | ≤ K n-k (ρ)Gε(ε k ) .
Remark 2.1. Let us comment on the point 3 of Proposition 2.1. The fact that the martingale difference d k is bounded by the random variable

K n-k (ρ)Gε(ε k ) which is independent of F k-1 is crucial.
It explains why we shall obtain deviations inequalities for Sn under some conditions on the distribution of Gε(ε k ) (typically conditions on the Laplace transform, or moment conditions).

Proof. The first point will be proved by recurrence in the backward sense. The result is obvious for k = n, since gn = f . Assume that it is true at step k, and let us prove it at step k -1. By definition

g k-1 (X1, . . . , X k-1 ) = E[g k (X1, . . . , X k )|F k-1 ] = g k (X k , . . . , X k-1 , F (X k-1 , y))Pε(dy) .
It follows that

|g k-1 (x1, x2, . . . , x k-1 ) -g k-1 (x ′ 1 , x ′ 2 , . . . , x ′ k-1 )| ≤ |g k (x1, x2, . . . , F (x k-1 , y)) -g k (x ′ 1 , x ′ 2 , . . . , F (x ′ k-1 , y))|Pε(dy) . (2.5)
Now, by assumption and condition (1.2),

|g k (x1, x2, . . . , F (x k-1 , y)) -g k (x ′ 1 , x ′ 2 , . . . , F (x ′ k-1 , y))|Pε(dy) ≤ d(x1, x ′ 1 ) + • • • + d(x k-1 , x ′ k-1 ) + K n-k (ρ) d(F (x k-1 , y), F (x ′ k-1 , y))Pε(dy) ≤ d(x1, x ′ 1 ) + • • • + (1 + ρK n-k (ρ))d(x k-1 , x ′ k-1 ) ≤ d(x1, x ′ 1 ) + • • • + K n-k+1 (ρ)d(x k-1 , x ′ k-1 ) . (2.6)
The point 1 follows from (2.5) and (2.6).

Let us prove the point 2. First note that

|d1| = g1(X1) -g1(x)PX 1 (dx) ≤ Kn-1(ρ) d(X1, x)PX 1 (dx) = Kn-1(ρ)GX 1 (X1) .
In the same way, for k ≥ 2,

|d k | = g k (X1, • • • , X k ) -E[g k (X1, • • • , X k )|F k-1 ] ≤ g k (X1, • • • , F (X k-1 , ε k )) -g k (X1, • • • , F (X k-1 , y)) Pε(dy) ≤ K n-k (ρ) d(F (X k-1 , ε k ), F (X k-1 , y))Pε(dy) = K n-k (ρ)Hε(X k-1 , ε k ) . The point 3 is clear, since if (1.3) is true, then Hε(x, y) = d(F (x, y), F (x, y ′ ))Pε(dy ′ ) ≤ Cδ(y, y ′ )Pε(dy ′ ) = Gε(y) .
The proof of the proposition is now complete.

An important remark

For any α ∈ (0, 1) define the distances dα and δα on X and Y respectively by dα(x, x ′ ) = (d(x, x ′ )) α and δα(y, y ′ ) = (δ(y, y ′ )) α .

If F is one-step contacting with respect to a natural distance d (meaning that it satisfies the inequalities (1.2) and (1.3) with ρ ∈ [0, 1) and C > 0 respectively), then for any α ∈ (0, 1),

E dα(F (x, ε1), F (x ′ , ε1) ≤ ρ α dα(x, x ′ ) , (2.7) 
and dα F (x, y), F (x, y ′ ) ≤ C α δα(y, y ′ ) .

(2.8)

Hence F is also one-step contracting for the distance dα, with the new constants ρ α ∈ [0, 1) and C α > 0. Consequently, Proposition 2.1 applies to the martingale

Sn = f (X1, . . . , Xn) -E[f (X1, . . . , Xn)] ,
where f is separately Lipshitz with respect to dα. The dominating random variables GX 1 ,α(X1) and Gε,α(ε k ) are then defined by

GX 1 ,α(x) = dα(x, x ′ )PX 1 (dx ′ ) and Gε,α(y) = C α δα(y, y ′ )Pε(dy ′ ) .
Hence, all the results of the following section apply to the functional Sn, provided the corresponding conditions on the dominating random variables GX 1 ,α(X1) and Gε,α(ε k ) are satisfied. For instance, if X = R ℓ and d(x, y) = xy is the euclidean distance on R ℓ , then one can consider the class of separately Hölder functions f such that

|f (x1, x2, . . . , xn) -f (x ′ 1 , x ′ 2 , . . . , x ′ n )| ≤ x1 -x ′ 1 α + • • • + xn -x ′ n α .
3 Deviation inequalities for the functional S n .

Let (Xi) i≥1 be a Markov chain satisfying (1.1) for some function F satisfying (1.2) and (1.3). In this section, we apply inequalities for martingales to bound up the deviation of the functional Sn defined by (2.2). Some of these inequalities are direct applications of known inequalities, some deserve a short proof and some other are new. Note that deviation inequalities for Lipschitz functions of dependent sequences have been proved for instance by Rio [START_REF] Rio | Inégalités de Hoeffding pour les fonctions Lipschitziennes de suites dépendantes[END_REF], Collet et al. [START_REF] Collet | Exponential inequalities for dynamical measures of expanding maps of the interval[END_REF], Djellout et al. [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF], Kontorovich and Ramanan [START_REF] Kontorovich | Concentration inequalities for dependent random variables via the martingale method[END_REF], and Chazottes and Gouëzel [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF] among others. Except for Djellout et al. [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF] (who also consider more general Markov chains), the examples studied by these authors are different from the class described in the present paper. For instance, the Markov chains associated to the maps studied by Chazottes and Gouëzel [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF] do not in general satisfy the one step contraction property.

The interest of the one step contraction is that, thanks to Proposition 2.1, we shall obtain very precise inequalities, with precise constants depending on the distribution of the dominating random variables GX 1 (X1) and Gε(ε k ).

Let us note that, in the iid case, when Xi = εi, the additive functional

f (x1, x2, . . . , xn) = n k=1 Gε(xi)
is of course separately Lipshitz and satisfies (2.1). Hence, the inequalities of the following section apply to this simple functional, under the usual moment or Laplace conditions on the (non centered) variables Gε(εi). This shows that, in the iid case, these inequalities cannot be much improved without additional assumptions on the functional f . Les us now consider the case where we only assume that F satisfies (1.2). Then all the inequalities of this section will be true provided the appropriate conditions of the type E[f (Gε(ε))] ≤ C for some positive measurable function f are replaced by

sup k∈[2,n] E f Hε(X k-1 , ε k ) X k-1 ∞ ≤ C . (3.1)
Note that the latter condition is true provided

sup x∈X E f Hε(x, ε1) ≤ C ,
which is of the same type as condition (1.5) for the subgaussian bound (with f (x) = exp(ax 2 ) in that particular case). Recall that condition (1.5) is due to Djellout et al. [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF] (see their Proposition 3.1).

For the weak and strong moment bounds on Sn, we shall see in Subsections 3.7, 3.8 and 3.9 that condition (3.1) can be replaced by an appropriate moment condition on Hε(X k-1 , ε k ).

