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A chlorination route is being investigated for recovery of actinides from actinide–aluminium alloys,

which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electro-

chemical methods in molten LiCl–KCl. In the present work, the most important steps of this route were

experimentally tested using U–Pu–Al alloy prepared by electrodeposition of U and Pu on solid aluminium

plate electrodes. The investigated processes were vacuum distillation for removal of the salt adhered on

the electrode, chlorination of the alloy by chlorine gas and sublimation of the AlCl3 formed. The processes

parameters were set on the base of a previous thermochemical study and an experimental work using

pure UAl3 alloy. The present experimental results indicated high efficiency of salt distillation and chlori-

nation steps, while the sublimation step should be further optimised.

1. Introduction

A chlorination route is under investigation at ITU for recovery of

actinides (An) from actinide–aluminium (An–Al) alloys, which

originate from pyrochemical treatment of spent metallic nuclear

fuel by electrochemical methods in molten LiCl–KCl [1,2]. The

background, principles and thermodynamic calculation related to

the method have been described in detail in the previous work

[3]. The present work was focused on a laboratory-scale

demonstration of the process using U–Pu–Al alloy prepared by

electrodeposition of U and Pu on solid aluminium plate electrodes

by electrorefining of U–Pu–Zr alloy in the molten salt. All the most

important steps of the chlorination route were tested, i.e., vacuum

distillation for removal of the salt adhered on the electrode,

chlorination of the alloy by chlorine gas and sublimation of the

AlCl3 formed. The tested experimental conditions were derived

from the previous thermochemical study on the process and from

the chlorination experiments with UAl3 alloy [3]. The conditions

were set to provide complete chlorination, but preventing

volatilisation of the present actinides. All the process steps were

evaluated on the basis of X-ray diffraction (XRD) analyses of the

reacting material, combined in some cases with inductively-

coupled plasma mass spectrometry (ICP-MS) or optical emission

spectrometry (ICP-OES) and scanning electron microscopy coupled

with energy-dispersive X-ray spectroscopy (SEM-EDX)

measurements.

2. Preparation of U–Pu–Al alloys

The initial material was prepared by potentiostatic electrorefin-

ing of U–Pu–Zr alloy (71–19–10 wt.%, respectively, ITU stock

material) in LiCl–KCl eutectic melt (Aldrich 99.99%) using Al plate

cathodes (99.999%, Alfa Aesar). Three runs were carried out at a

temperature of 450 °C, yielding alloys with different actinide con-

tent due to development of actinides concentrations in the melt. A

detailed description of the electrorefining process can be found

elsewhere [4].

2.1. Experimental – electrorefining

The electrorefining runs were carried out in a glovebox under

purified Ar atmosphere (<5 ppm of moisture and oxygen). The

electrolyte consisted of LiCl–KCl eutectic melt containing UCl3
and PuCl3 (1.78 and 0.62 wt.% metal, respectively) was prepared

by chemical oxidation of the U–Pu–Zr alloy by BiCl3 according to

the procedure described in [5]. The formed Bi metal was collected

in a Bi pool at the bottom of an alumina crucible. After the reaction

was completed, which was evidenced by electrochemical measure-

ment, the melt was slowly cooled to solid state, the crucible was

broken and the Bi pool was mechanically removed. The recovered

melt was transferred to a new alumina crucible and used as the

electrolyte. The U–Pu–Zr alloy was loaded in a Ta basket and

connected as an anode. Cathodes were made of Al plates with

dimensions of the immersed parts 10 � 10 � 0.5 mm. The

reference electrode used was an Ag/LiCl–KCl–AgCl (1 wt.%)

prepared in a Pyrex glass tube. PAR 273 potentiostat with EG&G
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M270 electrochemical software was used to control the

electrorefining.

