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Abstract—Multi-satellite measurements of altimeter-derived
Sea Surface Height (SSH) and Sea Surface Temperature (SST)
provide a wealth of information about ocean circulation, espe-
cially mesoscale ocean dynamics which may involve strong spatio-
temporal relationships between SSH and SST fields. Within an
observation-driven framework, we investigate the extent to which
mesoscale ocean dynamics may be decomposed into a mixture
of dynamical modes, characterized by different local regressions
between SSH and SST fields. Formally, we develop a novel latent
class regression model to identify dynamical modes from joint
SSH and SST observation series. Applied to the highly dynamical
Agulhas region, we demonstrate and discuss the geophysical
relevance of the proposed mixture model to achieve a spatio-
temporal segmentation of the upper ocean dynamics.

Index Terms—SST, SSH, Observation-driven model, Latent
class regression, Mesoscale ocean surface dynamics

I. INTRODUCTION

IN the last two decades, multi-satellite measurements of

altimeter-derived Sea Surface Height (SSH) and multi-

sensor measurements of Sea Surface Temperature (SST) have

provided a wealth of information about ocean circulation and

atmosphere-ocean interactions. As a depth-integrated quantity

dependent upon the density structure of the water column,

altimeter SSH estimations capture mesoscale structures, hori-

zontal scales of 50 km to few hundred kilometers, and allow

for the retrieval of surface currents using the geostrophy

balance. This emerging and rich mesoscale circulation further

stirs the large-scale SST fields. Accordingly, our picture of

upper ocean dynamics has considerably evolved towards a

complex system characterized by strong interactions, whose

spatio-temporal variability extends over a wide range of scales.

Furthermore, several studies (cf. [20], [21], [17], [19], [13])

rationalize and demonstrate that fields of SST can become

an active tracer coupled to the dynamics leading to strong

correlations with SSH fields.

Such a framework can possibly guide the investigation and

implementation of improved statistical means to optimally

combine existing multi-altimeter SSH measurements with

other satellite medium to high resolution observations (e.g.,

microwave sea surface temperature and salinity, scatterometer

winds), augmented by the growing available in situ data (e.g.,

[1], [8], [26]). Theoretically, the upper ocean turbulence for the

horizontal scales between 50 km to few hundred kilometers is

still consistent with the geostrophy turbulence theory. Under

this assumption, the upper ocean dynamics may be simply

predicted from surface density horizontal variations possibly

dominated by SST variations. For such a case, a linear transfer

function shall be identified between SSH and SST fields to

also possibly lead to the estimation of the subsurface flow

(e.g., [16], [20]). This linear transfer function does not involve

temporal differencing as in the maximum cross-correlation

technique or alternate strategies (e.g., [4], [23], [7]). Note that

other recent papers use nonlinear transfer functions to relate

SST and SSH fields (e.g., [12]).

This strongly advocates for observation-driven studies to

explore and characterize the local relationships between SST,

SSH and the derived surface currents from satellite-based

routine observations. Yet, as illustrated in Fig. 1, a simple

linear transfer function cannot be expected to solely govern

the whole mesoscale dynamics in a particular ocean region. As

revealed, an overall spatial correlation exists, but for instance,

relationships between SST gradients and altimetry-derived

surface currents may spatially differ. In the warmer SST frontal

zone, SST gradients correspond to large surface currents (top

of the image). In the colder frontal area, large SST gradients

do not reflect in large surface currents (bottom of the image).

Besides, the clearly detected eddy (top-left of the image) is

associated with weak SST gradients.

