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Abstract. On-line parameter adaptation schemes are widely used in
metaheuristics. They are sometimes preferred to off-line tuning tech-
niques for two main reasons. First, they promise to achieve good per-
formance even on new instance families that have not been considered
during the design or the tuning phase of the algorithm. Second, it is
assumed that an on-line scheme could adapt the algorithm’s behaviour
to local characteristics of the search space. This paper challenges this
second hypothesis by analysing the contribution of the parameter adap-
tation to the performance of a state-of-the-art Reactive Tabu Search
algorithm for the Maximum Clique Problem. Our experimental analysis
shows that this on-line parameter adaptation scheme converges to good
instance-specific settings for the parameters, and that there is no evi-
dence that it adapts to the local characteristics of the search space. The
insights gained from the analysis are confirmed by further experiments
with a Reactive Tabu Search algorithm for the Quadratic Assignment
Problem. Together, the results on the two algorithms shed some new
light on the reasons behind the effectiveness of Reactive Tabu Search.

1 Introduction

Optimisation problems arise in many areas of science and engineering. The re-
cent years have seen an explosion of Stochastic Local Search (SLS) methods such
as Tabu Search [19,21], Memetic Algorithms [29], Iterated Local Search [26], Ant
Colony Optimisation [16,17], and many others for tackling NP-hard optimisation
problems. These methods are often characterised by a large number of param-
eters that allow selecting and fine-tuning of algorithmic components. Unfortu-
nately, the performance of these SLS methods can vary strongly depending on
the parameter settings, and proper parameter settings can be rather disparate
for different problems or instances of a given problem. As a solution to this,
on-line parameter adaptation schemes have been proposed [18,41]. A prominent
representative of such schemes is Reactive Tabu Search (RTS) [7]. RTS is an SLS
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method that uses the search history for adapting the length of the tabu list, a
parameter that is known to be crucial for Tabu Search performance.

RTS is part of the wider framework of Reactive Local Search [4], which
advocates, more in general, the use of memory for the on-line adaptation of
parameters that control the tradeoff between intensification and diversification in
SLS algorithms. Our study focusses on RTS because it is a well known algorithm.
In fact, after the seminal paper published in 1994 by Battiti and Tecchiolli [7], it
has been applied successfully to several optimisation problems [3,14,30,31,40,43].

RTS and, more in general, on-line parameter adaptation schemes are claimed
to offer the following two advantages over off-line tuning techniques. First, there
is no need for an extensive tuning phase before they can be deployed; therefore,
in principle, they could be effective when applied to entirely new instance classes
having properties that have not been seen during the design or the tuning phase.
Second, while an SLS algorithm navigates the search space by moving from a
candidate solution to a neighbouring one, a parameter adaptation scheme can
adjust the algorithm’s parameters to local characteristics of the search space; this
is a property that intuitively should give the adaptation scheme an advantage
over a parameter setting that is kept fixed during the search. Nevertheless, deep
insight into the algorithm is necessary to design an effective adaptation scheme;
it is in fact essential to know which is the most crucial, or which are the few
most important parameters to adapt, and how to adapt them.

In this work, we analyse the dynamics of RTS-MCP [5] a recent state-of-
the art RTS algorithm for a prominent combinatorial optimisation problem: the
Maximum Clique Problem (MCP). We confirm the insight obtained in the study
by analysing a RTS for the Quadratic Assignment Problem (QAP), which is the
first reactive tabu search algorithm proposed in the literature [7], and a state-
of-the-art algorithm for specific instance classes. We will refer to this algorithm
as RTS-QAP.

In this study, we aim at getting evidence in favour or against the following
two hypotheses: the first one is that RTS is able to adapt the tabu list length
parameter to a good instance-wise setting; the second one is that RTS also
adapts to local characteristics of the search space. To study the first hypothesis,
in Section 2.3, we present an analysis on the best instance-wise parameter setting
for the benchmark instances used in this study. Then, in Section 2.4, we analyse
the dynamics of the parameter adaptation scheme of RTS-MCP. To study the
second hypothesis, in Section 2.5 we compare RTS-MCP with a variant having
a fixed setting of the tabu list length. To further strengthen the results we also
compare, in Section 2.6, RTS-MCP with a variant that sets, at each step, the
value of the tabu list length to a random value. Building on the analysis of
the previous sections, we present in Section 2.7 a Robust Tabu Search for the
MCP. The results we obtained on RTS-MCP, are confirmed in Section 3 by an
analogous analysis on RTS-QAP. In Section 4 we draw the conclusions.



2 The Maximum Clique Problem

A clique in a graph G = (V,E) is a subset S ∈ V , in which all nodes are pairwise
adjacent, that is, ∀u, v ∈ S ∃(u, v) ∈ E. The MCP is to find a clique of maximum
cardinality.

MCP is a well studied NP-hard combinatorial optimisation problem [2,9]
with important applications in data mining [8], computer vision [35], social
network analysis [32], computational biochemistry [13], bio-informatics [23,27],
genomics [34], and biological networks [1,44]. The problem received a lot of
attention in the literature, and it was one of the problems of the second DI-
MACS implementation challenge [25,15]. Also in the past few years before the
writing of this paper, several new SLS algorithms for the MCP have beeen pro-
posed [37,36,20,5,38].

2.1 RTS-MCP

RTS-MCP is a state-of-the-art reactive tabu search algorithm that was origi-
nally proposed by Battiti and Protasi [6] and further improved by Battiti and
Mascia [5]. The algorithm goes through a series of greedy constructions, and
diversifies by means of a tabu search and frequent restarts.

