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AN ECO-EVOLUTIONARY APPROACH OF ADAPTATION AND RECOMBINATION IN A LARGE

POPULATION OF VARYING SIZE

CHARLINE SMADI

ABSTRACT. We identify the genetic signature of a selective sweep in a population described by a
birth-and-death process with density dependent competition. We study the limit behaviour for
large K , where K scales the population size. We focus on two loci: one under selection and one
neutral. We distinguish a soft sweep occurring after an environmental change, from a hard sweep
occurring after a mutation, and express the neutral proportion variation as a function of the eco-
logical parameters, recombination probability rK , and K . We show that for a hard sweep, two re-
combination regimes appear according to the order of rK logK .

1. INTRODUCTION

There are at least two different ways of adaptation for a population: selection can either act on
a new mutation (hard selective sweep), either on preexisting alleles that become advantageous
after an environmental change (soft selective sweep). New mutations are sources of diversity,
and hard selective sweep was until recently the only considered way of adaptation. Soft selective
sweep allows a faster adaptation to novel environments, and its importance is growing in em-
pirical and theoretical studies (Prezeworski, Coop and Wall [27], Barrett and Schluter [2]). These
distinct selective sweeps entail different genetic signatures in the vicinity of the novely fixed allele,
and the multiplication of genetic data available allows to detect these signatures in current pop-
ulations as described by Peter, Huerta-Sanchez and Nielsen [25]. To do this in an effective way, it
is necessary to identify accurately the signatures left by these two modes of adaptation.

In this work, we consider a sexual haploid population of varying size, modeled by a birth and
death process with density dependent competition. The ability to survive and reproduce of each
individual depends on its own genotype and on the population state. More precisely, each indi-
vidual is characterized by some ecological parameters: birth rate, intrinsic death rate and compe-
tition kernel describing the competition with other individuals depending on their genotype. The
differential reproductive success of individuals generated by their interactions entail progressive
variations in the number of individuals carrying a given genotype. This process, called natural
selection, is a key mechanism of evolution. Such eco-evolutionary approach has been introduced
by Metz and coauthors in [24] and made rigorous in the seminal paper of Fournier and Méléard
[18]. Then it has been developed by Champagnat and coauthors [5, 6, 7, 8, 9], and Méléard and
Tran [23] for the haploid asexual case and by Collet, Méléard and Metz [10] and Coron [11, 12]
for the diploid sexual case. The recent work of Billiard and coauthors [4] studies the dynamics of
a two-locus model in an haploid asexual population. Following these works, we introduce a pa-
rameter K called carrying capacity which scales the population size, and study the limit behavior
for large K . But unlike them, we focus on two loci in a sexual haploid population and take into
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2 RECOMBINATION AND ADAPTATION

account recombinations: one locus is under selection and has two possible alleles A and a and
the second one is neutral with allele b1 or b2. When two individuals give birth, either a recombi-
nation occurs with probability rK and the newborn inherits one allele from each parent, or he is
the clone of one parent.

We first focus on soft selective sweep occurring after a change in the environment (new pathogen,
environmental catastrophe, occupation of a new ecological niche,...). We assume that before the
change the alleles A and a were neutral and represented both a positive fraction of the popula-
tion, and that in the new environment the allele a becomes favorable and goes to fixation. We
can divide the selective sweep in two periods: a first one where the population process is well
approximated by the solution of a deterministic dynamical system, and a second one where A-
individuals are near extinction, the deterministic approximation fails and the fluctuations of the
A-population size become predominant. We give the asymptotic value of the final neutral allele
proportions as a function of the ecological parameters, recombination probability rK and solu-
tions of a two-dimensional competitive Lotka-Volterra system.

We then focus on hard selective sweep. We assume that a mutant a appears in a monomorphic
A-population at ecological equilibrium. As stated by Champagnat in [5], the selective sweep is
divided in three periods: during the first one, the resident population size stays near its equilib-
rium value, and the mutant population size grows until it reaches a non-negligible fraction of the
total population size. The two other periods are the ones described for the soft selective sweep.
Moreover, the time needed for the mutant a to fix in the population is of order log K . We prove
that the distribution of neutral alleles at the end of the sweep has different shapes according to the
order of the recombination probability per reproductive event rK with respect to 1/log K . More
precisely, we find two recombination regimes: a strong one were rK log K is large, and a weak
one were rK log K is bounded. In both recombination regimes, we give the asymptotic value of
the final neutral allele proportions as a function of the ecological parameters and recombination
probability rK . In the strong recombination regime, the frequent exchanges of neutral alleles be-
tween the A and a-populations yield an homogeneous neutral repartition in the two populations
and the latter is not modified by the sweep. In the weak recombination regime, the frequency of
the neutral allele carried by the first mutant increases because it is linked to the positively selected
allele. This phenomenon, called genetic hitch-hiking by Maynard Smith and Haigh [29], has been
studied by many authors. Maynard Smith and Haigh [29] and Stephan and coauthors [30] use
deterministic models for the change in the frequency of the selected allele. Kaplan and coauthors
[20] and Barton [3] present more precise models taking into account the randomness of the first
and third periods of the mutant invasion. Durrett and Schweinsberg [14, 28], Etheridge and coau-
thors [16], Pfaffelhuber and Studeny [26], and Leocard [21] describe the population process by a
structured coalescent and finely study genealogies of neutral alleles during the sweep. Eriksson
and coauthors [15] describe a deterministic approximation for the growth of the favored allele
frequency during a sweep, which leads to more accurate approximation than previous models for
large values of the recombination probability. Unlike our model, in all these works, the popu-
lation size is constant and the individuals’ “selective value” does not depend on the population
state, but only on the individuals’ genotype.

The structure of the paper is the following. In Section 2 we describe the model, review some
results of Champagnat in [5] about the two-dimensional population process when we do not con-
sider the neutral locus, and present the main results. In Section 3 we state a semimartingale de-
composition of neutral proportions, key tool in the different proofs. Section 4 is devoted to the
proof for the soft sweep. It relies on a comparison of the population process with a four dimen-
sional dynamical system. In Section 5 we describe a coupling of the population process with two
birth and death processes widely use in Sections 6 and 7, respectively devoted to the proofs for
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RECOMBINATION AND ADAPTATION 3

the strong and the weak recombination regimes of hard sweep. The proof for the weak regime
requires a fine study of the genealogies in a structured coalescent process during the first phase
of the selective sweep. We use here some ideas developed in [28]. Finally in Appendix we state
technical results.

This work stems from the papers of Champagnat [5] and Schweinsberg and Durrett [28]. In the
sequel, c is used to denote a positive finite constant. Its value can change from line to line but it is
always independent of the integer K and the positive real number ε. The set N := {1,2, ...} denotes
the set of positive integers.

2. MODEL AND MAIN RESULTS

We introduce the sets A = {A, a}, B = {b1,b2}, and E = {A, a}× {b1,b2} to describe the genetic
background of individuals. The state of the population will be given by the four dimensional
Markov process N (z,K ) = (N (z,K )

αβ
(t ), (α,β) ∈ E )t≥0 where N (z,K )

αβ
(t ) denotes the number of individu-

als with alleles (α,β) at time t when the carrying capacity is K ∈N and the initial state is ⌊zK ⌋ with
z = (zαβ, (α,β) ∈ E ) ∈ R

E
+. We recall that b1 and b2 are neutral, thus ecological parameters only

depend on the allele, A or a, carried by the individuals at their first locus. There are the following:

• For α ∈ A , fα and Dα denote the birth rate and the intrinsic death rate of an individual
carrying allele α.

• For (α1,α2) ∈A
2, Cα1,α2 represents the competitive pressure felt by an individual carrying

allele α1 from an individual carrying allele α2.
• K ∈N is a parameter rescaling the competition between individuals. It can be interpreted

as a scale of resources or area available, and is related to the concept of carrying capacity,
which is the maximum population size that the environment can sustain indefinitely. In
the sequel K will be large.

• rK is the recombination probability per reproductive event. When two individuals with
respective genotypes (α1,β1) and (α2,β2) in E give birth, the newborn individual, either is
a clone of one parent and carries alleles (α1,β1) or (α2,β2) with probability (1− rK )/2, or
has a mixed genotype (α1,β2) or (α2,β1) with probability rK /2.

We will use, for every n = (nαβ, (α,β) ∈ E )∈Z
E
+, and (α,β) ∈ E , the notations

nα =nαb1 +nαb2 , nβ = n Aβ+naβ, and |n| = n A +na = nb1 +nb2 .

Let us now give the transition rates of N (z,K ) when N (z,K )(t ) =n ∈Z
E
+. An individual can die either

from a natural death or from competition, whose strength depends on the carrying capacity K .
Thus death rate of individuals (α,β) ∈ E is given by:

(2.1) d K
αβ(n)=

[

Dα+Cα,An A/K +Cα,a na/K
]

nαβ.

An individual carrying allele α ∈ A produces gametes with rate fα, thus the relative frequencies
of gametes available for reproduction are pαβ(n) = fαnαβ/( f An A + fa na), (α,β) ∈ E . When an in-
dividual gives birth, he chooses his mate uniformly among the gametes available. Then the prob-
ability of giving birth to an individual of a given genotype depends on the parents (the couple
(ab2, ab1) is not able to generate an individual Ab1). We detail the computation of bK

Ab1
(n):

bK
Ab1

(n) = f An Ab1[p Ab1 +p Ab2 /2+pab1 /2+ (1− rK )pab2 /2]+ f An Ab2 [p Ab1/2+ rK pab1 /2]

+ fanab1 [p Ab1 /2+ rK p Ab2 /2]+ fa nab2 (1− rK )p Ab1 /2

= f An Ab1 + rK f A fa (nab1 n Ab2 −n Ab1nab2 )/( f A n A + fana ).

If we denote by ᾱ (resp. β̄) the complement of α in A (resp. β in B), we obtain in the same way:

bK
αβ(n) = fαnαβ+ rK fa f A

nᾱβnαβ̄−nαβnᾱβ̄

f An A + fa na
, (α,β) ∈ E .(2.2)
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4 RECOMBINATION AND ADAPTATION

The definitions of death and birth rates in (2.1) and (2.2) ensure that the number of jumps is finite
on every finite interval, and the population process is well defined.

When we focus on the dynamics of traits under selection A and a, we get the process
(N (z,K )

A
, N (z,K )

a ). It has been studied by Champagnat in [5] and its death and birth rates, which are
direct consequences of (2.1) and (2.2), satisfy:

(2.3) d K
α (n)=

∑

β∈B

d K
αβ(n) =

[

Dα+Cα,A
n A

K
+Cα,a

na

K

]

nα, bK
α (n)=

∑

β∈B

bK
αβ(n)= fαnα, α ∈A .

Champagnat has proved that under some conditions the rescaled population process
(N (z,K )

A
/K , N (z,K )

a /K ) is well approximated by the following dynamical system,

(2.4) ṅ(z)
α = ( fα−Dα−Cα,An(z)

A
−Cα,a n(z)

a )n(z)
α , n(z)

α (0) = zα, α ∈A .

More precisely Theorem 3 (b) in [5] states that for every compact subset B ⊂ (RA×B
+ )∗× (Ra×B

+ )∗

and finite real number T , we have for any δ> 0,

(2.5) lim
K→∞

sup
z∈B

P

(

sup
0≤t≤T,α∈A

|N (z,K )
α (t )/K −n(z)

α (t )| ≥ δ
)

= 0.

Moreover, if we assume

(2.6) f A > D A, fa >Da , and fa −Da > ( f A −D A).sup
{

Ca,A/C A,A,Ca,a/C A,a

}

,

then the dynamical system (2.4) has a unique attracting equilibrium (0, n̄a ) for initial condition z

satisfying za > 0, and an unstable steady state (n̄ A,0) where

(2.7) n̄α =
fα−Dα

Cα,α
> 0, α ∈A .

Hence, Assumption (2.6) avoids the coexistence of alleles A and a, and n̄α is the equilibrium den-
sity of a monomorphic α-population per unit of carrying capacity. This implies that when K is
large, the size of a monomorphic α-population stays near n̄αK for a long time (Theorem 3 (c) in
[5]). Moreover, if we introduce the invasion fitness Sαᾱ of a mutant α in a population ᾱ,

(2.8) Sαᾱ = fα−Dα−Cα,ᾱn̄ᾱ, α ∈A ,

it corresponds to the per capita growth rate of a mutant α when it appears in a population ᾱ at its
equilibrium density n̄ᾱ. Assumption (2.6) is equivalent to

Assumption 1. Ecological parameters satisfy

n̄ A > 0, n̄a > 0, and S Aa < 0 < Sa A.

Under Assumption 1, with positive probability, the A-population becomes extinct and the a-
population size reaches a vicinity of its equilibrium value n̄aK .

Let us now present the main results of this paper. We introduce the extinction time of the A-
population, and the fixation event of the a-population. For (z,K )∈R

E
+×N:

(2.9) T (z,K )
ext := inf

{

t ≥ 0, N (z,K )
A (t )= 0

}

, and Fix(z,K ) :=
{

T (z,K )
ext <∞, N (z,K )

a (T (z,K )
ext ) > 0

}

.

We are interested in the neutral allele proportions. We thus define for t ≥ 0,

(2.10) P (z,K )
α,β (t )=

N (z,K )
αβ

(t )

N (z,K )
α (t )

, (α,β) ∈ E ,K ∈N, z ∈R
E

+,
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RECOMBINATION AND ADAPTATION 5

the proportion of alleles β in the α-population at time t , with the convention 0/0 = 0. More pre-
cisely, we are interested in these proportions at the end of the sweep, that is at time T (z,K )

ext when
the last A-individual dies. We then introduce the neutral proportion at this time:

(2.11) P
(z,K )
a,b1

= P (z,K )
a,b1

(T (z,K )
ext ).