Within an observation-driven framework, one may consider

joint PCA/EOF (Principal Component Analysis, Empirical Or-

thogonal Functions) procedures to decompose the relationships

between SST and SSH fields, as widely used in ocean sensing

applications (cf. [22], [6]). Such EOF-based schemes would

however resort to a single linear and global model. As such,

this model could not address the spatial non-stationarity of the

SST-SSH relationships illustrated in Fig. 1. By contrast, we

here consider local linear transfer functions. We assume that

locally, upper ocean dynamics may be analyzed according to a

finite mixture model, where each component of the mixture is

characterized by a local SST-SSH linear transfer function. This

mixture-based representation relates to a nonlinear model with

assumptions in accordance with the observations made above

between SST and surface currents. In this paper, we propose to

investigate such a model to (i) develop a probabilistic learning-

based setting for the inference of such mixture models and

the spatio-temporal segmentation of the identified dynamical

modes (i.e., the different components of the mixture model),

and (ii) evaluate the extent to which such mixture models

are geophysically relevant to characterize the upper ocean

dynamics over active ocean regions.
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Hereafter we consider the Agulhas region, and the paper is

organized as follows. Section II presents the remote sensing

data and describes our probabilistic learning-based model.

In Section III, the application to satellite observations is

evaluated. We further discuss and summarize the key results

of our investigations in Section IV.
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Fig. 1. Surface currents derived from altimeter SSHs and microwave SSTs
(a) with the associated temperature gradient norms (b) within the Agulhas
return current the 1st of January, 2004.

II. DATA AND METHODOLOGY

A. Patch-based approach

As mentioned above, recent theoretical and numerical ex-

periments have stressed that upper ocean dynamics may be

characterized by couplings between SSH and SST according

to the following relationship in the Fourier domain (cf. [14]):

FH(ŜSH) = −γ|k|−αFT (ŜST) (1)

where k is the horizontal wavenumber vector, FH and FT are

linear filters of SSH and SST respectively. The α parameter

sets up the effective coupling between surface fields. For

α = 1, Eq. (1) resorts to the Surface Quasi-Geostrophy (SQG)

model. In [16], FH and FT were band-pass filters between

80 km and 300 km. As α increases, the smoothing increases

and couplings decreases. For α = 2, the filtered SST would

trace the vorticity. Formally, Eq. (1) states that surface currents

can be regarded as spatial derivatives of a filtered version of

the SST field. The parameter γ relates to a normalization

constraint. In general, parameters γ and α as well as the

definition of the filters FH and FT , may spatially vary such

that a single linear transfer function as in Eq. (1) is unlikely

to apply globally as illustrated in Fig. 1.

These considerations led us to hypothesize that zonal and

meridional surface currents noted (U,V) and SSH can still

locally relate to SST derivatives, but according to a finite

set of K linear transfer functions, hereafter referred to as

K dynamical modes. Formally, this is stated in the Fourier

domain as

(ŜSH, Û, V̂) = Hk(ŜST) (2)

where Hk characterizes the kth dynamical mode, which lo-

cally relates SSH and SST fields through linear filter Hk. In

this study, we do not consider any band-pass filters FH and

FT . Using a matrix formulation, Eq. (2) is rewritten in the

real domain as a patch-based linear regression

Y(si, ti) = Hk(X(si, ti)) (3)

where Y(si, ti) encodes the local SSH variability through a

3-dimensional vector formed by the SSH value and the surface

current (U,V) at spatio-temporal location (si, ti) and X(si, ti)
is the vectorized version of the local SST patch centered in si
at time ti (cf. Fig. 2). It may be noted that we encoded local

SSH variations at spatio-temporal location (si, ti) through the

surface currents which are computed as the spatial derivatives

of the SSH field. As such, it constrains the method to account

for spatial regularity. The linear operator associated with

dynamical mode k is corresponding to the local version of

Hk in Eq. (2). It corresponds to three vectorized versions of

spatial convolution matrices. Here, p defines the size of the

local SST neighborhood around si and is set according to the

Rossby radius of the study region, i.e. the mean size of the

mesoscale ocean structures like eddies. For the Great Agulhas

current region, we set it up to 200 km, i.e. p = 81 for the

spatial resolution of the considered data.