To conclude the introduction of this section, let us note that the deviations inequalities of Subsections 3.1 -3.6 are given for P ± Sn > x , but we shall only prove them for Sn. The proofs of the deviation inequalities for -Sn are exactly the same, the upper bounds of points 2 and 3 of Proposition 2.1 being valid for d k and -d k .

In all this section, Gε(ε) denotes a random variable distributed as Gε(ε k ).

Bernstein type bound

Under the conditional Bernstein condition, van de Geer [START_REF] Van De Geer | Exponential inequalities for martingales, with application to maximum likelihood estimation for counting process[END_REF] and De La Peña [START_REF] De La Peña | A general class of exponential inequalities for martingales and ratios[END_REF] have obtained some tight Bernstein type inequalities for martingales. Applying Proposition 2.1, we obtain the following proposition.

Proposition 3.1. Assume that there exist some constants M > 0, V1 ≥ 0 and V2 ≥ 0 such that, for any integer k ≥ 2,

E GX 1 (X1) k ≤ k! 2 V1M k-2 and E Gε(ε) k ≤ k! 2 V2M k-2 . (3.2) Let V = V1 Kn-1(ρ) 2 + V2 n k=2 K n-k (ρ) 2 and δ = M Kn-1(ρ).
Then, for any t ∈ [0, δ -1 ),

E [e ±tSn ] ≤ exp t 2 V 2(1 -t δ) . (3.3) 
Consequently, for any x > 0, 1. In the iid case, when Xi = εi, condition (3.2) is the Bernstein condition

P ± Sn ≥ x ≤ exp x 2 V (1 + 1 + 2xδ/V ) + xδ (3.4) ≤ exp x 2 2 (V + xδ) . ( 3 
E Gε(ε) k ≤ k! 2 V M k-2 .
In that case the inequalities (3.4) and (3.5) hold with ρ = 0.

Since

Gε(ε) ≤ Cδ(ε, y0) + CE[δ(ε, y0)], it follows that E Gε(ε) k ≤ 2 k E Cδ(ε, y0) k .
Hence, the condition

E Cδ(ε, y0) k ≤ k! 2 A(y0)B(y0) k-2 (3.6)
implies the second condition in (3.2) with V2 = 4A(y0) and M = 2B(y0). In the same way, the condition

E d(X1, x0) k ≤ k! 2 C(x0)D(x0) k-2 (3.7)
implies the first condition in (3.2) with V1 = 4C(x0) and M = 2D(x0).

3. Consider the chain with non random starting point X1 = x. Then GX 1 (X1) = 0, and the first condition in (3.2) holds with V1 = 0.

4. Let us consider now the case where X1 is distributed according to the invariant probability measure µ. We shall see that in that case (3.7) follows from (3.6). To avoid to many computations, assume that one can find (x0, y0)

such that d(F (x0, y0), x0) = 0, which is true in many cases. If (3.6) holds, it follows from (1.4) applied to H(x) = x k that (3.7) holds with C(x0) = (1 -ρ) -2 A(y0) and D(x0) = (1 -ρ) -1 B(y0). According to the point 2 of this remark, condition (3.2) is satisfied by taking M = 2(1 -ρ) -1 B(y0), V2 = 4A(y0) and V1 = 4(1 -ρ) -2 A(y0).
Proof. From Proposition 2.1 and condition (3.2), it is easy to see that, for any t ∈ [0, δ -1 ),

E [e td 1 ] ≤ 1 + ∞ i=2 t i i! E [(d1) i ] ≤ 1 + ∞ i=2 t i i! E [|d1| i ] ≤ 1 + ∞ i=2 t i i! Kn-1(ρ) i E GX 1 (X1) i ≤ 1 + ∞ i=2 t i i! Kn-1(ρ) i i! 2 V1M i-2 = 1 + t 2 V1 Kn-1(ρ) 2 2(1 -t δ) . (3.8) Similarly, for any k ∈ [2, n], E [e td k |F k-1 ] ≤ 1 + t 2 V2 K n-k (ρ) 2 2(1 -t δ) . (3.9) 
Using the inequality 1 + t ≤ e t , we find that, for any t ∈ [0, δ -1 ),

E [e td 1 ] ≤ exp    t 2 V1 Kn-1(ρ) 2 2(1 -t δ)    (3.10)
and

E [e td k |F k-1 ] ≤ exp    t 2 V2 K n-k (ρ) 2 2(1 -t δ)    . (3.11) 
By the tower property of conditional expectation, it follows that, for any t ∈ [0, δ -1 ),

E e tSn = E E [e tSn |Fn-1] = E e tS n-1 E [e tdn |Fn-1] ≤ E e tS n-1 exp t 2 V2 2(1 -t δ) ≤ exp t 2 V 2(1 -t δ) ,
which gives inequality (3.3). Using the exponential Markov inequality, we deduce that, for any x ≥ 0 and t ∈ [0, δ -1 ),

P (Sn ≥ x) ≤ E e t (Sn-x) ≤ exp -t x + t 2 V 2(1 -t δ) . (3.12)
The minimum is reached at

t = t(x) := 2x/V 2xδ/V + 1 + 1 + 2xδ/V . Substituting t = t(x) in (3.
12), we obtain the desired inequalities

P (Sn ≥ x) ≤ exp x 2 V (1 + 1 + 2xδ/V ) + xδ ≤ exp x 2 2(V + xδ) ,
where the last line follows from the inequality 1 + 2x δ/V ≤ 1 + x δ/V .

Cramér type bound

If the Laplace transform of the dominating random variables GX 1 (X1) and Gε(ε k ) satisfy the Cramér condition, we obtain the following proposition similar to that of Liu and Watbled [START_REF] Liu | Exponential ineqalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment[END_REF] under the conditional Cramér condition. For the optimal convergence speed of martingales under the Cramér condition, we refer to Lesigne of Volný [START_REF] Lesigne | Large deviations for martingales[END_REF] and Fan et al. [START_REF] Fan | Large deviation exponential inequalities for supermartingales[END_REF].

Proposition 3.2. Assume that there exist some constants a > 0, K1 ≥ 1 and K2 ≥ 1 such that

E exp aGX 1 (X1) ≤ K1 and E exp aCGε(ε) ≤ K2 . (3.13) Let K = 2 e 2 K1 + K2 n i=2 Kn-i(ρ) Kn-1(ρ) 2 and δ = a Kn-1(ρ)
.

Then, for any t ∈ [0, δ),

E [e ±tSn ] ≤ exp t 2 Kδ -2 1 -tδ -1 .
Consequently, for any x > 0,

P ± Sn ≥ x ≤ exp (xδ) 2 2K(1 + 1 + xδ/K) + xδ (3.14) ≤ exp (xδ) 2 4K + 2xδ . (3.15) Remark 3.2.
Let us comment on condition (3.13).

1. In the iid case, when Xi = εi, the condition (3.13) writes simply

E exp aGε(ε) ≤ K .
In that case the inequalities (3.14) and (3.15) hold with ρ = 0. 3. Consider the chain with non random starting point X1 = x. Then GX 1 (X1) = 0, and the first condition in (3.13) holds with K1 = 1.

