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Abstract

We consider an X -valued Markov chain X1, X2, . . . , Xn belonging to a class of iterated ran-
dom functions, which is “one-step contracting” with respect to some distance d on X . If f
is any separately Lipschitz function with respect to d, we use a well known decomposition of
Sn = f(X1, . . . , Xn) − E[f(X1, . . . , Xn)] into a sum of martingale differences dk with respect to
the natural filtration Fk. We show that each difference dk is bounded by a random variable ηk
independent of Fk−1. Using this very strong property, we obtain a large variety of deviation
inequalities for Sn, which are governed by the distribution of the ηk’s. Finally, we give an appli-
cation of these inequalities to the Wasserstein distance between the empirical measure and the
invariant distribution of the chain.

Keywords. Iterated random functions, martingales, exponential inequalities, moment inequali-
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1 A class of iterated random functions

Let (Ω,A,P) be a probability space. Let (X , d) and (Y, δ) be two complete separable metric
spaces. Let (εi)i≥1 be a sequence of independent and identically distributed (iid) Y-valued random
variables. Let X1 be a X -valued random variable independent of (εi)i≥2. We consider the Markov
chain (Xi)i≥1 such that

Xn = F (Xn−1, εn), for n ≥ 2, (1.1)

where F : X × Y → X is such that

E
[

d
(

F (x, ε1), F (x′, ε1)
)]

≤ ρd(x, x′) (1.2)

for some ρ ∈ [0, 1), and
d(F (x, y), F (x, y′)) ≤ Cδ(y, y′) (1.3)

for some C > 0.
This class of Markov chains, that we call “one-step contracting”, is very restrictive, but still

contains a lot of pertinent examples. Among them, in the case where X is a separable Banach
space with norm | · |, let us cite the functional auto-regressive model

Xn = f(Xn−1) + g(ξn) ,

where f : X → X and g : Y → X are such that

|f(x)− f(x′)| ≤ ρ|x− x′| and |g(y)− g(y′)| ≤ Cδ(y, y′) .
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We refer to the paper by Diaconis and Freedman [10] for many other interesting examples. Note
also that this class of Markov chains contains the iid sequence Xi = εi, by taking Y = X and
F (x, y) = y (note that ρ = 0 in that case).

This class possesses the property of exponential forgetting of the starting point: If Xx
n is the

chain starting from X1 = x, then one has

E
[

d(Xx
n , X

x′

n )
]

≤ ρnd(x, x′) .

Hence is has an unique stationary distribution µ (see for instance Theorem 1 in Diaconis and
Freedman [10]), meaning that ifX1 is distributed as µ, then the chain (Xi)i≥1 is strictly stationary.
Moreover, one can easily prove that, if (Xi)i≥1 is strictly stationary, then, for any (x0, y0) ∈ X×Y,
and any positive measurable function H ,

E[H(d(Xn, x0))] ≤ E

[

H
(

∞
∑

i=0

ρi
(

d(F (x0, y0), x0) + Cδ(εi+1, y0)
)

)]

. (1.4)

Although the one-step contraction is a very restrictive condition, this class of iterated random
functions contains a lot of non Harris-recurrent Markov chains. For instance, if X = Y = [0, 1]
the chain

Xn =
1

2
(Xn−1 + εn)

with X1 uniformly distributed over [0, 1], and εi ∼ B(1/2) is strictly stationary, but it is not
mixing in the sense of Rosenblatt [29].

The class of iteretad random function satsifying (1.2) has been studied in Section 3.1 of Djellout
et al. [11] (as a particular case of a general class of Markov chains which are contracting with
respect to Wasserstein distances, see their Condition C1). Combining McDiarmid method and a
result by Bobkov and Götze [2], Djellout et al. [11] proved in their Proposition 3.1 a subgaussian
bound for separately Lipschitz functionals of the chain provided

sup
x∈X

E

[

exp
(

a
(

d(F (x, ε1), F (x, ε2))
)2
)]

< ∞ , (1.5)

for some a > 0. Because of the supremum in x, this condition is quite delicate to check. However,
if (1.3) holds, it is implied by the simple condition

E

[

exp
(

a
(

Cδ(ε1, ε2)
)2
)]

< ∞ .

As we shall see in Section 2, this is due to the fact that the martingale differences from McDiarmid’s
decomposition are bounded by a random variable ηk independent of Fk−1 = σ(X1, . . . , Xk−1).
From this simple remark, we can obtain many deviation inequalities for separately Lipschitz
functionals of the chain by applying known inequalities for martingales.

A more restrictive class of iterated random function, satisfying (1.3) and the one-step contrac-
tion

d
(

F (x, y), F (x′, y)
)

≤ ρd(x, x′) ,

has been studied by Delyon et al. [9] when X = R
ℓ and Y = R

k. These authors have proved a
moderate deviation principle for additive and Lipschitz functionals of the chain, under a condition
on the Laplace transform of the euclidean norm of εi.

2 McDiarmid’s martingale

2.1 Separately Lipschitz functions of X1, . . . , Xn.

Let f : Xn 7→ R be separately Lipschitz, such that

|f(x1, x2, . . . , xn)− f(x′
1, x

′
2, . . . , x

′
n)| ≤ d(x1, x

′
1) + · · ·+ d(xn, x

′
n) . (2.1)
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Let then
Sn := f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] . (2.2)

We also introduce the natural filtration of the chain, that is F0 = {∅,Ω} and for k ∈ N
∗, Fk =

σ(X1, X2, . . . , Xk). Define then

gk(X1, . . . , Xk) = E[f(X1, . . . , Xn)|Fk] , (2.3)

and
dk = gk(X1, . . . , Xk)− gk−1(X1, . . . , Xk−1) . (2.4)

For k ∈ [1, n− 1], let
Sk := d1 + d2 + · · ·+ dk ,

and note that, by definition of the dk’s, the functional Sn introduced in (2.2) satisfies

Sn = d1 + d2 + · · ·+ dn .

Hence Sk is a martingale adapted to the filtration Fk. This representation was introduced by
McDiarmid [21] in the iid case, when Xi = εi (see also Yurinskii [31] in a different context).

The following Proposition collects some interesting properties of the functions gk and of the
martingale differences dk.

Proposition 2.1. For k ∈ N and ρ in [0, 1), let Kk(ρ) = (1− ρk+1)/(1− ρ) = 1 + ρ+ · · ·+ ρk.
Let (Xi)i≥1 be a Markov chain satisfying (1.1) for some function F satisfying (1.2). Let gk and
dk be defined by (2.3) and (2.4) respectively.

1. The function gk is separately Lipschitz and such that

|gk(x1, x2, . . . , xk)−gk(x
′
1, x

′
2, . . . , x

′
k)| ≤ d(x1, x

′
1)+ · · ·+d(xk−1, x

′
k−1)+Kn−k(ρ)d(xk, x

′
k) .

2. Let PX1 be the distribution of X1 and Pε be the common distribution of the εk’s. Let GX1

and Hε be the two functions defined by

GX1(x) =

∫

d(x, x′)PX1(dx
′) and Hε(x, y) =

∫

d(F (x, y), F (x, y′))Pε(dy
′) .

Then, the martingale difference dk is such that

|d1| ≤ Kn−1(ρ)GX1(X1) and for k ∈ [2, n], |dk| ≤ Kn−k(ρ)Hε(Xk−1, εk) .

3. Assume moreover that F satisfies (1.3), and Let Gε be the function defined by

Gε(y) =

∫

Cδ(y, y′)Pε(dy
′) .

Then Hε(x, y) ≤ Gε(y), and consequently, for k ∈ [2, n],

|dk| ≤ Kn−k(ρ)Gε(εk) .

Remark 2.1. Let us comment on the point 3 of Proposition 2.1. The fact that the martingale
difference dk is bounded by the random variable Kn−k(ρ)Gε(εk) which is independent of Fk−1 is
crucial. It explains why we shall obtain deviations inequalities for Sn under some conditions on
the distribution of Gε(εk) (typically conditions on the Laplace transform, or moment conditions).