B. Remote sensing data

As SSH and surface geostrophic current (U,V) data, we use

the daily delayed time Maps of Absolute Dynamic Topography

(MADT) produced by Collecte Localisation Satellites (CLS)

available online at http://www.aviso.oceanobs.com/. This in-

formation combines the signal of several altimeters onto a

1/3◦ Mercator projection grid. We use the 2004 data since

four altimeters were available (Jason-1, Envisat or ERS-2,

Topex/Poseidon and GFO). As SST data, we use optimally

interpolated microwave SSTs provided by Remote Sensing

System (RSS) available online at http://www.ssmi.com/. It

combines the signal of three microwave radiometers (TMI,

AMSR-E and WindSAT) which are robust to the presence of

clouds. The spatial resolution is 1/4◦×1/4◦ and the temporal
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Fig. 2. Sketch of SST patches (in degree represented in false colours,
the more red the hoter), noted X, and the corresponding SSHs (in meter
represented by dots, the bigger the higher) and surface currents (in meter per
second represented by quivers, the longer the stronger) noted Y at the central
location si and sj at time ti.

resolution is the same as the MADT data, i.e. daily. We

bilinearly interpolate the MADT data onto the SST grid. We

focus on the Agulhas region between longitudes 5◦E to 65◦E

and latitudes 30◦S to 48 degreeS.

Given the joint series of satellite observations, we extract

SST patches (noted X) and the associated SSH with surface

current (U,V) at the center of the patches (noted Y). Overall,

the processed dataset is composed of ∼ 5×106 pairs of vectors

X and Y. To infer the parameters of the considered mixture

model, i.e. the parameters of each dynamical mode in Eq.

(3), we first build a training dataset as a random sample of

n = 105 elements (for a given day, we use about 2% of the

data to fit the model). In a second step, we apply the inferred

mixture model to the entire processed dataset to extract the

spatio-temporal of the different dynamical modes.

C. Latent class regression model

Our objective is to identify K different dynamical modes

(latent variable Z) from a joint set of SST patches (p-

dimensional vector X) and SSH with zonal and meridional

surface currents (3-dimensional vector Y). In this paper, we

assume that the conditional probability of Y given X and the

dynamical mode Z = k is given by

p (Y|X, Z = k) ∝ Nk (Y;Xβk,Σk) (4)

where Nk represents a multivariate Gaussian probability den-

sity function evaluated in Y with mean Xβk and covariance

Σk. Hence, the conditional probability of Y|X resorts to a

mixture of Normal distributions

p (Y|X,θ) =

K∑

k=1

λkNk (Y;Xβk,Σk) (5)

where λk is the prior probability of mode k. To simplify

the notations, we store the overall parameters of Eq. (5) in

θ = (λ1, . . . , λK ,β
1
, . . . ,βK ,Σ1, . . . ,ΣK). In the literature,

this model is referred to as a “latent class regression” or

“clusterwise regression” (cf. [10]). By construction, it imposes

that 0 ≤ λk ≤ 1,
∑

K

k=1
λk = 1 and Σk is positive

defined. The maximum likelihood estimation procedure for

model parameters θ is given below.

D. Model learning

To learn model parameters θ in Eq. (5), we resort to a

maximum likelihood criterion and use an iterative Expectation-

Maximization (EM) procedure (cf. [9]). It relies on the maxi-

mization of the log-likelihood given by

L (θ) =
n∑

i=1

log (p (Y(si, ti)|X(si, ti),θ)) (6)

where n is the number of observations of the training dataset

described in Section II-B. From a given initialization, the EM

procedure iterates an E-step (Expectation-step) and M-step

(Maximization-step). At a given iteration, using the Bayes

theorem, the E-step resorts to the computation of the posterior

probabilities of the latent variable Z for each spatio-temporal

location (si, ti) given current parameter estimate θ̂:

π̂k(si, ti) =
λ̂kNk

(
Y(si, ti);X(si, ti)β̂k, Σ̂k

)

p
(
Y(si, ti)|X(si, ti), θ̂

) , ∀k. (7)

The M-step then minimizes the expectation of the log-

likelihood conditionally to the current parameter estimate θ̂.

This leads to the update of the prior probabilities of the latent

variable Z as

λ̂k =

∑
n

i=1
π̂k(si, ti)

n
, ∀k. (8)

The updated regression parameters β̂k, ∀k are derived by

fitting K distinct linear regressions using a weighted least

square criterion on the n observations where the weights are

given by the posterior probabilities given in Eq. (7) as in [25].