2.2. Electrorefining runs

A potential of ÿ1.30 V vs. Ag/AgCl, which is suitable for deposi-

tion of both actinides on solid aluminium [6,7], was used for all

electrorefining runs. The value of passed charge was selected in a

way to produce deposits using approximately 70–80% of Al plates

capacity, assuming current efficiency 80% and formation of AnAl3
alloys. Typically, the current density decreased during the runs

from ÿ15 to ÿ6 mA/cm2 due to the slowing down of intermetallic

diffusion of An and Al through the An–Al alloy formed on the elec-

trode surface. The development of current in dependency on the

passed charge is shown in Fig. 1 for a partly exceptional case in

run 2. The initial current decrease was followed by a stable current

and in the final phase even increasing current. It can be explained

by co-deposition of Zr dissolved from the anode at the later stage of

this run, as the deposition potential of Zr is approximately 250 mV

more positive than for U, which could yield higher deposition rate

and consequently the increasing current. Another explanation can

be based on the increase of the surface area in this run due to a dif-

ferent morphology of Zr containing deposit, but this feature was

not observed in this particular case, when only 0.6 wt.% of Zr was

co-deposited.

The concentration profile, shown in Fig. 2 (left), indicates an

increasing concentration of Pu in the electrolyte. U and Pu are con-

gruently electrochemically dissolved from the U–Pu–Zr alloy [8],

but U is electrodeposited predominantly on Al due to its more ano-

dic deposition potential in comparison with Pu [6,7]. It led to high-

er consumption of U from the electrolyte, i.e., decreasing of U

concentration and increase of Pu concentration. The U concentra-

tion increase observed after run 1 is probably not correct due to

possible cross contamination of the ICP-MS sample during prepara-

tion in U contaminated glove boxes.

Due to substantially more positive electrode potential of Zr

electrochemical oxidation than these of U and Pu, Zr is generally

not dissolved in the melt until major part of the actinides are re-

moved from the U–Pu–Zr alloy [8]. During runs 1 and 2

(Fig. 2_right) about 70 wt.% of U and Pu was removed from the

initial alloy and it finally led to partial co-dissolution of Zr to the

melt. Before run 3, a new pin of the U–Pu–Zr alloy was thus added

to the anode basket to reduce the Zr content in the melt and to pro-

vide conditions for more efficient preparation of the last required

An–Al alloy deposit. The ICP-MS results confirmed full reduction

of the dissolved Zr, however they also showed an unexpected

decrease of U and Pu concentration in the melt (Fig. 2_left). It

indicates relatively high uncertainty of the ICP-MS in this case,

nevertheless the general trends in the concentration developments

are well illustrated by these results. The expected development of

anodic material composition during the runs is shown in Fig. 2

(right).

2.3. Material characterisation

After the required charge was passed, each electrode was left

above the melt surface for several hours at working temperature

to let some adhered salt drop off the surface. In all cases, shiny

metallic-looking deposit was obtained, homogeneously distributed

and well adhered on the electrode surface. A cross section of the

electrode with the deposit from run 2 is shown in Fig. 3a.

The deposit was mechanically scraped without washing,

homogenised by fine grinding in a mortar and sampled for XRD

and ICP-MS analyses.

The mass balance of the electrodeposition runs based on ICP-MS

results is summarised in Table 1. The masses of An in the deposits

were corrected from the evaluated An content in the adhered salt.

To illustrate the achieved capacity of Al to take up actinides, a load-

ing of each electrode was calculated using a mass ratio of the

deposited An and the immersed part of Al electrode. The maximum

possible An/Al ratio was derived from the alloy composition

An–Al3, typically formed during the electrorefining process [5].

Consistently with the concentration profiles presented in Fig. 2,

the increasing content of Pu in the product along the three runs

was caused by its increasing concentration in the salt. Since the

equilibrium potential (Eeq) is concentration dependent according

to Nernst law, at the later stage of the process, the overvoltage

between Eeq and the deposition potential Edep, is increasing. There-

fore, according to Butler–Volmer equation, higher portion of Pu

was co-deposited with U.

Somewhat lower current efficiency achieved in run 2 might be

explained by co-deposition of Zr on the Al cathode. A deterioration

of An–Al deposits macroscopic structure and lowering of current

efficiency has been positively observed in previous electrorefining

experiments for the cases of Zr co-dissolution and co-deposition

[5]. A higher salt content detected in the corresponding deposit

by ICP-MS and also the highest mass loss of the material during

distillation supports this explanation (see Section 3.3.1 below);

however no worsening of the deposit macroscopic quality was

observed.