More in detail, in RTS-MCP, the neighbourhood of a candidate solution
amounts to all cliques that can be reached by adding or dropping a node from
the current solution. A data structure called PossibleAdd contains the nodes that
are adjacent to all nodes of the current solution. RTS-MCP starts by selecting a
random node in the graph, and by initialising the set PossibleAdd accordingly.
Successively, the algorithm constructs a candidate solution by adding nodes from
PossibleAdd. During this construction, nodes are selected among those having
the highest degree in the subgraph induced by PossibleAdd. Ties are broken ran-
domly. In this way, RTS-MCP tries to add the nodes that in the successive steps
lead to the least reduction of the size of PossibleAdd. When PossibleAdd is empty,
RTS-MCP has reached a local optimum; at this point, the algorithm removes a
node from the current solution by selecting randomly among those that when
dropped lead to the maximum increase of the size of PossibleAdd. RTS-MCP
alternates between these constructions and node removals, and ensures diversifi-
cation by means of a tabu search. Each time a node is added or dropped from the
current solution, the move cannot be undone for the successive T steps, where T
is a parameter of the algorithm. Moreover, if the best solution seen so far is not
improved for a number of steps larger than R times the size of the largest clique
found so far, the algorithm is restarted. In RTS-MCP, the restart parameter R
is fixed to 100.

The length T of the tabu list is a crucial parameter for the performance of
tabu search since it controls the amount of intensification and diversification of
the algorithm. The tabu list length is initialised to 1, and successively adapted
on-line by leveraging the history of the search. All cliques encountered during
the search are stored in a data-structure; every time a cycle is detected, that
is, the same solution is revisited within 2 · (numNodes − 1) steps, the tabu list



length T is set to max{T + 1,T · 1.1}. If since the last update of the parameter
T no repeated solutions are encountered for a number of steps greater than
20 · SizeBestCliqueSoFar, the tabu list length is set to min{T− 1,T · 0.9}. Since
too many repetitions could lead to an explosion of the values taken by the
parameter, the algorithm sets a threshold MAXT = SizeBestCliqueSoFar + 0.5.
Therefore, the tabu list length can only take values in the interval [1,MAXT].
See the paper by Battiti and Mascia [5] for more details.

2.2 The benchmark set

The most used benchmark set for the MCP in the literature was proposed about
20 years ago in the Second DIMACS Implementation Challenge (1992–1993) [15].
Since the benchmark set has been around for so many years, SLS algorithms have
become very effective in solving these instances. The benchmark set is composed
of

– the C and DSJC families with instances ranging from 125 to 4000 nodes;
– the Brockington-Culberson (brock) family with instances ranging from 200

to 800 nodes; these random instances have been created by hiding the max-
imum clique among nodes that have a relatively low degree [11];

– the Mannino (MANN a) family, with instances ranging from 378 to 3321
nodes; these instances are generated starting from set covering problems on
Steiner triple graphs;

– the Keller (keller) family, with instances ranging from 171 to 3361 nodes;
these instances are based on Keller’s conjecture on tilings using hypercubes;

– other random instances ranging from 200 to 1500 nodes; these instances
belong to the gen, hamming, and p hat families, and are usually solved to
optimality in few milliseconds.

From the subset of instances that are commonly used to compare algorithms for
the MCP, we remove the keller4 and the hamming8-4 instances since they are
typically solved in the first construction. In Appendix A, we present a new best
solution of size 1100 for the instance MANN a81. To the best of our knowledge,
this is the first time a solution of size 1100 is presented in the literature.

Table 1 summarises the properties of the instances in the benchmark set. The
smallest among these instances can be solved in few thousand steps of RTS-MCP,
which, on a desktop computer with a CPU running at 2GHz, translates to less
than one millisecond of CPU-time. On those instances, comparing algorithms
based on their CPU-time becomes difficult because of the limited resolution in
the functions used for measuring CPU-time. Despite the issues with these small
instances, this benchmark set is still the standard one used to compare algorithms
on MCP, and there still remain some hard instances such as C2000.9, MANN a45,
MANN a81, and the brock800 instances, where finding the best-known solutions
takes more than tens of millions of steps. To present the results uniformly on
such a heterogeneous benchmark set, we compare RTS-MCP and its variants on
the number of steps to reach the best-known solution. For the instances for which