Then, we maximize L with respect to Σk and obtain

Σ̂k =

∑
n

i=1
π̂k(si, ti)ǫk(si, ti)

⊤ǫk(si, ti)∑
n

i=1
π̂k(si, ti)

, ∀k (9)

where ǫk(si, ti) = Y(si, ti) − X(si, ti)β̂k and ⊤ represents

the transpose. The algorithm iterates the E-step and M-step

until a negligible increase of the log-likelihood L which is

strictly growing.

A key aspect of the latent class regression is the choice

of K, the number of clusters. Different statistical criteria

state the selection of parameter K as a trade-off between

the likelihood and the complexity of the model (cf. [18])

such as the Akaike Information Criterion (AIC). However, the

optimization of these criteria makes no effort to distinguish the

error explained by the regression fit and the error explained by

the clustering process. In practice, there is an actual potential

for overfitting with latent class regression model (cf. [5]).

Then, for a given number of clusters K, we suggest different

evaluations of the EM algorithm to reach a greater consistency

in the estimation of model parameters (cf. [15]). The idea is
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to use random values π̂k as initialization values of the EM

procedure and select parameter estimates corresponding to the

greatest likelihood (see [3] for more details). In our case, the

inference based on AIC would lead to K values between 4

and 9. We performed a complementary qualitative analysis and

the setting K = 4 resulted as a good trade-off between the

geophysical interpretation of the model and regression error

statistics (i.e., the maximization of the likelihood).

E. Spatio-temporal segmentation of dynamical modes and

SSH/current predictions

We exploit the inferred mixture model with parameter θ̂

to perform a spatio-temporal segmentation of the underlying

dynamical modes. More precisely, for any spatial location s
and time t within the Agulhas region over the year 2004 (cf.

processed data in Section II-B), we use Eq. (7) to evaluate

the posterior probability π̂k(s, t) for the K = 4 dynamical

modes. Then, the pixels will be assigned to the most likely

dynamical mode. One can also estimate for each time t, the

relative spatial occurrence of each dynamical mode using Eq.

(8). Besides, using Eq. (3), the estimation of the SSH and

surface current at the spatial location s and time t from the

associated SST patch follows from the fuzzy regression

Ŷ(s, t) =
K∑

k=1

π̂k(s, t)X(s, t)β̂k (10)

where the β̂k parameterize the linear operator Hk. They

correspond to the p×3 regression coefficient matrices between

the patch of SSTs (X in degree) and the central value of

SSH along with zonal U and meridional V components of the

surface currents (Y in meter and meter per second). All the

locations of the Agulhas current share the same K matrices

β̂k which are not changing temporally nor spatially. It may

be outline that no additional constraint is set on the posterior

probabilities π̂k(s, t), which could reveal space-time variations

of the distribution of the dynamical modes (including seasonal

variations).

III. CHARACTERIZATION OF OCEAN SURFACE DYNAMICS

We first report the temporal evolution of the relative spatial

occurrence of the K = 4 dynamical modes (cf. Fig. 3). The

dynamical modes involve clear seasonal cycles. Dynamical

modes 1 (red) and 4 (blue) depict similar temporal variations,

completely out of phase with dynamical modes 2 (green) and

3 (cyan). To study the spatial distribution of these dynamical

modes, we focus on two dates corresponding to the maximal

and minimal values of the seasonal cycle, namely the 1st of

March and the 1st of September, 2004. They correspond to

the maximum or minimum values of the λ̂k.