4. Let us consider now the case where X1 is distributed according to the invariant probability measure µ. We shall see that in that case (3.17) follows from (3.16). Indeed, if (3.16) holds, it follows from (1.4) applied to H(x) = exp(ax) that

E exp ad(X1, x0) ≤ exp a 1 -ρ d(F (x0, y0), x0) ∞ i=0 (A(y0)) ρ i . Hence E exp ad(X1, x0) ≤ exp a 1 -ρ d(F (x0, y0), x0) (A(y0)) 1/(1-ρ)
and (3.17) is true with

B(x0) = (A(y0)) 1/(1-ρ) exp a 1 -ρ d(F (x0, y0), x0) .
According to the point 2 of this remark, condition (3.13) is satisfied by taking K2 = (A(y0)) 2 and K1 = (B(x0)) 2 . In particular, if (3.16) holds, and if we can find (x0, y0) such that d(F (x0, y0), x0) = 0, then one can take K1 = (A(y0)) 2/(1-ρ) .

Proof. Let δ = a/Kn-1(ρ). Since E [d1] = 0, it is easy to see that, for any t ∈ [0, δ),

E [e td 1 ] = 1 + ∞ i=2 t i i! E [(d1) i ] ≤ 1 + ∞ i=2 t δ i E 1 i! |δd1| i . (3.18)
Here, let us note that, for t ≥ 0,

t i i! e -t ≤ i i i! e -i ≤ 2e -2 , for i ≥ 2, ( 3.19) 
where the last line follows from the fact that i i e -i /i! is decreasing in i. Note that the equality in (3. [START_REF] Lesigne | Large deviations for martingales[END_REF]) is reached at t = i = 2. Using (3.19), Proposition 2.1 and condition (3.13), we have

E 1 i! |δd1| i ≤ 2e -2 E [e δ|d 1 | ] ≤ 2e -2 E exp aGX 1 (X1) ≤ 2e -2 K1. (3.20) 
Combining the inequalities (3.18) and (3.20) together, we obtain, for any t ∈ [0, δ),

E [e td 1 ] ≤ 1 + ∞ n=2 2 e 2 t δ n K1 = 1 + 2 e 2 t 2 K1δ -2 1 -tδ -1 ≤ exp 2 e 2 t 2 K1δ -2 1 -tδ -1 . (3.21) 
Similarly, since Kn-i(ρ)/Kn-1(ρ) ≤ 1 for all i ∈ [2, n], we have, for any t ∈ [0, δ),

E [e td i |Fi-1] ≤ exp 2 e 2 t 2 K2δ -2 1 -tδ -1 Kn-i(ρ) Kn-1(ρ) 2 . (3.22)
By the tower property of conditional expectation, it follows that, for any t ∈ [0, δ),

E e tSn = E E [e tSn |Fn-1] = E e tS n-1 E [e tdn |Fn-1] ≤ E e tS n-1 exp 2 e 2 t 2 K2δ -2 1 -tδ -1 ≤ exp t 2 Kδ -2 1 -tδ -1 , (3.23) 
where

K = 2 e 2 K1 + K2 n i=2 Kn-i(ρ) Kn-1(ρ) 2 .
Then using the exponential Markov inequality, we deduce that, for any x ≥ 0 and t ∈ [0, δ),

P (Sn ≥ x) ≤ E [e t (Sn-x) ] ≤ exp -tx + t 2 Kδ -2 1 -tδ -1 . (3.24)
The minimum is reached at

t = t(x) := xδ 2 /K xδ/K + 1 + 1 + xδ/K .
Substituting t = t(x) in (3.24), we obtain the desired inequalities (3.14) and (3.15).

3.3

Qualitative results when E e a(Gε(ε)) p < ∞ for p > 1.

The next proposition follows easily from Theorem 3.2 of Liu and Watbled [START_REF] Liu | Exponential ineqalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment[END_REF].

Proposition 3.3. Let p > 1.
Assume that there exist some constants a > 0, K1 ≥ 1 and K2 ≥ 1 such that

E exp a GX 1 (X1) p ≤ K1 and E exp a Gε(ε) p ≤ K2 . (3.25)
Let q be the conjugate exponent of p and let τ > 0 be such that

(qτ ) 1 q (pa) 1 p (1 -ρ) = 1 .
Then, for any τ1 > τ , there exist some positive numbers t1, x1, A, B, depending only on a, ρ, K1, K2, p and τ1, such that

E [e ±tSn ] ≤ exp(nτ1t q ) if t ≥ t1 exp(nAt 2 ) if t ∈ [0, t1] (3.26) 
and

P ± Sn ≥ x ≤ exp -a1x p /n p-1 if x ≥ nx1 exp -Bx 2 /n if x ∈ [0, nx1], (3.27) 
where a1 is such that (qτ ) 1/q (pa1) 1/p = 1.

Remark 3.3. Assume that (3.25) is satisfied for some p ≥ 1. From Proposition 3.2 (case p = 1) and Proposition 3.3 (case p > 1), we infer that for any x > 0, one can find a positive constant cx not depending on n such that

P (±Sn ≥ nx) ≤ exp -cxn . (3.28) 
Moreover, for x large enough, one can take cx = a1x p . Proof. By condition (3.25) and Proposition 2.1, it follows that

E exp a(1 -ρ) p |d1| p ≤ E exp a GX 1 (X1) p ≤ K2
and, for all i ∈ [2, n],

E exp a(1 -ρ) p |di| p | Fi-1 ≤ E exp a Gε(ε) p ≤ K1.
Let q > 1 and τ > 0 be such that

1 p + 1 q = 1 and (qτ ) 1 q (pa) 1 p (1 -ρ) = 1 .
Then, by Theorem 3.2 of Liu and Watbled [START_REF] Liu | Exponential ineqalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment[END_REF], for any τ1 > τ , there exist t1, x1, A, B > 0, depending only on a, ρ, K1, K2, p and τ1, such that the claim of Proposition 3.3 holds.

In particular, if p = 2, we have the following sub-Gaussian bound.

Proposition 3.4. Assume that there exist some constants a > 0, K1 ≥ 1 and K2 ≥ 1 such that

E exp a GX 1 (X1) 2 ≤ K1 and E exp a Gε(ε) 2 ≤ K2 . (3.29)
Then, there exists a constant c > 0 depending only on a, ρ, K1 and K2 such that

E [e ±tSn ] ≤ exp n c t 2
) for all t > 0.

(3.30)

Consequently, for any x > 0, ). This condition is implied by condition (1.5), which is due to Djellout et al [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF].

P ± Sn ≥ x ≤ exp - x 2 4nc . ( 3 
Proof. Inequality (3.30) follows directly from (3.26). Using the exponential Markov inequality, we deduce that for any x, t ≥ 0,

P (Sn ≥ x) ≤ E [e t (Sn-x) ] ≤ exp -t x + n c t 2 . (3.32)
The minimum is reached at t = t(x) := x/(2nc). Substituting t = t(x) in (3.32), we obtain the desired inequality (3.31).