instance ω(G) best # nodes # edges graph deg. dist. best deg. dist.
C125.9 ≥ 34 34 125 6 963 112.0 (5.00) 114.5 (4.75)
C250.9 ≥ 44 44 250 27 984 224.0 (6.00) 227.0 (5.00)
C500.9 ≥ 57 57 500 112 332 449.0 (9.00) 455.0 (9.00)
C1000.9 ≥ 68 68 1 000 450 079 900.0 (13.00) 907.0 (11.25)
C2000.9 ≥ 80 80 2 000 1 799 532 1 800.0 (18.00) 1 803.0 (15.25)
DSJC1000 5 15 15 1 000 499 652 500.0 (20.00) 503.0 (23.00)
DSJC500 5 13 13 500 125 248 250.0 (16.00) 259.0 (14.00)
C2000.5 ≥ 16 16 2 000 999 836 999.0 (30.00) 1 006.0 (11.50)
C4000.5 ≥ 18 18 4 000 4 000 268 2 001.0 (42.00) 2 002.0 (41.00)
MANN a27 126 126 378 70 551 374.0 (0.00) 374.0 (0.00)
MANN a45 345 345 1 035 533 115 1 031.0 (0.00) 1 031.0 (0.00)
MANN a81 ≥ 1 100 1 100 3 321 5 506 380 3 317.0 (0.00) 3 317.0 (0.00)
brock200 2 12 12 200 9 876 99.0 (10.00) 101.0 (11.00)
brock200 4 17 17 200 13 089 131.0 (8.00) 134.0 (6.00)
brock400 2 29 29 400 59 786 299.0 (10.00) 299.0 (9.00)
brock400 4 33 33 400 59 765 299.0 (11.00) 299.0 (9.00)
brock800 2 24 24 800 208 166 521.0 (18.00) 516.5 (20.25)
brock800 4 26 26 800 207 643 519.0 (18.25) 512.0 (20.25)
gen200 p0.9 44 44 44 200 17 910 180.0 (8.00) 179.5 (4.25)
gen200 p0.9 55 55 55 200 17 910 179.0 (7.25) 179.0 (5.50)
gen400 p0.9 55 55 55 400 71 820 360.0 (13.25) 359.0 (6.00)
gen400 p0.9 65 65 65 400 71 820 361.0 (14.00) 359.0 (9.00)
gen400 p0.9 75 65 65 400 71 820 359.0 (13.00) 359.0 (8.00)
hamming10-4 40 40 1 024 434 176 848.0 (0.00) 848.0 (0.00)
keller5 27 27 776 225 990 578.0 (38.00) 578.0 (33.00)
keller6 ≥ 59 59 3 361 4 619 898 2 724.0 (50.00) 2 724.0 (50.00)
p hat300-1 8 8 300 10 933 73.0 (39.00) 103.0 (20.00)
p hat300-2 25 25 300 21 928 146.5 (73.00) 213.0 (18.00)
p hat300-3 36 36 300 33 390 224.0 (38.00) 251.0 (15.25)
p hat700-1 11 11 700 60 999 174.5 (87.00) 250.0 (22.50)
p hat700-2 44 44 700 121 728 353.0 (177.50) 508.0 (31.50)
p hat700-3 ≥ 62 62 700 183 010 526.0 (89.00) 602.0 (14.00)
p hat1500-1 12 12 1 500 284 923 383.0 (197.00) 509.0 (82.00)
p hat1500-2 ≥ 65 65 1 500 568 960 763.0 (387.00) 1 100.0 (37.00)
p hat1500-3 ≥ 94 94 1 500 847 244 1 132.5 (192.00) 1 297.5 (25.75)

Table 1. Selected DIMACS instances with bound (ω(G)), best-known or optimal so-
lution size, number of nodes (# nodes), number of edges (# edges), median (and
interquartile range) of the node degree distribution, median (and interquartile range)
of the node degree distribution of the optimal or best-known solution. Known optimum
solutions are those for which the bound ω(G) does not contain an inequality sign.



no optimum is known, we considered the best-known solution in the literature.
For the detailed results on the CPU-times measured on the reference machine1

we refer to the supplementary pages [28].

2.3 Parametric study of the restart parameter and tabu list length

We measure the impact that the restart parameter and the tabu list length have
on the number of steps to find the best-known solutions. Two exemplary results
are given in Figure 1. Figure 1 shows the median number of steps to find the
best-known solution for FixedTL-MCP, which corresponds to RTS-MCP where
the reactive search mechanism is disabled and one fixed tabu list length is used
throughout the whole run of the algorithm. For a detailed presentation of the
results on all instances we refer to the supplementary pages [28]. Each point in
the plots in Figure 1 corresponds to the median number of steps to reach the best-
known solution on instances keller6 (Figure 1(a)) and MANN a27 (Figure 1(b))
over 10 runs for a specific combination of a fixed tabu list length T and a fixed
restart parameter R. We set the maximum number of steps to 107; therefore,
the combinations of values of T and R for which the algorithm did not find the
best-known solution within the maximum number of steps are all plotted at 107

steps.
What emerges from the plot in Figure 1(a) is that, except for very small

values of R, there is a large interval of good values for the tabu list length from
approximateley 20 to 30. Among the two parameters driving diversification, the
tabu list length is the most critical one for the keller6 instance. The restarts are
useful because they add overall robustness to the algorithm. The relative im-
portance of the tabu list length over the restart parameter is confirmed also on
other hard instances in the benchmark set (C1000.9, C2000.5, C2000.9, C4000.5,
brock200 4, brock400 4, keller5, p hat1500-1). There is only one notable excep-
tion to the aforementioned relative importance of the parameters, that is, the
Mannino family of instances. These instances are characterised by large plateaus,
and few repeated solutions are encountered during the search [38]; in this case,
the restart parameter is much more important (see Figure 1(b)), while the tabu
list length is not as important. Plots for instances MANN a45 and MANN a81
are shown in the supplementary pages [28]. For these two large instances the
plot represent the median number of steps to reach non optimal solutions of size
344 and 1098 respectively.

2.4 The parameter adaptation

The question now is whether the reactive mechanism is able to spot the large
interval of good settings for the tabu list length. To answer this, we first examine

1 CPU-time is measured on a single core of a cluster of Intel Xeon Quad-core proces-
sors, running at 2.33GHz, and with 500 MB of RAM devoted to each process. The
cluster runs under the Rocks Cluster 5.3 distribution, which is based on CentOS 5.3
Linux.
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(b) DIMACS instance MANNa 27.

Fig. 1. Median number of steps to find the best-known solution across 10 runs of
FixedTL-MCP for two instances of the DIMACS benchmark set.



how the tabu list length evolves during the search. Then we check how the
empirical distribution of the tabu list length matches the region of good values.

Figure 2 shows the values of the tabu list length set by RTS-MCP during
two typical runs on instance keller6 (Figure 2(a)) and instance brock400 2 (Fig-
ure 2(b)). On keller6, there is a quick convergence to a specific level with further
oscillations around it for the remaining steps. On brock200 2, the value of the
tabu list length approaches quickly a first threshold MAXT = 11. Such a thresh-
old effect is visible on hard instances where the number of steps to converge to
the best-known solution is large as in brock200 2 (Figure 2(b)), brock400 2, and
brock800 4. For other hard instances such as C2000.9, where the best-known
solution is large, the threshold MAXT is never reached. On most instances,
however, there is a quick convergence to an instance-specific value with minor
oscillations around it, following a behaviour analogous to that shown in Fig-
ure 2(a).