The X-ray diffraction analyses have been performed on a Bruker

D8 Bragg-Brentano Advance diffractometer (Cu Ka1 radiation)

equipped with a Lynxeye Linear Position Sensitive detector. The

operation conditions were 40 kV and 40 mA. Powder diffraction

patterns were recorded at room temperature across an angular

range 10° 6 2h 6 120°. The phase quantification procedure in-

volved in the identification of the different phases was done using

the software Match (Crystal Impact) and quantification of phases

of all data sets was done by the full profile Rietveld method imple-

mented in the software Topas version 4.1. (Coelho, 2007). The

starting structure models were adopted from the Inorganic Crystal

Structure Data Base (ICSD). The computations involved adjustment

of the scale factors, pattern background polynomial parameters,

the sample displacement, lattice parameters and peak profile op-

tions. The refinement of preferred orientation was done by the

March–Dollase Model with an order of 4–8. Depending on the

analyses conditions, scan time and sample preparation, the detec-

tion limit of X-ray diffraction can be of the order of 1–5 wt.%. Due

to close crystallographic parameters of UAlx and PuAlx or a solid

solution of both phases, XRD cannot distinguish them, as the differ-

ences in the positions of the corresponding diffraction peaks are

below resolution of the instrument. The same is valid for chlorides

UCl3 and PuCl3. To determine the U/Pu ratio and to extend the
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Fig. 1. Development of current density (upper line) with the passed charge during

electrochemical preparation of U–Pu–Al alloy, run 2.



characterisation of the products made by XRD, selected samples

were analysed by ICP-MS or ICP-OES and/or SEM-EDX according

to the amount of the available material.

Although the precise grain distribution of the ground product

was not evaluated, the SEM showed that the major part of the

material was composed of 10–50 and 50–150 lm grains, in a ratio

approximately 1:1, even though exceptionally larger particles were

present. The maximum detected particle size was around 400 lm.

A picture of the ground material from run 2 and a SEM micrograph

are shown in Fig. 3.

3. Chlorination experiments

Three chlorination runs were carried out individually for each

material from runs 1 to 3 containing the electrochemically

Fig. 2. Concentration profile of U, Pu and Zr in the melt (left) and masses of these elements in the anodic material calculated on the base of ICP-MS analyses of the melt and

deposits during the electrorefining runs (right).

Residual Al plate 

An-Al alloys + adhered salt (a) 

(b) (c) 

Fig. 3. (a) Cross section of the electrode from run 2 after the electrorefining (b) picture of the ground material prepared from run 2 (c) SEMmicrograph of the ground material.

Table 1

Mass balance of the electrorefining runs for preparation of the An–Al alloys obtained by ICP-MS.

Run Charge (C) Mass of An (mg) Ratio U/Pu Current efficiency (%) Loading (%)

Expected Analysed

1 722 593.5 488.4 14.9 82.3 72.7

2 714 587.1 439.9 8.2 74.9 74.7

3 728 598.8 480.3 6.4 80.2 80.9



prepared U–Pu–Al alloys and the adhered salt scraped from the

electrode surfaces. The material, obtained from manually ground

deposit to increase reaction surface, was used without sieving.

3.1. Experimental – chlorination

Due to their radiotoxicity and radioactivity, handling of actinide

based samples during this study was done in a nitrogen glove-box

equipped with a chlorine gas line, a vacuum system and a vertical

furnace. A quartz reactor with sealed connections for gas inlets,

outlets and a vacuum port was used and the processed materials

were introduced in BN crucibles with inner diameter 30 mm. The

experimental set-up is described in detail in the previous work

[3]. Each run consisted of vacuum distillation, conversion to chlo-

rides by two steps chlorination using gaseous Cl2 and sublimation

of the formed AlCl3. The conditions for the three steps are summa-

rised in Table 2 and they were kept the same for all processed

materials.

