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Abstract

We consider a problem arising in the context of industrial produc-
tion planning, namely the multi-product discrete lot-sizing and scheduling
problem with sequence-dependent changeover costs. We aim at develop-
ping an exact solution approach based on a standard Branch & Bound
procedure for this combinatorial optimization problem. To achieve this,
we propose a new family of multi-product valid inequalities which enables
us to better take into account in the mixed integer linear programming
formulation the conflicts between different products simultaneously re-
quiring production on the resource. We then present both an exact and
a heuristic separation algorithm in order to identify the most violated
valid inequalities to be added in the initial MILP formulation within a
cutting-plane generation algorithm. We finally discuss preliminary com-
putational results which confirm the practical usefulness of the proposed
valid inequalities at strengthening the MILP formulation and at reducing
the overall computation time.

1 Introduction

Capacitated lot-sizing arises in industrial production planning whenever change-
over operations such as preheating, tool changing or cleaning are required be-
tween production runs of different products on a machine. The amount of the
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related changeover costs usually does not depend on the number of products
processed after the changeover. Thus, to minimize changeover costs, produc-
tion should be run using large lot sizes. However, this generates inventory
holding costs as the production cannot be synchronized with the actual demand
pattern: products must be held in inventory between the time they are pro-
duced and the time they are used to satisfy customer demand. The objective
of lot-sizing is thus to reach the best possible trade-off between changeover and
inventory holding costs while taking into account both the customer demand
satisfaction and the technical limitations of the production system.

An early attempt at modelling this trade-off can be found in [15] for the
problem of planning production for a single product on a single resource with
an unlimited production capacity. Since this seminal work, a large part of the
research on lot-sizing problems has focused on modelling operational aspects
in more detail to answer the growing industry need to solve more realistic and
complex production planning problems. An overview of recent developments in
the field of modelling industrial extensions of lot-sizing problems is provided in
[10].

In the present paper, we focus on one of the variants of lot-sizing problems
mentioned in [10], namely the multi-product single-resource discrete lot-sizing
and scheduling problem or DLSP. As defined in [6] and [10], several key assump-
tions are used in the DLSP to model the production planning problem:
- A set of products is to be produced on a single capacitated production re-
source.
- A finite time horizon subdivided into discrete periods is used to plan produc-
tion.
- Demand for products is time-varying (i.e. dynamic) and deterministically
known.
- At most one product can be produced per period (small bucket model) and
the facility processes either one product at full capacity or is completely idle
(discrete or all-or-nothing production policy).
- Costs to be minimized are the inventory holding costs and the changeover
costs.

In the DLSP, it is assumed that a changeover between two production runs
for different products results in a changeover cost. Changeover costs can de-
pend either on the next product only (sequence-independent case) or on the
sequence of products (sequence-dependent case). We consider in the present
paper the DLSP with sequence-dependent changeover costs (denoted DLSPSD
in what follows). Sequence-dependent changeover costs are mentioned in [10] as
one of the relevant operational aspects to be incorporated into lot-sizing mod-
els. Moreover, a significant number of real-life lot-sizing problems involving
sequence-dependent changeover costs have been recently reported in the aca-
demic literature: see among others [3] for an injection moulding process, [13]
for a textile fibre industry or [5] for soft drink production.
A wide variety of solution techniques from the Operations Research field have
been proposed to solve lot-sizing problems: the reader is referred to [2] and [9]
for recent reviews on the corresponding literature. The present paper belongs
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to the line of research dealing with exact solution approaches, i.e. aiming at
providing guaranteed optimal solutions for the problem. A large amount of
existing solution techniques in this area consists in formulating the problem as
a mixed-integer linear program (MILP) and in relying on a Branch & Bound
type procedure to solve the obtained MILP. However the computational effi-
ciency of such a procedure strongly depends on the quality of the lower bounds
used to evaluate the nodes of the search tree. In the present paper, we seek
to improve the quality of these lower bounds so as to decrease the total com-
putation time needed to obtain guaranteed optimal solutions for medium-size
instances of the problem. Within the last thirty years, much research has been
devoted to the polyhedral study of lot-sizing problems in order to obtain tight
linear relaxations and improve the corresponding lower bounds: see e.g. [11] for
a general overview of the related literature and [1, 4, 7, 14] for contributions
focusing specifically on the DLSP. However, these procedures mainly focus on
the underlying single-product subproblems and thus fail at capturing the con-
flicts between multiple products sharing the same resource capacity. This leads
in some cases to significant integrality gaps for multi-product instances of the
DLSPSD. In what follows, we propose a new family of multi-product valid in-
equalities which enables us to partially remedy this difficulty and discuss both
an exact and a heuristic algorithm to solve the corresponding separation prob-
lem. To the best of our knowledge, this is one of the first attempts focusing on
improving the polyhedral description of multi-product lot-sizing problems.