For these two dates, from the maps of posterior probabil-

ities π̂k(s, t), we determine the segmentation maps of each

dynamical mode as illustrated in Fig. 4. The animations of

the time series of these daily maps in the Agulhas current

over 2004 are available as supplementary material or online at:

http://tandeo.wordpress.com/communications/articles/. A first

qualitative analysis of these maps highlights a clear spatio-

temporal segmentation of the different dynamical modes that

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.15

0.2

0.25

0.3

0.35

0.4

P
rio

r 
pr

ob
ab

ili
ty

Fig. 3. Time series of the relative proportion of locations associated with
the four dynamical modes within the Agulhas region for the year 2004. In the
subsequent, colors red, green, cyan and blue respectively distinguish the first,
second, third and fourth dynamical modes. The straight lines correspond to
a six month time separation: 1st of March and 1st of September, 2004. The
corresponding spatial maps of the posterior probabilities for each dynamical
mode are given in Fig. 4.

can be interpreted from a geophysical perspective in terms

of different geophysical processes. We also report for each

dynamical mode the observed distributions of current, height

and temperature values (cf. Fig. 5). The first dynamical mode

(red) characterizes very strong current magnitude and warm

waters. It is primarily associated with the main Agulhas current

that flows down the East coast of Africa through the Agulhas

ridge. This mode also involves mesoscale eddies, the so-called

warm core Agulhas rings with strong surface currents, low

temperature gradients and middle-range SSH values around

0.5 m. The later seems to be a discriminative feature of this

first mode. The second dynamical mode (green) mainly relates

to the eastward Agulhas return current that hits a part of the

South Atlantic current. It creates a subtropical front varying

from 36◦S to 44◦S with strong eastward currents, middle-

range SST gradients and large SSH values (about 1 m). This

front was clearly observed in the upper part of Fig. 1(b). The

third (cyan) and fourth (blue) dynamical modes correspond

to weaker surface currents. The third one is characterized by

mid-temperatures and westward currents whereas the fourth

one involves colder temperatures and eastward currents. Let

us stress that the third dynamical mode involves large SST

gradients but weak surface currents as identified in the lower

part of Fig. 1(b). In this mode, the SST can be clearly identified

as a passive tracer of the surface upper ocean dynamics.

To characterize more precisely the inferred model, we plot

the regression line and the 95% confidence region from the

estimated parameters β̂k and Σ̂k of each dynamical mode (cf.

Fig. 6). These results clearly stress the relevance of a mixture

model, compared to a single linear model (represented as the

black line). Similar slopes are observed for the second and

third (green and cyan) dynamical modes as well as the first

and fourth (red and blue) ones. Stronger differences among

the dynamical modes are outlined regarding the associated

regression error variances. We can notice that the the first

mode involves the greater variance and the fourth one the

lower one.

We further investigate the geophysical consistency of the

identified dynamical modes from the comparison between the

true MADT SSH and surface currents in Fig. 7(a) and the
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Fig. 5. Distribution of the SST (a), SSH (b), surface current (U,V) norm (c)
and direction (d). The results are given for each dynamical mode within the
Agulhas current for the whole year 2004.

prediction of the latent class regression model in Fig. 7(b)

given by Eq. (10). Overall, as reported in Table I, a good

agreement is obtained with a global correlation coefficient of

0.72 for the surface currents and 0.96 for the SSH; it can

locally be very large as illustrated in the right column of

Fig. 7 (corresponding to the zone depicted in Fig. 1). This

zone involves the four dynamical modes. The mixture model

enables us to retrieve both the large warm eddy associated with

weak SST gradients (top-left of the zone and first dynamical

mode), the relatively large surface currents along the large

warmer SST gradients (upper part and second mode), as well

as the rather weak currents along the large but colder SST front

(lower part and third mode). For comparison purposes, we also

plot the results issued from a single linear transfer function

in Fig. 7(c). This model clearly underestimates the surface

Fig. 6. SSH as a function of SST. For each dynamical mode, we give the
regression line and the 95% confidence envelope. The four regressions are
highly significant (p-values < 10−3). The black line is a benchmark curve
corresponding to the global linear regression (with a one-mode model).

currents within the warm eddy (top-left) and overestimates the

currents of the colder frontal zone (lower part), which stresses

the requirement for considering a mixture model.