Proof. The first point will be proved by recurrence in the backward sense. The result is obvious
for k = n, since gn = f . Assume that it is true at step k, and let us prove it at step k − 1. By
definition

gk−1(X1, . . . , Xk−1) = E[gk(X1, . . . , Xk)|Fk−1] =

∫

gk(Xk, . . . , Xk−1, F (Xk−1, y))Pε(dy) .
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It follows that

|gk−1(x1, x2, . . . , xk−1)− gk−1(x
′
1, x

′
2, . . . , x

′
k−1)|

≤
∫

|gk(x1, x2, . . . , F (xk−1, y))− gk(x
′
1, x

′
2, . . . , F (x′

k−1, y))|Pε(dy) . (2.5)

Now, by assumption and condition (1.2),

∫

|gk(x1, x2, . . . , F (xk−1, y))− gk(x
′
1, x

′
2, . . . , F (x′

k−1, y))|Pε(dy)

≤ d(x1, x
′
1) + · · ·+ d(xk−1, x

′
k−1) +Kn−k(ρ)

∫

d(F (xk−1, y), F (x′
k−1, y))Pε(dy)

≤ d(x1, x
′
1) + · · ·+ (1 + ρKn−k(ρ))d(xk−1, x

′
k−1)

≤ d(x1, x
′
1) + · · ·+Kn−k+1(ρ)d(xk−1, x

′
k−1) . (2.6)

The point 1 follows from (2.5) and (2.6).
Let us prove the point 2. First note that

|d1| =
∣

∣

∣
g1(X1)−

∫

g1(x)PX1(dx)
∣

∣

∣
≤ Kn−1(ρ)

∫

d(X1, x)PX1(dx) = Kn−1(ρ)GX1(X1) .

In the same way, for k ≥ 2,

|dk| =
∣

∣gk(X1, · · · , Xk)− E[gk(X1, · · · , Xk)|Fk−1]
∣

∣

≤
∫

∣

∣gk(X1, · · · , F (Xk−1, εk))− gk(X1, · · · , F (Xk−1, y))
∣

∣Pε(dy)

≤ Kn−k(ρ)

∫

d(F (Xk−1, εk), F (Xk−1, y))Pε(dy) = Kn−k(ρ)Hε(Xk−1, εk) .

The point 3 is clear, since if (1.3) is true, then

Hε(x, y) =

∫

d(F (x, y), F (x, y′))Pε(dy
′) ≤

∫

Cδ(y, y′)Pε(dy
′) = Gε(y) .

The proof of the proposition is now complete.

2.2 An important remark

For any α ∈ (0, 1) define the distances dα and δα on X and Y respectively by

dα(x, x
′) = (d(x, x′))α and δα(y, y

′) = (δ(y, y′))α .

If F is one-step contacting with respect to a natural distance d (meaning that it satisfies the
inequalities (1.2) and (1.3) with ρ ∈ [0, 1) and C > 0 respectively), then for any α ∈ (0, 1),

E
[(

dα(F (x, ε1), F (x′, ε1)
)]

≤ ραdα(x, x
′) , (2.7)

and
dα
(

F (x, y), F (x, y′)
)

≤ Cαδα(y, y
′) . (2.8)

Hence F is also one-step contracting for the distance dα, with the new constants ρα ∈ [0, 1) and
Cα > 0. Consequently, Proposition 2.1 applies to the martingale

Sn = f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ,

where f is separately Lipshitz with respect to dα. The dominating random variables GX1,α(X1)
and Gε,α(εk) are then defined by

GX1,α(x) =

∫

dα(x, x
′)PX1(dx

′) and Gε,α(y) =

∫

Cαδα(y, y
′)Pε(dy

′) .
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Hence, all the results of the following section apply to the functional Sn, provided the correspond-
ing conditions on the dominating random variables GX1,α(X1) and Gε,α(εk) are satisfied.

For instance, if X = R
ℓ and d(x, y) = ‖x − y‖ is the euclidean distance on R

ℓ, then one can
consider the class of separately Hölder functions f such that

|f(x1, x2, . . . , xn)− f(x′
1, x

′
2, . . . , x

′
n)| ≤ ‖x1 − x′

1‖α + · · ·+ ‖xn − x′
n‖α .

3 Deviation inequalities for the functional Sn.

Let (Xi)i≥1 be a Markov chain satisfying (1.1) for some function F satisfying (1.2) and (1.3). In
this section, we apply inequalities for martingales to bound up the deviation of the functional Sn

defined by (2.2). Some of these inequalities are direct applications of known inequalities, some
deserve a short proof and some other are new.

Note that deviation inequalities for Lipschitz functions of dependent sequences have been
proved for instance by Rio [26], Collet et al. [6], Djellout et al. [11], Kontorovich and Ramanan
[18], and Chazottes and Gouëzel [5] among others. Except for Djellout et al. [11] (who also
consider more general Markov chains), the examples studied by these authors are different from
the class described in the present paper. For instance, the Markov chains associated to the maps
studied by Chazottes and Gouëzel [5] do not in general satisfy the one step contraction property.

The interest of the one step contraction is that, thanks to Proposition 2.1, we shall obtain
very precise inequalities, with precise constants depending on the distribution of the dominating
random variables GX1(X1) and Gε(εk).

Let us note that, in the iid case, when Xi = εi, the additive functional

f(x1, x2, . . . , xn) =

n
∑

k=1

Gε(xi)

is of course separately Lipshitz and satisfies (2.1). Hence, the inequalities of the following sec-
tion apply to this simple functional, under the usual moment or Laplace conditions on the (non
centered) variables Gε(εi). This shows that, in the iid case, these inequalities cannot be much
improved without additional assumptions on the functional f .

Les us now consider the case where we only assume that F satisfies (1.2). Then all the inequal-
ities of this section will be true provided the appropriate conditions of the type E[f(Gε(ε))] ≤ C
for some positive measurable function f are replaced by

sup
k∈[2,n]

∥

∥

∥
E

[

f
(

Hε(Xk−1, εk)
)

∣

∣

∣
Xk−1

]∥

∥

∥

∞
≤ C . (3.1)

Note that the latter condition is true provided

sup
x∈X

E

[

f
(

Hε(x, ε1)
)

]

≤ C ,

which is of the same type as condition (1.5) for the subgaussian bound (with f(x) = exp(ax2) in
that particular case). Recall that condition (1.5) is due to Djellout et al. [11] (see their Proposition
3.1).

For the weak and strong moment bounds on Sn, we shall see in Subsections 3.7, 3.8 and 3.9
that condition (3.1) can be replaced by an appropriate moment condition on Hε(Xk−1, εk).

To conclude the introduction of this section, let us note that the deviations inequalities of
Subsections 3.1 – 3.6 are given for P

(

±Sn > x
)

, but we shall only prove them for Sn. The proofs
of the deviation inequalities for −Sn are exactly the same, the upper bounds of points 2 and 3 of
Proposition 2.1 being valid for dk and −dk.

In all this section, Gε(ε) denotes a random variable distributed as Gε(εk).
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3.1 Bernstein type bound

Under the conditional Bernstein condition, van de Geer [16] and De La Peña [7] have obtained
some tight Bernstein type inequalities for martingales. Applying Proposition 2.1, we obtain the
following proposition.

Proposition 3.1. Assume that there exist some constants M > 0, V1 ≥ 0 and V2 ≥ 0 such that,
for any integer k ≥ 2,

E

[(

GX1(X1)
)k]

≤ k!

2
V1M

k−2 and E

[(

Gε(ε)
)k]

≤ k!

2
V2M

k−2 . (3.2)

Let

V = V1

(

Kn−1(ρ)
)2

+ V2

n
∑

k=2

(

Kn−k(ρ)
)2

and δ = MKn−1(ρ).

Then, for any t ∈ [0, δ−1),

E [e±tSn ] ≤ exp

(

t2V

2(1− t δ)

)

. (3.3)

Consequently, for any x > 0,

P
(

± Sn ≥ x
)

≤ exp

(

x2

V (1 +
√

1 + 2xδ/V ) + xδ

)

(3.4)

≤ exp

(

x2

2 (V + xδ)

)

. (3.5)

Remark 3.1. Let us comment on condition (3.2).

1. In the iid case, when Xi = εi, condition (3.2) is the Bernstein condition

E

[(

Gε(ε)
)k]

≤ k!

2
VMk−2.

In that case the inequalities (3.4) and (3.5) hold with ρ = 0.

2. Since Gε(ε) ≤ Cδ(ε, y0) + CE[δ(ε, y0)], it follows that

E

[(

Gε(ε)
)k]

≤ 2kE
[(

Cδ(ε, y0)
)k]

.

Hence, the condition

E

[(

Cδ(ε, y0)
)k]

≤ k!

2
A(y0)B(y0)

k−2 (3.6)

implies the second condition in (3.2) with V2 = 4A(y0) and M = 2B(y0). In the same way,
the condition

E

[(

d(X1, x0)
)k]

≤ k!

2
C(x0)D(x0)

k−2 (3.7)

implies the first condition in (3.2) with V1 = 4C(x0) and M = 2D(x0).

3. Consider the chain with non random starting point X1 = x. Then GX1(X1) = 0, and the
first condition in (3.2) holds with V1 = 0.