The main contributions of the present paper are thus twofold. First we intro-
duce a new family of valid inequalities representing conflicts on multi-period time
intervals between several products simultaneously requiring production on the
available resource. Second we formulate the corresponding separation problem
as a quadratic binary program and propose to solve it either exactly by relying
on a quadratic programming solver or approximately through a Kernighan-Lin
type heuristic algorithm. The results of the preliminary computational results
carried out on medium-size instances show that the proposed valid inequali-
ties are efficient at strengthening the linear relaxation of the problem and at
decreasing the overall computation time needed to obtain guaranteed optimal
solutions of the DLSPSD.

The remainder of the paper is organized as follows. In Section 2, we re-
call the initial MILP formulation of the multi-product DSLPSD as well as the
previously published valid inequalities for the underlying single-product sub-
problems. We then present in Section 3 the proposed new multi-product valid
inequalities and discuss in Section 4 both an exact and a heuristic algorithm to
solve the corresponding separation problem. Preliminary computational results
are discussed in Section 5.

2 MILP formulation of the DLSPSD

In this section, we first recall the initial MILP formulation of the DLSPSD. We
use the network flow representation of changeovers between products, which
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was proposed among others by [1], as this leads to a tighter linear relaxation
of the problem. We then discuss the valid inequalities first proposed by [14] to
strengthen the underlying single-product subproblems.

2.1 Initial MILP formulation

We wish to plan production for a set of products denoted p = 1...P to be
processed on a single production machine over a planning horizon involving
t = 1...T periods. Product p = 0 represents the idle state of the machine and
period t = 0 is used to describe the initial state of the production system.

Production capacity is assumed to be constant throughout the planning
horizon. We can thus w.l.o.g. normalize the production capacity to one unit
per period and express the demands as integer numbers of production capacity
units (see [6] and [8]). We denote dpt the demand for product p in period
t, hp the inventory holding cost per unit per period for product p and Spq the
sequence-dependent changeover cost to be incurred whenever the resource setup
state is changed from product p to product q.

Using this notation, the DLSPSD can be seen as the problem of assigning at
most one product to each period of the planning horizon while ensuring demand
satisfaction and minimizing both inventory and changeover costs. We thus in-
troduce the following binary decision variables:
- ypt where ypt = 1 if product p is assigned to period t, 0 otherwise.
- wpqt where wpqt = 1 if there is a changeover from product p to product q at
the beginning of t, 0 otherwise.
This leads to the MILP following formulation denoted DLSPSD0 for the prob-
lem.

ZDLSPSD = min
∑P
p=1

∑T
t=1 hp

∑t
τ=1(ypτ − dpτ )

+
∑P
p,q=0 Sp,q

∑T−1
t=1 wp,q,t∑t

τ=1 ypτ ≥
∑t
τ=1 dpτ ∀p,∀t∑P

p=0 ypt = 1, ∀t
yp,t =

∑P
q=0 wq,p,t ∀p,∀t

yp,t =
∑P
q=0 wp,q,t+1 ∀p,∀t

ypt ∈ {0, 1} ∀p,∀t
wp,q,t ∈ {0, 1} ∀p,∀q,∀t

The objective function (2.1) corresponds to the minimization of the inventory
holding and changeover costs over the planning horizon.