We first focus on soft selective sweep. We assume that the alleles A and a were neutral and
coexisted in a population with large carrying capacity K . At time 0, an environmental change
makes the allele a favorable (in the sense of Assumption (1)). Before stating the result, let us
introduce the function F , defined for every (z,r, t )∈ (RE

+)∗× [0,1]×R+ by

(2.12) F (z,r, t )=
∫t

0

r f A fa n(z)
A (s)

f An(z)
A

(s)+ fa n(z)
a (s)

exp
(

− r f A fa

∫s

0

n(z)
A (u)+n(z)

a (u)

f An(z)
A

(u)+ fan(z)
a (u)

du
)

d s,

where (n(z)
A ,n(z)

a ) is the solution of the dynamical system (2.4). We notice that F : t ∈R
+ 7→ F (z,r, t )

is non-negative and non-decreasing. Moreover, if we introduce the function h : (z,r, t ) ∈ (RE
+)∗×

[0,1]×R+ 7→ r f A fa

∫t
0 n(z)

A
(s)/( f An(z)

A
(s)+ fa n(z)

a (s))d s non-decreasing in time, then

0 ≤ F (z,r, t )≤
∫t

0
∂s h(z,r, s)e−h(z,r,s)d s = e−h(z,r,0) −e−h(z,r,t ).

Thus F (z,r, t ) has a limit in [0,1] when t goes to infinity and we can define

(2.13) F (z,r ) := lim
t→∞

F (z,r, t )∈ [0,1].

In the case of soft sweep, the selected allele gets to fixation with high probability. More precisely,
Champagnat proved the following asymptotic result in [5]: under Assumption 1,

(2.14) lim
K→∞

P(Fix(z,K )) = 1, ∀z ∈R
A×B

+ × (Ra×B

+ )∗.

We consider the soft selective sweep with recombination probability rK satisfying:

Assumption 2.

lim
K→∞

rK = r ∈ [0,1].

Then recalling (2.11) we get the following result whose proof is deferred in Section 4:

Theorem 1. Let z be in R
A×B
+ × (Ra×B

+ )∗ and Assumptions 1 and 2 hold. Then on the fixation event

Fix(z,K ), the proportion of alleles b1 when the A-population becomes extinct (time T (z,K )
ext ) converges

in probability:

lim
K→∞

P

(

1Fix(z,K )

∣

∣

∣P
(z,K )
a,b1

−
[zAb1

zA
F (z,r )+

zab1

za
(1−F (z,r ))

]∣

∣

∣> ε
)

= 0, ∀ε> 0.

The neutral proportion at the end of the soft sweep is thus a weighted mean of initial pro-
portions in populations A and a. In particular, soft sweep is responsible for a diminution of the
number of neutral alleles with very low or very high proportions in the population, as remarked in
[27]. We notice that the weight F (z,r ) does not depend on the initial neutral proportions. It only
depends on r and on the dynamical system (2.4) with initial condition (n A(0),na (0)) = (zA, za).

Now we focus on hard selective sweep: a mutant a appears in a large population and gets to
fixation. We assume that the mutant appears when the A-population is at ecological equilibrium,
and carries the neutral allele b1. In other words, recalling Definition (2.7), we assume:

Assumption 3. There exists zAb1 ∈]0, n̄ A[ such that N (z(K ),K )(0) = ⌊z(K )K ⌋ with

z(K ) = (zAb1 , n̄ A − zAb1 ,K −1,0).
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6 RECOMBINATION AND ADAPTATION

In this case, the selected allele gets to fixation with positive probability. More precisely, Champag-
nat proved the following asymptotic result in [5]: under Assumptions 1 and 3,

(2.15) lim
K→∞

P

(

Fix(z(K ),K )
)

=
Sa A

fa
.

In the case of strong selective sweep we will distinguish two different recombination regimes:

Assumption 4. Strong recombination

lim
K→∞

rK log K =∞.

Assumption 5. Weak recombination

limsup
K→∞

rK log K <∞.

Recall (2.11). Then we have the following results whose proofs are deferred in Sections 6 and 7:

Theorem 2. Suppose that Assumptions 1 and 3 hold. Then on the fixation event Fix(z,K ) and under

Assumption 4 or 5, the proportion of alleles b1 when the A-population becomes extinct (time T (z,K )
ext )

converges in probability. More precisely, if Assumption 4 holds,

lim
K→∞

P

(

1Fix(z,K )

∣

∣

∣P
(z(K ) ,K )
a,b1

−
zAb1

zA

∣

∣

∣> ε
)

= 0, ∀ε> 0,

and if Assumption 5 holds,

lim
K→∞

P

(

1Fix(z,K )

∣

∣

∣P
(z(K ) ,K )
a,b1

−
[zAb1

zA
+

zAb2

zA
exp

(

−
fa rK log K

Sa A

)]∣

∣

∣> ε
)

= 0, ∀ε> 0.

As stated in [5], the selective sweep has a duration of order log K . Thus, when rK log K is large,
a lot of recombinations occur during the sweep, and the neutral alleles are constantly exchanged
by the populations A and a. Hence in the strong recombination case, the sweep does not modifiy
the proportion of neutral alleles. On the contrary, when rK is of order 1/log K the number of
recombinations undergone by a given lineage does not go to infinity, and the frequency of the
neutral allele b1 carried by the first mutant a increases. This phenomenon is called genetic hitch-
hiking [29]: the selective sweep leads to a diminution of diversity around the selected allele.

Remark 1. The limits in the two regimes are consistent in the sense that

lim
rK logK→∞

zAb2

zA
exp

(

−
farK log K

Sa A

)

= 0.

Moreover, let us notice that we can easily extend the results of Theorems 1 and 2 to a finite number

of possible alleles b1, b2, ..., bi on the neutral locus.

3. A SEMI-MARTINGALE DECOMPOSITION

The expression of birth rate in (2.2) shows that the effect of recombination depends on the re-
combination probability rK but also on the population state via the term nᾱβnαβ̄−nαβnᾱβ̄. This
quantity is linked with the linkage disequilibrium of the population, which is the occurrence of
some allele combinations more or less often than would be expected from a random formation of
haplotypes (see [13] Section 3.3 for an introduction to this notion or [22] for a study of its struc-
ture around a sweep). Proposition 1 states a semi-martingale representation of the neutral allele
proportions.

Proposition 1. Let (α, z,K ) be in A × (RE
+)∗×N. The process (P (z,K )

α,b1
(t ), t ≥ 0) defined in (2.10) is a

semi-martingale and we have the following decomposition:

(3.1) P (z,K )
α,b1

(t ) =P (z,K )
α,b1

(0)+M (z,K )
α (t )+ rK f A fa

∫t

0

N (z,K )
ᾱb1

N (z,K )
αb2

−N (z,K )
αb1

N (z,K )
ᾱb2

(N (z,K )
α +1)( f A N (z,K )

A
+ fa N (z,K )

a )
,
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RECOMBINATION AND ADAPTATION 7

where the process (M (z,K )
α (t ), t ≥ 0) is a martingale bounded on every interval [0, t ] whose quadratic

variation is given by (3.7).

To enlight the presentation in remarks and proofs we shall mostly write N instead N (z,K ).

Remark 2. The process Nab2 NAb1 − Nab1 NAb2 will play a major role in the dynamics of neutral

proportions. Indeed it is a measure of the neutral proportion disequilibrium between the A and

a-populations as it satisfies:

(3.2) NA Na(P A,b1 −Pa,b1 ) = Nab2 NAb1 −Nab1 NAb2 .

Proof of Proposition 1. In the vein of Fournier and Méléard [18] we represent the population pro-
cess in terms of Poisson measure. Let Q(d s,dθ) be a Poisson random measure on R

2
+ with inten-

sity d sdθ, and (eαβ, (α,β) ∈ E ) the canonical basis of RE . According to (2.3) a jump occurs at rate
∑

(α,β)∈E (bK
αβ

(N )+d K
αβ

(N )) = fa Na +d K
a (N )+ f A NA +d K

A (N ). We decompose on possible jumps

that may occur: births and deaths for a-individuals and births and deaths for A-individuals. Itô’s
formula with jumps (see [19] p. 66) yields for every function h measurable and bounded on R

E
+:

h(N (t )) = h(N (0))+
∫t

0

∫

R+

{

∑

α∈A

(

h(N (s−)+eαb1 )10<θ−1α=A ( fa Na (s−)+dK
a (N(s−))≤bK

αb1
(N(s−))

+h(N (s−)+eαb2 )1bK
αb1

(N(s−))<θ−1α=A ( fa Na (s−)+dK
a (N(s−))≤ fαNα(s−)

+h(N (s−)−eαb1 )10<θ− fαNα(s−)−1α=A ( fa Na (s−)+dK
a (N(s−))≤dK

αb1
(N(s−))

+h(N (s−)−eαb2 )1dK
αb1

(N(s−))<θ− fαNα(s−)−1α=A ( fa Na (s−)+dK
a (N(s−))≤dK

α (N(s−))

)

−h(N (s−))1θ≤ fa Na (s−)+dK
a (N(s−))+ fA NA (s−)+dK

A
(N(s−))

}

Q(d s,dθ).(3.3)

Let us introduce the functions µα
K defined for α ∈A and (s,θ) in R+×R+ by,

µα
K (N , s,θ) =

Nαb2 (s)

(Nα(s)+1)Nα(s)
10<θ−1α=A( fa Na (s)+dK

a (N(s))≤bK
αb1

(N(s))(3.4)

−
Nαb1 (s)

(Nα(s)+1)Nα(s)
1bK

αb1
(N(s))<θ−1α=A ( fa Na (s)+dK

a (N(s))≤ fαNα(s)

−
Nαb2 (s)

(Nα(s)−1)Nα(s)
10<θ− fαNα(s)−1α=A ( fa Na (s)+dK

a (N(s))≤dK
αb1

(N(s))

+
Nαb1 (s)

(Nα(s)−1)Nα(s)
1dK

αb1
(N(s))<θ− fαNα(s)−1α=A ( fa Na (s)+dK

a (N(s))≤dK
α (N(s)),

with the convention 0/0 = 0. Then we can represent the neutral allele proportions Pα,b1 as,

(3.5) Pα,b1 (t )= Pα,b1 (0)+
∫t

0

∫

R+
µα

K (N , s−,θ)Q(d s,dθ), t ≥ 0.

A direct calculation gives
∫∞

0
µα

K (N , s,θ)dθ= rK f A fa

Nᾱb1 (s)Nαb2 (s)−Nαb1 (s)Nᾱb2 (s)

(Nα(s)+1)( f A NA(s)+ fa Na(s))
.

Thus if we introduce the compensated Poisson measure Q̃(d s,dθ) :=Q(d s,dθ)−d sdθ, then

Mα(t ) :=
∫t

0

∫

R+
µα

K (N , s−,θ)Q̃(d s,dθ)=Pα,b1 (t )−Pα,b1 (0)− rK f A fa

∫t

0

Nᾱb1 Nαb2 −Nαb1 Nᾱb2

(Nα+1)( f A NA + fa Na)

is a local martingale. By construction the process Pα,b1 has values in [0,1] and as rK ≤ 1,

(3.6) sup
s≤t

∣

∣

∣rK f A fa

∫s

0

Nᾱb1 Nαb2 −Nαb1 Nᾱb2

(Nα+1)( f A NA + fa Na)

∣

∣

∣≤ rK fαt ≤ fαt , t ≥ 0.
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8 RECOMBINATION AND ADAPTATION

Thus Mα is a square integrable pure jump martingale bounded on every finite interval with qua-
dratic variation

〈Mα〉t =
∫t

0

∫

R+

(

µα
K (N , s,θ)

)2
d sdθ

=
∫t

0

{

Pα,b1 (1−Pα,b1 )
[(

Dα+
Cα,α

K
Nα+

Cα,ᾱ

K
Nᾱ

)

1Nα≥2Nα

(Nα−1)2

+
fαNα

(Nα+1)2

]

+
rK f A fa (Nᾱb1 Nαb2 −Nαb1 Nᾱb2 )(1−2Pα,b1 )

(Nα+1)2( f A NA + fa Na )

}

.(3.7)

This ends up the proof of Proposition 1. �

Remark 3. Let us mention two properties of the functions µα
K , defined in (3.4), which will be useful

in the sequel. Firstly by definition we have for all (s,θ) in R+×R+,

(3.8) µA
K (N , s,θ)µa

K (N , s,θ)= 0.

Secondly, the convention 0/0 = 0 yields the following equality for α ∈A and all (s,θ) in R+×R+,

(3.9) µα
K (N , s,θ)1Nα(s)≥1 =µα

K (N , s,θ).

For sake of simplicity we will use more often the second notation, but in Section 6 the first notation

will also be useful.

Lemma 3.1 states properties of the quadratic variation widely used in the forthcoming proofs.
We introduce a compact interval containing the equilibrium size of the A-population,

(3.10) I K
ε :=

[

K
(

n̄ A −2ε
C A,a

C A,A

)

,K
(

n̄ A +2ε
C A,a

C A,A

)]

,

and the stopping times T K
ε and T̃ K

ε , which denote respectively the hitting time of ⌊εK ⌋ by the
mutant population and the exit time of I K

ε by the resident population,

(3.11) T K
ε := inf

{

t ≥ 0, N K
a (t )= ⌊εK ⌋

}

, T̃ K
ε := inf

{

t ≥ 0, N K
A (t ) ∉ I K

ε

}

.

Lemma 3.1. For v <∞, there exists a finite C (v) such that (N (z,K )
A (t ), N (z,K )

a (t )) ∈ [0, vK ]2 implies

(3.12)
d

d t
〈M (z,K )

α 〉t =
∫

R+

(

µα
K (N (z,K ), t ,θ)

)2
dθ ≤C (v)

1Nα(t )≥1

Nα(t )
, α ∈A .

Under Assumptions 1 and 3, there exist k0 ∈N, ε0 > 0 and a pure jump martingale M̃ such that for

ε≤ ε0 and t ≥ 0,

(3.13) e
Sa A

2(k0+1) t∧T K
ε ∧T̃ K

ε

∫

R+

[

µa
K (N (z(K ),K ), t ∧T K

ε ∧ T̃ K
ε ,θ)

]2
dθ≤ (k0 +1)C

(

n̄ A +2ε
C A,a

C A,A

)

M̃t∧T K
ε ∧T̃ K

ε
,

and

(3.14) E

[

M̃t∧T K
ε ∧T̃ K

ε

]

≤
1

k0 +1
.