To check if this instance-specific range of values is a good range of values for
the instance at hand, in Figure 3, we plotted the empirical distribution of the
tabu list length values used by RTS-MCP against the median number of steps
to reach a best-known solution with FixedTL-MCP for a range of tabu list length
settings. The median number of steps to the best-known solution of FixedTL-MCP
correspond to a slice in the bivariate plots in Figure 1 for restart parameter R
equal to 100, which is the value fixed in RTS-MCP. The median is computed over
100 runs. If the first hypothesis is true, we expect intuitively that the range of
values taken by the tabu list length in RTS-MCP is close to the range of values
around which FixedTL-MCP has the fastest convergence. Figure 3(a) shows the
adaptation of the tabu list length and the number of steps to the best-known
solution for fixed tabu lengths on instance keller6; the mode of the distribu-
tion of values for T of RTS-MCP is 31, while the instance-optimal setting is 24.
Figure 3(b) shows the same comparison on instance C1000.9. In this case, the
mode of the empirical T distribution is 17 and the instance-optimal setting is
10. The plots for the other instances in the benchmark set are available in the
supplementary pages [28]. Table 2 summarises for each instance the mean of the
empirical T distributions (Tmean) of RTS-MCP and the optimal settings (Tbest)
of FixedTL-MCP. The values in Tbest are the tabu list lengths for which we could
not reject the null hypothesis of having no difference in the number of steps for
finding the best-known solution when compared to the best setting. The sta-
tistical significance is assessed with a Wilcoxon rank-sum test with significance
level α = 0.05. Looking at the values in Table 2, there are 6 instances where
the average value taken by the tabu list length in RTS-MCP is in the range of
optimal fixed settings, 11 cases where the average value is slightly larger, and 17
where the average value is slightly smaller. In the latter case, with the exception
of MANN a45, MANN a81, and large instances of the Brockington-Culberson
family, the instances are rather easy to solve, and the on-line parameter adap-
tation scheme has not enough time to adapt the tabu list length before the best
known solution is found.
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Fig. 2. Evolution of the tabu list length during a run of RTS-MCP.



instance Tmean Tbest

C125.9 6.9 [3, 17] \ {4, 5, 6}
C250.9 15.4 [9, 20] \ {10}
C500.9 19.6 [9, 15]
C1000.9 19.5 [12, 17]
C2000.9 19.4 [18]
DSJC1000.5 6.7 [3, 6]
DSJC500.5 6.7 [3, 5]
C2000.5 6.6 [3, 6]
C4000.5 6.7 [3]
MANN a27 1.6 [2, 50] \ {25, 46}
MANN a45 1.2 [26]
MANN a81 1.2 [15]
brock200 2 7.9 [10, 13]
brock200 4 10.0 [11, 15]
brock400 2 11.3 [16]
brock400 4 11.3 [13, 22]
brock800 2 8.8 [15]
brock800 4 8.7 [17]
gen200 p0.9 44 15.9 [16, 23]
gen200 p0.9 55 12.7 [18, 35] \ {20}
gen400 p0.9 55 19.1 [16, 21] \ {17}
gen400 p0.9 65 13.9 [18, 31]
gen400 p0.9 75 13.6 [26, 44] \ {29, 31, 41, 42, 43}
hamming10-4 11.4 [7, 17]
keller5 19.2 [14, 16]
keller6 32.4 [24, 29] \ {25}
p hat300-1 5.2 [2, 4]
p hat300-2 1.2 [1, 15] \ {14}
p hat300-3 15.5 [12, 16]
p hat700-1 6.3 [3, 7]
p hat700-2 3.0 [5, 13] \ {6, 8}
p hat700-3 7.5 [3, 16]
p hat1500-1 6.1 [3, 6]
p hat1500-2 16.6 [7, 30]
p hat1500-3 13.3 [17, 28]

Table 2. Average value of the tabu list length set by the reactive mechanism
of RTS-MCP (Tmean), compared with the instance-optimal settings (Tbest) for
FixedTL-MCP. Instances highlighted in italic are those that the two algorithms are
not able to solve with 100% success rate.
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2.5 Fixed parameter settings

As shown in the previous section, the reactive mechanism is able to spot a good
value for the tabu list length in a short number of steps. In this section we analyse
the second hypothesis, that is, if this on-line parameter adaptation scheme also
adapts the tabu list length to local characteristics of the search space. If this is
the case, adapting the parameter might produce a measurable advantage over
keeping the best fixed value throughout the search.

In FixedTL-MCP, we fixed the tabu list length to the best value for the in-
stance being optimised. For some hard instances such as C2000.9, MANN a45,
MANN a81, brock400 2, brock800 2, and brock800 4, no fixed tabu list length
setting was able to solve the instances with a 100% success rate. For these in-
stances, we selected the tabu list length that resulted in the highest success rate.
For MANN a81, no fixed setting could find the best-known solution in any of
the 100 runs, therefore we fixed the tabu list length to 1.

The comparison between RTS-MCP and FixedTL-MCP is performed on the
number of steps to reach the best-known solution and not on the computation
time. Therefore, if there is a bias, then it is in favour of RTS-MCP, since in this
way we do not take into consideration the extra CPU-time required for the main-
tenance of the search history in RTS-MCP, which can be costly during restart
operations when the search history is re-initialised [5]. Moreover, as detailed in
Section 2.2, many instances are nowadays solved in few milliseconds, and using
the actual algorithm steps allows spotting differences between two versions of
the same algorithm more easily.