4. Let us consider now the case where X1 is distributed according to the invariant probability
measure µ. We shall see that in that case (3.7) follows from (3.6). To avoid to many
computations, assume that one can find (x0, y0) such that d(F (x0, y0), x0) = 0, which is
true in many cases. If (3.6) holds, it follows from (1.4) applied to H(x) = xk that (3.7)
holds with C(x0) = (1− ρ)−2A(y0) and D(x0) = (1− ρ)−1B(y0). According to the point 2
of this remark, condition (3.2) is satisfied by taking M = 2(1− ρ)−1B(y0), V2 = 4A(y0) and
V1 = 4(1− ρ)−2A(y0).
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Proof. From Proposition 2.1 and condition (3.2), it is easy to see that, for any t ∈ [0, δ−1),

E [etd1 ] ≤ 1 +
∞
∑

i=2

ti

i!
E [(d1)

i]

≤ 1 +

∞
∑

i=2

ti

i!
E [|d1|i]

≤ 1 +

∞
∑

i=2

ti

i!

(

Kn−1(ρ)
)i

E

[(

GX1(X1)
)i]

≤ 1 +

∞
∑

i=2

ti

i!

(

Kn−1(ρ)
)i i!

2
V1M

i−2 = 1 +
t2V1

(

Kn−1(ρ)
)2

2(1− t δ)
. (3.8)

Similarly, for any k ∈ [2, n],

E [etdk |Fk−1] ≤ 1 +
t2V2

(

Kn−k(ρ)
)2

2(1− t δ)
. (3.9)

Using the inequality 1 + t ≤ et, we find that, for any t ∈ [0, δ−1),

E [etd1 ] ≤ exp







t2V1

(

Kn−1(ρ)
)2

2(1− t δ)






(3.10)

and

E [etdk |Fk−1] ≤ exp







t2V2

(

Kn−k(ρ)
)2

2(1− t δ)






. (3.11)

By the tower property of conditional expectation, it follows that, for any t ∈ [0, δ−1),

E
[

etSn
]

= E
[

E [etSn |Fn−1]
]

= E
[

etSn−1E [etdn |Fn−1]
]

≤ E
[

etSn−1
]

exp

(

t2V2

2(1− t δ)

)

≤ exp

(

t2V

2(1− t δ)

)

,

which gives inequality (3.3). Using the exponential Markov inequality, we deduce that, for any
x ≥ 0 and t ∈ [0, δ−1),

P (Sn ≥ x) ≤ E
[

et (Sn−x)]

≤ exp

(

−t x+
t2V

2(1− t δ)

)

. (3.12)

The minimum is reached at

t = t(x) :=
2x/V

2xδ/V + 1 +
√

1 + 2xδ/V
.

Substituting t = t(x) in (3.12), we obtain the desired inequalities

P (Sn ≥ x) ≤ exp

(

x2

V (1 +
√

1 + 2xδ/V ) + xδ

)

≤ exp

(

x2

2(V + xδ)

)

,
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where the last line follows from the inequality
√

1 + 2x δ/V ≤ 1 + x δ/V .

3.2 Cramér type bound

If the Laplace transform of the dominating random variables GX1(X1) and Gε(εk) satisfy the
Cramér condition, we obtain the following proposition similar to that of Liu and Watbled [20]
under the conditional Cramér condition. For the optimal convergence speed of martingales under
the Cramér condition, we refer to Lesigne of Volný [19] and Fan et al. [13].

Proposition 3.2. Assume that there exist some constants a > 0, K1 ≥ 1 and K2 ≥ 1 such that

E

[

exp
(

aGX1(X1)
)]

≤ K1 and E

[

exp
(

aCGε(ε)
)]

≤ K2 . (3.13)

Let

K =
2

e2

(

K1 +K2

n
∑

i=2

(Kn−i(ρ)

Kn−1(ρ)

)2
)

and δ =
a

Kn−1(ρ)
.

Then, for any t ∈ [0, δ),

E [e±tSn ] ≤ exp

(

t2Kδ−2

1− tδ−1

)

.

Consequently, for any x > 0,

P
(

± Sn ≥ x
)

≤ exp

(

(xδ)2

2K(1 +
√

1 + xδ/K) + xδ

)

(3.14)

≤ exp

(

(xδ)2

4K + 2xδ

)

. (3.15)

Remark 3.2. Let us comment on condition (3.13).

1. In the iid case, when Xi = εi, the condition (3.13) writes simply

E

[

exp
(

aGε(ε)
)]

≤ K .

In that case the inequalities (3.14) and (3.15) hold with ρ = 0.

2. Since Gε(ε) ≤ Cδ(ε, y0) + CE(δ(ε, y0)) the condition

E

[

exp
(

aCδ(ε, y0)
)]

≤ A(y0) (3.16)

implies the second condition in (3.13) with K2 = A(y0) exp
(

aCE[δ(ξ, y0)]
)

≤ A(y0)
2. In the

same way, the condition

E

[

exp
(

ad(X1, x0)
)]

≤ B(x0) (3.17)

implies the first condition in (3.13) with K1 = B(x0) exp
(

aE[d(X1, x0)]
)

≤ B(x0)
2.

3. Consider the chain with non random starting point X1 = x. Then GX1(X1) = 0, and the
first condition in (3.13) holds with K1 = 1.

4. Let us consider now the case where X1 is distributed according to the invariant probability
measure µ. We shall see that in that case (3.17) follows from (3.16). Indeed, if (3.16) holds,
it follows from (1.4) applied to H(x) = exp(ax) that

E

[

exp
(

ad(X1, x0)
)]

≤ exp
( a

1− ρ
d(F (x0, y0), x0)

)

∞
∏

i=0

(A(y0))
ρi .

Hence
E

[

exp
(

ad(X1, x0)
)]

≤ exp
( a

1− ρ
d(F (x0, y0), x0)

)

(A(y0))
1/(1−ρ)
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and (3.17) is true with

B(x0) = (A(y0))
1/(1−ρ) exp

( a

1− ρ
d(F (x0, y0), x0)

)

.

According to the point 2 of this remark, condition (3.13) is satisfied by taking K2 = (A(y0))
2

and K1 = (B(x0))
2. In particular, if (3.16) holds, and if we can find (x0, y0) such that

d(F (x0, y0), x0) = 0, then one can take K1 = (A(y0))
2/(1−ρ).

Proof. Let δ = a/Kn−1(ρ). Since E [d1] = 0, it is easy to see that, for any t ∈ [0, δ),

E [etd1 ] = 1 +
∞
∑

i=2

ti

i!
E [(d1)

i]

≤ 1 +
∞
∑

i=2

( t

δ

)i

E

[ 1

i!
|δd1|i

]

. (3.18)

Here, let us note that, for t ≥ 0,

ti

i!
e−t ≤ ii

i!
e−i

≤ 2e−2, for i ≥ 2, (3.19)

where the last line follows from the fact that iie−i/i! is decreasing in i. Note that the equality in
(3.19) is reached at t = i = 2. Using (3.19), Proposition 2.1 and condition (3.13), we have

E

[ 1

i!
|δd1|i

]

≤ 2e−2
E [eδ|d1|]

≤ 2e−2
E

[

exp
(

aGX1(X1)
)]

≤ 2e−2K1. (3.20)

Combining the inequalities (3.18) and (3.20) together, we obtain, for any t ∈ [0, δ),

E [etd1 ] ≤ 1 +

∞
∑

n=2

2

e2

( t

δ

)n

K1 = 1 +
2

e2
t2K1δ

−2

1− tδ−1
≤ exp

(

2

e2
t2K1δ

−2

1− tδ−1

)

. (3.21)

Similarly, since Kn−i(ρ)/Kn−1(ρ) ≤ 1 for all i ∈ [2, n], we have, for any t ∈ [0, δ),

E [etdi |Fi−1] ≤ exp

(

2

e2
t2K2δ

−2

1− tδ−1

(Kn−i(ρ)

Kn−1(ρ)

)2
)

. (3.22)

By the tower property of conditional expectation, it follows that, for any t ∈ [0, δ),

E
[

etSn
]

= E
[

E [etSn |Fn−1]
]

= E
[

etSn−1E [etdn |Fn−1]
]

≤ E
[

etSn−1
]

exp

(

2

e2
t2K2δ

−2

1− tδ−1

)

≤ exp

(

t2Kδ−2

1− tδ−1

)

, (3.23)

where

K =
2

e2

(

K1 +K2

n
∑

i=2

(Kn−i(ρ)

Kn−1(ρ)

)2
)

.

Then using the exponential Markov inequality, we deduce that, for any x ≥ 0 and t ∈ [0, δ),

P (Sn ≥ x) ≤ E [et (Sn−x)]

≤ exp

(

−tx+
t2Kδ−2

1− tδ−1

)

. (3.24)
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The minimum is reached at

t = t(x) :=
xδ2/K

xδ/K + 1 +
√

1 + xδ/K
.