Semi-exponential bound

In the case where GX 1 (X1) and Gε(ε) have semi-exponential moments, the following proposition holds. This proposition can be compared to the corresponding results in Borovkov [START_REF] Borovkov | Estimates for the distribution of sums and maxima of sums of random variables when the Cramér condition is not satisfied[END_REF] for partial sums of independent random variables, Merlevède et al. [START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF] for partial sums of weakly dependent sequences, and Fan et al. [START_REF] Fan | Large deviation exponential inequalities for supermartingales[END_REF] for martingales.

Proposition 3.5. Let p ∈ (0, 1). Assume that there exist some positive constants K1 and K2 such that

E GX 1 (X1) 2 exp GX 1 (X1) p ≤ K1 and E Gε(ε) 2 exp Gε(ε) p ≤ K2 . (3.33) 
Set

K = K1 + K2 n i=2 Kn-i(ρ) Kn-1(ρ) 2 .
Then, for any 0 ≤ x < K 1/(2-p) ,

P (±Sn ≥ x) ≤ exp - x 2 2K(Kn-1(ρ)) 2 + Kn-1(ρ) 2 x 2 K 1+p 1/(1-p) exp - K x Kn-1(ρ) 1-p p/(1-p) (3.34)
and, for any x ≥ K 1/(2-p) ,

P (±Sn ≥ x) ≤ exp - x Kn-1(ρ) p 1 - K 2 Kn-1(ρ) x 2-p + K Kn-1(ρ) x 2 exp - x Kn-1(ρ) p .
(3.35) Remark 3.5. In particular, there exists a positive constant c such that, for any x > 0,

P (±Sn ≥ nx) ≤ Cx exp -c x p n p , (3.36) 
where the constants Cx and c do not depend on n.

Remark 3.6. By a simple comparison, we find that for moderate x ∈ (0, K 1/(2-p) ), the second item in the right hand side of (3.34) is less than the first one. Thus for moderate x ∈ (0, K 1/(2-p) ), the bound (3.34) is a sub-Gaussian bound and is of the order exp -x 2 2K(Kn-1(ρ)) 2 .

(3.37) For all x ≥ K 1/(2-p) , bound (3.35) is a semi-exponential bound and is of the order exp -1 2

x Kn-1(ρ) p .

(3.38)

Moreover, when x/K 1/(2-p) → ∞, the constant 1 2 in (3.38) can be improved to 1 + ε for any given ε > 0.

Proof. The proof is based on a truncation argument. For given y > 0, set ηi = di1 {d i ≤y} . Then (ηi, Fi)i=1,...,n is a sequence of supermartingale differences. Using a two term Taylor's expansion, we have, for all t > 0,

e tη i ≤ 1 + tηi + t 2 η 2 i 2 e tη i .
Since p ∈ (0, 1), it follows that

η + i = di1 {0≤d i ≤y} ≤ y d p i y p 1 {0≤d i ≤y} ≤ y 1-p (η + i ) p .
Hence,

e tη i ≤ 1 + tηi + t 2 η 2 i 2 exp ty 1-p (η + i ) p . Since E[ηi|Fi-1] ≤ E[di|Fi-1] = 0, it follows that, for all t > 0, E[e tη i |Fi-1] ≤ 1 + t 2 2 E η 2 i exp ty 1-p (η + i ) p Fi-1 .
By Proposition 2.1, it follows that, for all t > 0,

E[e tη 1 ] ≤ 1 + t 2 2 E Kn-1(ρ)GX 1 (X1) 2 exp ty 1-p Kn-1(ρ)GX 1 (X1) p and similarly, for i ∈ [2, n], E[e tη i |Fi-1] ≤ 1 + t 2 2 E Kn-i(ρ)Gε(ε) 2 exp ty 1-p Kn-i(ρ)Gε(ε) p .
Taking t = y p-1 / Kn-1(ρ) p , by condition (3.33) and Kn-i(ρ)/Kn-1(ρ) ≤ 1, we find that

E[e tη 1 ] ≤ 1 + 1 2 y Kn-1(ρ) 2p-2 E GX 1 (X1) 2 exp GX 1 (X1) p ≤ 1 + 1 2 y Kn-1(ρ) 2p-2 K1 ≤ exp 1 2 y Kn-1(ρ) 2p-2 K1 and, for i ∈ [2, n], E[e tη i |Fi-1] ≤ 1 + 1 2 y Kn-1(ρ) 2p-2 Kn-i(ρ) Kn-1(ρ) 2 E Gε(ε) 2 exp Gε(ε) p ≤ 1 + 1 2 y Kn-1(ρ) 2p-2 K2 Kn-i(ρ) Kn-1(ρ) 2 ≤ exp 1 2 y Kn-1(ρ) 2p-2 K2 Kn-i(ρ) Kn-1(ρ) 2 .
Hence, by the tower property of conditional expectation, it follows that

E e t n i=1 η i = E E [e t n i=1 η i |Fn-1] = E e t n-1 i=1 η i E [e tηn |Fn-1] ≤ E e t n-1 i=1 η i exp 1 2 y Kn-1(ρ) 2p-2 K2 1 Kn-1(ρ) 2 ≤ exp 1 2 y Kn-1(ρ) 2p-2 K , (3.39) 
where

K = K1 + K2 n i=2 Kn-i(ρ) Kn-1(ρ) 2 .
It is easy to see that

P (Sn ≥ x) ≤ P n i=1 ηi ≥ x + P n i=1 di1 {d i >y} > 0 ≤ P n i=1 ηi ≥ x + P max 1≤i≤n di > y =: P5 + P max 1≤i≤n di > y . (3.40)
For the first item of (3.40), by the exponential Markov's inequality and (3.39), we have

P5 ≤ E e t( n i=1 η i -x) ≤ exp -tx + 1 2 y Kn-1(ρ) 2p-2 K .
(3.41)

For the second item of (3.40), we have the following estimation:

P max 1≤i≤n di > y ≤ n i=1 P (di > y) ≤ n i=1 P di Kn-1(ρ) > y Kn-1(ρ) ≤ exp -y/Kn-1(ρ) p y/Kn-1(ρ) 2 n i=1 E di Kn-1(ρ) 2 e |d i /K n-1 (ρ)| p .
By Proposition 2.1 and Kn-i(ρ)/Kn-1(ρ) ≤ 1 again, it is easy to see that 

n i=1 E di Kn-1(ρ) 2 e |d i /K n-1 (ρ)| p ≤ E GX 1 (X1) 2 exp GX 1 (X1) p + Kn-i(ρ) Kn-1(ρ) 2 n i=2 E Gε(ε) 2 exp Gε(ε) p ≤ K. Thus P max 1≤i≤n di > y ≤ K y/Kn-1(ρ) 2 exp - y Kn-1(ρ) p . ( 3 
P (Sn ≥ x) ≤ exp -tx + 1 2 y Kn-1(ρ) 2p-2 K + K y/Kn-1(ρ) 2 exp - y Kn-1(ρ) p .
(3.43)

Recall that t = y p-1 / Kn-1(ρ)

p . Taking

y = K/x 1/(1-p) if 0 ≤ x < K 1/(2-p) , x if x ≥ K 1/(2-p) , (3.44) 
we obtain the desired inequalities.