∑t
τ=1(ypτ −dpτ ) is the

inventory level of product p at the end of period t. Constraints (2.1) impose that
the cumulated demand over interval [1, t] is satisfied by the cumulated produc-
tion over the same time interval. Constraints (2.1) ensure that, in each period,
the resource is either producing a single product or idle. Constraints (2.1)-(2.1)
link setup variables ypt with changeover variables wpqt through equalities which
can be seen as flow conservation constraints in a network (see e.g. [1]). They
ensure that in case product p is setup in period t, there is a changeover from
another product q (possible q = p) to product p to at the beginning of period t
and a changeover from product p to another product q (possible q = p) at the
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end of period t.

2.2 Single-product valid inequalities

We now recall the expression of the valid inequalities proposed by [14] for the
single product DLSP. We denote dp,t,τ the cumulated demand for product p in
the interval {t, ..., τ} and ∆p,v the vth positive demand period for product p.
∆p,dp,1,t+v is thus the period with the vth positive unit demand for product p
after period t occurs.∑t

τ=1(ypτ − dpτ ) ≥ w −
∑w
v=1

[
yp,t+v +

∑∆p,dp,1,t+v

τ=t+v+1

∑
q 6=p wq,p,τ

]
∀p,∀t,∀w ∈ [1, dp,t+1,T ]

Constraints (2.2) are valid inequalities for the DLSPSD. The underlying
idea is to compute a lower bound on the inventory level of a product p at
the end of a period t (

∑t
τ=1(ypτ − dpτ )) by considering both the demands

and the resource setup states for this product in the forthcoming periods τ =
t+1...∆p,dp,1,t+v. The reader is refered to [14] for a full proof of validity for these
inequalities. In the computational experiments to be presented in Section 5, we
use a standard cutting-plane generation algorithm to strengthen the formulation
DLSPSD0 by adding violated valid inequalities of family (2.2). The resulting
improved formulation is denoted DLSPSD1.

Constraints (2.2) can be understood as a way to strengthen the demand sat-
isfaction constraints (2.1) by expressing in a more detailed way the need for each
individual product to access the resource in order to satisfy its own demand on a
given subinterval of the planning horizon. However, in the resulting DLSPSD1
formulation, the conflicts between different products simultaneously requiring
production on the resource are only handled by the single-period capacity con-
straints (2.1). In what follows, we propose to improve this representation of the
conflicts between different products by considering multi-period multi-product
valid inequalities.

3 Multi-product valid inequalities for the DL-
SPSD

We now present the multi-period multi-product valid inequalities proposed to
strengthen the linear relaxation of the multi-product DLSPSD.

Proposition 1
Let SP ⊂ {0...P} and SD ⊂ {0...P} be two disjoint subsets of products.
Let t ∈ [1, T ] be a period within the planning horizon and [1, θ] ⊂ [1, T ] be a
time interval including period t.
The following inequality is valid for the multi-product DLSPSD.

[ ∑
q∈SD

dq,1,θ

][ ∑
p∈SP

ypt

]
≤

θ∑
τ=1

C̃τ (1)
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where C̃τ is defined by:
C̃τ = min(

∑
q∈SD yq,τ ,

∑
p∈SP ypt), τ ∈ [1, t− 2] ∪ [t+ 2, θ]

C̃t−1 =
∑
p∈SP,q∈SD wq,p,t

C̃t = 0

C̃t−1 =
∑
p∈SP,q∈SD wp,q,t+1

Before providing the proof for Proposition 1, we briefly explain the idea
underlying valid inequalities (1). We choose a subset SP of products. If none
of these products is assigned for production in period t (i.e.

∑
p∈SP ypt = 0),

all corresponding valid inequalities are trivially respected. But if one of these
products is assigned for production in period t (i.e.

∑
p∈SP ypt = 1), then we

have to make sure that we are able to satisfy the total cumulated demand over
the interval [1, θ] for the products in subset SD (i.e to sastify

∑
q∈SD dq,1,θ)

on the remaining periods 1...t − 1, t + 1...θ. In this case, the right hand side
of inequalities (1) computes a tight upper bound of the production capacity
available over these periods for the products in SD.

Let (y, w) be a feasible solution of the DLSPSD. We arbitrarily choose a
period t, an interval [1, θ] including t and two disjoint subsets of products SP
and SD and show that all proposed inequalities (1) are valid for the considered
feasible solution.