Substituting t = t(x) in (3.24), we obtain the desired inequalities (3.14) and (3.15).

3.3 Qualitative results when E
[

ea(Gε(ε))p
]

< ∞ for p > 1.

The next proposition follows easily from Theorem 3.2 of Liu and Watbled [20].

Proposition 3.3. Let p > 1. Assume that there exist some constants a > 0, K1 ≥ 1 and K2 ≥ 1
such that

E

[

exp
(

a
(

GX1(X1)
)p
)]

≤ K1 and E

[

exp
(

a
(

Gε(ε)
)p
)]

≤ K2 . (3.25)

Let q be the conjugate exponent of p and let τ > 0 be such that

(qτ )
1
q (pa)

1
p (1− ρ) = 1 .

Then, for any τ1 > τ , there exist some positive numbers t1, x1, A,B, depending only on a, ρ,K1,K2, p
and τ1, such that

E [e±tSn ] ≤
{

exp(nτ1t
q) if t ≥ t1

exp(nAt2) if t ∈ [0, t1]
(3.26)

and

P
(

± Sn ≥ x
)

≤
{

exp
(

−a1x
p/np−1

)

if x ≥ nx1

exp
(

−Bx2/n
)

if x ∈ [0, nx1],
(3.27)

where a1 is such that (qτ )1/q (pa1)
1/p = 1.

Remark 3.3. Assume that (3.25) is satisfied for some p ≥ 1. From Proposition 3.2 (case p = 1)
and Proposition 3.3 (case p > 1), we infer that for any x > 0, one can find a positive constant cx
not depending on n such that

P (±Sn ≥ nx) ≤ exp
(

− cxn
)

. (3.28)

Moreover, for x large enough, one can take cx = a1x
p.

Proof. By condition (3.25) and Proposition 2.1, it follows that

E

[

exp
(

a(1− ρ)p|d1|p
)]

≤ E

[

exp
(

a
(

GX1(X1)
)p
)]

≤ K2

and, for all i ∈ [2, n],

E

[

exp
(

a(1− ρ)p|di|p
)

| Fi−1

]

≤ E

[

exp
(

a
(

Gε(ε)
)p
)]

≤ K1.

Let q > 1 and τ > 0 be such that

1

p
+

1

q
= 1 and (qτ )

1
q (pa)

1
p (1− ρ) = 1 .

Then, by Theorem 3.2 of Liu and Watbled [20], for any τ1 > τ , there exist t1, x1, A,B > 0,
depending only on a, ρ,K1,K2, p and τ1, such that the claim of Proposition 3.3 holds.

In particular, if p = 2, we have the following sub-Gaussian bound.

Proposition 3.4. Assume that there exist some constants a > 0, K1 ≥ 1 and K2 ≥ 1 such that

E

[

exp
(

a
(

GX1(X1)
)2
)]

≤ K1 and E

[

exp
(

a
(

Gε(ε)
)2
)]

≤ K2 . (3.29)
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Then, there exists a constant c > 0 depending only on a, ρ,K1 and K2 such that

E [e±tSn ] ≤ exp
(

n c t2) for all t > 0. (3.30)

Consequently, for any x > 0,

P
(

± Sn ≥ x
)

≤ exp

(

− x2

4nc

)

. (3.31)

Remark 3.4. As quoted at the beginning of Section 3, if F satisfies only (1.2), Proposition 3.4
holds provided (3.1) is satisfied with f(x) = exp(ax2). This condition is implied by condition
(1.5), which is due to Djellout et al [11].

Proof. Inequality (3.30) follows directly from (3.26). Using the exponential Markov inequality,
we deduce that for any x, t ≥ 0,

P (Sn ≥ x) ≤ E [et (Sn−x)]

≤ exp
(

−t x+ n c t2
)

. (3.32)

The minimum is reached at t = t(x) := x/(2nc). Substituting t = t(x) in (3.32), we obtain the
desired inequality (3.31).

3.4 Semi-exponential bound

In the case where GX1(X1) and Gε(ε) have semi-exponential moments, the following proposition
holds. This proposition can be compared to the corresponding results in Borovkov [4] for partial
sums of independent random variables, Merlevède et al. [22] for partial sums of weakly dependent
sequences, and Fan et al. [13] for martingales.

Proposition 3.5. Let p ∈ (0, 1). Assume that there exist some positive constants K1 and K2

such that

E

[

(

GX1(X1)
)2

exp
(

(

GX1(X1)
)p
)]

≤ K1 and E

[

(

Gε(ε)
)2

exp
(

(

Gε(ε)
)p
)]

≤ K2 . (3.33)

Set

K = K1 +K2

n
∑

i=2

(Kn−i(ρ)

Kn−1(ρ)

)2

.

Then, for any 0 ≤ x < K1/(2−p),

P (±Sn ≥ x) ≤ exp

(

− x2

2K(Kn−1(ρ))2

)

+
(

Kn−1(ρ)
)2
( x2

K1+p

)1/(1−p)

exp

(

−
( K

x
(

Kn−1(ρ)
)1−p

)p/(1−p)

)

(3.34)

and, for any x ≥ K1/(2−p),

P (±Sn ≥ x) ≤ exp

(

−
(

x

Kn−1(ρ)

)p(

1− K

2

(Kn−1(ρ)

x

)2−p
)

)

+ K
(Kn−1(ρ)

x

)2

exp

(

−
( x

Kn−1(ρ)

)p
)

. (3.35)

Remark 3.5. In particular, there exists a positive constant c such that, for any x > 0,

P (±Sn ≥ nx) ≤ Cx exp
(

− c xpnp), (3.36)

where the constants Cx and c do not depend on n.
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Remark 3.6. By a simple comparison, we find that for moderate x ∈ (0,K1/(2−p)), the second
item in the right hand side of (3.34) is less than the first one. Thus for moderate x ∈ (0,K1/(2−p)),
the bound (3.34) is a sub-Gaussian bound and is of the order

exp

(

− x2

2K(Kn−1(ρ))2

)

. (3.37)

For all x ≥ K1/(2−p), bound (3.35) is a semi-exponential bound and is of the order

exp

(

− 1

2

(

x

Kn−1(ρ)

)p)
)

. (3.38)

Moreover, when x/K1/(2−p) → ∞, the constant 1
2
in (3.38) can be improved to 1+ε for any given

ε > 0.

Proof. The proof is based on a truncation argument. For given y > 0, set ηi = di1{di≤y}. Then
(ηi,Fi)i=1,...,n is a sequence of supermartingale differences. Using a two term Taylor’s expansion,
we have, for all t > 0,

etηi ≤ 1 + tηi +
t2η2

i

2
etηi .

Since p ∈ (0, 1), it follows that

η+
i = di1{0≤di≤y} ≤ y

dpi
yp

1{0≤di≤y} ≤ y1−p(η+
i )p .

Hence,

etηi ≤ 1 + tηi +
t2η2

i

2
exp

(

ty1−p(η+
i )p
)

.

Since E[ηi|Fi−1] ≤ E[di|Fi−1] = 0, it follows that, for all t > 0,

E[etηi |Fi−1] ≤ 1 +
t2

2
E

[

η2
i exp

(

ty1−p(η+
i )p
)∣

∣

∣
Fi−1

]

.

By Proposition 2.1, it follows that, for all t > 0,

E[etη1 ] ≤ 1 +
t2

2
E

[(

Kn−1(ρ)GX1(X1)
)2

exp
(

ty1−p
(

Kn−1(ρ)GX1(X1)
)p)]

and similarly, for i ∈ [2, n],

E[etηi |Fi−1] ≤ 1 +
t2

2
E

[(

Kn−i(ρ)Gε(ε)
)2

exp
(

ty1−p
(

Kn−i(ρ)Gε(ε)
)p)]

.

Taking t = yp−1/
(

Kn−1(ρ)
)p
, by condition (3.33) and Kn−i(ρ)/Kn−1(ρ) ≤ 1, we find that

E[etη1 ] ≤ 1 +
1

2

( y

Kn−1(ρ)

)2p−2

E

[(

GX1(X1)
)2

exp
(

(

GX1(X1)
)p
)]

≤ 1 +
1

2

( y

Kn−1(ρ)

)2p−2

K1

≤ exp

(

1

2

( y

Kn−1(ρ)

)2p−2

K1

)

and, for i ∈ [2, n],

E[etηi |Fi−1] ≤ 1 +
1

2

( y

Kn−1(ρ)

)2p−2(Kn−i(ρ)

Kn−1(ρ)

)2

E

[(

Gε(ε)
)2

exp
(

(

Gε(ε)
)p
)]

≤ 1 +
1

2

( y

Kn−1(ρ)

)2p−2

K2

(Kn−i(ρ)

Kn−1(ρ)

)2

≤ exp

(

1

2

( y

Kn−1(ρ)

)2p−2

K2

(Kn−i(ρ)

Kn−1(ρ)

)2
)

.
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Hence, by the tower property of conditional expectation, it follows that

E

[

et
∑n

i=1 ηi
]

= E

[

E [et
∑n

i=1 ηi |Fn−1]
]

= E

[

et
∑n−1

i=1 ηiE [etηn |Fn−1]
]

≤ E

[

et
∑n−1

i=1 ηi
]

exp

(

1

2

( y

Kn−1(ρ)

)2p−2

K2

( 1

Kn−1(ρ)

)2
)

≤ exp

(

1

2

( y

Kn−1(ρ)

)2p−2

K

)

, (3.39)

where

K = K1 +K2

n
∑

i=2

(Kn−i(ρ)

Kn−1(ρ)

)2

.