3.2. Analyses

Samples of the processed materials were taken before and after

each step and analysed by XRD according to the method described

in [3] in order to evaluate distribution of the elements among the

resulting phases. After a required treatment, e.g. homogenizing by

grinding, the materials were transferred to a glove box with puri-

fied Ar atmosphere (<5 ppm moisture and oxygen), where the

XRD samples were prepared. The samples of the material before

chlorination, i.e., not containing AlCl3, were embedded in an epoxy

resin. All other samples were analysed in special low background

and gas-tight holder ring dedicated to sensitive material from Bru-

ker AXS (ref: A100-B139) to prevent reaction of AlCl3 with the re-

sin, which was observed during the previous work.

During this study, the material had to be sampled and partially

processed under nitrogen atmosphere of the chlorination glove

box. Nevertheless due to technical problem, the nitrogen atmo-

sphere could contain some traces of oxygen and moisture. Based

on previous experiments, it was proven that An–Al alloys are stable

under the conditions of the samples processing and measurement,

whereas samples containing chlorides are highly sensitive to traces

of moisture and/or oxygen, forming oxychlorides, oxide and/or hy-

drates. Therefore, the oxy-compounds could be only formed from

the chlorinated products and their presence can be used as a proof

of successful chlorination.

3.3. Results and discussion

3.3.1. Salt distillation

About 700 mg of the initial material was introduced in the reac-

tor, which was then evacuated to a pressure of 4–6 � 10ÿ2 mbar

and heated to 800 °C. The distillation proceeded for 8 h, then the

reactor was slowly cooled and pressurised at the room tempera-

ture. The set-up did not allow flushing the reactor by argon directly

after the vacuum and it had to be filled with nitrogen atmosphere

of the box. After sampling, the product was closed back to the reac-

tor and kept under Ar flow. The appearance of the initial material

changed from dark matt to more metallic shiny grey powder after

the distillation, while the cold inner walls of the reactor were cov-

ered with a white condensate, which was recovered and analysed.

A mass balance of the distillation steps and an evaluation of the

efficiency based on the mass loss of the material during distillation,

XRD and ICP-MS results are summarised in Table 3. No direct anal-

ysis of Li, K and Cl was done by ICP-MS, whose results were used

mainly to calculate the U/Pu ratio and the respective salt content

was only approximately estimated by subtracting the measured

concentrations of U, Pu and Al from 100 wt.%.

Fig. 4 reports the X-ray diffraction patterns of the starting mate-

rial (top), the sample after distillation (middle) and of the conden-

sate after distillation deposited on the internal wall of the reactor

(bottom). The analysis indicated that the starting material was

composed mainly of AnAl3 (An: U, Pu) phases and the adhered

LiCl–KCl salt. In addition, a relatively low content of AnAl4
(An: U, Pu) was detected in some cases. After distillation

(Fig. 4_middle), the pattern of the obtained material displays the

absence of peaks corresponding to the salt LiCl or KCl, within the

uncertainty limit of the method. The XRD analyses of the conden-

sates (Fig. 4_bottom) yielded composition of pure LiCl–KCl and

some other peaks which could be assigned to LiCl hydrate formed

after absorption of moisture during the sample processing and

measurement. ICP-MS analysis of the condensate from run 2

proved no volatilisation of actinides, however almost 2 wt.% of Al

was detected in the condensate. It can be explained by presence

of some pure Al metal (melting point 660 °C) in the initial material,

originated probably from mechanical scraping of the deposit from

the Al plate.

The complementary analyses of XRD and ICP-MS showed an

excellent efficiency of the distillation step, as deposits containing

initially about 20 wt.% of salt were successfully treated with An

losses below the detection limit.