McDiarmid inequality

In this section, we consider the case where the increments d k are bounded. We shall use an improved version of the well known inequality by McDiarmid, which has been recently stated by Rio [START_REF] Rio | On McDiarmids concentration inequality[END_REF]. For this inequality, we do not assume that (1.3) holds. Hence, Proposition 3.6 applies to any Markov chain Xn = F (Xn-1, εn), for F satisfying (1.2). As in Rio [START_REF] Rio | On McDiarmids concentration inequality[END_REF], let ℓ(t) = (tln t -1) + t(e t -1) -1 + ln(1e -t ) for all t > 0, and let

ℓ * (x) = sup t>0 xt -ℓ(t)
for all x > 0, be the Young transform of ℓ(t). As quoted by Rio [START_REF] Rio | On McDiarmids concentration inequality[END_REF], the following inequalities hold

ℓ * (x) ≥ (x 2 -2x) ln(1 -x) ≥ 2x 2 + x 4 /6 . (3.45) Let also (X ′ 1 , (ε ′ i ) i≥2
) be an independent copy of (X1, (εi) i≥2 ). Proposition 3.6. Assume that there exist some positive constants M k such that

d(X1, X ′ 1 ) ∞ ≤ M1 and d F (X k-1 , ε k ), F (X k-1 , ε ′ k ) ∞ ≤ M k for k ∈ [2, n]. (3.46) Let M 2 (n, ρ) = n k=1 K n-k (ρ)M k 2 and D(n, ρ) = n k=1 K n-k (ρ)M k .
Then, for any t ≥ 0,

E[e ±tSn ] ≤ exp D 2 (n, ρ) M 2 (n, ρ) ℓ M 2 (n, ρ) x D(n, ρ) (3.47)
and, for any x ∈ [0, D(n, ρ)],

P ± Sn > x ≤ exp - D 2 (n, ρ) M 2 (n, ρ) ℓ * x D(n, ρ) . ( 3 

.48)

Consequently, for any x ∈ [0, D(n, ρ)], 

P ± Sn > x ≤ D(n, ρ) -x D(n, ρ) 2D(n,ρ)x-x 2 M 2 (n,ρ) . ( 3 
P ± Sn > x ≤ exp - 2x 2 M 2 (n, ρ) .
Remark 3.8. Taking ∆(n, ρ) = Kn-1(ρ) max 1≤k≤n M k , we obtain the upper bound: for any x ∈ [0, n∆(n, ρ)],

P ± Sn > x ≤ exp -nℓ * x n∆(n, ρ) ≤ exp - 2x 2 n∆ 2 (n, ρ) .
Remark 3.9. If F satisfies (1.

3), then one can take

M1 = d(X1, X ′ 1 ) ∞ and M k = C δ(ε1, ε ′ 1 ) ∞ for k ∈ [2, n]. Proof. Let u k-1 (x1, . . . , x k-1 ) = ess inf ε k g k (x1, . . . , F (x k-1 , ε k )) and v k-1 (x1, . . . , x k-1 ) = ess sup ε k g k (x1, . . . , F (x k-1 , ε k ))
From the proof of Proposition 2.1, it follows that

u k-1 (X1, . . . , X k-1 ) ≤ d k ≤ v k-1 (X1, . . . , X k-1 )
.

By Proposition 2.1 and condition (3.46), we have

v k-1 (X1, . . . , X k-1 ) -u k-1 (X1, . . . , X k-1 ) ≤ K n-k (ρ)M k .
Now, following exactly the proof of Theorem 3.1 of Rio [START_REF] Rio | On McDiarmids concentration inequality[END_REF] with ∆ k = K n-k (ρ)M k we obtain the inequalities (3.47) and (3.48). Since ℓ * (x) ≥ (x 2 -2x) ln(1x), inequality (3.49) follows from (3.48).

Fuk-Nagaev type bound

The next proposition follows easily from Corollary 2.3 of Fan et al. [START_REF] Fan | Hoeffding's inequality for supermartingales[END_REF].

Proposition 3.7. Assume that there exist two positive constants V1 and V2 such that

E GX 1 (X1) 2 ≤ V1 and E Gε(ε) 2 ≤ V2 . Let V = V1 Kn-1(ρ) 2 + V2 n i=2 Kn-i(ρ) 2 .
(3.50)

Then, for any x, y > 0,

P ± Sn > x ≤ Hn x yKn-1(ρ) , √ V yKn-1(ρ) + P max GX 1 (X1), max 2≤i≤n Gε(εi) > y , (3.51) 
where

Hn(x, v) = v 2 x + v 2 x+v 2 n n -x n-x n n+v 2 1 {x≤n} (3.52)
with the convention that (+∞) 0 = 1 (which applies when x = n).

Proof. We apply Corollary 2.3 of Fan et al. [START_REF] Fan | Hoeffding's inequality for supermartingales[END_REF] with the truncature level yKn-1(ρ). By Proposition 2.1, |d1| ≤ Kn-1(ρ)GX 1 (X1) and |di| ≤ Kn-i(ρ)Gε(εi)

for i ∈ [2, n]. Hence E d 2 1 1 {d 1 ≤yK n-1 (ρ)} ≤ Kn-1(ρ) 2 E GX 1 (X1) 2 ≤ Kn-1(ρ) 2 V1
and, for i ∈ [2, n],

E d 2 i 1 {d i ≤yK n-1 (ρ)} |Fi-1 ≤ Kn-i(ρ) 2 E Gε(ε) 2 ≤ Kn-i(ρ) 2 V2 .
It follows from Corollary 2.3 of Fan et al. [START_REF] Fan | Hoeffding's inequality for supermartingales[END_REF] that

P(Sn > x) ≤ Hn x yKn-1(ρ) , √ V yKn-1(ρ) + P max 1≤i≤n di > yKn-1(ρ) .
Inequality (3.51) follows by applying Proposition 2.1 again.

In particular, if GX 1 (X1) and Gε(ε) are bounded, then Proposition 3.7 implies the following Hoeffding bound. Proposition 3.8. Assume that there exist some positive constants M , V1 and V2 such that

GX 1 (X1) ≤ M, Gε(ε) ≤ M, E GX 1 (X1) 2 ≤ V1 and E Gε(ε) 2 ≤ V2 .
Then, for any x > 0,

P ± Sn > x ≤ Hn x M Kn-1(ρ) , √ V M Kn-1(ρ) , (3.53)
where Hn(x, v) and V are defined by (3.52) and (3.50), respectively.

Remark 3.10. According to Remark 2.1 of Fan et al. [START_REF] Fan | Hoeffding's inequality for supermartingales[END_REF], for any x ≥ 0 and any v > 0, it holds 

Hn(x, v) ≤ B(x, v) := v 2 x + v 2 x+v 2 e x (3.54) ≤ B1(x, v) := exp - x 2 2(v 2 + 1 3 x) . ( 3 
P ± Sn > x ≤ B x M Kn-1(ρ) , √ V M Kn-1(ρ) ≤ B1 x M Kn-1(ρ) , √ V M Kn-1(ρ)
.

We now consider the case where the random variables GX 1 (X1) and Gε(ε) have only a weak moment of order p > 2. For any real-valued random variable Z and any p ≥ 1, define the weak moment of order p by Z p w,p = sup x>0

x p P(|Z| > x) .