Proof. Equation (3.12) is a direct consequence of (3.7). To prove (3.13) and (3.14), let us first notice
that according to Assumption 1, there exists k0 ∈N such that for ε small enough and k ∈Z+,

fa(k0 +k −1)− (Da +Ca,An̄ A +ε(Ca,a +2C A,aCa,A/C A,A))(k0 +k +1)

k0 +k −1
≥

Sa A

2
.

This implies in particular that for every t < T K
ε ∧ T̃ K

ε ,

(3.15)
fa Na(t )(Na(t )+k0 −1)−da (N (t ))(Na(t )+k0 +1)

(Na (t )+k0 −1)(Na (t )+k0 +1)
≥

Sa ANa(t )

2(Na(t )+k0 +1)
≥

Sa A1Na (t )≥1

2(k0 +1)
,
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RECOMBINATION AND ADAPTATION 9

where the death rate da has been defined in (2.3). For sake of simplicity let us introduce the
process X defined as follows:

X (t )=
1Na (t )≥1

Na(t )+k0
exp

( Sa At

2(k0 +1)

)

, ∀t ≥ 0.

Applying Itô’s formula with jumps we get for every t ≥ 0:

(3.16) X (t ∧T K
ε ∧ T̃ K

ε )= M̃ (t ∧T K
ε ∧ T̃ K

ε )+
∫t∧T K

ε ∧T̃ K
ε

0

( Sa A

2(k0 +1)
−

fa Na(s)(Na (s)+k0 −1)−d K
a (N (s))(Na(s)+k0 +1)

(Na(s)+k0 −1)(Na (s)+k0 +1)

)

X (s)d s,

where the martingale M̃ has the following expression:

(3.17) M̃ (t )=
1

k0 +1
+

∫t

0

∫

R+

Q̃(d s,dθ)1Na (s−)≥1 exp
( Sa As

2(k0 +1)

)

[ 1θ≤ fa Na (s−)

Na (s−)+k0 +1
+
1 fa Na (s−)<θ≤ fa Na (s−)+da (N(s−))

Na(s−)+k0 −1
−
1θ≤ fa Na (s−)+da (N(s−))

Na(s−)+k0

]

.

Thanks to (3.15) the integral in (3.16) is nonpositive. Moreover, according to (3.12), for t ≤T K
ε ∧T̃ K

ε ,

(3.18)
∫

R+

(

µa
K (N (z(K ),K ), t ,θ)

)2
dθ≤C

(

n̄ A +2ε
C A,a

C A,A

)

1Nα(t )≥1

Nα(t )

≤ (k0 +1)C
(

n̄ A +2ε
C A,a

C A,A

)

X (t )exp
(

−
Sa At

2(k0 +1)

)

which ends the proof. �

4. PROOF OF THEOREM 1

In this section we suppose that Assumptions 1 and 2 hold. For ε≤Ca,a/Ca,A ∧2|S Aa |/C A,a and
z in (RA×B

+ )∗×(Ra×B
+ )∗ we introduce a deterministic time tε(z) after which the solution (n(z)

A
,n(z)

a )
of the dynamical system (2.4) is close to the stable equilibrium (0, n̄a ):

(4.1) tε(z) := inf
{

s ≥ 0,∀t ≥ s, (n(z)
A

(t ),n(z)
a (t ))∈ [0,ε2/2]× [n̄a −ε/2,∞)

}

.

Once (n(z)
A

,n(z)
a ) has reached the set [0,ε2/2]× [n̄a −ε/2,∞) it no more escapes from it. Moreover,

according to Assumption 1 on stable equilibrium, tε(z) is finite.

First we compare the population process with a four dimensional dynamical system on the
time interval [0, tε(z)]. Then we study this dynamical system and get an approximation of the
neutral proportions at time tε(z). Finally, we state that during the A-population extinction period,
this proportion stays nearly constant.

4.1. Comparison with a four dimensional dynamical system. We denote by n(z) = (n(z)
αβ

, (α,β) ∈
E ) the solution of

(4.2) ṅ(z)
αβ

=
(

fα− (Dα+Cα,An(z)
A

+Cα,a n(z)
a )

)

n(z)
αβ

+ r f A fa

n(z)
ᾱβ

n(z)
αβ̄

−n(z)
αβ

n(z)
ᾱβ̄

f An(z)
A + fa n(z)

a

, (α,β) ∈ E ,

with initial condition n(z)(0) = z ∈R
E
+. Then we have the following comparison result:

Lemma 4.1. Let z be in R
E
+ and ε be in R

∗
+. Then

(4.3) lim
K→∞

sup
s≤tε(z)

‖N (z,K )(s)/K −n(z)(s)‖ = 0 a.s.

where ‖.‖ denotes the L1-Norm on R
E .
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10 RECOMBINATION AND ADAPTATION

Proof. The proof relies on a slight modification of Theorem 2.1 p. 456 in Ethier and Kurtz [17].
According to (2.1) and (2.2), the rescaled birth and death rates

b̃K
αβ(n)=

1

K
bK
αβ(K n)= fαnαβ+ rK fa f A

nᾱβnαβ̄−nαβnᾱβ̄

f An A + fa na
, (α,β) ∈ E ,n ∈ N E ,

and

d̃αβ(n)=
1

K
d K
αβ(K n) =

[

Dα+Cα,An A +Cα,a na

]

nαβ, (α,β) ∈ E ,n ∈ N E ,

are Lipschitz and bounded on every compact subset of NE . The only difference with [17] is that
b̃K
αβ

depends on K via the term rK . Applying Itô’s formula with jumps we get:

N (z,K )(t )

K
=

⌊zK ⌋
K

+M ar t (z,K )(t )+
∫t

0

∑

(α,β)∈E

eαβ

(

b̃K
αβ

( N (z,K )(s)

K

)

− d̃αβ

(N (z,K )(s)

K

))

d s,

where M ar t (z,K ) is a martingale, and we recall that (eαβ, (α,β) ∈ E ) is the canonical basis of RE
+. If

we denote by b̃∞
αβ

the function

b̃∞
αβ(n)= fαnαβ+ r fa f A

nᾱβnαβ̄−nαβnᾱβ̄

f An A + fa na
, (α,β) ∈ E ,n ∈ N E ,

we get

n(z)(t )= z +
∫t

0

∑

(α,β)∈E

eαβ

(

b̃∞
αβ

(

n(z)(s)
)

− d̃αβ

(

n(z)(s)
))

d s.

Hence we have for every t ≤ tε(z),

∣

∣

∣

N (z,K )(t )

K
−n(z)(t )

∣

∣

∣≤
∣

∣

∣

⌊zK ⌋
K

− z
∣

∣

∣+
∣

∣

∣M ar t (z,K )(t )
∣

∣

∣+
∫t

0

∑

(α,β)∈E

∣

∣

∣b̃∞
αβ

(

n(z)(s)
)

− b̃K
αβ

(

n(z)(s)
)∣

∣

∣d s

+
∫t

0

∑

(α,β)∈E

∣

∣

∣

(

b̃K
αβ− d̃αβ

)( N (z,K )(s)

K

)

−
(

b̃K
αβ− d̃αβ

)(

n(z)(s)
)∣

∣

∣d s,

and there exists a finite constant M such that
∣

∣

∣

N (z,K )(t )

K
−n(z)(t )

∣

∣

∣≤
1

K
+

∣

∣

∣M ar t (z,K )(t )
∣

∣

∣+|r − rK |M tε(z)+M

∫t

0

∣

∣

∣

N (z,K )(s)

K
−n(z)(s)

∣

∣

∣d s.

But following Ethier and Kurtz, we get

lim
K→∞

sup
s≤tε(z)

|M ar t (z,K )| = 0, a.s.,

and we end the proof by using Assumption 2 and Gronwall’s Lemma. �

Once we know that the rescaled population process is close to the solution of the dynamical
system (4.2), we can study this latter.

Lemma 4.2. Let z be in R
E
+ such that zA > 0 and za > 0. Then n(z)

a (t ) and n(z)
ab1

(t ) have a finite limit

when t goes to infinity, and there exists a positive constant ε0 such that for every ε≤ ε0,

∣

∣

∣

n(z)
ab1

(∞)

n(z)
a (∞)

−
n(z)

ab1
(tε(z))

n(z)
a (tε(z))

∣

∣

∣≤
2 faε

2

n̄ A|Sa A|
.

Proof. Assumption 1 ensures that n(z)
a (t ) goes to n̄a at infinity. If we define the functions

p(z)
α,b1

= n(z)
αb1

/n(z)
α , α ∈A , and g (z) = p (z)

A,b1
−p(z)

a,b1
,
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RECOMBINATION AND ADAPTATION 11

we easily check that φ : (n(z)
Ab1

,n(z)
Ab2

,n(z)
ab1

,n(z)
ab2

) 7→ (n(z)
A ,n(z)

a , g (z), p(z)
a,b1

) defines a change of variables

from (R∗
+)E to R

2∗
+ ×]−1,1[×]0,1[, and (4.2) is equivalent to:

(4.4)















ṅ(z)
α = ( fα− (Dα+Cα,An(z)

A
+Cα,a n(z)

a ))n(z)
α , α ∈A

ġ (z) =−g (z)
(

r f A fa (n(z)
A

+n(z)
a )/( f An(z)

A
+ fa n(z)

a )
)

ṗ(z)
a,b1

= g (z)
(

r f A fa n(z)
A

/( f An(z)
A

+ fa n(z)
a )

)

,

with initial condition (n(z)
A

(0),n(z)
a (0), g (z)(0), p (z)

a,b1
(0)) = (zA , za , zAb1 /zA − zab1 /za , zab1 /za ). More-

over, a direct integration yields

(4.5) p(z)
a,b1

(t ) = p (z)
a,b1

(0)− (p(z)
a,b1

(0)−p(z)
A,b1

(0))F (z,r, t ),

where F has been defined in (2.12). According to (2.13), F (z,r, t ) has a finite limit when t goes to
infinity. Hence p (z)

a,b1
also admits a limit at infinity. Let ε≤ |S Aa|/C A,a ∧Ca,a/C A,a ∧ n̄a/2, and tε(z)

defined in (4.1). Then for t ≥ tε(z),

ṅ(z)
A

(t )≤ ( f A −D A −C Aa(n̄a −ε/2))n(z)
A

(t )≤ S Aan(z)
A

(t )/2 < 0.

Recalling that r ≤ 1 and |g (t )| ≤ 1 for all t ≥ 0 we get:

(4.6)
∣

∣

∣p
(z)
a,b1

(∞)−p(z)
a,b1

(tε(z))
∣

∣

∣≤
∫∞

tε(z)

f A fan(z)
A

f An(z)
A

+ fa n(z)
a

≤
f Aε

2

n̄a

∫∞

0
eS Aa s/2d s ≤

2 faε
2

n̄a |Sa A|
,

which ends up the proof. �

4.2. A-population extinction. The deterministic approximation (4.2) fails when the A-population
size becomes too small. We shall compare NA with birth and death processes to study the last pe-
riod of mutant invasion. We show that during this period, the number of A individuals is so small
that it has no influence on the neutral proportion in the a-population, which stays nearly con-
stant. Before stating the result, we recall Definition (2.9), introduce the compact set Θ:

(4.7) Θ :=
{

z ∈R
A×B

+ × (Ra×B

+ )∗, zA ≤ ε2 and |za − n̄a | ≤ ε
}

,

the constant M ′′ = 3+ ( fa +Ca,A)/Ca,a , and the stopping time:

(4.8) SK
ε (z) := inf

{

t ≥ 0, N (z,K )
A

(t )> εK or |N (z,K )
a (t )− n̄aK | > M ′′εK

}

.

Lemma 4.3. Let z be in Θ. Then under Assumption 1, there exist two positive finite constants c and

ε0 such that for ε≤ ε0,

limsup
K→∞

P

(

sup
t≤T (z,K )

ext

∣

∣

∣P
(z,K )
a,b1

(t )−P (z,K )
a,b1

(0)
∣

∣

∣> ε
)

≤ cε.

Proof. Let z be in Θ and Z 1 be a birth and death process with birth rate f A , death rate D A + (n̄a −
M ′′ε)C A,a , and initial state ⌈ε2K ⌉. Then on [0,SK

ε (z)[, NA and Z 1 have the same birth rate, and
Z 1 has a smaller death rate than NA. Thus according to Theorem 2 in [5], we can construct the
processes N and Z 1 on the same probability space such that:

(4.9) NA(t ) ≤ Z 1
t , ∀t < SK

ε (z).

Moreover, if we denote by T 1
0 the extinction time of Z 1, T 1

0 := inf{t ≥ 0, Z 1
t = 0}, and recall that

(4.10) f A −D A − (n̄a −M ′′ε)C A,a = S Aa +M ′′C A,aε< S Aa/2 < 0, ∀ε< |S Aa|/(2M ′′C Aa),

we get according to (A.10) that for z ≤ ε2 and L(ε,K ) = 2log K /|S Aa +M ′′εC A,a |,

P⌈zK ⌉
(

T 1
0 ≤ L(ε,K )

)

≥ exp
(

⌈ε2K ⌉
[

log(K 2 −1)− log(K 2 − f A(D A + (n̄a −M ′′ε)C A,a)−1)
])

.

Thus:

(4.11) lim
K→∞

P⌈zK ⌉
(

T 1
0 < L(ε,K )

)

= 1.
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12 RECOMBINATION AND ADAPTATION

Moreover, Equation (A.4) ensures the existence of a finite c such that for ε small enough,

(4.12) P

(

L(ε,K ) < SK
ε (z)

)

≥ 1−cε.

Equations (4.11) and (4.12) imply

(4.13) liminf
K→∞

P

(

T 1
0 < L(ε,K ) < SK

ε (z)
)

≥ 1−cε

for a finite c . According to Coupling (4.9) he have the inclusion {T 1
0 < L(ε,K ) < SK

ε (z)} ⊂ {T K
ext <

L(ε,K ) < SK
ε (z)}. Adding (4.13) we finally get:

(4.14) liminf
K→∞

P(T K
ext < L(ε,K ) < SK

ε (z)) ≥ 1−cε.