It is easy to see that

P (Sn ≥ x) ≤ P

(

n
∑

i=1

ηi ≥ x

)

+ P

(

n
∑

i=1

di1{di>y} > 0

)

≤ P

(

n
∑

i=1

ηi ≥ x

)

+ P

(

max
1≤i≤n

di > y

)

=: P5 + P

(

max
1≤i≤n

di > y

)

. (3.40)

For the first item of (3.40), by the exponential Markov’s inequality and (3.39), we have

P5 ≤ E

[

et(
∑n

i=1 ηi−x)
]

≤ exp

(

−tx+
1

2

( y

Kn−1(ρ)

)2p−2

K

)

. (3.41)

For the second item of (3.40), we have the following estimation:

P

(

max
1≤i≤n

di > y

)

≤
n
∑

i=1

P (di > y)

≤
n
∑

i=1

P

( di
Kn−1(ρ)

>
y

Kn−1(ρ)

)

≤
exp

(

−
(

y/Kn−1(ρ)
)p
)

(

y/Kn−1(ρ)
)2

n
∑

i=1

E

[

( di
Kn−1(ρ)

)2

e|di/Kn−1(ρ)|
p

]

.

By Proposition 2.1 and Kn−i(ρ)/Kn−1(ρ) ≤ 1 again, it is easy to see that

n
∑

i=1

E

[

( di
Kn−1(ρ)

)2

e|di/Kn−1(ρ)|
p

]

≤ E

[

(

GX1(X1)
)2

exp
(

(

GX1(X1)
)p
)]

+
(Kn−i(ρ)

Kn−1(ρ)

)2
n
∑

i=2

E

[

(

Gε(ε)
)2

exp
(

(

Gε(ε)
)p
)]

≤ K.

Thus

P

(

max
1≤i≤n

di > y

)

≤ K
(

y/Kn−1(ρ)
)2 exp

(

−
( y

Kn−1(ρ)

)p
)

. (3.42)

Combining (3.40), (3.41) and (3.42) together, it is to see that

P (Sn ≥ x) ≤ exp

(

− tx+
1

2

( y

Kn−1(ρ)

)2p−2

K

)

+
K

(

y/Kn−1(ρ)
)2

exp

(

−
( y

Kn−1(ρ)

)p
)

. (3.43)
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Recall that t = yp−1/
(

Kn−1(ρ)
)p
. Taking

y =

{

(

K/x
)1/(1−p)

if 0 ≤ x < K1/(2−p),

x if x ≥ K1/(2−p),
(3.44)

we obtain the desired inequalities.

3.5 McDiarmid inequality

In this section, we consider the case where the increments dk are bounded. We shall use an
improved version of the well known inequality by McDiarmid, which has been recently stated by
Rio [28]. For this inequality, we do not assume that (1.3) holds. Hence, Proposition 3.6 applies
to any Markov chain Xn = F (Xn−1, εn), for F satisfying (1.2).

As in Rio [28], let

ℓ(t) = (t− ln t− 1) + t(et − 1)−1 + ln(1− e−t) for all t > 0,

and let
ℓ∗(x) = sup

t>0

(

xt− ℓ(t)
)

for all x > 0,

be the Young transform of ℓ(t). As quoted by Rio [28], the following inequalities hold

ℓ∗(x) ≥ (x2 − 2x) ln(1− x) ≥ 2x2 + x4/6 . (3.45)

Let also (X ′
1, (ε

′
i)i≥2) be an independent copy of (X1, (εi)i≥2).

Proposition 3.6. Assume that there exist some positive constants Mk such that
∥

∥d(X1, X
′
1)
∥

∥

∞
≤ M1 and

∥

∥d
(

F (Xk−1, εk), F (Xk−1, ε
′
k)
)∥

∥

∞
≤ Mk for k ∈ [2, n]. (3.46)

Let

M2(n, ρ) =

n
∑

k=1

(

Kn−k(ρ)Mk

)2
and D(n, ρ) =

n
∑

k=1

Kn−k(ρ)Mk .

Then, for any t ≥ 0,

E[e±tSn ] ≤ exp

(

D2(n, ρ)

M2(n, ρ)
ℓ
(M2(n, ρ)x

D(n, ρ)

)

)

(3.47)

and, for any x ∈ [0, D(n, ρ)],

P
(

± Sn > x
)

≤ exp

(

−D2(n, ρ)

M2(n, ρ)
ℓ∗
( x

D(n, ρ)

)

)

. (3.48)

Consequently, for any x ∈ [0, D(n, ρ)],

P
(

± Sn > x
)

≤
(

D(n, ρ)− x

D(n, ρ)

)
2D(n,ρ)x−x2

M2(n,ρ)

. (3.49)

Remark 3.7. Since (x2−2x) ln(1−x) ≥ 2 x2, inequality (3.49) implies the following McDiarmid
inequality

P
(

± Sn > x
)

≤ exp

(

− 2x2

M2(n, ρ)

)

.

Remark 3.8. Taking ∆(n, ρ) = Kn−1(ρ)max1≤k≤n Mk, we obtain the upper bound: for any
x ∈ [0, n∆(n, ρ)],

P
(

± Sn > x
)

≤ exp

(

−nℓ∗
( x

n∆(n, ρ)

)

)

≤ exp

(

− 2x2

n∆2(n, ρ)

)

.
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Remark 3.9. If F satisfies (1.3), then one can takeM1 = ‖d(X1, X
′
1)‖∞ andMk = C‖δ(ε1, ε′1)‖∞

for k ∈ [2, n].

Proof. Let
uk−1(x1, . . . , xk−1) = ess inf

εk
gk(x1, . . . , F (xk−1, εk))

and
vk−1(x1, . . . , xk−1) = ess sup

εk

gk(x1, . . . , F (xk−1, εk))

From the proof of Proposition 2.1, it follows that

uk−1(X1, . . . , Xk−1) ≤ dk ≤ vk−1(X1, . . . , Xk−1) .

By Proposition 2.1 and condition (3.46), we have

vk−1(X1, . . . , Xk−1)− uk−1(X1, . . . , Xk−1) ≤ Kn−k(ρ)Mk .

Now, following exactly the proof of Theorem 3.1 of Rio [28] with ∆k = Kn−k(ρ)Mk we obtain
the inequalities (3.47) and (3.48). Since ℓ∗(x) ≥ (x2 − 2x) ln(1−x), inequality (3.49) follows from
(3.48).

3.6 Fuk-Nagaev type bound

The next proposition follows easily from Corollary 2.3 of Fan et al. [12].

Proposition 3.7. Assume that there exist two positive constants V1 and V2 such that

E
[(

GX1(X1)
)2] ≤ V1 and E

[(

Gε(ε)
)2] ≤ V2 .

Let

V = V1

(

Kn−1(ρ)
)2

+ V2

n
∑

i=2

(

Kn−i(ρ)
)2

. (3.50)

Then, for any x, y > 0,

P
(

± Sn > x
)

≤ Hn

(

x

yKn−1(ρ)
,

√
V

yKn−1(ρ)

)

+ P

(

max

{

GX1(X1), max
2≤i≤n

Gε(εi)

}

> y

)

,

(3.51)

where

Hn(x, v) =

{

(

v2

x+ v2

)x+v2
(

n

n− x

)n−x
}

n

n+v2

1{x≤n} (3.52)

with the convention that (+∞)0 = 1 (which applies when x = n).

Proof. We apply Corollary 2.3 of Fan et al. [12] with the truncature level yKn−1(ρ). By Propo-
sition 2.1, |d1| ≤ Kn−1(ρ)GX1(X1) and |di| ≤ Kn−i(ρ)Gε(εi) for i ∈ [2, n]. Hence

E
[

d211{d1≤yKn−1(ρ)}

]

≤
(

Kn−1(ρ)
)2

E
[(

GX1(X1)
)2] ≤

(

Kn−1(ρ)
)2

V1

and, for i ∈ [2, n],

E
[

d2i1{di≤yKn−1(ρ)}|Fi−1

]

≤
(

Kn−i(ρ)
)2

E
[(

Gε(ε)
)2] ≤

(

Kn−i(ρ)
)2

V2 .