We distinguish two main cases:
Case 1:

∑
p∈SP ypt = 0

In this case, the left hand side of the inequality is equal to 0 whereas the
right hand side is nonnegative. Inequality (1) is thus trivially true.

Case 2:
∑
p∈SP ypt = 1

In this case, the left hand side of inequality (1) is equal to the total cu-
mulated demand over interval [1, θ] for the products belonging to SD, i.e. to∑
q∈SD dq,1,θ.∑

p∈SP ypt = 1 means that period t is devoted to the production of one of
the products in SP and thus cannot be used to satisfy the cumulated demand
for products in SD. Hence (y, w) can be a feasible solution of the DLSPSD
if and only if the total cumulated production for products in SD over the re-
maining periods 1...t− 1, t+ 1...θ is sufficient to satisfy the cumulated demand∑
q∈SD dq,1,θ.
We now seek to compute a tight upper bound for the production capacity

Cτ available in each period τ ∈ [1, t− 1] ∩ [t+ 1, θ] for the products in SD:
- By capacity constraints (2.1), we have Cτ ≤ 1, i.e. Cτ ≤

∑
p∈SP ypt.

- Moreover, demands for products in SD can only be satisfied by a production
for these products, i. τ can be used to satisfy part of demand

∑
q∈SD dq,1,θ

only if the resource is setup for one of these products in period τ . This gives
Cτ ≤

∑
q∈SD yq,τ .

We thus obtain:

Cτ ≤ min(
∑
q∈SD

yq,τ ,
∑
p∈SP

ypt),∀τ ∈ [1, θ], τ 6= t (2)

This leads to the following valid inequality stating that, in a feasible solution
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(y, w) of the DSLSP, the cumulated capacity available for products in SD over
periods [1, t−1]∩ [t+1, θ] should be large enough to produce the corresponding
cumulated demand:∑

q∈SD
dq,1,θ ≤

∑
τ∈[1,θ],τ 6=t

[
min(

∑
q∈SD

yq,τ ,
∑
p∈SP

ypt)
]

(3)

Now, we can exploit our knowledge of the setup state of the resource in
period t to further strengthen this inequality. Namely, we know that a product
p belonging to SP is produced in period t. A changeover to (resp. from) this
product p thus has to take place at the beginning (resp. at the end) of period
t. This means that:
- For t 6= 1, if a product q belonging to SD is produced in period t − 1, there
must be a changeover from this product q ∈ SD to the product p ∈ SP at
the beginning of period t. The production capacity available in period τ =
t − 1 for the products in SD is thus limited by Ct−1 ≤

∑
p∈SP,q∈SD wq,p,t ≤

min(
∑
q∈SD yq,t−1,

∑
p∈SP ypt).

- For t 6= θ, if a product q belonging to SD is produced in period t + 1, there
must be a changeover to this product q ∈ SD from the product p ∈ SP at
the end of period t. The production capacity available in period τ = t +
1 for the products in SD is thus limited by Ct+1 ≤

∑
p∈SP,q∈SD wp,q,t+1 ≤

min(
∑
q∈SD yq,t+1,

∑
p∈SP ypt).

Depending on the value of t, we can thus replace in the right hand side
of (3) the term for τ = t − 1 (resp. τ = t + 1) by

∑
p∈SP,q∈SD wq,p,t (resp.∑

p∈SP,q∈SD wp,q,t+1), which shows the validity of inequalities (1) for the DL-
SPSD.

We point out here that, for any integer feasible solution of the DLSPSD, in
case

∑
p∈SP ypt = 1, we have:∑
j∈SD yq,τ ≤

∑
p∈SP ypt, ∀τ ∈ [1, θ], τ 6= t∑

p∈SP,q∈SD wq,p,t =
∑
q∈SD yq,t−1 if t 6= 1∑

p∈SP,q∈SD wp,q,t+1 =
∑
q∈SD yq,t+1 if t 6= θ

We will thus have Cτ =
∑
q∈SD yq,τ ,∀τ ∈ [1, t− 1] ∩ [t+ 1, θ] in any integer

feasible solution of the problem. However, in a fractional solution obtained by
solving the linear relaxation of formulation DLSPSD, we may encounter situa-
tions where 0 <

∑
p∈SP ypt < 1 so that we may have

∑
p∈SP ypt ≤

∑
q∈SD yq,τ ,∑

p∈SPnq∈SD wq,p,t ≤
∑
q∈SD yq,t−1 and

∑
p∈SP,q∈SD wp,q,t+1 ≤

∑
q∈SD yq,t+1.