To further characterize each dynamical mode, we report

in Table II the correlation and RMSE statistics computed

within the associated spatio-temporal domain, i.e. the domain

comprising all spatio-temporal locations assigned to dynamical

mode k according to posterior probabilities π̂k(s, t) computed

in Eq. (7). We compare the latent class regression model

with respect to both the true MADT data and a SQG-like

hypothesis, i.e. Eq. (1) with α = 1, within the space-time

region associated with each dynamical mode. This analysis

clearly discriminates the second and fourth modes from the

first and third modes. The linear transfer functions of the

second and fourth dynamical modes capture a large part of

the variability of the true SSH data. These first two modes

have also a good consistency with the SQG hypothesis,

correlation coefficients of 0.63 and 0.68, respectively. These

results suggest that the SST might be regarded as an active

tracer of the surface dynamics in the associated regions. By

contrast, the SQG hypothesis poorly fits to the first and third

dynamical modes, with correlation coefficients of 0.33 and

0.27, respectively. These two dynamical modes also involve a

slightly lower predictability of the linear transfer functions to

retrieve the SSH and surface currents.

To summarize, the four dynamical modes correspond to

different physical parameter values in Eq. (1). The second and

fourth modes seem to correspond to α ≃ 1 (close to the SQG

model) whereas the first and fourth modes appear to be α > 1
(coupling of SST and SSH at large scales). The factor γ relates

to the amplitude of the surface geostrophic currents: large

values relate to strong currents as retrieved for modes 1 and 2,

and low values relate to strong currents as observed for modes

3 and 4. Overall, these results are consistent with the previous



6

work reported in [16] and [27]. In particular, Isern-Fontanet

et al. explored the SQG hypothesis from a phase-correlation

analysis between SSH and SST fields, while Xu et al. explored

the coupling assumption from a spectral analysis of SSH

fields. These authors concluded that SQG-like dynamics would

mainly occur near the edge of the large current system.

Compared to these analysis, our contribution is two-fold: the

quantitative characterization of the extent to which the SQG

dynamics applies through correlation statistics as well as the

actual space-time tracking of the regions associated with SQG-

like and non-SQG dynamical modes.

IV. CONCLUSION AND PERSPECTIVES

In this paper, we propose an observation-driven framework

to identify, characterize and track ocean surface dynamical

modes. We rely on a latent class regression model, where the

dynamical modes are characterized by a local linear transfer

function between SST, SSH and surface current (U,V), in

agreement with the theoretical assumption given in Eq. (1).

This probabilistic approach locally relates the distribution of

the SSH and sea surface currents conditionally to the SST

via a nonlinear model: a Gaussian mixture of linear transfer

functions. The statistical parameters of the model are estimated

using a maximum likelihood approach.

We applied the proposed methodology to the 2004 daily

1/4◦×1/4◦ satellite SST and SSH image series. The reported

results retrieved a relevant spatio-temporal decomposition of

ocean surface dynamics in the Agulhas region according to

four dynamical modes: (i) the main Agulhas current and

warm core rings characterized by strong currents and hot

temperatures where the SST is weakly correlated with SSH,

(ii) the return Agulhas current with lower temperatures and

currents where the SST is an active tracer, (iii) local front

regions where strong SST gradients do not seem to affect the

current velocities, and (iv) a weaker dynamical mode where

SST is strongly correlated to SSH.

Our study complements previous theoretical studies which

showed that mesoscale upper ocean dynamics may be charac-

terized by a linear coupling between SST and SSH (cf. [20],

[21], [17], [19], [13]). Following a fully observation-driven

framework, the proposed latent regression model enabled us

to identify different dynamical modes, including some SQG-

like ones, and to track the space-time extension of each

dynamical mode. The reported results clearly pointed out the

requirement for considering a mixture model to decompose

the space-time variabilities of the ocean surface dynamics.

Regarding methodological aspects, it may be pointed out that

EOF-based schemes (cf. [22], [6]) could not reveal such non-

stationary space-time variabilities. Joint EOF scheme typically

decomposes a global linear mapping between the analyzed

fields according to principal modes. In our case, such an EOF

decomposition could be considered for each dynamical mode

to further characterize the associated linear transfer function

with respect to joint SST-SSH principal modes.