It follows from Corollary 2.3 of Fan et al. [12] that

P(Sn > x) ≤ Hn

(

x

yKn−1(ρ)
,

√
V

yKn−1(ρ)

)

+ P

(

max
1≤i≤n

di > yKn−1(ρ)

)

.

Inequality (3.51) follows by applying Proposition 2.1 again.

In particular, if GX1(X1) and Gε(ε) are bounded, then Proposition 3.7 implies the following
Hoeffding bound.
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Proposition 3.8. Assume that there exist some positive constants M , V1 and V2 such that

GX1(X1) ≤ M, Gε(ε) ≤ M, E
[(

GX1(X1)
)2] ≤ V1 and E

[(

Gε(ε)
)2] ≤ V2 .

Then, for any x > 0,

P
(

± Sn > x
)

≤ Hn

(

x

MKn−1(ρ)
,

√
V

MKn−1(ρ)

)

, (3.53)

where Hn(x, v) and V are defined by (3.52) and (3.50), respectively.

Remark 3.10. According to Remark 2.1 of Fan et al. [12], for any x ≥ 0 and any v > 0, it holds

Hn(x, v) ≤ B(x, v) :=

(

v2

x+ v2

)x+v2

ex (3.54)

≤ B1(x, v) := exp

{

− x2

2(v2 + 1
3
x)

}

. (3.55)

Note that (3.54) and (3.55) are respectively known as Bennett’s and Bernstein’s bounds. Then,
inequality (3.53) also implies Bennett’s and Bernstein’s bounds

P
(

± Sn > x
)

≤ B

(

x

MKn−1(ρ)
,

√
V

MKn−1(ρ)

)

≤ B1

(

x

MKn−1(ρ)
,

√
V

MKn−1(ρ)

)

.

We now consider the case where the random variables GX1(X1) and Gε(ε) have only a weak
moment of order p > 2. For any real-valued random variable Z and any p ≥ 1, define the weak
moment of order p by

‖Z‖pw,p = sup
x>0

xp
P(|Z| > x) . (3.56)

Proposition 3.9. Let p > 2. Assume that there exist some positive constants V1, V2, A1(p) and
A2(p) such that

E
[(

GX1(X1)
)2] ≤ V1 , E

[(

Gε(ε)
)2] ≤ V2 ,

∥

∥

∥GX1(X1)
∥

∥

∥

p

w,p
≤ A1(p) and

∥

∥

∥Gε(ε)
∥

∥

∥

p

w,p
≤ A2(p) .

Let V be defined by (3.50), and let

A(p) = A1(p) + (n− 1)A2(p) .

Then, for any x, y > 0,

P
(

± Sn > x
)

≤ Hn

(

x

yKn−1(ρ)
,

√
V

yKn−1(ρ)

)

+
A(p)

yp
, (3.57)

where Hn(x, v) is defined by (3.52).

Remark 3.11. Assume that GX1(X1) and Gε(ε) have a weak moment of order p > 2. Taking

y =
3nx

2pKn−1(ρ) ln(n)

in inequality (3.57), we infer that, for any x > 0,

P
(

± Sn > nx
)

≤ Cx(ln(n))
p

np−1
,

for some positive Cx not depending on n.
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If the martingale differences di have pth moments (p ≥ 2), then we have the following Fuk-type
inequality (cf. Corollary 3′ of Fuk [15]).

Proposition 3.10. Let p ≥ 2. Assume that there exist some positive constants V1, V2, A1(p) and
A2(p) such that

E
[(

GX1(X1)
)2] ≤ V1 , E

[(

Gε(ε)
)2] ≤ V2 ,

E
[(

GX1(X1)
)p] ≤ A1(p) and E

[(

Gε(ε)
)p] ≤ A2(p) . (3.58)

Let V be defined by (3.50), and let

A(p) = A1(p)
(

Kn−1(ρ)
)p

+ A2(p)

n
∑

i=2

(

Kn−i(ρ)
)p
.

Then, for any x > 0,

P(|Sn| > x) ≤ 2
(

1 +
2

p

)pA(p)

xp
+ 2 exp

(

− 2

(p+ 2)2ep
x2

V

)

. (3.59)

Remark 3.12. Since A(p) is of order n, it easy to see that the term

exp

(

− 2

(p+ 2)2ep
(nx)2

V

)

is decreasing at an exponential order, and that the term

2
(

1 +
2

p

)p A(p)

(xn)p

is of order n1−p. Thus, for any x > 0 and all n,

P(|Sn| > nx) ≤ Cx

np−1
,

for some positive Cx not depending on n. Note that the last inequality is optimal under the stated
condition, even if Sn is a sum of iid random variables.

Proof. By Proposition 2.1 and condition (3.58), it follows that

n
∑

i=1

E[|di|p|Fi−1] ≤ E[|Kn−1(ρ)GX1(X1)|p] +
n
∑

i=2

E[|Kn−i(ρ)Gε(εi)|p]

≤
(

Kn−1(ρ)
)p
E[|GX1(X1)|p] +

n
∑

i=2

(

Kn−i(ρ)
)p
E[|Gε(εi)|p]

≤ A1(p)
(

Kn−1(ρ)
)p

+ A2(p)

n
∑

i=2

(

Kn−i(ρ)
)p

= A(p).

Notice that A(2) = V . Using Corollary 3′ of Fuk [15], we obtain the desired inequality.

3.7 von Bahr-Esseen bound

In the first proposition of this section, we assume that the dominating random variables GX1(X1)
and Gε(εk) have only a moment of order p ∈ [1, 2]. For similar inequalities in the case where the
Xi’s are independent, we refer to Pinelis [24].

Proposition 3.11. Let p ∈ [1, 2]. Assume that

E

[(

GX1(X1)
)p]

≤ A1(p) and E

[(

Gε(ε)
)p]

≤ A2(p) . (3.60)
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Then
‖Sn‖p ≤

(

A(n, ρ, p)
)1/p

, (3.61)

where

A(n, ρ, p) = A1(p)
(

Kn−1(ρ)
)p

+ 22−pA2(p)
n
∑

k=2

(

Kn−k(ρ)
)p

. (3.62)

Remark 3.13. The constant 22−p in (3.62) can be replaced by the more precise constant C̃p

described in Proposition 1.8 of Pinelis [24].

Remark 3.14. Assume that F satisfies only (1.2). Then, it follows from the proof of Proposition
3.11 that the inequality (3.61) remains true if the second condition of (3.60) is replaced by

sup
k∈[2,n]

E

[(

Hε(Xk−1, εk)
)p]

≤ A2(p) .

Proof. Using an improvement of the von Bahr-Esseen inequality (see inequality (1.11) in Pinelis
[24]), we have

‖Sn‖pp ≤ ‖d1‖pp + C̃p

n
∑

k=2

‖ dk‖pp ,

where the constant C̃p is described in Proposition 1.8 of Pinelis [24], and is such that C̃p ≤ 22−p

for any p ∈ [1, 2]. By Proposition 2.1, it follows that

‖Sn‖pp ≤
(

(

Kn−1(ρ)
)p
E

[(

GX1(X1)
)p]

+ C̃p

n
∑

k=2

(

Kn−k(ρ)
)p
E

[(

Gε(ε)
)p]

)

≤
(

A1(p)
(

Kn−1(ρ)
)p

+ C̃pA2(p)
n
∑

k=2

(

Kn−k(ρ)
)p
)

,

which gives the desired inequality.

We now consider the case where the variables GX1(X1) and Gε(εk) have only a weak moment
of order p ∈ (1, 2). Recall that the weak moment ‖Z‖pw,p has been defined by (3.56).

Proposition 3.12. Let p ∈ (1, 2). Assume that

∥

∥

∥GX1(X1)
∥

∥

∥

p

w,p
≤ A1(p) and

∥

∥

∥Gε(ε)
∥

∥

∥

p

w,p
≤ A2(p) . (3.63)

Then, for any x > 0,

P(|Sn| > x) ≤ CpB(n, ρ, p)

xp
, (3.64)

where

Cp =
4p

(p− 1)
+

8p

(p− 2)

and

B(n, ρ, p) = A1(p)
(

Kn−1(ρ)
)p

+ A2(p)
n
∑

k=2

(

Kn−k(ρ)
)p

.

Remark 3.15. Assume that F satisfies only (1.2). Then, it follows from the proof of Proposition
3.12 that the inequality (3.64) remains true if the second condition of (3.63) is replaced by

sup
k∈[2,n]

∥

∥

∥
Hε(Xk−1, εk)

∥

∥

∥

p

w,p
≤ A2(p) .