Recall the martingale decomposition of Pa,b1 in (3.1). To bound the difference |Pa,b1 (t )−Pa,b1 (0)|
we bound independently the martingale Ma(t ) and the integral |Pa,b1 (t )−Pa,b1 (0)−Ma (t )|. On
one hand Doob’s Maximal Inequality and Equation (3.12) imply:

(4.15) P

(

sup
t≤L(ε,K )∧SK

ε

|Ma(t )| >
ε

2

)

≤
4

ε2
E

[

〈Ma〉L(ε,K )∧SK
ε (z)

]

≤
4C (n̄a +M ′′ε)L(ε,K )

ε2K (n̄a −M ′′ε)
.

On the other hand the inequality |NAb1 Nab2 −Nab1 NAb2| ≤ NA Na yields for t ≥ 0

∣

∣

∣

∫t∧SK
ε (z)

0

rK f A fa (NAb1 Nab2 −Nab1 NAb2)

(Na +1)( f A NA + fa Na )

∣

∣

∣≤
∫t∧SK

ε (z)

0

f A NA

(n̄a −εM ′′)K
.

Hence decomposition (3.1), Markov’s Inequality, and Equations (4.9), (A.8) and (4.10) yield

(4.16) P

(

|(Pa,b1 −Ma)(t ∧SK
ε (z))−Pa,b1 (0)| >

ε

2

)

≤
2 f Aε

2

ε(n̄a −εM ′′)

∫t

0
eS Aa s/2d s ≤

4 f Aε

(n̄a −εM ′′)|S Aa|
.

Taking the limit of (4.15) when K goes to infinity and adding (4.16) end the proof. �

4.3. End of the proof of Theorem 1. Recall Definitions (2.9) and (4.1). We have:
∣

∣

∣P
(z,K )
a,b1

(T (z,K )
ext )−p(z)

a,b1
(∞)

∣

∣

∣≤
∣

∣

∣P
(z,K )
a,b1

(T (z,K )
ext )−P (z,K )

a,b1
(tε(z))

∣

∣

∣+
∣

∣

∣P
(z,K )
a,b1

(tε(z))−p(z)
a,b1

(tε(z))
∣

∣

∣+
∣

∣

∣p (z)
a,b1

(tε(z))−p(z)
a,b1

(∞)
∣

∣

∣.

To bound the two last terms we use respectively Lemmas 4.1 and 4.2. For the first term of right
hand side, (2.5) ensures that with high probability, N (z,K )(tε(z)) ∈Θ and tε(z)< T (z,K )

ext . Lemma 4.3,
Equation (2.14) and Markov’s Inequality allow us to conclude that for ε small enough

limsup
K→∞

P(1Fix(z,K ) |P (z,K )
a,b1

(T (z,K )
ext )−p(z)

a,b1
(∞)| > 3ε) ≤ cε,

for a finite c . It is equivalent to the convergence in probability, which concludes the proof.

5. A COUPLING WITH TWO BIRTH AND DEATH PROCESSES

In Sections 6 and 7 we suppose that Assumptions 1 and 3 hold and we denote by N K the process

N (z(K ),K ). As it will appear in the proof of Theorem 2 the first period of mutant invasion, which
ends at time T K

ε when the mutant population size hits ⌊εK ⌋, is the most important for the neutral
proportion dynamics. Indeed, the neutral proportion in the a-population has already reached its
final value at time T K

ε . Let us describe a coupling of the process N K
a with two birth and death

processes which will be a key argument to control the growing of the population a during the first
period. To this aim we recall Definition (3.11) and define for ε< Sa A/(2Ca,AC A,a/C A,A +Ca,a),

(5.1) s−(ε) :=
Sa A

fa
−ε

2Ca,AC A,a +Ca,aC A,A

faC A,A
, and s+(ε) :=

Sa A

fa
+2ε

Ca,AC A,a

faC A,A
.
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RECOMBINATION AND ADAPTATION 13

Definitions (2.3) and (2.8) ensure that for t < T K
ε ∧ T̃ K

ε ,

(5.2) fa (1− s+(ε)) ≤
d K

a (N K (t ))

N K
a (t )

= fa −Sa A +
Ca,A

K
(N K

A (t )− n̄ AK )+
Ca,a

K
N K

a (t )≤ fa (1− s−(ε)),

and following Theorem 2 in [5], we can construct on the same probability space the processes Z−
ε ,

N K and Z+
ε such that almost surely:

(5.3) Z−
ε (t )≤ N K

a (t )≤ Z+
ε (t ), for all t < T̃ K

ε ∧T K
ε ,

where for ∗ ∈ {−,+}, Z∗
ε is a birth and death process with initial state 1, and individual birth and

death rates fa and fa (1−s∗(ε)). We want to prove convergences on the fixation event FixK , defined
in (2.9). Inequality (A.6) allows us to restrict our attention to the conditional probability measure:

(5.4) P̂(.) =P(.|T K
ε ≤ T̃ K

ε ).

To study expectations (Ê) and variances (V̂ar) associated with this probability measure, we express
the event {T K

ε ≤ T̃ K
ε } in a form easier to handle. More precisely, if we introduce the events:

(5.5) L
K
ε :=

{

fa (1−s+(ε)) ≤
d K

a (N K (t ))

N K
a (t )

≤ fa (1−s−(ε)),∀t ≤ T K
ε

}

, H
K
ε := {N K

A (t ) ∈ I K
ε ,∀t ≤T K

ε },

then we can check that

{T K
ε ≤ T̃ K

ε } = {T K
ε <∞,L K

ε ,H K
ε }.

The term T K
ε <∞ is due to the almost sure finiteness of T̃ K

ε . Indeed the extinction time of a birth
and death process with competition is almost surely finite.

6. PROOF OF THEOREM 2 IN THE STRONG RECOMBINATION REGIME

We distinguish the three periods of the selective sweep: (i) rare mutants and resident popu-
lation size near its equilibrium value, (ii) quasi-deterministic period governed by the dynamical
system (2.4), and (iii) A-population extinction. First we prove that at time T K

ε proportions of b1

alleles in the populations A and a are close to zAb1/zA . Once the neutral proportions are the same
in the two populations, they do not evolve anymore until the end of the sweep.

Lemma 6.1. There exist two positive finite constants c and ε0 such that for ε≤ ε0:

limsup
K→∞

E

[

1T K
ε ≤T̃ K

ε

{∣

∣

∣P K
A,b1

(T K
ε )−

zAb1

zA

∣

∣

∣+
∣

∣

∣P K
A,b1

(T K
ε )−P K

a,b1
(T K

ε )
∣

∣

∣

}]

≤ cε.

Proof. First we bound the difference between the neutral proportions in the two populations,
|Pa,b1 (t )−P A,b1 (t )|, then we bound |P A,b1 (t )− zAb1 /zA|. For sake of simplicity we introduce:

(6.1) G(t ) := P A,b1 (t )−Pa,b1 (t )=
Nab2 (t )NAb1(t )−Nab1 (t )NAb2(t )

NA(t )Na(t )
, ∀t ≥ 0,

Y (t ) = 1{NA (t )≥1,Na (t )≥1}G
2(t )erK ( fA∧ fa )t , ∀t ≥ 0.

Recalling (3.8) and applying Itô’s formula with jumps we get

Y (t ∧T K
ε ∧ T̃ K

ε ) =Y (0)+ M̂t∧T K
ε ∧T̃ K

ε
+ rK

∫t

0
1s<T K

ε ∧T̃ K
ε

(

f A ∧ fa −H (s)
)

Y (s)d s

+
∫t

0
1s<T K

ε ∧T̃ K
ε

erK ( fA∧ fa )s d s

∫

R+

[(

µK
A (N , s,θ)

)2
+

(

µK
a (N , s,θ)

)2]

1{NA (s)≥1,Na (s)≥1}dθ,

where M̂ is a martingale with zero mean, and H is defined by

(6.2) H (t )=
2 fa f A NA(t )Na(t )

f A NA(t )+ fa Na(t )

[ 1

NA(t )+1
+

1

Na(t )+1

]

, t ≥ 0.
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14 RECOMBINATION AND ADAPTATION

In particular we can check that for all s ≥ 0 we have Y (s)H (s)≥ ( f A∧ fa )Y (s). Equations (3.12) and
(3.13) give bounds for the integrals

∫

(µK
α )2, α ∈A , and adding (3.14) we obtain:

E[Y (t ∧T K
ε ∧ T̃ K

ε )] ≤ 1+
C (n̄ A +2εC A,a /C A,A)

rK ( f A ∧ fa )(n̄ A −2εC A,a /C A,A)K
erK ( fA∧ fa )t

+
∫t

0
(k0 +1)C

(

n̄ A +2ε
C A,a

C A,A

)

E

[

M̃s∧T K
ε ∧T̃ K

ε

]

e
(rK ( fA∧ fa )− Sa A

2(k0+1) )s
d s

≤ c
(

1+
1

K rK
erK ( fA∧ fa )t +e

(rK ( fA∧ fa )− Sa A
2(k0+1) )t

)

,(6.3)

where c is a finite constant which can be chosen independently of ε and K if ε is small enough
and K large enough. Combining Equation (3.1), Cauchy-Schwarz Inequality, and Equations (3.12)
and (6.3) we get for every t ≥ 0,

E

[∣

∣

∣P A,b1 (t ∧T K
ε ∧ T̃ K

ε )−
⌊zAb1 K ⌋
⌊zAK ⌋

∣

∣

∣

]

≤ E

[

|MA(t ∧T K
ε ∧ T̃ K

ε )|
]

+
rK faε

n̄ A −2εC A,a/C A,A

∫t

0
E

[

1s<T K
ε ∧T̃ K

ε
|G(s)|1{NA (s)≥1,Na (s)≥1}

]

d s

≤ E
1/2

[

〈MA〉t∧T K
ε ∧T̃ K

ε

]

+crK ε

∫t

0
E

1/2
[

Y (s ∧T K
ε ∧ T̃ K

ε )
]

e−rK ( fA∧ fa )s/2d s

≤ c
(p

t /K +ε

∫t

0

(

rK e−rK ( fA∧ fa )s +
1

K
+e−Sa A s/2(k0+1)

)1/2
d s

)

,

where c is finite. A simple integration then yields the existence of a finite c such that:

E

[∣

∣

∣P A,b1 (t ∧T K
ε ∧ T̃ K

ε )−
⌊zAb1K ⌋
⌊zAK ⌋

∣

∣

∣

]

≤ c
(p

t /K +ε
(

1+
t

p
K

))

.(6.4)

But according to Coupling (5.3) and limit (A.11) we have the asymptotic behavior

(6.5) lim
K→∞

P(T K
ε > 2Sa A log K |T K

ε ≤ T̃ K
ε ) = 0,

Hence applying (6.4) at time t = 2Sa A log K and using (A.3) and (6.5), we bound the first term in
theexpectation. The second bound is obtained in the same way. �

The following Lemma states that during the second period, the neutral proportion stays con-
stant in the a-population.

Lemma 6.2. There exist two positive finite constants c and ε0 such that for ε≤ ε0:

limsup
K→∞

E

[

1T K
ε ≤T̃ K

ε

∣

∣

∣Pa,b1 (T K
ε + tε(

N(T K
ε )

K
))− zAb1

zA

∣

∣

∣

]

≤ cε.

Proof. Let us introduce, for z ∈R
E
+ and ε> 0 the set Γ and the time tε defined as follows:

(6.6) Γ :=
{

z ∈R
E

+, zA ∈
[

n̄ A −2ε
C A,a

C A,A
, n̄ A +2ε

C A,a

C A,A

]

, za ∈
[ε

2
,3

ε

2

]}

, tε := sup{tε(z), z ∈ Γ},

where tε(z) has been defined in (4.1). According to Assumption 1, tε <∞, and

I (Γ,ε) := inf
z∈Γ

inf
t≤tε

{n(z)
A

(t ),n(z)
a (t )} > 0,

and we can introduce the stopping time

(6.7) LK
ε (z) = inf

{

t ≥ 0,(N (z,K )
A

(t ), N (z,K )
a (t )) ∉ [I (Γ,ε)K /2,(n̄ A + n̄a )K ]2}.

Finally, we denote by (F K
t , t ≥ 0) the canonical filtration of N K . Notice that on the event {T K

ε ≤
T̃ K
ε }, N (T K

ε )/K ∈ Γ, thus tε(N (T K
ε )/K ) ≤ tε. The semi-martingale decomposition (3.1) and the
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RECOMBINATION AND ADAPTATION 15

definition of G in (6.1) then twice the Strong Markov property and the Cauchy-Schwarz Inequality
yield:

(6.8) E

[

1T K
ε ≤T̃ K

ε

∣

∣

∣Pa,b1

(

T K
ε + tε(

N(T K
ε )

K )∧LK
ε (

N(T K
ε )

K )
)

−Pa,b1 (T K
ε )

∣

∣

∣

]

≤ E

[

1T K
ε ≤T̃ K

ε
E

[∣

∣

∣Ma

(

T K
ε + tε(

N(T K
ε )

K )∧LK
ε (

N(T K
ε )

K )−Ma (T K
ε )

∣

∣

∣+ fa

∫T K
ε +tε∧LK

ε (
N(T K

ε )
K )

T K
ε

|G|
∣

∣

∣FT K
ε

]]

≤ E

[

1T K
ε ≤T̃ K

ε

{

E
1/2

[

〈Ma〉
T K
ε +tε∧LK

ε (
N(T K

ε )
K

)
−〈Ma〉T K

ε

∣

∣

∣FT K
ε

]

+ fa

√

tεE
1/2

[

∫T K
ε +tε∧LK

ε (
N(T K

ε )
K

)

T K
ε

G2
∣

∣

∣FT K
ε

]}]

.

To bound the first term of the right hand side we use Strong Markov property, Equation (3.12) and
the definition of LK

ε in (6.7). We get

(6.9) E

[

1T K
ε ≤T̃ K

ε
E

1/2
[

〈Ma〉
T K
ε +tε∧LK

ε (
N(T K

ε )
K )

−〈Ma〉T K
ε

∣

∣

∣FT K
ε

]]

≤
2tεC (n̄ A + n̄a )

I (Γ,ε)K
.