3.3.2. Chlorination and sublimation

About 300 mg of the product after distillation was used for

chlorination. The powder was ground and introduced in the same

BN crucible, the reactor was filled and flushed with Ar and heated

to the desired working temperature 150 °C. After the temperature

stabilised, Ar was substituted by pure Cl2 at a flow rate of 35ml/min

and the reactor was flushed for 40 min. The gas was introduced

directly above the surface of the material. The reactor was then

isolated under chlorine and left for 20 h. After this reaction time,

the reactor inlet and outlet were opened, Ar gas was introduced

and in the same time, the reactor was slowly cooled. After reaching

the room temperature, it was opened; the chlorination product

was weighted, transferred to an agate mortar, manually ground

and sampled. 300 mg of the product was as fast as possible put

back into the reactor and the complete procedure was repeated

for next 20 h using the same conditions.

The chlorination products from runs 1 and 2 consisted of homo-

geneously green powder, with no visually observable black metal-

lic-like residues, as shown in Fig. 5. In addition, the products

showed fully different properties than the initial material during

mechanical treatment and sample preparation. Indeed it was easily

ground with no resistance, which indicates absence of metallic

grains, it adhered to the tools, it absorbed humidity from the glove

box atmosphere and the powder samples were easily soluble in

Table 2

Description of the experimental procedure.

Step Temperature (°C) Time (h) Conditions

Distillation 800 8 Reactor evacuated to 4–6 � 10ÿ2 mbar, heated, kept under vacuum

Chlorination 150 2 � 20 Reactor filled with pure Ar, heated, flushed with Cl2 for 40 min at flow rate 35 ml/min, isolated

Sublimation 400 5 Reactor filled with pure Ar, heated, flushed constantly with Ar gas, flow rate 35 ml/min



1 M HNO3 with no insoluble residues. All these factors indicated a

very high efficiency of the chlorination process.

During the chlorination of deposit from the electrode 3, techni-

cal problems with the under pressurised glove box occurred,

Table 3

Mass balance of the salt distillation step Sample explanation: a – initial material, b – material after distillation, c – deposit condensed on the reactor walls during the distillation.

Distribution of U and Pu phases in XRD results is evaluated using U/Pu ratio from the ICP-MS analyses.

Run Sample Mass (mg) Mass loss (%) XRD (wt.%) ICP-MS (2c: ICP-OES) (wt.%)

UAl3 PuAl3 UAl4 PuAl4 UAl2 PuAl2 LiCl–KCl U Pu Al Zr LiCl–KCl

1 a 752.1 16.4 75.1 5.1 1.9 0.1 0.0 0.0 17.9 63.5 4.3 21.7 0.0 10.5

b 628.6 80.4 5.6 0.0 0.0 13.1 0.9 0.0 69.7 4.8 22.4 0.0 3.2

2 a 682.3 22.7 75.5 9.2 0.1 0.0 0.0 0.0 15.2 54.2 6.6 18.7 0.6 19.9

b 527.5 74.4 9.1 0.0 0.0 14.7 1.8 0.0 64.7 7.9 22.2 0.6 4.6

c n/a – 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 1.8 0.0 97.5

3 a 720.3 12.1 65.7 10.2 0.0 0.0 0.0 0.0 24.1 57.7 9.0 23.8 0.1 9.4

b 633.2 71.5 11.3 0.0 0.0 14.9 2.4 0.0 64.0 10.1 21.5 0.1 4.3

Fig. 4. XRD patterns of the initial material, the material after distillation and the condensate recovered from the cold parts of the reactor (first two patterns:

circles – experimental points, lines – Rietveld data analyses, last pattern – experimental curve with phase analysis). The hydrate of LiCl observed in the condensate was

formed during the analysis and XRD sample preparation.



leading to oxidation of the material. Thus the data obtained by XRD

could not be used to evaluate the process. The obtained product

had black colour and it contained significant amount of UO2 as

determined by XRD analyses.

After sampling, all the remaining material was introduced back

into the reactor in the same crucible and treated by sublimation.

The reactor was closed, filled with Ar gas, flushed constantly using

the same flow rate of 35 ml/min and heated to 400 °C. After 6 h, the

reactor was slowly cooled down to the room temperature, opened

to the nitrogen atmosphere of the glove box and the product was

sampled. The appearance and properties of the products did not

change after the sublimation step. A yellow-brownish condensate

formed during the chlorination and sublimation steps on the cold

reactor walls was scraped and analysed. The colour of the conden-

sates indicated possible volatilisation of uranium, especially during

run 1, for which a darker shade was observed.