Proof. This proof is based on a truncation argument. For given x > 0, let

ξ1 = d11{d1≤x} , ξ′1 = d11{d1>x} ,

ξk = dk1{dk≤x} and ξ′k = dk1{dk>x} .
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Define

η1 = ξ1 − E[ξ1] , η′
1 = ξ′1 − E[ξ′1] ,

ηk = ξk − E[ξk|Fk−1] and η′
k = ξ′k − E[ξ′k|Fk−1] .

It is obvious that

P(|Sn| > x) ≤ P

(
∣

∣

∣

n
∑

k=1

ηk

∣

∣

∣
>

x

2

)

+ P

(
∣

∣

∣

n
∑

k=1

η′
k

∣

∣

∣
>

x

2

)

. (3.65)

Applying Markov’s inequality, we get

P

(∣

∣

∣

n
∑

k=1

η′
k

∣

∣

∣ >
x

2

)

≤ 2

x

n
∑

k=1

‖η′
k‖1 ≤ 4

x

n
∑

k=1

‖ξ′k‖1 . (3.66)

Recall that, if Z is any real-valued random variable such that

P(|Z| > x) ≤ H(x) (3.67)

for a tail function H , then

E(|Z|1{|Z|>a}) ≤
∫ H(a)

0

Q(u)du , (3.68)

where Q is the cadlag inverse of H . Using Proposition 2.1, we have

P(|dk| > x) ≤ Hk(x), (3.69)

where H1(x) = min{1, x−pA1(p)(Kn−1(ρ))
p} and Hk(x) = min{1, x−pA2(p)(Kn−k(ρ))

p} if k ∈
[2, n]. Hence, applying (3.68), we obtain

‖ξ′1‖1 ≤ (A1(p))
1/pKn−1(ρ)

∫ H1(x)

0

u−1/pdu ≤ p

p− 1
A1(p)(Kn−1(ρ))

px1−p . (3.70)

Similarly, for k ∈ [2, n],

‖ξ′k‖1 ≤ (A2(p))
1/pKn−k(ρ)

∫ Hk(x)

0

u−1/pdu ≤ p

p− 1
A2(p)(Kn−k(ρ))

px1−p . (3.71)

Consequently, from (3.66), (3.70) and (3.71),

P

(
∣

∣

∣

n
∑

k=1

η′
k

∣

∣

∣
>

x

2

)

≤ 4pB(n, ρ, p)

(p− 1)xp
. (3.72)

On the other hand, the ηk’s being martingales differences,

P

(∣

∣

∣

n
∑

k=1

ηk

∣

∣

∣
>

x

2

)

≤ 4

x2

n
∑

k=1

‖ηk‖22 ≤ 4

x2

n
∑

k=1

‖ξk‖22 (3.73)

Recall that, if Z is any real-valued random variable satisfying (3.67),

E(Z21|Z|≤a) ≤ E((Z ∧ a)2) ≤
∫ 1

0

min{Q2(u), a2}du ≤ 2

∫ 1

H(a)

Q2(u)du . (3.74)

Using (3.69) and (3.74), we obtain

‖ξ1‖22 ≤ 2(A1(p))
2/p(Kn−1(ρ))

2

∫ 1

H1(x)

u−2/pdu ≤ 2p

2− p
A1(p)(Kn−1(ρ))

px2−p . (3.75)

Similarly, for k ∈ [2, n],

‖ξk‖22 ≤ 2(A2(p))
2/p(Kn−k(ρ))

2

∫ 1

Hk(x)

u−2/pdu ≤ 2p

2− p
A2(p)(Kn−k(ρ))

px2−p . (3.76)
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Consequently, from (3.73), (3.75) and (3.76),

P

(∣

∣

∣

n
∑

k=1

ηk

∣

∣

∣
>

x

2

)

≤ 8pB(n, ρ, p)

(p− 2)xp
. (3.77)

Inequality (3.64) follows from (3.65), (3.72) and (3.77).

3.8 Marcinkiewicz-Zygmund bound

We now assume that the dominating random variables GX1(X1) and Gε(εk) have a moment of
order p ≥ 2.

Proposition 3.13. Let p ≥ 2. Assume that

E

[(

GX1(X1)
)p]

≤ A1(p) and E

[(

Gε(ε)
)p]

≤ A2(p) . (3.78)

Then
‖Sn‖p ≤

√

A(n, ρ, p) , (3.79)

where

A(n, ρ, p) =
(

Kn−1(ρ)
)2(

A1(p)
)2/p

+ (p− 1)
(

A1(p)
)2/p

n
∑

k=2

(

Kn−k(ρ)
)2

.

Remark 3.16. Assume that F satisfies only (1.2). Then, it follows from the proof of Proposition
3.13 that the inequality (3.79) remains true if the second condition of (3.78) is replaced by

sup
k∈[2,n]

E

[(

Hε(Xk−1, εk)
)p]

≤ A2(p) .

Proof. Using Theorem 2.1 of Rio [27], we have

‖Sn‖2p ≤ ‖d1‖2p + (p− 1)
n
∑

k=2

‖dk‖2p .

By Proposition 2.1 and condition (3.78), it follows that

‖Sn‖2p ≤
(

Kn−1(ρ)
)2
(

E

[(

GX1(X1)
)p])2/p

+ (p− 1)

n
∑

k=2

(

Kn−k(ρ)
)2
(

E

[(

Gε(ε)
)p])2/p

≤ A(n, ρ, p),

which gives the desired inequality.

3.9 Burkholder-Rosenthal bounds

When the dominating random variables GX1(X1) and Gε(εk) have a moment of order p ≥ 2,
one can prove the following proposition. For similar inequalities in the case where the Xi’s are
independent, we refer to Pinelis [25].

Proposition 3.14. Assume that there exist two constants V1 ≥ 0 and V2 ≥ 0 such that

E
[(

GX1(X1)
)2] ≤ V1 and E

[(

Gε(ε)
)2] ≤ V2 . (3.80)

Let

V = V1

(

Kn−1(ρ)
)2

+ V2

n
∑

k=2

(

Kn−k(ρ)
)2

. (3.81)

For any p ≥ 2, there exist two positive constants C1(p) and C2(p) such that

‖Sn‖p ≤ C1(p)
√
V + C2(p)

∥

∥

∥max
{

Kn−1(ρ)GX1(X1), max
2≤i≤n

Kn−i(ρ)Gε(εi)
}∥

∥

∥

p
. (3.82)
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Remark 3.17. According to the proof of Theorem 4.1 of Pinelis [23], one can take C1(p) = 60c
and C2(p) = 120

√
cep/c for any c ∈ [1, p].

Proof. Applying Proposition 2.1, we have |d1| ≤ Kn−1(ρ)GX1(X1) and |dk| ≤ Kn−k(ρ)Gε(εk) for
k ∈ [2, n], and consequently

E[d21] ≤
(

Kn−1(ρ)
)2
V1 and E[d2k|Fk−1] ≤

(

Kn−k(ρ)
)2
V2 for k ∈ [2, n].

Then the proposition follows directly from Theorem 4.1 of Pinelis [23].

We now consider the case where the random variables GX1(X1) and Gε(ε) have a weak moment
of order p > 2. Recall that the weak moment ‖Z‖pw,p has been defined by (3.56).

Proposition 3.15. Assume that (3.80) holds, and let V be defined by (3.81). Then, for any
p ≥ 2, there exist two positive constants C1(p) and C2(p) such that

P(|Sn| > t) ≤ 1

tp

{

C1(p)V
p/2 + C2(p)

∥

∥

∥max
{

Kn−1(ρ)GX1(X1), max
2≤i≤n

Kn−i(ρ)Gε(εi)
}∥

∥

∥

p

w,p

}

.

(3.83)

Remark 3.18. Assume that F satisfies only (1.2). Then, it follows from the proofs of Propositions
3.14 and 3.15 that the inequalities (3.82) and (3.83) remain true if the second condition of (3.80)
is replaced by

sup
k∈[2,n]

∥

∥

∥
E

[

(

Hε(Xk−1, εk)
)2
∣

∣

∣
Xk−1

]∥

∥

∥

p/2
≤ V2 ,

and by taking Hε(Xk−1, εk) instead of Gε(εk) in the second terms on right hand of (3.82) and
(3.83).

Proof. It is the same as that of Proposition 3.14, by applying Theorem 6.3 in Chazottes and
Gouëzel [5].

4 Application to the Wasserstein distance between the

empirical distribution and the invariant distribution

4.1 Definition and upper bounds

Recall that the Wasserstein distance W1(ν1, ν2) between two probability measures ν1, ν2 on (X , d)
is defined by

W1(ν1, ν2) = inf
λ∈M(ν1,ν2)

∫

d(x, y)λ(dx, dy) ,

where M(ν1, ν2) is the set of probability measures on X × X with margins ν1 and ν2.
Let Λ1(X ) be the set of functions from (X , d) to R such that

|g(x)− g(y)| ≤ d(x, y) .