(3.56) Proposition 3.9. Let p > 2. Assume that there exist some positive constants V1, V2, A1(p) and A2(p) such that Let V be defined by (3.50), and let

E GX 1 (X1) 2 ≤ V1 , E Gε(ε) 2 ≤ V2 , GX 1 (X1)
A(p) = A1(p) + (n -1)A2(p) .
Then, for any x, y > 0,

P ± Sn > x ≤ Hn x yKn-1(ρ) , √ V yKn-1(ρ) + A(p) y p , (3.57) 
where Hn(x, v) is defined by (3.52).

Remark 3.11. Assume that GX 1 (X1) and Gε(ε) have a weak moment of order p > 2. Taking

y = 3nx 2pKn-1(ρ) ln(n)
in inequality (3.57), we infer that, for any x > 0,

P ± Sn > nx ≤ Cx(ln(n)) p n p-1 ,
for some positive Cx not depending on n.

If the martingale differences di have pth moments (p ≥ 2), then we have the following Fuk-type inequality (cf. Corollary 3 ′ of Fuk [START_REF] Fuk | Some probabilitic inequalties for martingales[END_REF]). Proposition 3.10. Let p ≥ 2. Assume that there exist some positive constants V1, V2, A1(p) and A2(p) such that

E GX 1 (X1) 2 ≤ V1 , E Gε(ε) 2 ≤ V2 , E GX 1 (X1) p ≤ A1(p) and E Gε(ε) p ≤ A2(p) . (3.58) 
Let V be defined by (3.50), and let

A(p) = A1(p) Kn-1(ρ) p + A2(p) n i=2 Kn-i(ρ) p .
Then, for any x > 0,

P(|Sn| > x) ≤ 2 1 + 2 p p A(p) x p + 2 exp - 2 (p + 2) 2 e p x 2 V . (3.59) 
Remark 3.12. Since A(p) is of order n, it easy to see that the term exp -2 (p + 2) 2 e p (nx) 2 V is decreasing at an exponential order, and that the term

2 1 + 2 p p A(p) (xn) p
is of order n 1-p . Thus, for any x > 0 and all n,

P(|Sn| > nx) ≤ Cx n p-1 ,
for some positive Cx not depending on n. Note that the last inequality is optimal under the stated condition, even if Sn is a sum of iid random variables. Proof. By Proposition 2.1 and condition (3.58), it follows that

n i=1 E[|di| p |Fi-1] ≤ E[|Kn-1(ρ)GX 1 (X1)| p ] + n i=2 E[|Kn-i(ρ)Gε(εi)| p ] ≤ Kn-1(ρ) p E[|GX 1 (X1)| p ] + n i=2 Kn-i(ρ) p E[|Gε(εi)| p ] ≤ A1(p) Kn-1(ρ) p + A2(p) n i=2 Kn-i(ρ) p = A(p).
Notice that A(2) = V . Using Corollary 3 ′ of Fuk [START_REF] Fuk | Some probabilitic inequalties for martingales[END_REF], we obtain the desired inequality.

von Bahr-Esseen bound

In the first proposition of this section, we assume that the dominating random variables GX 1 (X1) and Gε(ε k ) have only a moment of order p ∈ [START_REF] Del Barrio | Central limit theorems for the Wasserstein distance between the empirical and the true distributions[END_REF][START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF]. For similar inequalities in the case where the Xi's are independent, we refer to Pinelis [START_REF] Pinelis | Best possible bounds of the von Bahr-Esseen type[END_REF].

Proposition 3.11. Let p ∈ [1, 2]. Assume that E GX 1 (X1) p ≤ A1(p) and E Gε(ε) p ≤ A2(p) . (3.60) Then Sn p ≤ A(n, ρ, p) 1/p , (3.61) 
where

A(n, ρ, p) = A1(p) Kn-1(ρ) p + 2 2-p A2(p) n k=2 K n-k (ρ) p . (3.62) 
Remark 3.13. The constant 2 2-p in (3.62) can be replaced by the more precise constant Cp described in Proposition 1.8 of Pinelis [START_REF] Pinelis | Best possible bounds of the von Bahr-Esseen type[END_REF]. Remark 3.14. Assume that F satisfies only (1.2). Then, it follows from the proof of Proposition 3.11 that the inequality (3.61) remains true if the second condition of (3.60) is replaced by

sup k∈[2,n] E Hε(X k-1 , ε k ) p ≤ A2(p) .
Proof. Using an improvement of the von Bahr-Esseen inequality (see inequality (1.11) in Pinelis [START_REF] Pinelis | Best possible bounds of the von Bahr-Esseen type[END_REF]), we have

Sn p p ≤ d1 p p + Cp n k=2 d k p p ,
where the constant Cp is described in Proposition 1.8 of Pinelis [START_REF] Pinelis | Best possible bounds of the von Bahr-Esseen type[END_REF], and is such that Cp ≤ 2 2-p for any p ∈ [START_REF] Del Barrio | Central limit theorems for the Wasserstein distance between the empirical and the true distributions[END_REF][START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF]. By Proposition 2.1, it follows that

Sn p p ≤ Kn-1(ρ) p E GX 1 (X1) p + Cp n k=2 K n-k (ρ) p E Gε(ε) p ≤ A1(p) Kn-1(ρ) p + CpA2(p) n k=2 K n-k (ρ) p ,
which gives the desired inequality.

We now consider the case where the variables GX 1 (X1) and Gε(ε k ) have only a weak moment of order p ∈ (1, 2). Recall that the weak moment Z p w,p has been defined by (3.56). Proposition 3.12. Let p ∈ (1, 2). Assume that GX 1 (X1) Then, for any x > 0,

P(|Sn| > x) ≤ CpB(n, ρ, p) x p , (3.64) 
where

Cp = 4p (p -1) + 8p (p -2) and B(n, ρ, p) = A1(p) Kn-1(ρ) p + A2(p) n k=2 K n-k (ρ) p .
Remark 3.15. Assume that F satisfies only (1.2). Then, it follows from the proof of Proposition 3.12 that the inequality (3.64) remains true if the second condition of (3.63) is replaced by

sup k∈[2,n] Hε(X k-1 , ε k ) p w,p ≤ A2(p) .
Proof. This proof is based on a truncation argument. For given x > 0, let

ξ1 = d11 {d 1 ≤x} , ξ ′ 1 = d11 {d 1 >x} , ξ k = d k 1 {d k ≤x} and ξ ′ k = d k 1 {d k >x} . Define η1 = ξ1 -E[ξ1] , η ′ 1 = ξ ′ 1 -E[ξ ′ 1 ] , η k = ξ k -E[ξ k |F k-1 ] and η ′ k = ξ ′ k -E[ξ ′ k |F k-1 ] .
It is obvious that

P(|Sn| > x) ≤ P n k=1 η k > x 2 + P n k=1 η ′ k > x 2 .
(3.65) Applying Markov's inequality, we get

P n k=1 η ′ k > x 2 ≤ 2 x n k=1 η ′ k 1 ≤ 4 x n k=1 ξ ′ k 1 . (3.66) 
Recall that, if Z is any real-valued random variable such that