For every instance, we run 1000 experiments for a maximum number of steps
that amounts to 108. We assess the statistical significance of the difference be-
tween the algorithms by means of a Wilcoxon rank-sum test with significance
level α = 0.05. The statistical tests have a high power since the empirical distri-
butions compared are 1000 observations.

Table 3 presents the results of the comparison between RTS-MCP and FixedTL-MCP.
From the table, it is clear that on most instances, a fixed tabu list length requires
less steps to find the best-known solution. On 25 of these instances, highlighted in
boldface, a Wilcoxon rank-sum test rejected the null hypothesis at a 0.05 signif-
icance level. On the instances that neither RTS-MCP nor FixedTL-MCP are able
to solve in all runs, FixedTL-MCP has a higher success rate, except for C2000.9,
MANN a45, and MANN a81 instances. Overall, the results suggest that if there
is an advantage in adapting to the local characteristics of the search space, the
reactive mechanism of RTS-MCP is not able exploit it.

2.6 Random parameter settings

To strengthen this point, we changed FixedTL-MCP to set at every step the
value of the tabu list length to a random number, which is drawn with the
same empirical distribution we observed on RTS-MCP. We call this algorithm
RandomED-MCP. Setting the correct values for the local characteristics of the
search space might give an advantage over setting them randomly. However, as



Instance RTS-MCP FixedTL-MCP

C125.9 84.0 64.0
C250.9 1 147.0 904.0
C500.9 81 144.0 29 165.0
C1000.9 708 530.0 395 961.5
C2000.9 0.4% 0.2%
DSJC1000.5 34 560.0 23 535.0
DSJC500.5 1 400.5 1 166.0
C2000.5 32 772.0 19 001.5
C4000.5 3 677 632.0 2 569 921.0
MANN a27 75 262.0 75 262.0
MANN a45 0.2% 0.1%
MANN a81 0.2% 0.0%
brock200 2 56 583.0 40 357.5
brock200 4 178 136.0 155 280.0
brock400 2 93.4% 99.1%
brock400 4 1 699 627.0 926 818.0
brock800 2 1.0% 2.1%
brock800 4 14.5% 21.6%
gen200 p0.9 44 1 429.0 1 059.0
gen200 p0.9 55 584.0 325.0
gen400 p0.9 55 21 150.5 22 246.5
gen400 p0.9 65 1 390.0 917.0
gen400 p0.9 75 1 583.0 674.0
hamming10-4 491.0 507.0
keller5 3 040.0 1 847.0
keller6 672 768.0 549 802.5
p hat300-1 139.0 70.0
p hat300-2 27.0 27.0
p hat300-3 620.0 469.0
p hat700-1 1 182.0 836.0
p hat700-2 118.0 95.0
p hat700-3 210.0 186.0
p hat1500-1 139 617.0 110 934.5
p hat1500-2 363.0 277.0
p hat1500-3 1 229.0 649.0

Table 3. Comparison on the median steps of RTS-MCP and FixedTL-MCP. Statistically
significant improvements are highlighted in boldface. Instances highlighted in italic are
those that one of the two algorithms was not able to solve with 100% success rate.



Instance RTS-MCP RandomED-MCP

C125.9 84.0 78.0
C250.9 1 147.0 906.0
C500.9 81 144.0 100 647.0
C1000.9 708 530.0 633 335.0
C2000.9 0.4% 0.0%
DSJC1000.5 34 560.0 34 913.0
DSJC500.5 1 400.5 1 393.5
C2000.5 32 772.0 29 712.5
C4000.5 3 677 632.0 3 699 206.0
MANN a27 75 262.0 75 262.0
MANN a45 0.2% 0.1%
MANN a81 0.2% 0.0%
brock200 2 56 583.0 53 017.0
brock200 4 178 136.0 180 913.0
brock400 2 93.4% 92.7%
brock400 4 1 699 627.0 1 625 401.0
brock800 2 1.0% 1.3%
brock800 4 14.5% 14.0%
gen200 p0.9 44 1 429.0 1 163.0
gen200 p0.9 55 584.0 536.0
gen400 p0.9 55 21 150.5 18 252.0
gen400 p0.9 65 1 390.0 1 176.0
gen400 p0.9 75 1 583.0 1 274.0
hamming10-4 491.0 566.0
keller5 3 040.0 4 611.5
keller6 672 768.0 7 052 179.0
p hat300-1 139.0 124.0
p hat300-2 27.0 27.0
p hat300-3 620.0 539.0
p hat700-1 1 182.0 1 269.0
p hat700-2 118.0 114.0
p hat700-3 210.0 188.0
p hat1500-1 139 617.0 115 778.5
p hat1500-2 363.0 279.0
p hat1500-3 1 229.0 808.0

Table 4. Comparison on the median steps of RTS-MCP and RandomED-MCP. Statis-
tically significant improvements are highlighted in boldface. Instances highlighted in
italic are those that one of the two algorithms was not able to solve with 100% success
rate.



shown in Table 4, the performance of the two algorithms is comparable. The only
exception is the instance keller6 where the reactive setting leads to an average
number of steps to the best-known solution that is one order of magnitude less
than the random setting. On the reference machine this translates to 50.6 CPU-
seconds for RandomED-MCP against the 4.9 CPU-seconds of RTS-MCP. Given
that on the other instances the performance of RTS-MCP and RandomED-MCP
is rather similar, we investigated several hypotheses that could explain this large
difference, but for the time being we could not find any convincing explanation.