For the second term, Strong Markov property and Itô’s formula with jumps yield

1T K
ε ≤T̃ K

ε
E

1/2
[

∫T K
ε +tε∧LK

ε (
N(T K

ε )
K

)

T K
ε

G2
∣

∣

∣FT K
ε

]

≤
√

tε sup
z∈Γ,t≤tε

E

[

|G2(t ∧LK
ε (z))−G2(0)|

∣

∣

∣N (0) = ⌊zK ⌋
]

+1T K
ε ≤T̃ K

ε
|G(T K

ε )|

≤ 2
√

tε
∑

α∈A

∫tε

0
E

[

1s<LK
ε (z)

d

d s
〈Mα〉s

]

d s +1T K
ε ≤T̃ K

ε
|G(T K

ε )|.

Equations (3.12) and Lemma 6.1 finally lead to

(6.10) E

[

1T K
ε ≤T̃ K

ε
E

1/2
[

∫T K
ε +tε∧LK

ε (
N(T K

ε )
K

)

T K
ε

G2
∣

∣

∣FT K
ε

]]

≤
√

tε

(8tεC (n̄ A + n̄a)

I (Γ,ε)K

)1/2
+oK (1)

where oK (1) denotes a function of K going to 0 at infinity. Moreover (2.5) ensures that

P

(

T K
ε ≤ T̃ K

ε ,LK
ε (

N(T K
ε )

K ) ≤ tε(
N(T K

ε )
K )

)

≤P

(

N(T K
ε )

K ∈Θ,LK
ε (

N(T K
ε )

K ) ≤ tε(
N(T K

ε )
K )

)

→
K→∞

0,

where Θ has been defined in (4.7). Adding Equations (6.8), (6.9), (6.10) and Lemma 6.1, we finally
end the proof of Lemma 6.2. �

Proof of Theorem 2 in the strong recombination regime. Let us focus on the A-population extinc-
tion period. We have thanks to Strong Markov property:

(6.11) P

(

1N(T K
ε +tε(N(T K

ε )/K ))∈Θ

∣

∣

∣Pa,b1 (Text)−Pa,b1 (T K
ε + tε(

N(T K
ε )

K
))

∣

∣

∣>
p
ε
)

≤ sup
z∈Θ

P

(

|Pa,b1 (Text)−Pa,b1 (0)| >
p
ε
∣

∣

∣N (0)= ⌊zK ⌋
)

.

But Equation (2.5) yields P(N (T K
ε + tε(N (T K

ε )/K ))/K ∈Θ|N (T K
ε )/K ∈ Γ) →K→∞ 1, and {T K

ε ≤ T̃ K
ε } ⊂

{N (T K
ε )/K ∈ Γ}. Adding Equation (A.6) and Lemma 6.2, Triangle inequality allows us to conclude

that for ε small enough

limsup
K→∞

P

(∣

∣

∣P K
a,b1

(T K
ext)−

zAb1

zA

∣

∣

∣>
p
ε
∣

∣

∣FixK
)

≤ cε.

As P(FixK ) →K→∞ Sa A/ fa > 0, it is equivalent to the claim of Theorem 2 in the strong regime. �
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16 RECOMBINATION AND ADAPTATION

7. PROOF OF THEOREM 2 IN THE WEAK RECOMBINATION REGIME

In this section we suppose that Assumptions 3 and 5 hold. We first focus on the neutral pro-
portion in the a population at time T K

ε . The idea is to consider the neutral alleles at time T K
ε

and follow their ancestral lines back until the beginning of the sweep, to know whether they are
descended from the first mutant or not. Two kinds of event can happen to a neutral lineage: coa-
lescences and m-recombinations (see Section 7.1); we show that we can neglect the coalescences
and the occurrence of several m-recombinations for a lineage during the first period. Therefore,
our approximation of the genealogy is the following: two neutral lineages are independent, and
each of them undergoes one recombination with an A-individual during the first period with
probability 1−exp(−rK fa log K /Sa A). If it has undergone a recombination with an A-individual,
it can be an allele b1 or b2. Otherwise it is descended from the first mutant and is an allele b1.
To get this approximation we follow the line presented by Schweinsberg and Durrett in [28]. In
this paper, the authors describe the population dynamics by a variation of Moran model with two
loci and recombinations. In their model, the population size is constant and each individual has
a constant selective advantage, 0 or s. In our model the size is varying and the individual’s ability
to survive depends on the population state. After the study of the first period we check that the
second and third periods have little influence on the neutral proportion in the a-population.

7.1. Coalescence and m-recombination times. Let us introduce the jump times of the stopped
Markov process (N K (t ), t ≤T K

ε ), 0 =: τK
0 < τK

1 < ... < τK
JK := T K

ε , where J K denotes the jump number

of N K between 0 and T K
ε , and the time of the m-th jump is:

τK
m = inf

{

t > τK
m−1, N K (t ) 6= N K (τK

m−1)
}

, 1 ≤ m ≤ J K .

Let us sample two individuals uniformly at random at time T K
ε and denote by βp and βq their

neutral alleles. We want to follow their genealogy backward in time and know at each time be-
tween 0 and T K

ε the types (A or a) of the individuals carrying βp and βq .
We say thatβp andβq coalesce at time τK

m if they are carried by two different individuals at time
τK

m and by the same individual at time τK
m−1. In other words the individual carrying the allele βp

(or βq ) at time τK
m is a newborn and has inherited his neutral allele from the individual carrying

allele βq (or βp ) at time τK
m−1. The jump number at the coalescence time is denoted by

TC K (βp ,βq ) :=
{

sup{m ≤ J K ,βp and βq coalesce at time τK
m}, if βp and βq coalesce

−∞, otherwise.

We say that βp m-recombines at time τK
m if the individual carrying the allele βp at time τK

m is
a newborn, carries the allele α ∈ A , and has inherited his allele βp from an individual carrying
allele ᾱ. In other words, a m-recombination is a recombination which modifies the selected allele
connected to the neutral allele. The jump numbers of the first and second (backward in time)
m-recombinations are denoted by:

T RK
1 (βp ) :=

{

sup{m ≤ J K ,βp m-recombines at time τK
m}, if there is at least one m-recombination

−∞, otherwise,

T RK
2 (βp ) :=







sup{m < T RK
1 (βp ),βp m-recombines at time τK

m}, if there are at least two
m-recombinations

−∞, otherwise.

Let us now focus on the probability for a coalescence to occur conditionally on the state of the
process (NA, Na) at two successive jump times. We denote by p

cK
α1α2

(n) the probability that the
genealogies of two random neutral alleles associated respectively with alleles α1 and α2 ∈ A at
time τK

m coalesce at this time conditionally on (N K
A

(τK
m−1), N K

a (τK
m−1)) = n ∈N

2 and on the birth of
an individual carrying allele α1 ∈A at time τK

m . Then we have the following result:
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RECOMBINATION AND ADAPTATION 17

Lemma 7.1. For every n = (n A ,na) ∈N
2 and α ∈A , we have:

(7.1) p
cK
αα(n) =

2

nα(nα+1)

(

1−
rK fᾱnᾱ

f An A + fa na

)

and p
cK

αᾱ(n)=
rK fᾱ

(nα+1)( f An A + fa na)
.

Proof. We only state the expression of p
cK
αα(n), as the calculations are similar for p

cK

αᾱ(n). If there is
a m-recombination, we cannot have the coalescence of two neutral alleles associated with allele α

at time τK
m . With probability 1−rK fᾱnᾱ/( f An A+ fa na) there is no m-recombination and the parent

giving its neutral allele carries the allele α. When there is no m-recombination, two individuals
among those, who carry allele α also carry a neutral allele which was in the same individual at
time τK

m−1. We have a probability 2/nα(nα+1) to pick this couple of individuals among the (nα+1)
α-individuals. �

Remark 4. A m-recombination for a neutral allele associated with an α allele is a coalescence with

an ᾱ individual. Thus if we denote by p
rK
α (n) the probability that an α-individual, chosen at ran-

dom at time τK
m , is the newborn and underwent a m-recombination at his birth, conditionally on

(N K
A (τK

m−1), N K
a (τK

m−1)) = n ∈N
2 and on the birth of an individual α at time τK

m we get

(7.2) p
rK
α (n) =nᾱp

cK

αᾱ(n)=
nᾱrK fᾱ

(nα+1)( f A n A + fa na)
.

Moreover, if we recall the definition of I K
ε in (3.10), we notice that there exists a finite constant c

such that for k < ⌊εK ⌋,

(7.3) (1−cε)
rK

k +1
≤ inf

nA∈I K
ε

p
rK
a (n A,k)≤ sup

nA∈I K
ε

p
rK
a (n A,k)≤

rK

k +1
.

7.2. Jumps of mutant population during the first period. We want to count the number of co-
alescences and m-recombinations in the lineages of the two randomly chosen neutral alleles βp

and βq . By definition, these events can only occur at a birth time. Thus we need to study the
upcrossing number of the process N K

a before T K
ε (Lemma 7.2). It allows us to prove that the prob-

ability that a lineage is affected by two m-recombinations or that two lineages coalesce, and then
(backward in time) are affected by a m-recombination are negligible (Lemma 7.3). Then we obtain
an approximation of the probability that a lineage is affected by a m-recombination (Lemma 7.4),
and finally we check that two lineages are approximately independent (Equation (7.20)). The last
step consists in controlling the neutral proportion in the population A (Lemma 7.5). Indeed it will
give us the probability that a neutral allele which has undergone a m-recombination is a b1 or a b2.

Let us denote by ζK
k

the jump number of last visit to k before the hitting of ⌊εK ⌋,

(7.4) ζK
k := sup{m ≤ J K , N K

a (τK
m) = k}, 1 ≤ k ≤ ⌊εK ⌋.

This allows us to introduce for 0 < j ≤ k < ⌊εK ⌋ the number of upcrossings from k to k +1 for the
process N K

a before and after the last visit to j :

(7.5) U (K ,1)
j ,k := #{m ∈ {0, ...,ζK

j −1}, (N K
a (τK

m), N K
a (τK

m+1)) = (k ,k +1)},

(7.6) U (K ,2)
j ,k := #{m ∈ {ζK

j , ..., J K −1}, (N K
a (τK

m), N K
a (τK

m+1)) = (k ,k +1)}.

We also introduce the number of jumps of the A-population size when there are k a-individuals
and the total number of upcrossings from k to k +1 before T K

ε :

(7.7) H K
k := #{m < J K , N K

a (τK
m) = N K

a (τK
m+1) = k},

(7.8) U K
k :=U (K ,1)

j ,k +U (K ,2)
j ,k = #{m < J K , (N K

a (τK
m), N K

a (τK
m+1)) = (k ,k +1)}.

The next Lemma states moment properties of these jump numbers. Recall Definition (5.1). Then
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18 RECOMBINATION AND ADAPTATION

Lemma 7.2. There exist two positive and finite constants ε0 and c such that for ε ≤ ε0, K large

enough and 1≤ j ≤ k < ⌊εK ⌋, we have

(7.9) Ê[H K
j ] ≤

12 f An̄ AK

s4
−(ε) fa j

, λε :=
(1− s−(ε))3

(1− s+(ε))2
∈ (0,1), Ê[(U (K ,1)

j ,k )2] ≤
4λ

k− j
ε

s7
−(ε)(1− s+(ε))

,

(7.10) Ê[(U K
j )2] ≤

2

s2
−(ε)

,
∣

∣

∣

ˆCov(U (K ,2)
j ,k ,U K

j )
∣

∣

∣≤ c(ε+ (1− s−(ε))k− j ),

and

(7.11) rK

∣

∣

∣

⌊εK ⌋−1
∑

k=1

Ê[U K
k

]

k +1
−

fa log K

Sa A

∣

∣

∣≤ cε.

This Lemma is widely used in Sections 7.3 and 7.4. Indeed, we shall decompose on the possible
states of the population when a birth occurs, and apply Equations (7.1) and (7.2) to express the
probability of coalescences and m-recombinations at each birth event. The proof of Lemma 7.2
is quite technical and is postponed to Appendix B.

7.3. Negligible events. The next Lemma bounds the probability that two m-recombinations oc-
cur in a neutral lineage and the probability that a couple of neutral lineages coalesce and then
m-recombine when we consider the genealogy backward in time.

Lemma 7.3. There exist two positive finite constants c and ε0 such that for K ∈N and ε≤ ε0,

P̂

(

T RK
2 (βp ) 6= −∞

)

≤
c

log K
, and P̂

(

0 ≤ T RK
1 (βp ) ≤ TC K (βp ,βq )

)

≤
c

log K
.

Proof. By definition, the neutral allele βp is associated with an allele a at time T K
ε . If there are

at least two m-recombinations it implies that there exists a time between 0 and T K
ε at which βp

has undergone a m-recombination when it was associated with an allele A. We shall work con-
ditionally on the stopped process ((NA(τK

m), Na(τK
m)),m ≤ J K ) and decompose according to the

a-population size when this m-recombination occurs. We get the inclusion:

{T RK
2 (βp ) 6= −∞} ⊂

⌊εK ⌋−1
⋃

k=1

JK
⋃

m=1

{

T RK
2 (βp ) =m, Na(τK

m−1)= Na(τK
m) = k

}

.

We recall the definition of I K
ε in (3.10). Thanks to Equations (7.2) and (7.9), we get:

P̂(T RK
2 (βp ) 6= −∞) ≤

⌊εK ⌋−1
∑

k=1

sup
nA∈I K

ε

p
rK

A
(n A,k)Ê[H K

k ] ≤
12rK n̄ Aε

s4
−(ε)(n̄ A −2εC A,a/C A,A)2

.

The Assumption 5 on weak recombination completes the proof of the first inequality in Lemma
7.3. The proof of the second one is divided in two steps, presented after introducing the notations

(αβp )m := {the neutral allele βp is associated with the allele α at time τK
m}, α ∈A , m ≤ J K ,

(α1βp ,α2βq )m := (α1βp )m ∩ (α2βq )m , (α1,α2) ∈A
2, m ≤ J K .