Recall that W1(ν1, ν2) can be expressed via its dual form (see for instance the equality (5.11) in
Villani [30])

W1(ν1, ν2) = sup
g∈Λ1(X)

|ν1(g)− ν2(g)| .

Let µn be the empirical distribution of the random variables X1, X2, ..., Xn, that is

µn =
1

n

n
∑

k=1

δXk
,

and let µ be the unique invariant distribution of the chain. It is easy to see that the function f
defined by

nW1(µn, µ) = f(X1, X2, . . . , Xn) := sup
g∈Λ1(X)

∣

∣

∣

n
∑

i=1

(

g(Xi)− µ(g)
)

∣

∣

∣
,
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is separately Lipschitz, and satisfies (2.1). Hence, all the inequalities of Section 3 apply to

Sn = nW1(µn, µ)− nE[W1(µn, µ)] .

Let us only give some qualitative consequences of these inequalities:

• If (3.25) holds for some p ≥ 1, then there exist some positive constants A,B and C such
that

P

(

∣

∣W1(µn, µ) − E[W1(µn, µ)]
∣

∣ > x
)

≤
{

2 exp (−nAxp) if x ≥ C

2 exp
(

−nBx2
)

if x ∈ [0, C].
(4.1)

This follows from Proposition 3.2 (case p = 1) and Proposition 3.3 (case p > 1).

• If (3.33) holds for some p ∈ (0, 1), then there exist some positive constants A,B,C,D and
L such that

P

(

∣

∣W1(µn, µ)− E[W1(µn, µ)]
∣

∣ > x
)

≤
{

C exp (−npAxp) if x ≥ Ln−(1−p)/(2−p)

D exp
(

−nBx2
)

if x ∈ [0, Ln−(1−p)/(2−p)].

This follows from Proposition 3.5.

• If (3.63) holds for some p ∈ (1, 2), then there exists a positive constant C such that

P

(

∣

∣W1(µn, µ)− E[W1(µn, µ)]
∣

∣ > x
)

≤ C

np−1xp
.

This follows from Proposition 3.12.

• If (3.63) holds for some p ≥ 2, then there exists a positive constant C such that

P

(

∣

∣W1(µn, µ)− E[W1(µn, µ)]
∣

∣ > x
)

≤ C

np/2xp
.

This follows from Proposition 3.15.

And for the moment bounds of Sn:

• If (3.60) for some p ∈ [1, 2], then

∥

∥

∥
W1(µn, µ)− E[W1(µn, µ)]

∥

∥

∥

p

p
≤ C

np−1
. (4.2)

This follows from Proposition 3.11.

• If (3.78) holds for some p ≥ 2, then

∥

∥

∥
W1(µn, µ)− E[W1(µn, µ)]

∥

∥

∥

p

p
≤ C

np/2
. (4.3)

This follows from Proposition 3.14.

Let us now give some references on the subject.
As already mentioned, the subgaussian bound (4.1) for p = 2 is proved in the paper by Djellout

et al. [11]. Notice that these authors also consider the Wasserstein metrics Wr for r ≥ 1, with
cost function c(x, y) = (d(x, y))r.

In the iid case, when Xi = εi, some very precise results are given in the paper by Gozlan
and Leonard [17], for a more general class of Wasserstein metrics (meaning that the cost function
is not necessary a distance). In the case of W1, they have obtained deviation inequalities under
some conditions of the Laplace transform of some convex and increasing function of d(x0, X1) (see
their Theorem 10 combined with their Theorem 7). In particular, via their Lemma 1, they have
obtained a Cramér-type inequality for W1 similar to what we get in Proposition 3.2.

In the dependent case, another important reference is the recent paper by Chazottes and
Gouëzel [5]. These authors consider separately Lipschitz functionals of iterates of maps that
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can be modeled by Young towers. They obtain exponential or polynomial bounds according
as the covariances between Lipschitz functions of the iterates decrease with an exponential or
polynomial rate. See their Section 7.3 for the applications to the Wassertein distance W1. Note
that the Markov chains associated to the maps considered by Chazottes and Gouëzel do not in
general satisfy the one step contraction, and are much more difficult to handle than the class of
Markov chains of the present paper.

4.2 Discussion

Of course, the next question is that of the behavior of E[W1(µn, µ)], because it can give us
information on W1(µn, µ) through the preceding inequalities. For instance, from (4.2), we infer
that if (3.60) holds for some p ∈ [1, 2], then

E[W1(µn, µ)] ≤ ‖W1(µn, µ)‖p ≤ E[W1(µn, µ)] +
C

n(p−1)/p
. (4.4)

In the same way, from (4.3), we infer that if (3.78) holds for some p ≥ 2, then

E[W1(µn, µ)] ≤ ‖W1(µn, µ)‖p ≤ E[W1(µn, µ)] +
C√
n
. (4.5)

Let us first quote that, if E[GX1(X1)] < ∞ and E[Gε(ε)] < ∞, then E[W1(µn, µ)] converges
to 0. Indeed, the Markov chain (Xi)i≥1 satisfies the strong law of large numbers:

lim
n→∞

µn(f) = µ(f) almost surely,

for any f such that f(x) ≤ C(1 + d(x0, x)). Hence, it follows from Theorem 6.9 in Villani [30]
that W1(µn, µ) converges to 0 almost surely, and that E[W1(µn, µ)] converges to 0.

The question of the rate of convergence to 0 of E[W1(µn, µ)] is delicate, and has a long history.
Let us recall some know results in the iid case, when Xi = εi.

• If X = R and d(x, y) = |x− y|, and if
∫

|x|
√

P(|X1| > x)dx < ∞, then

lim
n→∞

√
nE[W1(µn, µ)] = c

with c 6= 0 as soon as Xi is not almost surely constant. This follows from del Barrio et al.
[1] and can be easily extended to our Markov setting.

• If X = R
ℓ and d(x, y) = ‖x − y‖ for some norm ‖ · ‖, let us recall some recent results by

Fournier and Guillin [14] (see also Dereich et al. [8]). In Theorem 1 of Fournier and Guillin
[14], the following upper bounds are proved: Assume that p > 1 and that

∫

‖x‖pµ(dx) < ∞,
then

E[W1(µn, µ)] ≤











C(n−1/2 + n−(p−1)/p) if ℓ = 1 and p 6= 2

C(n−1/2 ln(1 + n) + n−(p−1)/p) if ℓ = 2 and p 6= 2

C(n−1/ℓ + n−(p−1)/p) if ℓ > 2 and p 6= ℓ/(ℓ− 1).

(4.6)

Combining this upper bound with (4.4) and (4.5), we obtain the following proposition

Proposition 4.1. Let X1, . . . , Xn be an iid sequence of Rℓ-valued random variables, with
common distribution µ. let p > 1 and assume that

∫

‖x‖pµ(dx) < ∞. Then the quantity
‖W1(µn, µ)‖p satifies the upper bound (4.6).

Note that Fournier and Guillin [14] consider the case of Wr metrics, and the upper bound
(4.6) is just a particular case of their Theorem 1. Note also that an extension of inequality
(4.6) to ρ-mixing Markov chains is given in Theorem 15 of the same paper.

In their Theorem 2, Fournier and Guillin [14] give some deviation inequalities for

P
(

Wr(µn, µ) > x
)

.
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For r = 1, these results are different from ours, since they do not deal with concentration
around the mean. In particular their upper bounds depend on the dimension ℓ, and for
r = 1 and ℓ ≥ 3 they are useless for x = yn−α as soon as α ∈ (1/ℓ, 1/2]. This is coherent
with our upper bounds of Section 4.1 since in that case E[W1(µn, µ)] can be of order n−1/ℓ.
Let us note, however, that the results of Section 4.1 give always an efficient upper bound
for the concentration of W1(µn, µ) around E[W1(µn, µ)] for any x = yn−α with α ∈ [0, 1/2],
that is in the whole range from small to large deviations, whatever the dimension of X .

• Concerning the behavior of E[W1(µn, µ)] in the infinite dimensional case, let us mention the
upper bound (15) in Boissard [3]. This upper bound involves the covering numbers of an
increasing sequence of compact sets Kt for which µ(Kc

t ) tends to zero as t tends to infinity.
Some extensions to a class of Markov chains are given in Section 2.4 of the same paper. In
particular, his results apply to one step contracting Markov chains satisfying (1.2) (again,
this follows from Proposition 3.1 of Djellout et al. [11]).

Acknowledgements. Jérôme Dedecker is partially supported by the French ANR project Top-
Data.

References
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