A mass balance of the chlorination and sublimation steps and

an evaluation of efficiencies is summarised in Table 4. The evalua-

tion was based mainly on the Rietveld quantification of XRD re-

sults, which directly showed conversion rate of the alloys to

chlorides. The representative XRD patterns of the material after

first chlorination, sublimation and the condensate are compared

in Fig. 6. As discussed above and in Section 3.2, the samples con-

taining actinide and aluminium chlorides showed high moisture

affinity. All samples were processed, transported and measured

under conditions not providing sufficient good quality and stability

of the inert atmosphere. Therefore, some XRD measurements

yielded too high noise/signal ratio and they could not be quantified

by the Rietveld refinement method. The available results allow

evaluation of the process, but not separate assessment of the indi-

vidual steps. Therefore, the results of all steps including sublima-

tion are presented together, showing the overall efficiencies.

The chlorination and sublimation products from run 1 were

additionally analysed by ICP-MS. The analyses showed a slight de-

crease of Al content in the material after the sublimation step, but

the detected Al concentrations were higher than expected, 17.1

and 6.4 wt.%, respectively. The final product from run 2 was there-

fore also additionally analysed and it confirmed high Al content in

the chlorination and sublimation products, while the XRD analyses

based only on the crystalline phases considered for the quantifica-

tion showed only a minor content of phase with aluminium corre-

sponding to UAl3 as reported in Fig. 6 middle.

Due to the physical and chemical properties of the products

indicating very high conversion ratio of the alloys to chlorides, it

can be assumed that a major part of Al is present in the material

as AlCl3. This highly hygroscopic material was not detected by

XRD, as it probably lost its crystal structure due to the reaction

of the samples with moisture. This explanation is supported by a

higher background of the XRD patterns observed for all the con-

cerned samples, which can be explained by a presence of an amor-

phous phase. To determine its content in the sample, we used the

program Topas version 4.1 considering all the peaks as crystalline

phase and the broad peaks at high and low angle as the amorphous

phase. The air scattering at low angle is limited through the use of

sample holder equipped with a knife. The refinement evaluated 26

and 31 wt.% of amorphous content in the sublimation products.

Assigning this to AlCl3 only, the XRD results were in a good agree-

ment with those found by ICP-MS. All these indicate higher chlori-

nation efficiency, which was expected according to the last results

on pure UAl3 alloy using the same experimental conditions [3]. On

the other hand, these results assume rather low efficiency of AlCl3
sublimation step.

The condensates deposited on the cold parts of the quartz reac-

tor after the chlorination and sublimation were recovered and ana-

lysed by XRD and ICP-MS. The XRD results yielded in both cases

composition of pure AlCl3. In this case, the sample was constituted

mainly from AlCl3 and the present humidity could not therefore

transform the complete sample to an amorphous phase. However,

the background observed for the previous samples was also de-

tected and the intensity of signal was rather low, which indicates

Fig. 5. Final product after the complete chlorination procedure (green sticky

powder). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Table 4

Mass balance of chlorination and sublimation steps Samples: a – initial material, b – material after 1st chlorination, c –material after 2nd chlorination d – material after

sublimation, e – deposit condensed on the reactor walls during the chlorination and sublimation steps. Distribution of U and Pu phases in XRD results is evaluated using U/Pu

ratio from the ICP-MS analyses.

Run Sample Mass (mg) before/after the exp. step XRD (wt.%) ICP-MS (wt.%)