First step: We show that the probability that βp is associated with an allele A at the coalescence
time is negligible. We first recall the inclusion,

{TC K (βp ,βq ) 6= −∞, (Aβp )TC K (βp ,βq )} ⊂
⌊εK ⌋−1

⋃

k=1

JK
⋃

m=1

{

TC K (βp ,βq ) =m, Na(τK
m−1)= k , (Aβp )m

}

,
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RECOMBINATION AND ADAPTATION 19

and decompose on the possible selected alleles associated with βq and on the type of the newborn
at coalescence time. Using Lemma 7.1, Equations (7.9) and (7.10), and rK ≤ 1, we get

(7.12) P̂(TC K (βp ,βq ) 6= −∞, (Aβp )TC K (βp ,βq ))

≤
⌊εK ⌋−1

∑

k=1

[

sup
nA∈I K

ε

p
cK

A A(n A,k)+ sup
nA∈I K

ε

p
cK

Aa(n A,k)
]

Ê[H K
k ]+ sup

nA∈I K
ε

p
cK

a A(n A,k)Ê[U K
k ] ≤

c

K

⌊εK ⌋−1
∑

k=1

1

k
,

for a finite c , which is of order log K /K .

Second step: Then, we focus on the case where βp and βq are associated with an allele a at coa-
lescence time. The inclusion

{Na (τK
TC K (βp ,βq )−1)= k , (aβp , aβq )TC K (βp ,βq )} ⊂

JK
⋃

m=1

{

TC K (βp ,βq ) = m, Na(τK
m−1)= k , (aβp , aβq )m

}

,

and Equations (7.1) and (7.10) yield for every k ∈ {1, ...,⌊εK ⌋−1}:

P̂(Na (τK
TC K (βp ,βq )−1) = k , (aβp , aβq )TC K (βp ,βq )) ≤ sup

nA∈I K
ε

p
cK
aa(n A,k)Ê[U K

k ] ≤
4

s2
−(ε)k(k +1)

.

If βp and βq coalesce then undergo their first m-recombination when we look backward in time,
and if the a-population has the size k at the coalescence time, it implies that the m-recombination
occurs before the ζK

k
-th jump when we look forward in time. For k , l < ⌊εK ⌋,

P̂

(

Na

(

τK
T RK

1 (βp )

)

= l ,0≤T RK
1 (βp )≤ TC K (βp ,βq )

∣

∣

∣Na

(

τK
TC K (βp ,βq )−1

)

= k , (aβp , aβq )TC K (βp ,βq )

)

≤ sup
nA∈I K

ε

p
rK
a (n A, l )

(

1k>l Ê[U K
l ]+1k≤l Ê[U (K ,1)

k ,l ]
)

≤
2rK

(l +1)s2
−(ε)

(

1k>l +
21k≤lλ

l−k
ε

s5
−(ε)(1− s+(ε))

)

,

where the last inequality is a consequence of (7.3), (7.9) and (7.10). The two last equations finally
yield the existence of a finite c such that for every K ∈N:

P̂(0 ≤T RK
1 (βp )≤ TC K (βp ,βq ), (aβp , aβq )TC K (βp ,βq )) ≤ crK

⌊εK ⌋
∑

k ,l=1

1k>l +1k≤lλ
l−k
ε

k(k +1)(l +1)
≤ crK ,

which ends up the proof of Lemma 7.3 with Assumption 5. �

7.4. Probability to be descended from the first mutant. We want to estimate the probability for
the neutral lineage of βp to undergo no m-recombination.

Lemma 7.4. There exist two positive finite constants c and ε0 such that for ε≤ ε0:

limsup
K→∞

∣

∣

∣P̂(T RK
1 (βp ) =−∞)−exp

(

−
fa rK log K

Sa A

)∣

∣

∣≤ cε.

Proof. We introduce ρK
m , the conditional probability that the neutral lineage of βp m-recombines

at time τK
m , given (NA(τK

n ), Na(τK
n ),n ≤ J K ) and given that it has not m-recombined during the

time interval ]τK
m ,T K

ε ]. The last condition implies that βp is associated with an allele a at time τK
m .

ρK
m := 1{N K

a (τK
m )−N K

a (τK
m−1)=1}p

rK
a (N K

A (τK
m−1), N K

a (τK
m−1)).

We also introduce ηK , the sum of these conditional probabilities for 1 ≤ m ≤ J K :

ηK :=
JK
∑

m=1
ρK

m.

We want to give a rigourous meaning to the sequence of equivalents:

P̂

(

T RK
1 (βp )=−∞

∣

∣

∣(NA(τK
m), Na(τK

m))m≤JK

)

=
JK
∏

m=1
(1−ρK

m)∼
JK
∏

m=1
exp(−ρK

m) ∼ exp(−E[ηK ]),

ha
l-0

09
48

09
7,

 v
er

si
on

 2
 - 

17
 M

ar
 2

01
4



20 RECOMBINATION AND ADAPTATION

when K goes to infinity. Jensen and Triangle inequalities and the Mean Value Theorem imply

(7.13) Ê

∣

∣

∣P̂

(

T RK
1 (βp ) =−∞

∣

∣

∣(NA(τK
m), Na (τK

m))m≤JK

)

−e
− fa rK log K

Sa A

∣

∣

∣≤

Ê

∣

∣

∣P̂

(

T RK
1 (βp )=−∞

∣

∣

∣(NA(τK
m), Na(τK

m))m≤JK

)

−e−ηK
∣

∣

∣+
∣

∣

∣e−ÊηK

−e
− fa rK log K

Sa A

∣

∣

∣+ Ê

∣

∣

∣ηK − ÊηK
∣

∣

∣.

We aim to bound the right hand side of (7.13). The bounding of the first term follows the method
developed in Lemma 3.6 in [28]. We refer to this proof, and get
(7.14)

Ê

∣

∣

∣P̂

(

T RK
1 (βp ) =−∞

∣

∣

∣(NA(τK
m), Na (τK

m))m≤JK

)

−e−ηK
∣

∣

∣≤
⌊εK ⌋−1

∑

k=1
sup

nA∈I K
ε

(

p
rK
a (n A,k)

)2
Ê[U K

k ] ≤
π2r 2

K

3s2
−(ε)

,

where I K
ε has been defined in (3.10) and the last inequality follows from (7.3) and (7.10). To bound

the second term, we need to estimate Ê[ηK ]. Inequality (7.3) implies

(7.15) (1−cε)rK

⌊εK ⌋−1
∑

k=1

U K
k

k +1
≤ ηK ≤ rK

⌊εK ⌋−1
∑

k=1

U K
k

k +1
.

Adding (7.11) we get that for ε small enough,

(7.16) limsup
K→∞

∣

∣

∣exp(−Ê[ηK ])−exp
(

−
rK fa log K

Sa A

)∣

∣

∣≤ cε.

The bounding of the last term of (7.13) requires a fine study of dependences between upcrossing
numbers before and after the last visit to a given integer by the mutant population size. In partic-
ular, we widely use Equation (7.10). We observe that Ê[|ηK − ÊηK |] ≤ ( ˆVar ηK )1/2, but the variance
of ηK is quite involved to study and according to Assumption 5 and Equations (7.15) and (7.10),

∣

∣

∣

ˆVar ηK − ˆVar
(

rK

⌊εK ⌋−1
∑

k=1

U K
k

k +1

)∣

∣

∣ ≤ cεÊ
[(

rK

⌊εK ⌋−1
∑

k=1

U K
k

k +1

)2]

≤ cεr 2
K

⌊εK ⌋−1
∑

k ,l=1

Ê[(U K
k

)2]+ Ê[(U K
l

)2]

(k +1)(l +1)
≤ cε,(7.17)

for a finite c . Let k ≤ l < ⌊εK ⌋, and recall that by definition, U K
l
=U (K ,1)

k ,l +U (K ,2)
k ,l . Then we have

∣

∣

∣

ˆCov(U K
k ,U K

l )
∣

∣

∣≤
(

Ê[(U K
k )2]Ê[(U (K ,1)

k ,l )2]
)1/2

+
∣

∣

∣

ˆCov(U K
k ,U (K ,2)

k ,l )
∣

∣

∣.(7.18)

Applying Inequalities (7.9) and (7.10) and noticing that (1− s−(ε)) < λ1/2
ε < 1 (see proof of Lemma

7.2 in Appendix B) lead to
∣

∣

∣

ˆCov(U K
k ,U K

l )
∣

∣

∣≤ c(λ(l−k)/2
ε +ε+ (1− s−(ε))l−k ) ≤ c(λ(l−k)/2

ε +ε)

for a finite c . We finally get:

V̂ar
(

rK

⌊εK ⌋−1
∑

k=1

U K
k

k +1

)

≤ 2r 2
K

⌊εK ⌋−1
∑

k=1

1

k +1

⌊εK ⌋−1
∑

l=k

ˆCov(U K
k

,U K
l

)

l +1

≤ cr 2
K

⌊εK ⌋−1
∑

k=1

1

k +1

⌊εK ⌋−1
∑

l=k

λ(l−k)/2
ε +ε

l +1
≤ cr 2

Kε log2 K ,(7.19)

where we used (7.18) for the second inequality. Applying Jensen’s Inequality to the left hand side of
(7.13) and adding Equations (7.14), (7.16), (7.17) and (7.19) complete the proof of Lemma 7.4. �

We finally focus on the dependence between genealogies of βp and βq . Following [28] pp. 1622
to 1624 in the case J = 1, we can prove that for d in {0,1,2},

(7.20) limsup
K→∞

∣

∣

∣P̂(1T RK
1 (βp )≥0 +1T RK

1 (βp )≥0 = d )−
(

2

d

)

(

1−e
− fa rK log K

Sa A

)d (

e
− fa rK log K

Sa A

)2−d ∣

∣

∣≤ cε.
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RECOMBINATION AND ADAPTATION 21

In particular we use here the weak dependence between two neutral lineages stated in Lemma 7.3
and the probability to descend from the first mutant for βp and βq obtained in Lemma 7.4.

7.5. Neutral proportion at time T K
ε . According to Lemma 7.3 and Equation (7.20), it is enough

to distinguish two cases for the randomly chosen neutral allele βp : either its lineage has under-
gone one m-recombination, or no m-recombination. In the second case, βp is a b1. In the first
one, the probability that βp is a b1 depends on the neutral proportion in the A population at the
coalescence time. We now state that this proportion stays nearly constant during the first period.

Lemma 7.5. There exist two positive finite constants c and ε0 such that for ε≤ ε0,

limsup
K→∞

P

(

sup
t≤T K

ε

∣

∣

∣P K
A,b1

(t )−
zAb1

zA

∣

∣

∣>
p
ε,T K

ε <∞
)

≤ cε.

Lemma 7.5 whose proof is postponed to Appendix B, allows us to state the following lemma.

Lemma 7.6. There exist two positive finite constants c and ε0 such that for ε≤ ε0,

limsup
K→∞

P̂

(∣

∣

∣P K
a,b2

(T K
ε )−

(

1−exp
(

−
fa rK log K

Sa A

))zAb2

zA

∣

∣

∣> ε1/3
)

≤ cε1/6.

Proof. (βi , i ≤ ⌊εK ⌋) denotes the neutral alleles carried by the a-individuals at time T K
ε and

AK
2 (i ) := {βi has undergone exactly one m-recombination and is an allele b2}.

If βi is a b2, either its genealogy has undergone one m-recombination with an individual Ab2,
either it has undergone more than two m-recombinations. Thus

0 ≤ N K
ab2

(T K
ε )−

⌊εK ⌋
∑

i=1
1AK

2 (i ) ≤
⌊εK ⌋
∑

i=1
1{T RK

2 (βi )6=−∞}.

Moreover, the probability of AK
2 (i ) depends on the neutral proportions in the A-population when

βi m-recombines. For i ≤ ⌊εK ⌋,

(7.21)
∣

∣

∣P̂

(

AK
2 (i )

∣

∣

∣T RK
1 (βi ) ≥ 0,T RK

2 (βi ) =−∞, sup
t≤T K

ε

∣

∣

∣P K
A,b1

(t )−
zAb1

zA

∣

∣

∣≤
p
ε
)

−
(

1−
zAb1

zA

)∣

∣

∣≤
p
ε.

Lemma 7.5 and Equation (A.5) ensure that limsupK→∞ P̂(supt≤T K
ε
|P K

A,b1
(t )− zAb1/zA | >

p
ε) ≤ cε,

and Lemmas 7.3 and 7.4 that |P̂(T RK
1 (βi ) ≥ 0,T RK

2 (βi )=−∞)− (1−e− fa rK logK /Sa A )| ≤ cε. It yields:
∣

∣

∣P̂

(

T RK
1 (βi ) ≥ 0,T RK

2 (βi )=−∞, sup
t≤T K

ε

∣

∣

∣P K
A,b1

(t )−
zAb1

zA

∣

∣

∣≤
p
ε
)

−
(

1−exp
(

−
fa rK logK

Sa A

))∣

∣

∣≤ c
p
ε

for a finite c . Adding (7.21) we get:

(7.22) limsup
K→∞

∣

∣

∣Ê[P K
a,b2

(T K
ε )]− (1−exp(− fa rK log K /Sa A))(1− zAb1 /zA)

∣

∣

∣≤ c
p
ε.

In the same way, using the weak dependence between lineages stated in (7.20), we prove that
limsupK→∞ |Ê[(P K

a,b2
)2](T K

ε )−(1−e− fa rK logK /Sa A )2(1−zAb1 /zA)2| ≤ c
p
ε. This implies, adding (7.22)

that limsupK→∞ ˆVar(P K
a,b2

(T K
ε )) ≤ c

p
ε. We end the proof by using Chebyshev’s Inequality. �

7.6. Second and third periods. Now we prove that during the second period the neutral propor-
tion in the a population remains nearly constant. This is due to the short duration of this period,
which does not go to infinity with the carrying capacity K .

Lemma 7.7. There exist two positive finite constants c and ε0 such that for ε≤ ε0,

(7.23) limsup
K→∞

P̂

(∣

∣

∣P K
a,b1

(T K
ext)−P K

a,b1
(T K

ε )
∣

∣

∣> ε1/3
)

≤ cε1/3.
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22 RECOMBINATION AND ADAPTATION

Proof. Let us introduce the stopping time V K
ε :

V K
ε := inf

{

t ≥ 0,supt≤tε,α∈A |Nα(T K
ε + t )/K −nα

(N(T K
ε )/K )(t )| > ε3

}

.

Recall the definition of tε in (6.6) and that (F K
t , t ≥ 0) denotes the canonical filtration of N K .