In these cases, it is interesting to have the flexibility to select for each period τ
the smallest upper bound for the available production capacity Cτ as this will
lead to tighter valid inequalities.

4 Exact and heuristic algorithms for solving the
separation problem

The number of valid inequalities (1) grows very fast with the problem size.

Namely, we have a series of valid inequalities for the (T+1)T
2 pairs of periods
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(t, θ) with t ≤ θ. Moreover, for a given pair of periods (t, θ), the number of
available valid inequalities is given by 3Part(P + 1, 3). Here Part(P + 1, 3) is
the number of partitions of a set of P + 1 elements into 3 subsets (SP , SD and
{0...P}\ (SD∩SP )) and can be computed by a mathematical induction. Thus,
for an instance involving e.g. P = 10 products and T = 25 periods, we have
0.5 ∗ 26 ∗ 25 ∗ 3 ∗ 28501 = 27788475 valid inequalities.

It it therefore not possible to include them a priori in the MILP formulation
of the problem. This is why we use a cutting-plane generation strategy to add
to the MILP formulation only the most violated valid inequalities of the family.
This requires solving the corresponding separation algorithm which, given a
fractional solution (y, w) of the DLSPSD, will either identify a violated valid
inequality or prove that no such inequality exists.

4.1 Exact separation algorithm

We first discuss an exact separation algorithm, i.e. an algorithm which is guar-
anteed to find an inequality violated by the fractional solution (y, w) if one
exists. We consider each possible pair of periods (t, θ) and look for the partition
of {0...P} into 3 subsets which provides the largest violation of inequalities (1).
To achieve this, we formulate the separation problem for a given (t, θ) as follows.

We first introduce the following decision variables:
- αp = 1 if product p belongs to subset SP , 0 otherwise.
- βp = 1 if product p belons to subset SD, 0 otherwise.

- γτ = 1 if capacity Cτ is limited by
∑P
p=0 yptαp, 0 if Cτ is limited by

∑P
q=0 yqτβq.

With this notation, the separation problem for a given (t, θ) and a solu-
tion (y, w) is formulated as the following quadratic binary program QBPt,θ:

max
∑P
p=0

∑P
q=0

[
dq,1,θ − wq,p,t − wp,q,t+1

]
αpβq

−
∑
τ=1...t−2

[∑P
p=0 yptαpγτ +

∑P
q=0 yq,τβq(1− γτ )

]
−
∑
τ=t+2...θ

[∑P
p=0 yptαpγτ +

∑P
q=0 yq,τβq(1− γτ )

]
αp + βp ≤ 1 ∀p = 0...P
αp ∈ {0, 1}, βp ∈ {0, 1} ∀p = 0...P
γτ ∈ {0, 1} ∀τ = 1...T

The objective function (4.1) corresponds to the maximimization of the vi-
olation of the inequalities, i.e. we seek to identify the subsets SP and SD for
which the difference between the left hand side and the right hand side of the
inequality takes the largest value. If this value is strictly positive, we obtain a
violated valid inequality corresponding to (t, θ, SP, SD). In case this value is
less than or equal to 0, it means that all valid inequalities for (t, θ) are satisfied
by the fractional solution (y, w). Constraints (4.1) state that a given product p
cannot be simultaneously included in subsets SP and SD.

Problem QBPt,θ is a binary program with a quadratic objective function and
a series of linear constraints. It can be solved to optimality by a mixed-integer
quadratic programming solver such as the one embedded in CPLEX 12.5.
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4.2 Heuristic separation algorithm

As can be seen from the computational experiments to be presented in Sec-
tion 5, solving to optimality a sequence of quadratic binary programs QBPt,θ
leads to prohibitively long computation times for the cutting-plane generation
algorithm, even for small-size instances. This is why we propose in what fol-
lows a Kernighan-Lin type heuristic which enables us to more quickly identify
a violated valid inequality for a given pair (t, θ).