If we set the tabu list length uniformly at random in the same interval
[1,MAXT], from which the tabu list length is allowed to take values in RTS-MCP [5],
we obtain results that are fairly competitive with RTS-MCP. This is even more
evident from the comparison on the CPU-seconds. This surprising result can
be explained by the small size of the interval in which the reactive mechanism
operates in this specific algorithm. The detailed results are reported in the sup-
plementary pages [28].

2.7 A robust tabu search

Building on the insights gained from the analysis, this section shows how it is
possible to replace the adaptation scheme and retain the performance without
knowing a priori the best parameter setting for an instance at hand.

The instances in the benchmark set belong to families having different prop-
erties, and the best parameter settings vary from family to family. Therefore, we
try to model the relation between the instance-wise best fixed settings and the
instance properties. We define a model for the tabu list length that depends on
three easily measurable properties of the instance, that is, SizeBestCliqueSoFar,
which serves as an estimation of the size of the maximum clique, the number of
nodes, and the number of edges in the graph:

pT = c+ α SizeBestCliqueSoFar + β numNodes + γ numEdges

The data used for the regression consists of all instances except for brock400 2,
brock800 2, brock800 4, MANN a45, MANN a81, C2000.9, which neither FixedTL-MCP
nor RTS-MCP are able to solve to optimality with 100% success rate within 108

steps.
The data used to fit the model are tuples with the best tabu list length for

an instance, and the properties we measured on that instance. As shown in Ta-
ble 2, the optimal setting for the tabu list length is not unique, therefore, for
each instance, we sorted the tabu list lengths by the median number of steps to
converge to the best-known solution, and we consider the first 10% of them for
the data. We implemented a leave-one-out cross-validation, which means that
for each instance the model has been fit on the data of all other instances. To fit
the model, we resorted to bootstrapping: we selected randomly with replacement
1000 bootstrap samples with 100 examples each; for each bootstrap sample we
learnt a model; and finally we averaged the models by selecting the mean pT
value among the 1000 ones we fit. In the machine learning literature, this tech-
nique is known as bootstrap aggregating, or bagging [10].



To test the aggregated model, we implemented RoTS-MCP, a Robust Tabu
Search [42] that at each step sets a value for the tabu list length, selecting
it randomly in the interval [pT − 10,pT + 10]. Since we implemented a leave-
one-out cross-validation, the results obtained are an unbiased estimator of the
performance of RoTS-MCP.

Table 5 compares the performance of RTS-MCP with RoTS-MCP. With the
notable exception of the hard C4000.5 instance, and the Brockington-Culberson
family of instances, the median steps to reach the best-known solutions are
comparable. In the easier gen400 p0.9 55 and p-hat300-2 instances, RTS-MCP
finds the best-known solutions with a smaller number of steps than RoTS-MCP,
while in other 18 instances the opposite is true.

Overall, the results show that even without knowing a priori the best fixed
parameter values for the instance at hand, by measuring instance properties it
is possible to predict a parameter setting that achieves results that are competi-
tive with a state-of-the-art algorithm. The difference between the two algorithms
across all instances is small. A stratified one-sided rank-based permutation test
(akin to a stratified version of the Mann-Whitney U test) rejects at a 0.05 sig-
nificance level the null hypothesis in favour of RoTS-MCP finding best-known
solutions in fewer steps than RTS-MCP. The test is implemented in the R coin
package [22].

3 The Quadratic Assignment Problem

To understand if the results on RTS-MCP are representative of a more general
picture, we apply the same type of analysis presented in Section 2 to RTS-QAP.
RTS-QAP is the first reactive tabu search algorithm proposed in the literature [7],
and a state-of-the-art algorithm for some instance classes.

The Quadratic Assignment Problem (QAP) is to find a minimal cost assign-
ment between a set of facilities P and a set of locations L that minimises a
quadratic cost function. Let W and D be two square matrices; the first repre-
sents a set of weights or flows between facilities, defined by the weight function
w : P × P → R; the second represents a set of distances between locations, de-
fined by the distance function d : L× L→ R. The problem is to find a bijective
function f : P ∈ L that assigns each facility to a location and that minimises
the cost functional: ∑

i,j∈P
wi,jdπ(i),π(j).

Since in the QAP the number of facilities is equal to the number of locations, a
permutation π can be used to represent a valid assignment.

3.1 RTS-QAP

RTS-QAP uses a reactive mechanism that operates on three parameters. The
algorithm starts with a random permutation that represents a valid assignment.
RTS-QAP uses the two-exchange neighbourhood where to a given permutation



Instance RTS-MCP RoTS-MCP

C125.9 84.0 70.0
C250.9 1 147.0 914.0
C500.9 81 144.0 36 677.0
C1000.9 708 530.0 336 699.5
C2000.9 0.4% 0.9%
DSJC1000.5 34 560.0 33 761.0
DSJC500.5 1 400.5 1 235.5
C2000.5 32 772.0 26 371.0
C4000.5 3 677 632.0 4 660 693.0
MANN a27 75 262.0 75 223.5
MANN a45 0.2% 0.3%
MANN a81 0.2% 0.0%
brock200 2 56 583.0 137 126.5
brock200 4 178 136.0 332 130.0
brock400 2 93.4% 76.4%
brock400 4 1 699 627.0 2 908 981.5
brock800 2 1.0% 0.5%
brock800 4 14.5% 11.5%
gen200 p0.9 44 1 429.0 1 108.0
gen200 p0.9 55 584.0 485.0
gen400 p0.9 55 21 150.5 23 553.0
gen400 p0.9 65 1 390.0 1 219.0
gen400 p0.9 75 1 583.0 1 303.0
hamming10-4 491.0 571.0
keller5 3 040.0 1 843.0
keller6 672 768.0 329 380.5
p hat300-1 139.0 96.0
p hat300-2 27.0 33.0
p hat300-3 620.0 469.0
p hat700-1 1 182.0 974.0
p hat700-2 118.0 94.0
p hat700-3 210.0 216.0
p hat1500-1 139 617.0 98 601.0
p hat1500-2 363.0 265.0
p hat1500-3 1 229.0 733.0

Table 5. Comparison on the median steps of RTS-MCP and RoTS-MCP. Statistically
significant improvements are highlighted in boldface. Instances highlighted in italic are
those that one of the two algorithms was not able to solve with 100% success rate.