P(|Z| > x) ≤ H(x) (3.67)
for a tail function H, then

E(|Z|1 {|Z|>a} ) ≤ H(a) 0 Q(u)du , (3.68) 
where Q is the cadlag inverse of H. Using Proposition 2.1, we have

P(|d k | > x) ≤ H k (x), (3.69) 
where

H1(x) = min{1, x -p A1(p)(Kn-1(ρ)) p } and H k (x) = min{1, x -p A2(p)(K n-k (ρ)) p } if k ∈ [2, n].
Hence, applying (3.68), we obtain On the other hand, the η k 's being martingales differences,

ξ ′ 1 1 ≤ (A1(p)) 1/p Kn-1(ρ) H 1 (x) 0 u -1/p du ≤ p p -1 A1(p)(Kn-1(ρ)) p x 1-p . (3.70) Similarly, for k ∈ [2, n], ξ ′ k 1 ≤ (A2(p)) 1/p K n-k (ρ) H k (x) 0 u -1/p du ≤ p p -1 A2(p)(K n-k (ρ)) p x 1-p . ( 3 
P n k=1 η k > x 2 ≤ 4 x 2 n k=1 η k 2 2 ≤ 4 x 2 n k=1 ξ k 2 2 
(3.73)

Recall that, if Z is any real-valued random variable satisfying (3.67),

E(Z 2 1 |Z|≤a ) ≤ E((Z ∧ a) 2 ) ≤ 1 0 min{Q 2 (u), a 2 }du ≤ 2 1 H(a) Q 2 (u)du . (3.74) 
Using (3.69) and (3.74), we obtain 

ξ1 2 2 ≤ 2(A1(p)) 2/p (Kn-1(ρ)) 2 1 H 1 (x) u -2/p du ≤ 2p 2 -p A1(p)(Kn-1(ρ)) p x 2-p . (3.75) Similarly, for k ∈ [2, n], ξ k 2 2 ≤ 2(A2(p)) 2/p (K n-k (ρ)) 2 1 H k (x) u -2/p du ≤ 2p 2 -p A2(p)(K n-k (ρ)) p x 2-p . ( 3 
n k=2 K n-k (ρ) 2 E Gε(ε) p 2/p ≤ A(n, ρ, p),
which gives the desired inequality.

Burkholder-Rosenthal bounds

When the dominating random variables GX 1 (X1) and Gε(ε k ) have a moment of order p ≥ 2, one can prove the following proposition. For similar inequalities in the case where the Xi's are independent, we refer to Pinelis [START_REF] Pinelis | Optimal re-centering bounds with applications to Rosenthal-type concentration of measure inequalities[END_REF].

Proposition 3.14. Assume that there exist two constants V1 ≥ 0 and V2 ≥ 0 such that 

E GX 1 (X1) 2 ≤ V1 and E Gε(ε) 2 ≤ V2 . (3.80) Let V = V1 Kn-1(ρ) 2 + V2 n k=2 K n-k (ρ) 2 . ( 3 
| ≤ K n-k (ρ)Gε(ε k ) for k ∈ [2, n],
and consequently

E[d 2 1 ] ≤ Kn-1(ρ) 2 V1 and E[d 2 k |F k-1 ] ≤ K n-k (ρ) 2 V2 for k ∈ [2, n].
Then the proposition follows directly from Theorem 4.1 of Pinelis [START_REF] Pinelis | Optimum bounds for the distribution of martingales in Banach spaces[END_REF].

We now consider the case where the random variables GX 1 (X1) and Gε(ε) have a weak moment of order p > 2. Recall that the weak moment Z p w,p has been defined by (3.56). Proposition 3.15. Assume that (3.80) holds, and let V be defined by (3.81) 

E Hε(X k-1 , ε k ) 2 X k-1 p/2 ≤ V2 ,
and by taking Hε(X k-1 , ε k ) instead of Gε(ε k ) in the second terms on right hand of (3.82) and (3.83).

Proof. It is the same as that of Proposition 3.14, by applying Theorem 6.3 in Chazottes and Gouëzel [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF].

4 Application to the Wasserstein distance between the empirical distribution and the invariant distribution

Definition and upper bounds

Recall that the Wasserstein distance W1(ν1, ν2) between two probability measures ν1, ν2 on (X , d) is defined by

W1(ν1, ν2) = inf λ∈M (ν 1 ,ν 2 ) d(x, y)λ(dx, dy) ,
where M (ν1, ν2) is the set of probability measures on X × X with margins ν1 and ν2. Let Λ1(X ) be the set of functions from (X , d) to R such that |g(x)g(y)| ≤ d(x, y) .

Recall that W1(ν1, ν2) can be expressed via its dual form (see for instance the equality (5.11) in Villani [START_REF] Villani | Optimal transport: old and new[END_REF])

W1(ν1, ν2) = sup g∈Λ 1 (X ) |ν1(g) -ν2(g)| .
Let µn be the empirical distribution of the random variables X1, X2, ..., Xn, that is

µn = 1 n n k=1 δX k ,
and let µ be the unique invariant distribution of the chain. It is easy to see that the function f defined by nW1(µn, µ) = f (X1, X2, . . . , Xn) := sup

g∈Λ 1 (X ) n i=1 g(Xi) -µ(g) ,
is separately Lipschitz, and satisfies (2.1). Hence, all the inequalities of Section 3 apply to

Sn = nW1(µn, µ) -nE[W1(µn, µ)] .
Let us only give some qualitative consequences of these inequalities:

• If (3.25) holds for some p ≥ 1, then there exist some positive constants A, B and C such that

P W1(µn, µ) -E[W1(µn, µ)] > x ≤ 2 exp (-nAx p ) if x ≥ C 2 exp -nBx 2 if x ∈ [0, C]. (4.1) 
This follows from Proposition 3.2 (case p = 1) and Proposition 3.3 (case p > 1).

• If (3.33) holds for some p ∈ (0, 1), then there exist some positive constants A, B, C, D and L such that

P W1(µn, µ) -E[W1(µn, µ)] > x ≤ C exp (-n p Ax p ) if x ≥ Ln -(1-p)/(2-p) D exp -nBx 2 if x ∈ [0, Ln -(1-p)/(2-p) ].
This follows from Proposition 3.5.

• If (3.63) holds for some p ∈ (1, 2), then there exists a positive constant C such that

P W1(µn, µ) -E[W1(µn, µ)] > x ≤ C n p-1 x p .
This follows from Proposition 3.12.

• If (3.63) holds for some p ≥ 2, then there exists a positive constant C such that

P W1(µn, µ) -E[W1(µn, µ)] > x ≤ C n p/2 x p .
This follows from Proposition 3.15.

And for the moment bounds of Sn:

• If (3.60) for some p ∈ [1, 2], then W1(µn, µ) -E[W1(µn, µ)] p p ≤ C n p-1 . (4.2)
This follows from Proposition 3.11.

• If (3.78) holds for some p ≥ 2, then

W1(µn, µ) -E[W1(µn, µ)] p p ≤ C n p/2 . (4.3) 
This follows from Proposition 3.14.