Start with a tripartition of {0...P}, Πref , and compute its
violation Vref .
While (test =0):

Let test = 1, PossMove = P + 1 and Πcur = Πref .
Allow all possible moves to explore the neighbourhood of
Πcur.
While (PossMove > 0):

Consider the partitions obtained by carrying out all al-
lowed moves in the neighbourhood of Πcur and evaluate
the violation for each obtained partition.
Select the best partition obtained in this neighbourhood
of Πcur, Πbest, forbid the move used to obtain Πbest from
Πcur, decrease PossMove by 1 and set Πcur = Πbest.
If Vbest > Vref , test = 0 and Πref = Πbest.

The neighbourhood of a tripartition Π of {0...P} is defined as the set of
tripartitions obtained by moving a single product from its current subset in Π
to one of the two other subsets. Moreover, in the computational experiments to
be presented in Section 5, five different types of partitions are used to initialize
the heuristic.

4.3 Cutting-plane generation algorithm

We now briefly describe the cutting-plane generation used to strengthen formu-
lation DLSPSD1 by adding to it some multi-product valid inequalities (1).
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Compute the initial LP relaxation of the DLSPSD using for-
mulation DLSPSD1.
While (test = 0):

Denote (y, w) the solution of the current linear relaxation.
For t=1...T such that ∃p such that 0.0001 < ypt < 0.9999;

Let θ = t and found =0.
While (θ ≤ T ) and (found == 0),

Solve the separation problem for periods (t, θ) using ei-
ther the exact algorithm or the heuristic algorithm with
one of the 5 predefined initial partitions.
If a violated valid inequality has been found, let
found = 1.
θ = θ + 1.

If at least one violated valid inequality is found, add all the
found violated valid inequalities to the current formulation
and compute its LP relaxation.
Else set test = 1 to stop the cutting-plane generation.

5 Preliminary computational results

We now discuss the results of some preliminary computational experiments car-
ried out to evaluate the effectiveness of the proposed multi-product valid in-
equalities at strengthening the formulation of the multi-product DLSPSD and
to assess their impact on the total computation time.
We randomly generated instances of the problem using a procedure similar to
the one described in [12] for the DLSP with sequence-dependent change-over
costs and times. More precisely, the various instances tested have the following
characteristics:
- Problem dimension. The problem dimension is represented by the number
of products P and the number of periods T : we solved medium-size instances
involving 4 to 10 products and 15 to 75 periods.
- Inventory holding costs. For each product, inventory holding costs have been
randomly generated from a discrete uniform DU(5, 10) distribution.
- Changeover costs. We used two different types of structure for the changeover
cost matrix S. Instances of sets A1-A7 have a general cost structure: the cost of
a changeover from product p to product q, Spq, was randomly generated from a
discrete uniform DU(100, 200) distribution. Instances of sets B1-B7 correspond
to the frequently encountered case where products can be grouped into product
families: there is a high changeover cost between products of different families
and a smaller changeover cost between products belonging to the same family.
In this case, for products p and q belonging to different product families, Spq
was randomly generated from a discrete uniform DU(100, 200) distribution; for
products p and q belonging to the same product family, Spq was randomly
generated from a discrete uniform DU(0, 100) distribution.
- Production capacity utilization. Production capacity utilization ρ is defined as
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the ratio between the total cumulated demand (
∑P
p=1

∑T
t=1 dpt) and the total

cumulated available capacity (T ). We set ρ = 0.95 for all instances.
- Demand pattern. Binary demands dpt ∈ {0, 1} for each product have been
randomly generated according to the following procedure:

1. We randomly select a product p∗ from a discrete uniform
DU(1, N) distribution and set dp∗T = 1.
2. For each product p, except product p∗, we randomly select a
period tp from a discrete uniform DU(1, T ) distribution and set
dp,tp = 1.
3. For each entry in a P × T matrix, except for the entries cor-
responding to the (p, t) combinations for which we set dpt > 0 in
steps 1 or 2, we randomly generate a number αpt from a discrete
uniform DU(1, PT ) distribution.