π, all permutations π′ are neighbours that can be obtained by exchanging two
positions in the permutation. At every step, RTS-QAP selects the best possible
move in the neighbourhood, and ensures diversification by means of a tabu search
with aspiration criterion, and perturbations triggered by the reactive mechanism.
The aspiration criterion allows two-exchanges that improve the quality of the
best solution seen so far even if they are tabu. The reactive mechanism works
as follows. At every step the current solution is stored in a data structure that
contains the history of the search. Every time a solution is re-encountered during
the search, RTS-QAP increases the tabu list length by a factor 1.1. We refer
as cycle length the number of steps between two successive visits to the same
solution. The algorithm keeps track of an exponential moving average of the
cycle lengths, which serves two purposes. First, if the number of steps since the
last update of the tabu list length is greater than the moving average, the tabu
list length is decreased by a factor 0.9. Second, if the algorithm visits the same
repeated solution three times in a row, it assumes it is trapped in the attraction
basin of a local minimum. In this case, the current solution is perturbed by a
number of random two-exchanges that is proportional to the moving average of
the cycle length. Overall, the search history and the reactive adaptation impacts
on three parameters of the algorithm: the tabu list length, the perturbation
frequency and the perturbation size.

Before starting with the analysis, some details need to be mentioned. There
are actually two versions of RTS-QAP that differ in the way the solutions are
hashed and stored in the search history. The first one, RTS-QAPf , stores the
objective function value as a key of the solution. The second one, RTS-QAPconf ,
stores a key computed by accumulating the values in the permutation repre-
senting the solution with successive shift and xor bit-operations. The first one
requires no extra computation and is therefore faster. However, some instance
families are characterised by many solutions sharing the same objective function
value. For such instance families, computing a key on the permutation repre-
senting the solution is necessary to avoid too many false positives that bias
the search towards an unnecessary diversification. On other problem instances,
RTS-QAPf is the better option. In the rest of the paper, we present the re-
sults of RTS-QAPbest, which is the better performing between RTS-QAPf and
RTS-QAPconf for the instance family at hand.

3.2 The benchmark set

QAPLIB is the standard benchmark set for comparing heuristics for the QAP [12,39].
We selected 19 instances with more than 20 facilities from three well-known fam-
ilies: (i) Taillard’s uniform randomly generated instances (Taillard-a); (ii) Tail-
lard’s structured asymmetric randomly generated instances (Taillard-b); (iii)
Skorin-Kapov instances which have grid-based distances and random weights in
the flow matrices.

We start our study by analysing the impact on the average solution quality
of the algorithm parameters that are adapted by reactive search. To this aim, we
implemented FixedTLP-QAP, an algorithm identical to RTS-QAP, but with fixed



parameter settings. In FixedTLP-QAP, the tabu list length T, and the perturbation
size psize are the same parameters adapted in RTS-QAP; while the perturbations
are triggered by a parameter (pert) that controls the number of non-improving
steps before a restart is applied. We will refer to pert as perturbation rate. In
this section, we present three plots that are representative of the three instance
families in the benchmark set. In each plot, we fix pert to 50, and plot the average
solution quality against fixed values of the tabu list length and the perturbation
size.

Each point in Figures 4, 5, and 6 is the median solution quality over 100
runs of 60 CPU-seconds on the reference machine. The surfaces are much flatter
when compared to the ones shown for RTS-MCP, since the variability in solu-
tion quality is generally much smaller than in computation time. Still, a clear
pattern emerges on the whole benchmark set. On the Taillard-a family of in-
stances (Figure 4), a good tabu tabu list length is crucial for achieving good
quality solutions, while on the Taillard-b and Skorin-Kapov family of instances
(Figures 5 and 6), spotting the right perturbation size is much more important
than spotting the right tabu list length value. In Figure 5 the horizontal axes
are flipped to give a better view of the surface.
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Fig. 4. Median solution quality across 100 runs of FixedTLP-QAP on instance tai100a.

3.3 Fixed and random parameter settings

As for RTS-MCP, we study RTS-QAP’s ability to adapt parameter settings to
local characteristics of the search space. As before, we compare RTS-QAP against
FixedTLP-QAP, that is, the same algorithm but with the tabu list length, the
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Fig. 5. Median solution quality across 100 runs of FixedTLP-QAP on instance tai100b.
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Fig. 6. Median solution quality across 100 runs of FixedTLP-QAP on instance sko100a.



perturbation size, and perturbation rate parameters fixed to the best values
found during the study presented in Section 3.2.