Strong Markov property, Doob’s Maximal Inequality and Equation (3.12) yield:

P

(

T K
ε ≤ T̃ K

ε , sup
t≤tε

|M K
a (T K

ε + t ∧V K
ε )−M K

a (T K
ε )| >

p
ε
)

= E

[

1T K
ε ≤T̃ K

ε
P

(

sup
t≤tε

|M K
a (T K

ε + t ∧V K
ε )−M K

a (T K
ε )| >

p
ε|FT K

ε

)]

≤
1

ε
E

[

1T K
ε ≤T̃ K

ε

(

〈Ma〉T K
ε +t∧V K

ε
−〈Ma〉T K

ε

)]

≤
c(ε)tε

εK
,

where c(ε) is finite. But according to Equation (2.5) with δ= ε3, limsupK→∞P(V K
ε < tε|T K

ε ≤ T̃ K
ε ) =

0. Moreover, Equations (3.1) and (3.6) imply for every t ≥ 0

sup
t≤tε

|P K
a,b1

(T K
ε + t )−P K

a,b1
(T K

ε )| ≤ sup
t≤tε

|M K
a (T K

ε + t )−M K
a (T K

ε )|+ rK tε fa .

As rK goes to 0 under Assumption 5, we finally get:

(7.24) limsup
K→∞

P

(

sup
t≤tε

|P K
a,b1

(T K
ε + t )−P K

a,b1
(T K

ε )| >
p
ε,T K

ε ≤ T̃ K
ε

)

= 0.

Adding Lemma 4.3 ends the proof of Lemma 7.7 �

7.7. End of the proof of Theorem 2 in the weak recombination regime. Thanks to Lemmas 7.6
and 7.7 we get that for ε small enough,

limsup
K→∞

P̂

(∣

∣

∣P K
a,b2

(T K
ext)− (1−exp(− fa rK log K /Sa A))zAb2 /zA

∣

∣

∣> 2ε1/3
)

≤ cε1/6.

Moreover, (A.6) ensures that liminfK→∞P(T K
ε ≤ T̃ K

ε |FixK ) ≥ 1−cε, which implies

limsup
K→∞

P

(

1FixK

∣

∣

∣P K
a,b2

(T K
ext)− (1−exp(− fa rK log K /Sa A))zAb2 /zA

∣

∣

∣> 2ε1/3
)

≤ cε1/6.

This is equivalent to the convergence in probability and ends the proof of Theorem 2.

APPENDIX A. TECHNICAL RESULTS

We first present some results stated in [5]. We recall Definitions (2.8), (2.9), (4.7), (4.8), (3.11)
and (6.6) and that the notation .K refers to processes that satisfy Assumption 3. Proposition 2 is a
direct consequence of Equations (42), (71), (72) and (74) in [5]:

Proposition 2. There exist two posivite finite constants M1 and ε0 such that for every ε≤ ε0

(A.1) lim
K→∞

P

(∣

∣

∣N K
a (T K

ext)−K n̄a

∣

∣

∣> εK
∣

∣

∣FixK
)

= 0, and limsup
K→∞

∣

∣

∣P(T K
ε <∞)−

Sa A

fa

∣

∣

∣≤ M1ε.

Moreover there exists M2 > 0 such that for every ε≤ ε0, the probability of the event

(A.2) F K
ε =

{

T K
ε ≤ T̃ K

ε , N K
A (T K

ε + tε) <
ε2K

2
, |N K

a (T K
ε + tε)− n̄aK | <

εK

2

}

satisfies

(A.3) liminf
K→∞

P(T K
ε ≤ T̃ K

ε )≥ liminf
K→∞

P(F K
ε ) ≥

Sa A

fa
−M2ε,

and if z ∈Θ, then there exist V > 0 and c <∞ such that:

(A.4) liminf
K→∞

P(SK
ε (z) > eV K ) ≥ 1−cε.
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RECOMBINATION AND ADAPTATION 23

Thanks to these results we can state the following Lemma, which allows us to focus on the event
{T K

ε ≤ T̃ K
ε } rather than on FixK in Section 7.

Lemma A.1. There exist two posivite finite constants c and ε0 such that for every ε≤ ε0

(A.5) limsup
K→∞

P(T K
ε <∞,T K

ε > T̃ K
ε )≤ cε,

and

(A.6) limsup
K→∞

[

P({T K
ε ≤ T̃ K

ε } \ FixK )+P(FixK \ {T K
ε ≤ T̃ K

ε })
]

≤ cε.

Proof. From Equation (A.1), we deduce that for ε< n̄a/2

(A.7) lim
K→∞

P(T K
ε =∞|FixK ) ≤ lim

K→∞
P

(∣

∣

∣N K
a (T K

ext)−K n̄a

∣

∣

∣> εK
∣

∣

∣FixK
)

= 0.

Adding (2.15) we get that limK→∞P(T K
ε =∞,FixK ) = 0. The equality

P(T K
ε <∞,T K

ε > T̃ K
ε ) =P(T K

ε <∞)+P(T K
ε > T̃ K

ε )−P({T K
ε =∞,FixK }C )

with Equations (A.1) and (A.3) ends the proof of (A.5). From Equation (2.14) we deduce that
limK→∞P(FixK |T K

ε ≤ T̃ K
ε ) = 1. We end the proof of (A.6) thanks to Equations (A.7) and (A.5). �

We also recall some results on birth and death processes which proofs can be found in Lemma
3.1 in [28] and in [1] p 109 and 112.

Proposition 3. Let Z = (Zt )t≥0 be a birth a death process with birth and death rates b and d. For

i ∈Z
+, Ti = inf{t ≥ 0, Zt = i } and Pi (resp. Ei ) is the law (resp. expectation) of Z when Z0 = i . Then

• For i ∈N and t ≥ 0,

(A.8) Ei [Zt ] = i e (b−d)t .

• For (i , j ,k)∈Z
3
+ such that j ∈ (i ,k),

(A.9) P j (Tk <Ti ) =
1− (d/b) j−i

1− (d/b)k−i
.

• If 0 < d < b, for every i ∈Z+ and t ≥ 0,

(A.10) Pi (T0 ≤ t )=
(d (1−e (d−b)t )

b −de (d−b)t

)i
.

• If 0 < d < b, on the non-extinction event of Z , which has a probability 1 − (d/b)Z0 , the

following convergence holds:

(A.11) TN /log N →
N→∞

(1−d/b)−1, a.s.

For 0 < s < 1, if Z̃ (s) denotes a random walk with jumps ±1 where up jumps occur with prob-
ability 1/(2− s) and down jumps with probability (1− s)/(2− s), we denote by P

(s)
i

the law of Z̃ (s)

when the initial state is i ∈N and introduce for every a ∈R+ the stopping time

(A.12) τa := inf{n ∈Z+, Z̃ (s)
n = ⌊a⌋}.

We also introduce for ε small enough and 0 ≤ j ,k < ⌊εK ⌋, the quantities

(A.13) q
(s1,s2)
j ,k :=

P
(s1)
k+1(τεK < τk )

P
(s2)
k+1(τεK < τ j )

=
s1

1− (1− s1)⌊εK ⌋−k

1− (1− s2)⌊εK ⌋− j

1− (1− s2)k+1− j
, 0< s1, s2 < 1,

whose expressions are direct consequences of (A.9). Let us now state two technical results. The
first one is necessary to get Lemma 7.5. The second one helps us to control upcrossing numbers
of the process N K

a before reaching the size ⌊εK ⌋.
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24 RECOMBINATION AND ADAPTATION

Lemma A.2. • Let D, C , F , G and H be measurable events such that D ⊂C ⊂F . Then we have

P(H ∩ (C ∪G ))−P(H ∩D) ≤P(F )−P(D)+P(G \C ).

• For a ∈]0,1/2[, (s1, s2) ∈ [a,1−a]2, and 0≤ j ≤ k < l < ⌊εK ⌋,

(A.14) q
(s1∧s2,s1∨s2)
0,k ≥ s1 ∧ s2 and

∣

∣

∣

1

q
(s1,s2)
k ,l

−
1

q
(s2,s1)
j ,l

∣

∣

∣≤
2(1+1/s2)

ea2| log(1−a)|
|s2 − s1|+

(1− s2)l+1−k

s3
2

.

Proof. The proof of the first result is left to the reader. The first part of (A.14) is a direct conse-
quence of Definiton (A.13). Let a be in ]0,1/2[ and consider functions fα,β : x 7→ (1− xα)/(1−
xβ), (α,β) ∈N

2, x ∈ [a,1−a]. Then for x ∈ [a,1−a],

(A.15) ‖ f ′
α,β‖∞ ≤ 2(ea2| log(1−a)|)−1.

From Equation (A.9), we get for 0 < s < 1 and 0≤ j ≤ k < ⌊εK ⌋,

∣

∣

∣P
(s)
l+1(τ⌊εK ⌋ < τk )−P

(s)
l+1(τ⌊εK ⌋ < τ j )

∣

∣

∣ =
(1− (1− s)k− j )((1− s)l+1−k − (1− s)⌊εK ⌋−k )

(1− (1− s)⌊εK ⌋−k )(1− (1− s)⌊εK ⌋− j )

≤ (1− s)l+1−k s−2.(A.16)

Triangle Inequality leads to:

∣

∣

∣

1

q
(s1,s2)
k ,l

−
1

q
(s2,s1)
j ,l

∣

∣

∣ =
∣

∣

∣

P
(s2)
l+1(τεK < τk )

P
(s1)
l+1(τεK < τl )

−
P

(s1)
l+1(τεK < τ j )

P
(s2)
l+1(τεK < τl )

∣

∣

∣

≤
∣

∣

∣

1

P
(s1)
l+1(τεK < τl )

−
1

P
(s2)
l+1(τεK < τl )

∣

∣

∣P
(s2)
l+1(τεK < τk )

+
1

P
(s2)
l+1(τεK < τl )

∣

∣

∣P
(s2)
l+1(τεK < τk )−P

(s2)
l+1(τεK < τ j )

∣

∣

∣

+
1

P
(s2)
l+1(τεK < τl )

∣

∣

∣P
(s1)
l+1(τεK < τ j )−P

(s2)
l+1(τεK < τ j )

∣

∣

∣.

Noticing that P(s2)
l+1(τεK < τl ) ≥ P

(s2)
l+1(τ∞ < τl ) = P

(s2)
1 (τ∞ < τ0) = s2, and using (A.16) and the Mean

Value Theorem with (A.15), we get the second part of (A.14). �

APPENDIX B. PROOFS OF LEMMAS 7.2 AND 7.5

Proof of Equation (7.10). In the whole proof, the integer n A denotes the state of NA at some time
smaller than T̃ K

ε and thus belongs to I K
ε which has been defined in (3.10). P(nA ,na ) (resp. P̂(nA ,na ))

denotes the probability P (resp. P̂) when (NA(0), Na (0)) = (n A,na) ∈ Z
2
+. We introduce for u ∈ R+

the hitting time of ⌊u⌋ by the process Na :

(B.1) σK
u := inf{t ≥ 0, N K

a (t )= ⌊u⌋}.

Let (i , j ,k) be in Z
3
+ with j < k < ⌊εK ⌋. Between jumps ζK

j
and J K the process Na necessarily

jumps from k to k + 1. Then, either it reaches ⌊εK ⌋ before returning to k , either it again jumps
from k to k+1 and so on. Thus we approximate the probability that there is only one jump from k

to k +1 by comparing U (K ,2)
j ,k with geometrically distributed random variables. As we do not know

the value of NA when Na hits k +1 for the first time, we take the maximum over all the possible
values in I K

ε . Recall Definition (5.5). We get:

P̂(U (K ,2)
j ,k = 1|U K

j = i ) ≤ sup
nA∈I K

ε

P̂(nA ,k+1)(T K
ε <σK

k |T
K
ε <σK

j ,U K
j = i )

= sup
nA∈I K

ε

P(nA ,k+1)(T K
ε <σK

k |T
K
ε <σK

j ,U K
j = i ,L K

ε ,H K
ε ).
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RECOMBINATION AND ADAPTATION 25

The value of U K
j

is correlated with the value of NA when Na hits k + 1. But here we take the

maximum over all the possible values of NA. Hence the value of U K
j

has no influence on the last

probability and we can ignore it. We thus obtain the inequality:

P̂(U (K ,2)
j ,k = 1|U K

j = i ) ≤ sup
nA∈I K

ε

P(nA ,k+1)(T K
ε <σK

k
|L K

ε ,H K
ε )

P(nA ,k+1)(T K
ε <σK

j
|L K

ε ,H K
ε )

.

Definition (5.5) allows us to compare these conditional probabilities with the probabilities of the
same events underP(s−(ε)) andP

(s+(ε)), namely supnA∈I K
ε
P(nA ,k+1)(T K

ε <σK
k
|L K

ε ,H K
ε ) ≤P

(s+(ε))
k+1 (τεK <

τk ), and infnA∈I K
ε
P(nA ,k+1)(T K

ε <σK
j
|L K

ε ,H K
ε ) ≥P

(s−(ε))
k+1 (τεK < τ j ). Recall (A.13). Then

P̂(U (K ,2)
j ,k = 1|U K

j = i ) ≤
P

(s+(ε))
k+1 (τεK < τk )

P
(s−(ε))
k+1 (τεK < τ j )

= q
(s+(ε),s−(ε))
j ,k .

In an analogous way we show that P̂(U (K ,2)
j ,k = 1|U K

j
= i ) ≥ q

(s−(ε),s+(ε))
j ,k . We deduce that we can

construct two geometrically distributed random variables G1 and G2, possibly on an enlarged
space, with respective parameters q

(s+(ε),s−(ε))
j ,k ∧1 and q

(s−(ε),s+(ε))
j ,k such that on the event {U K

j
= i },

(B.2) G1 ≤U (K ,2)
j ,k ≤G2.

For the same reasons we obtain q
(s−(ε),s+(ε))
j ,k ≤ P̂(U (K ,2)

j ,k = 1) ≤ q
(s+(ε),s−(ε))
j ,k ∧ 1, and again we can

construct two random variables G ′
1

d=G1 and G ′
2

d=G2 such that

(B.3) G ′
1 ≤U (K ,2)

j ,k ≤G ′
2.