4. While the total cumulated demand (
∑P
p=1

∑T
t=1 dpt) does not

exceed ρT , we consider the entries (p, t) one by one in the increas-
ing order of the corresponding value αpt and set dpt = 1.
5. When the total cumulated demand reaches ρT , we examine
whether the corresponding instance is feasible by checking that∑P
p=1

∑t
τ=1 dpτ ≤ t for all t. If the instance is infeasible, we

repeat steps 1 to 4.

For each considered problem dimension, we generated 10 instances, leading
to a total of 140 instances.

All tests were run on an Intel Core i5 (2.7 GHz) with 4 Go of RAM, running
under Windows 7. We used a standard MILP software (CPLEX 12.5) with the
solver default settings to solve the problems with one of the following formula-
tions:
- DLPSD1: initial MILP formulation DLSPSD0, i.e. formulation (2.1)-(2.1),
strengthened by single-product valid inequalities (2.2). We used a standard
cutting-plane generation strategy based on a complete enumeration of all pos-
sible valid inequalities to add them into the formulation.
- DLSPSD2e: formulation DLSPSD1 strengthened by multi-product valid in-
equalities (1). We used the cutting-plane generation algorithm presented in
Section 4.3 to add only the most violated valid inequalities and relied on the
exact separation algorithm discussed in Section 4.1.
- DLSPSD2h: formulation DLSPSD1 strengthened by multi-product valid in-
equalities (1). We used the cutting-plane generation algorithm presented in
Section 4.3 to add only the most violated valid inequalities and relied on the
heuristic separation algorithm discussed in Section 4.2.

Tables 1 and 2 display the computational results. We provide for each set
of 10 instances:
- P and T : the number of products and planning periods involved in the pro-
duction planning problem.
- V and Cst : the number of variables and constraints in the initial formulation
DLSPSD0.
- SP : the number of single-product violated valid inequalities (2.2) added in
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Table 1: Preliminary computational results: exact separation algorithm
DLSPSD1 DLSPSD2e

P T V Cst SP GapLP1 NIP1 TIP1 MPe GapLP2e NIP2e TIP2e

A1 4 15 425 250 106 2.6% 2 0.3s 9 0.0% 0 11.6s
A2 6 15 840 315 108 0.9% 0 0.3s 4 0.2% 0 13.5s
A3 4 20 600 300 193 2.6% 5 0.4s 15 0.2% 0 445.4s
B1 4 15 425 250 105 11.5% 6 0.3s 16 0.1% 0 19.5s
B2 6 15 840 315 107 5.3% 1 0.3s 12 2.1% 0 60.1s
B3 4 20 600 300 192 8.3% 9 0.5s 24 0.4% 2 698.7s

the three formulations.
- MPe and MPh: the number of multi-product violated valid inequalities added
in formulation DLSPSD2e by the exact separation algorithm and in formulation
DLSPSD2h by the heuristic separation algorithm.
- GapLP1 (resp. GapLP2e, GapLP2h): the average percentage gap between the
linear relaxation of formulation DLSPSD1 (resp. DLSPSD2e, DLSPSD2h) and
the value of an optimal integer solution.
- NIP1 (resp. NIP2e, NIP2h): the average number of nodes explored by the
Branch & Bound procedure before a guaranteed optimal integer solution is
found or the computation time limit of 2700s is reached.
- TIP1 (resp. TIP2e, TIP2h): the total computation time (cutting-plane genera-
tion and Branch & Bound search) needed to find a guaranteed optimal integer
solution (we used the value of 2700s in case a guaranteed optimal integer solution
could not be found within the computation time limit).