Let us now give some references on the subject. As already mentioned, the subgaussian bound (4.1) for p = 2 is proved in the paper by Djellout et al. [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF]. Notice that these authors also consider the Wasserstein metrics Wr for r ≥ 1, with cost function c(x, y) = (d(x, y)) r .

In the iid case, when Xi = εi, some very precise results are given in the paper by Gozlan and Leonard [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF], for a more general class of Wasserstein metrics (meaning that the cost function is not necessary a distance). In the case of W1, they have obtained deviation inequalities under some conditions of the Laplace transform of some convex and increasing function of d(x0, X1) (see their Theorem 10 combined with their Theorem 7). In particular, via their Lemma 1, they have obtained a Cramér-type inequality for W1 similar to what we get in Proposition 3.2.

In the dependent case, another important reference is the recent paper by Chazottes and Gouëzel [START_REF] Chazottes | Optimal concentration inequalities for dynamical systems[END_REF]. These authors consider separately Lipschitz functionals of iterates of maps that can be modeled by Young towers. They obtain exponential or polynomial bounds according as the covariances between Lipschitz functions of the iterates decrease with an exponential or polynomial rate. See their Section 7.3 for the applications to the Wassertein distance W1. Note that the Markov chains associated to the maps considered by Chazottes and Gouëzel do not in general satisfy the one step contraction, and are much more difficult to handle than the class of Markov chains of the present paper.

Discussion

Of course, the next question is that of the behavior of E[W1(µn, µ)], because it can give us information on W1(µn, µ) through the preceding inequalities. For instance, from (4.2), we infer that if (3.60) holds for some p ∈ for any f such that f (x) ≤ C(1 + d(x0, x)). Hence, it follows from Theorem 6.9 in Villani [START_REF] Villani | Optimal transport: old and new[END_REF] that W1(µn, µ) converges to 0 almost surely, and that E[W1(µn, µ)] converges to 0.

The question of the rate of convergence to 0 of E[W1(µn, µ)] is delicate, and has a long history. Let us recall some know results in the iid case, when Xi = εi. with c = 0 as soon as Xi is not almost surely constant. This follows from del Barrio et al. [START_REF] Del Barrio | Central limit theorems for the Wasserstein distance between the empirical and the true distributions[END_REF] and can be easily extended to our Markov setting.

• If X = R ℓ and d(x, y) = xy for some norm • , let us recall some recent results by Fournier and Guillin [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] (see also Dereich et al. [8]). In Theorem 1 of Fournier and Guillin [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF], the following upper bounds are proved: Assume that p > 1 and that x p µ(dx) < ∞, then E[W1(µn, µ)] ≤      C(n -1/2 + n -(p-1)/p ) if ℓ = 1 and p = 2 C(n -1/2 ln(1 + n) + n -(p-1)/p ) if ℓ = 2 and p = 2 C(n -1/ℓ + n -(p-1)/p ) if ℓ > 2 and p = ℓ/(ℓ -1). (4.6) Combining this upper bound with (4.4) and (4.5), we obtain the following proposition Proposition 4.1. Let X1, . . . , Xn be an iid sequence of R ℓ -valued random variables, with common distribution µ. let p > 1 and assume that

x p µ(dx) < ∞. Then the quantity W1(µn, µ) p satifies the upper bound (4.6).

Note that Fournier and Guillin [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] consider the case of Wr metrics, and the upper bound (4.6) is just a particular case of their Theorem 1. Note also that an extension of inequality (4.6) to ρ-mixing Markov chains is given in Theorem 15 of the same paper. In their Theorem 2, Fournier and Guillin [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] give some deviation inequalities for P Wr(µn, µ) > x .

For r = 1, these results are different from ours, since they do not deal with concentration around the mean. In particular their upper bounds depend on the dimension ℓ, and for r = 1 and ℓ ≥ 3 they are useless for x = yn -α as soon as α ∈ (1/ℓ, 1/2]. This is coherent with our upper bounds of Section 4.1 since in that case E[W1(µn, µ)] can be of order n -1/ℓ . Let us note, however, that the results of Section 4.1 give always an efficient upper bound for the concentration of W1(µn, µ) around E[W1(µn, µ)] for any x = yn -α with α ∈ [0, 1/2], that is in the whole range from small to large deviations, whatever the dimension of X .

• Concerning the behavior of E[W1(µn, µ)] in the infinite dimensional case, let us mention the upper bound [START_REF] Fuk | Some probabilitic inequalties for martingales[END_REF] in Boissard [3]. This upper bound involves the covering numbers of an increasing sequence of compact sets Kt for which µ(K c t ) tends to zero as t tends to infinity. Some extensions to a class of Markov chains are given in Section 2.4 of the same paper. In particular, his results apply to one step contracting Markov chains satisfying (1.2) (again, this follows from Proposition 3.1 of Djellout et al. [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF]).
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 531 Remark Let us comment on condition (3.2).

2 .

 2 Since Gε(ε) ≤ Cδ(ε, y0) + CE(δ(ε, y0)) the condition E exp aCδ(ε, y0) ≤ A(y0) (3.16) implies the second condition in (3.13) with K2 = A(y0) exp aCE[δ(ξ, y0)] ≤ A(y0) 2 . In the same way, the condition E exp ad(X1, x0) ≤ B(x0) (3.17) implies the first condition in (3.13) with K1 = B(x0) exp aE[d(X1, x0)] ≤ B(x0) 2 .

. 31 ) 3 . 4 .

 3134 Remark As quoted at the beginning of Section 3, if F satisfies only (1.2), Proposition 3.4 holds provided (3.1) is satisfied with f (x) = exp(ax 2

5 )

 5 [START_REF] Del Barrio | Central limit theorems for the Wasserstein distance between the empirical and the true distributions[END_REF][START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF], thenE[W1(µn, µ)] ≤ W1(µn, µ) p ≤ E[W1(µn, µ)] + C n (p-1)/p . (4.4)In the same way, from (4.3), we infer that if (3.78) holds for some p ≥ 2, thenE[W1(µn, µ)] ≤ W1(µn, µ) p ≤ E[W1(µn, µ)] Let us first quote that, if E[GX 1 (X1)] < ∞ and E[Gε(ε)] < ∞, then E[W1(µn, µ)] converges to 0. Indeed, the Markov chain (Xi) i≥1 satisfies the strong law of large numbers: lim n→∞ µn(f ) = µ(f ) almost surely,

•

  If X = R and d(x, y) = |x -y|, and if |x| P(|X1| > x)dx < ∞, then lim n→∞ √ nE[W1(µn, µ)] = c

  .81) Remark 3.17. According to the proof of Theorem 4.1 of Pinelis[START_REF] Pinelis | Optimum bounds for the distribution of martingales in Banach spaces[END_REF], one can take C1(p) = 60c and C2(p) = 120 √ ce p/c for any c ∈[1, p].Proof. Applying Proposition 2.1, we have |d1| ≤ Kn-1(ρ)GX 1 (X1) and |d k

	For any p ≥ 2, there exist two positive constants C1(p) and C2(p) such that Sn p ≤ C1(p) √ V + C2(p) max Kn-1(ρ)GX 1 (X1), max 2≤i≤n Kn-i(ρ)Gε(εi)	p	.	(3.82)
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