Regarding our future work, we will further investigate latent

class regression models with additional regressors. Among

others, it seems appealing to explore how time-lagged SST

features and other geophysical fields such as wind speed,

mixed-layer depth, salinity and chlorophyll-a concentration

(cf. [24]) could improve the estimation of SSH and surface

currents. We also plan to apply the proposed model to other

strongly active ocean regions such as the Gulf Stream system.

Our objective will be to determine shared and/or system-

specific dynamical modes. Future work will also investigate

more detailed physical interpretation of the identified dynam-

ical modes, especially in terms of spectral characteristics.

For instance, it would be interesting to relate more precisely

the physical parameters γ and α of Eq. (1) to the different

hidden dynamical modes extracted by our statistical approach.

Whereas factor γ seems to be well estimated in this present

paper, the spatial resolution of the satellite data (up to 50 km)

does not permit to detect dynamical modes with α < 1, corre-

sponding to more local couplings between geophysical fields.

Besides, such an improved model shall then possibly address

both (i) the higher resolution prediction of mesoscale ocean

surface currents from SST spatio-temporal fields (and improve

the non geostrophic components estimation as in [23], [7]), and

(ii) the extraction of new local and global descriptors of ocean

surface dynamics from satellite sea surface observations (cf.

[2], [11]).
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(a) 1st of March, 2004 (b) 1st of September, 2004

Fig. 4. Maps of the posterior probabilities given in Eq. (7) of the dynamical modes given the SST and SSH fields, the 1st of March (a) and the 1st of
September (b), 2004 within the Agulhas current. We use a four-class latent regression model fitted from the whole year 2004 (see text for details). For a given
location and time, the sum of the four probabilities is equal to 1. The animations of the daily maps is available as supplementary material.

TABLE I
CORRELATION AND RMSE STATISTICS WITHIN THE AGULHAS CURRENT FOR THE WHOLE YEAR 2004. THE LABELS “MADT”, “LINEAR” AND

“LATENT” REFER RESPECTIVELY TO THE TRUE MADT DATA, THE LINEAR MODEL AND THE PROPOSED LATENT CLASS REGRESSION MODEL. ALL THE

CORRELATIONS ARE STATISTICALLY SIGNIFICANT (P-VALUES < 10−3).

Correlation (RMSE) SSH (U,V)

MADT LINEAR 0.89 (0.22) 0.61 (0.19)
MADT LATENT 0.96 (0.16) 0.72 (0.16)

TABLE II
CORRELATION AND RMSE STATISTICS FOR SPATIO-TEMPORAL LOCATIONS ASSIGNED TO EACH DYNAMICAL MODE ACCORDING TO POSTERIOR

PROBABILITIES COMPUTED IN EQ. (7) WITHIN THE AGULHAS CURRENT FOR THE WHOLE YEAR 2004. THE LABELS “MADT”, “SQG” AND “LATENT”
REFER RESPECTIVELY TO THE TRUE MADT DATA, A SURFACE QUASI-GEOSTROPHIC HYPOTHESIS AND THE PROPOSED LATENT CLASS REGRESSION

MODEL. ALL THE CORRELATIONS ARE STATISTICALLY SIGNIFICANT (P-VALUES < 10−3).

Correlation (RMSE) Mode 1 Mode 2 Mode 3 Mode 4

SSHMADT SSHLATENT 0.72 (0.26) 0.93 (0.16) 0.97 (0.13) 0.96 (0.12)
(U,V)MADT (U,V)LATENT 0.62 (0.33) 0.88 (0.15) 0.63 (0.08) 0.88 (0.06)
(U,V)MADT (U,V)SQG 0.33 (0.41) 0.63 (0.28) 0.27 (0.25) 0.68 (0.18)
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(a) True MADT data
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(b) Latent class regression
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(c) Linear regression

Fig. 7. True Maps of Absolute Dynamic Topography (MADT) data (a) and the results for the proposed latent class regression model (b) using Eq. (10) and
for the linear model (c), the 1st of January, 2004 within the Agulhas current. The left column corresponds to the SSH and the right column corresponds to
the SSH and surface currents (U,V) for the zone depicted in Fig. 1 and in the black box.