Results from Table 1 show that the proposed valid inequalities (1) are ef-
ficient at strengthening formulation DLSPSD1. Namely, the integrality gap is
reduced from an average of 5.3% with formulation DLSPSD1 (see GapLP1) to
an average of 0.5% with formulation DLSPSD2e (see GapLP2e). We note that
this reduction is particularly significant for instances B1-B3 featuring a product
family changeover cost structure. Moreover this formulation strengthening is
obtained thanks to a relatively small number of multi-product inequalities as
can be seen from the average value of MPe (13). However, even if the number
of nodes needed by the Branch & Bound procedure to find a guaranteed optimal
solution is slightly reduced when using formulation DLSPSD2e, it does not lead
to an overall reduction of the computation time. This is mainly explained by the
fact that the cutting-plane generation algorithm based on an exact separation
algorithm requires prohibitively long computation times to identify the violated
multi-product valid inequalities to be added to the formulation. It is thus nec-
essary to resort to a heuristic separation algorithm such as the one proposed in
Section 4.2.
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Table 2: Preliminary computational results: heuristic separation algorithm
DLSPSD1 DLSPSD2h

P T V Cst SP GapLP1 NIP1 TIP1 MPh GapLP2h NIP2h TIP2h

A1 4 15 425 250 106 2.6% 2 0.3s 9 0.0% 0 0.1s
A2 6 15 840 315 108 0.9% 0 0.3s 3 0.2% 0 0.2s
A3 4 20 600 300 193 2.6% 5 0.4s 15 0.2% 0 0.3s
A4 6 25 1400 625 315 4.3% 9 1.0s 27 0.7% 4 1.0s
A5 6 50 2800 1050 1153 1.6% 32 6.7s 20 0.9% 11 4.7s
A6 10 50 6600 1650 1949 2.1% 99 21.0s 51 1.1% 30 22.7s
A7 8 75 6750 2025 2776 2.7% 856 151.9s 23 2.5% 660 147.5s
B1 4 15 425 250 105 11.5% 6 0.3s 16 0.1% 0 0.1s
B2 6 15 840 315 107 5.3% 1 0.3s 10 2.1% 1 0.3s
B3 4 20 600 300 192 8.3% 9 0.5s 21 0.4% 0 0.4s
B4 6 25 1400 625 307 9.2% 13 1.2s 30 0.8% 1 0.7s
B5 6 50 2800 1050 1248 12.2% 1753 47.7s 48 9.5% 983 37.6s
B6 10 50 6600 1650 1274 15.7% 25937 901.0s 97 11.9% 11284 496.0s
B7 8 75 6750 2015 2681 15.3% 25015 1961.9s 53 10.7% 22323 1904.7.0s

Comparison of the results obtained with the exact and the heuristic separa-
tion algorithm for the instances A1-A3 and B1-B3 (Tables 1 and 2) shows that
the proposed heuristic is very efficient at finding violated valid inequalities for
small size instances. Namely, the average integrality gap for these 60 instances
when using the heuristic algorithm is the same as the one when using the exact
algorithm (i.e. GapLP2e = GapLP2h). Moreover, the number of violated valid
inequalities found by the heuristic algorithm is nearly the same as the number
of violated valid inequalities found by the exact algorithm.

Results from Table 2 also confirm that the proposed heuristic is rather effi-
cient at finding violated valid inequalities for larger instances. This can be seen
by looking at the results for instances A4-A7 and B4-B7. We first note that,
for these instances, the integrality gap is reduced from an average of 7.9% while
using formulation DLSPSD1 to an average of 4.7% while using formulation DL-
SPSD2h. Moreover a significant decrease in the overall computation time is
obtained for instances B4-B7 when using formulation DLSPSD2h.

6 Conclusion

We considered the multi-product discrete lot-sizing and scheduling problem
with sequence-dependent changeover costs and proposed a new family of multi-
product valid inequalities for this problem. This enabled us to better take into
account in the MILP formulation the conflicts between different products si-
multaneously requiring production on the resource. We then presented both
an exact and a heuristic separation algorithm in order to identify the most vi-
olated valid inequalities to be added in the initial MILP formulation within a
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cutting-plane generation algorithm. Our preliminary results show that the pro-
posed valid inequalities are efficient at strengthening the MILP formulation and
that their use leads to a significant reduction of the overall computation time
for instances featuring a product family changeover cost structure. Additional
computational experiments are currently carried out to confirm these promising
results.
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