Recall that U (K ,2)
0,k =U K

k
. Hence taking j = 0 and adding the first part of Equation (A.14) give the

first inequality of (7.10). According to Definition (5.1), for ε small enough, |s+(ε)− s−(ε)| ≤ cε for
a finite c . Hence Equations (B.2), (B.3) and (A.14) entail the existence of a finite c such that for
ε small enough |Ê[U (K ,2)

j ,k |U K
j
= i ]− Ê[U (K ,2)

j ,k ]| ≤ cε+ (1− s−(ε))k+1− j /s3
−(ε). Thus according to the

first part of Equation (7.10),
∣

∣

∣

ˆCov(U (K ,2)
j ,k ,U K

j )
∣

∣

∣ ≤
∑

i∈N∗
i P̂(U K

j = i )
∣

∣

∣Ê[U (K ,2)
j ,k |U K

j = i ]− Ê[U (K ,2)
j ,k ]

∣

∣

∣

≤
2

s2
−(ε)

(

cε+
(1− s−(ε))k+1− j

s3
−(ε)

)

,(B.4)

where we use that U K
j
≤ (U K

j
)2. This ends up the proof of (7.10). �

Proof of Equation (7.9). Definitions (2.3) and (5.5) ensure that if n A ∈ I K
ε ,

P̂(nA ,k)(Na(d t )= k +1) =
P(nA ,k)(T K

ε <∞|Na (d t )= k +1,L K
ε ,H K

ε )

P(nA ,k)(T K
ε <∞|L K

ε ,H K
ε )

P(nA ,k)(Na(d t )= k +1|L K
ε ,H K

ε )

≥
P

(s−(ε))
k+1 (τεK < τ0)

P
(s+(ε))
k

(τεK < τ0)
fa k(d t +o(d t ))

=
1− (1− s−(ε))k+1

1− (1− s−(ε))⌊εK ⌋
1− (1− s+(ε))⌊εK ⌋

1− (1− s+(ε))k
fa k(d t +o(d t ))

≥ s2
−(ε) fa k(d t +o(d t )),
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26 RECOMBINATION AND ADAPTATION

and

P̂(nA ,k)(NA(d t ) 6=n A) ≤
P

(s+(ε))
k

(τεK < τ0)

P
(s−(ε))
k

(τεK < τ0)
P(nA ,k)(NA(d t ) 6= n A|L K

ε ,H K
ε )

≤ (1+cε)2 f An̄ AK (d t +o(d t )).

for a finite c , where we use (A.9) and that D A +C A,An̄ A = f A. Thus for ε small enough:

P̂(Na(τK
m+1) 6= Na(τK

m)|Na(τK
m) = k)≥

s2
−(ε) fa k

3 f An̄ AK
.

If DK
k

denotes the downcrossing number from k to k − 1 before T K
ε , then under the probability

P̂, we can bound U K
k
+DK

k
+ H K

k
by the sum of U K

k
+DK

k
independent geometrically distributed

random variables GK
i

with parameter s2
−(ε) fa k/3 f An̄ AK and H K

k
≤

∑

1≤i≤U K
k
+DK

k
(GK

i
− 1). Let us

notice that if k ≥ 2, DK
k
=U K

k−1 −1, and DK
1 = 0. Using the first part of (7.10) twice we get

Ê[H K
k ] ≤

( 4

s2
−(ε)

−1
)( 3 f An̄ AK

s2
−(ε) fa k

−1
)

,

which ends up the proof of the first inequality in (7.9).
As the mutant population size is not Markovian we cannot use symmetry and Strong Markov
property to control the dependence of jumps before and after the last visit to a given state as
in [28]. Hence we describe the successive excursions of N K

a above a given level to get the last in-
equality in (7.9). Let Ũ (i )

j ,k be the number of jumps from k to k +1 during the i th excursion above

j . We first bound the expectation Ê[(Ũ (i )
j ,k )2]. During an excursion above j , Na hits j +1, but we do

not know the value of NA at this time. Thus we take the maximum value for the probability when
n A belongs to I K

ε , and P̂(Ũ (i )
j ,k ≥ 1) ≤ supnA∈I K

ε
P̂( j+1,nA )(σK

k+1 < σK
j
|σK

j
< T K

ε ). Then using Coupling

(5.3) and Definitions (5.4) and (5.5) we obtain

P̂

(

Ũ (i )
j ,k ≥ 1

)

≤ sup
nA∈I K

ε

P( j+1,nA )(T K
ε <∞|σK

k+1 <σK
j
<T K

ε ,L K
ε ,H K

ε )P( j+1,nA )(σK
j
< T K

ε |σK
k+1 <σK

j
,L K

ε ,H K
ε )

P( j+1,nA )(T K
ε <∞|σK

j
< T K

ε ,L K
ε ,H K

ε )P( j+1,nA )(σK
j
<T K

ε |L K
ε ,H K

ε )

.P( j+1,nA )(σ
K
k+1 <σK

j |L
K
ε ,H K

ε )

≤
P

(s+(ε))
j

(τεK < τ0)P(s−(ε))
k+1 (τ j < τεK )P(s+(ε))

j+1 (τk+1 < τ j )

P
(s−(ε))
j

(τεK < τ0)P(s+(ε))
j+1 (τ j < τεK )

.

Adding Equation (A.9) we finally get

(B.5) P̂

(

Ũ (i )
j ,k ≥ 1

)

≤
(1− s−(ε))k+1− j

s−(ε)(1− s+(ε))
.

Moreover if Ũ (i )
j ,k ≥ 1, Na necessarily hits k after its first jump from k to k +1, and before its return

to j . Using the same techniques as before we get:

P̂

(

Ũ (i )
j ,k = 1|Ũ (i )

j ,k ≥ 1
)

≥ inf
nA∈I K

ε

P̂(nA ,k)(σ
K
j <σK

k+1|σ
K
j < T K

ε ) ≥
P

(s−(ε))
j

(τεK < τ0)P(s+(ε))
k

(τ j < τk+1)

P
(s+(ε))
j

(τεK < τ0)P(s−(ε))
k

(τ j < τεK )
,

which yields

(B.6) P̂

(

Ũ (i )
j ,k = 1|Ũ (i )

j ,k ≥ 1
)

≥ s−(ε)s+(ε)
(1− s+(ε)

1− s−(ε)

)k− j
≥ s2

−(ε)
(1− s+(ε)

1− s−(ε)

)k− j
.

ha
l-0

09
48

09
7,

 v
er

si
on

 2
 - 

17
 M

ar
 2

01
4



RECOMBINATION AND ADAPTATION 27

Furthermore, given that Ũ (i )
j ,k is non-null, Ũ (i )

j ,k is smaller than a geometrically distributed random

variable with parameter q = s2
−(ε)[(1− s+(ε))/(1− s−(ε))]k− j . In particular,

E

[

(Ũ (i )
j ,k )2|Ũ (i )

j ,k ≥ 1
]

≤
2

q2
=

2

s4
−(ε)

(1− s−(ε)

1− s+(ε)

)2(k− j )
.

Adding Equations (B.5) and recalling that |s+(ε)− s−(ε)| ≤ cε for c finite and ε small enough yield

Ê

[

(Ũ (i )
j ,k )2

]

≤
2λ

k− j
ε

s5
−(ε)(1− s+(ε))

, where λε :=
(1− s−(ε))3

(1− s+(ε))2
< 1.

Using that for n ∈ N and (xi ,1 ≤ i ≤ n) ∈ R
n , (

∑

1≤i≤n xi )2 ≤ n
∑

1≤i≤n x2
i

and that the number of
excursions above j before T K

ε is U K
j
−1, we get

Ê

[

(U (K ,1)
j ,k )2

]

≤ Ê

[

U K
j −1

] 2λ
k− j
ε

s5
−(ε)(1− s+(ε))

≤
4λ

k− j
ε

s7
−(ε)(1− s+(ε))

,

where we use the first part of Equation (7.10). This ends the proof of Equation (7.9). �

Proof of Equation (7.11). Definition (A.13), Inequality (B.3) and Equation (A.9) yield:

rK

⌊εK ⌋−1
∑

k=1

Ê[U K
k

]

k +1
≥ rK

⌊εK ⌋−1
∑

k=1

[

(k +1)q
(s+(ε),s−(ε))
0,k

]−1
=

rK (A−B )

s+(ε)(1− (1− s−(ε))⌊εK ⌋)
,

with

A :=
⌊εK ⌋−1

∑

k=1

1− (1− s−(ε))k+1

k +1
, and B := (1− s+(ε))⌊εK ⌋

⌊εK ⌋−1
∑

k=1

1− (1− s−(ε))k+1

(1− s+(ε))k (k +1)
.

For large K , A = log(εK )+O(1). Moreover, Lemma 3.5 in [28] ensures that for u > 1 there exists
D(u) <∞ such that

∑⌊εK ⌋
k=1 uk /(k +1) ≤ D(u)u⌊εK ⌋/⌊εK ⌋. This implies that B ≤ c/⌊εK ⌋ for a finite c .

Finally, by definition, for ε small enough, |Sa A/ fa − s+(ε)| ≤ cε for a finite constant c . This yields

rK

⌊εK ⌋−1
∑

k=1

Ê[U K
k

]

k +1
≥ (1−cε)

rK fa log K

Sa A

for a finite c and concludes the proof for the lower bound. The upper bound is obtained in the
same way. This concludes the proof of Lemma 7.2. �

Proof of Lemma 7.5. We use Coupling (5.3) to control the growing of the mutant population dur-
ing the first period of invasion, and the semi-martingale decomposition in Proposition 1 to bound
the fluctuations of MA. The hitting time of ⌊εK ⌋ and non-extinction event of Z∗

ε are denoted by:

T ∗,K
ε = inf{t ≥ 0, Z∗

ε (t ) = ⌊εK ⌋}, and F∗
ε =

{

Z∗
ε (t ) ≥ 1,∀t ≥ 0

}

, ∗ ∈ {−,+}.

From (5.3) we get D = {F−
ε ,T K

ε ≤ T̃ K
ε } ⊂ C = {T K

ε < ∞,T K
ε ≤ T̃ K

ε } ⊂ F = {T +,K
ε < ∞,T K

ε ≤ T̃ K
ε }.

Lemma A.2 with G = {T K
ε > T̃ K

ε }∪ {T K
ε =∞}, and H = {supt≤T K

ε
|P A,b1 (t )− zAb1 /zA| >

p
ε} yields:

(B.7) |P(H ,F−
ε ,T K

ε ≤ T̃ K
ε )−P(H ,T K

ε <∞)| ≤ |P(T +,K
ε <∞)−P(F−

ε )|+P(T K
ε <∞,T K

ε > T̃ K
ε ).

But thanks to Equation (A.9) we get that P(T +,K
ε <∞)−P(F−

ε ) = s+(ε)/(1− (1− s+(ε))⌊εK ⌋)− s−(ε),
and (5.1) and (A.5) lead to:

limsup
K→∞

|P(T +,K
ε <∞)−P(F−

ε )|+P(T K
ε <∞,T K

ε > T̃ K
ε )≤ cε.(B.8)

It allows us to focus on the probability P(H ,F−
ε ,T K

ε ≤ T̃ K
ε ). We recall that |NAb1 Nab2−NAb2 Nab1 | ≤

NA Na , and that Assumption 5 holds. Then (3.1) and (3.11) imply for ε small enough

sup
t≤T K

ε ∧T̃ K
ε

∣

∣

∣P A,b1 (t )−
zAb1

zA
−MA(t )

∣

∣

∣≤ rK fa T K
ε sup

t≤T K
ε ∧T̃ K

ε

{

Na(t )

NA(t )

}

≤
rK faεT K

ε

n̄ A −2εC A,a /C A,A
≤

cεT K
ε

log K
.
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28 RECOMBINATION AND ADAPTATION

Moreover, F−
ε ∩ {T K

ε ≤ T̃ K
ε } ⊂ F−

ε ∩ {T K
ε ≤ T −,K

ε }. Thus we get

P

(

sup
t≤T K

ε

∣

∣

∣P A,b1 (t )−
zAb1

zA
−MA(t )

∣

∣

∣>
p
ε

2
,F−

ε ,T K
ε ≤ T̃ K

ε

)

≤P

(cεT −,K
ε

log K
>
p
ε/2,F−

ε

)

.

Finally, Equation (A.11) ensures that limK→∞ T −,K
ε /log K = s−(ε)−1 a.s. on the non-extinction

event F−
ε . Thus for ε< s−(ε)/2c ,

(B.9) lim
K→∞

P

(

sup
t≤T K

ε

∣

∣

∣P A,b1 (t )−
zAb1

zA
−MA(t )

∣

∣

∣>
p
ε

2
,F−

ε ,T K
ε ≤ T̃ K

ε

)

= 0.

To control the term |MA|, we introduce the sequence of real numbers tK = (2 fa log K )/Sa A:

P

(

sup
t≤T K

ε

|MA(t )| >
p
ε

2
,F−

ε ,T K
ε ≤ T̃ K

ε

)

≤P

(

sup
t≤T K

ε

|MA(t )| >
p
ε

2
,T K

ε ≤ T̃ K
ε ∧ tK

)

+P(T K
ε > tK ,F−

ε ).

Equation (5.1) yields for ε small enough, tK .s−(ε)/log K > 3/2. Thus thanks to (A.11) we get,

lim
K→∞

P(T K
ε > tK ,F−

ε ) ≤ lim
K→∞

P(T −,K
ε > tK ,F−

ε )= 0.

Applying Doob’s maximal inequality to the submartingale |MA| and (3.12) we get:

P( sup
t≤T K

ε

|MA(t )| >
p
ε/2,T K

ε ≤ T̃ K
ε ∧ tK ) ≤ P(sup

t≤tK

|MA(t ∧T K
ε ∧ T̃ K

ε )| >
p
ε/2)

≤
4

ε
E

[

〈MA〉tK ∧T K
ε ∧T̃ K

ε

]

≤
ctK

K
,

which goes to 0 at infinity. Adding Equation (B.9) leads to:

lim
K→∞

P

(

sup
t≤T K

ε

∣

∣

∣P A,b1 (t )−
zAb1

zA

∣

∣

∣>
p
ε

2
,F−

ε ,T K
ε ≤ T̃ K

ε

)

= 0.

Finally, Equations (B.7) and (B.8) complete the proof of Lemma 7.5. �
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