UAl3 PuAl3 UAl2 PuAl2 UCl4 UCl3 PuCl3 AlCl3 U Pu Al Zr

1 a 301.6 80.4 5.6 13.1 0.9 0.0 0.0 0.0 0.0 69.7 4.8 22.4 0.0

b 391.8/302.0 6.5 0.5 0.0 0.0 86.0 1.5 5.5 0.0 n/a n/a n/a n/a

c 269.4/174.1 n/a n/a n/a n/a n/a n/a n/a n/a 59.0 4.0 17.1 0.0

d 150.8 2.4 0.2 0.0 0.0 59.6a 7.6 4.2 26.0 62.9 4.3 6.4 0.0

e n/a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 2.0 0.0 14.8 0.0

2 a 300.4 74.4 9.1 14.7 1.8 0.0 0.0 0.0 0.0 64.7 7.9 22.2 0.6

b 394.6/300.2 13.7 1.3 1.8 0.2 74.1 2.4 6.5 0.0 n/a n/a n/a n/a

c 329.8/201.0 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

d 156.5 1.9 0.2 0.0 0.0 61.5a 0.0 5.4 31.0 54.5 5.5 9.4 0.2

e n/a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.5 0.1 27.5 0.4

a Including UOCl2 (1d) and UO2 (2d) originating from reaction of UCl4 with oxygen after the chlorination.



formation of a thin layer of an amorphous phase on the sample sur-

face. The ICP-MS measurements confirmed partial volatilisation of

U as shown in Table 4. It indicates high sensitivity of the process to

the working temperature, which should be further optimised. As

shown in previous work [3], the volatilisation of U could very likely

occur during the chlorination step, due to a slightly excessive

working temperature.

4. Conclusions

The chlorination route described in the previous work [3] has

been investigated using U–Pu–Al alloys prepared by electrochem-

ical deposition of the actinides on solid Al plates in molten LiCl–

KCl. The initial material contained the salt adhered on the surface

and in the pores of the formed deposits. All steps of the process

have been experimentally tested and evaluated using a combina-

tion of different analytical techniques.

In addition to a verification of some parameters of the electrore-

fining process for recovery of actinides from U–Pu–Zr alloy based

fuel, the study has yielded the following main conclusions on the

chlorination route:

ÿ The vacuum salt distillation process is very efficient at the given

conditions, i.e., temperature 800 °C and vacuum 5 � 10ÿ2 mbar.

The experiments have shown that the salt can be completely

removed without actinide loss.

ÿ The chlorination step also seems to be very efficient, but the

conversion ratio could not have been exactly evaluated. The

quantifications of the XRD patterns have yielded conversion

efficiencies 97–98%, assuming that amorphous phases in the

patterns are associated only with pure AlCl3. This assumption

is supported by ICP-MS results, which have yielded significantly

Fig. 6. XRD patterns of the material after 1st chlorination (top), sublimation (middle) and the condensate recovered from the cold parts of the reactor after sublimation

(bottom). UOCl2 detected in the sublimation product was probably formed during the sample preparation for XRD analysis.



higher Al content in the chlorination products than detected by

the analysis of the crystalline phases of the XRD patterns. The

appearance, physical and chemical properties of the products

indicated low or no content of the initial metallic alloy material.

Therefore, it have been concluded that the products contain

amorphous AlCl3, however the exact distribution of Al between

An–Al alloys and AlCl3 cannot be in principle determined from

the available data.

ÿ The sublimation efficiency seems to be relatively low, but can-

not be exactly evaluated, due to the facts discussed above.

ÿ It seems that uranium has been partly volatilised, as up to

2 wt.% of U has been detected in the condensate deposited on

the reactor cold walls during the chlorination and sublimation

steps. Since no U has been volatilised during the previous exper-

iments using UAl3 initial material at the same experimental

conditions, it indicates very high sensitivity of the process to

the working temperature. No influence of Pu on U volatilisation

is expected and the probable explanation is variations of tem-

perature during the chlorination experiment, especially in run

1. In the condensates from other runs, only 0.5 and 0.3 wt.% U

was detected.

The results have indicated that the chlorination route is a very

promising method, however the sublimation step has to be further

optimised and a precise temperature control is needed. Both these

factors can be advantageously influenced by using HCl gas instead

Cl2. Due to preliminarily thermodynamic calculations, the chlori-

nation using HCl gas can be carried out at significantly higher tem-

peratures without volatilisation of actinides, up to 400 °C. It would

very likely enhance sublimation of AlCl3 directly during the chlori-

nation step and the process would be more robust to temperature

changes.
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