Instance RTS-QAPbest FixedTLP-QAP

tai40a.dat 3 146 514.0 3 143 132.0
tai50a.dat 4 966 432.0 4 964 043.0
tai60a.dat 7 250 862.0 7 247 540.0
tai80a.dat 13 600 443.0 13 598 110.0
tai100a.dat 21 182 692.0 21 183 094.0
tai40b.dat 637 250 948.0 637 250 948.0
tai50b.dat 459 220 263.0 458 830 119.0
tai60b.dat 608 874 816.0 610 393 768.0
tai80b.dat 823 590 370.5 819 032 289.5
tai100b.dat 1 189 813 387.0 1 187 277 747.0
sko42.dat 15 812.0 15 812.0
sko49.dat 23 386.0 23 386.0
sko56.dat 34 462.0 34 458.0
sko64.dat 48 498.0 48 498.0
sko72.dat 66 290.0 66 272.0
sko81.dat 91 042.0 91 022.0
sko90.dat 115 662.0 115 598.0
sko100a.dat 152 140.0 152 082.0
sko100b.dat 153 986.0 153 930.0
sko100c.dat 147 930.0 147 881.0

Table 6. Comparison on the median objective function values of RTS-QAPbest and
FixedTLP-QAP. Statistically significant improvements are highlighted in boldface.

Table 6 shows the median solution quality of RTS-QAPbest and FixedTLP-QAP
over 1000 runs of 60 CPU-seconds on the reference machine. From the table, it
is clear that, for almost all instances, the fixed settings of the parameters lead
to better median solution qualities. For the cases highlighted in boldface, the
improvement of FixedTLP-QAP over RTS-QAPbest is statistically significant as
assessed with a Wilcoxon rank-sum test at significance level 0.05.

To further test wether RTS-QAP adapts to the local characteristics of the
search space, we compare it against RandomED-QAP, which corresponds to RTS-QAP,
but with the parameters set randomly with the same empirical distribution we
measured on RTS-QAP. The tabu list length T is updated at every step with a
random value, while a new value for pert and psize are generated at random every
time a perturbation occurs. In this comparison, we run RTS-QAPbest for 60 CPU-
seconds on the reference machine, we measure the number of steps performed
by RTS-QAPbest, and then we run RandomED-QAP for the measured amount of
steps. This choice has been made to give a positive bias to RTS-QAPbest. In
fact, RandomED-QAP has no costly memory operations, and it could therefore
perform more steps in the same amount of CPU-time. Table 7 shows that on all



Instance RTS-QAPbest RandomED-QAP

tai40a.dat 3 146 514.0 3 146 258.0
tai50a.dat 4 966 432.0 4 966 070.0
tai60a.dat 7 250 862.0 7 249 837.0
tai80a.dat 13 600 443.0 13 598 473.0
tai100a.dat 21 182 692.0 21 179 800.0
tai40b.dat 637 250 948.0 637 250 948.0
tai50b.dat 459 220 263.0 459 151 036.0
tai60b.dat 608 874 816.0 608 863 860.0
tai80b.dat 823 590 370.5 823 994 642.5
tai100b.dat 1 189 813 387.0 1 189 648 641.5
sko49.dat 23 386.0 23 386.0
sko56.dat 34 462.0 34 462.0
sko64.dat 48 498.0 48 498.0
sko72.dat 66 290.0 66 298.0
sko81.dat 91 042.0 91 054.0
sko90.dat 115 662.0 115 670.0
sko100a.dat 152 140.0 152 154.0
sko100b.dat 153 986.0 153 994.0
sko100c.dat 147 930.0 147 942.0

Table 7. Comparison on the median objective function values of RTS-QAPbest and
RandomED-QAP. Statistically significant improvements are highlighted in boldface.

instances a random setting leads to median solution qualities over 1000 runs that
are close to the one obtained by RTS-QAPbest. The overall conclusions that we
can derive is that there is no evidence that the algorithm is adapting to the local
characteristic of the search space. Only for the Skorin-Kapov family of instances
the solutions qualities are in most cases slightly better for RTS-QAPbest.

3.4 A robust tabu search

In the previous section we were able to improve the median solution quality by
fixing the parameter to the best values from the analysis on the instances in the
benchmark set. At this point, as for the MCP, we were interested in inferring
those best fixed values from instance properties that can be measured quickly
at the beginning of the search.

We measured the size of the instance, the dominance, the sparsity, and the
skewness of both the distance and flow matrices in which an instance is encoded.
For dealing effectively with all these attributes, we resorted to support vector
machines for regression [24], and we learnt a model for the tabu list length, the
perturbation size and the perturbation rate, by means of a leave-one-out cross-
validation. The model for the tabu list length is a polynomial of second degree,
while the models for the perturbation size and the parameter that triggers the
perturbations are linear models.



As with RoTS-MCP, to construct the data used for the regression, for each
instance we order the parameter setting by the median solution quality achieved
by FixedTLP-QAP, and we consider the first 10% for the data. Also in this case,
for learning the model, we resorted to bagging: we selected randomly with re-
placement 1000 bootstrap samples with 100 examples each, and we learnt the
three models independently. To preserve possible correlations between the pa-
rameters, we consider the models learnt on the bootstrap sample i as a vector
mi = (Ti, psizei, perti), where Ti, psizei, and perti are the normalised values ob-
tained from the models. When aggregating the models we select the mean vector
mk, that is, the vector with smallest Euclidean distance from all other vectors:

mk = arg min
mk

∑
j 6=k

‖mk −mj‖.

We implemented RoTSSVM-QAP, a Robust Tabu Search [42], which is identi-
cal to FixedTLP-QAP except for the adaptation of the three parameters. At each
step of the algorithm, the tabu list length T is set randomly allowing a maximum
deviation of ±5 around the value predicted by the aggregated model. The same
is done for the other two parameters: the deviations allowed around the values
predicted by the aggregated models are of ±5 for psize and ±10 for pert. The
deviations have been set in an ad-hoc way, by looking at the variability of the
parameter settings in the data.

Instance RTS-QAPbest RoTSSVM-QAP

tai40a.dat 3 146 514.0 3 143 132.0
tai50a.dat 4 966 432.0 4 965 682.0
tai60a.dat 7 250 862.0 7 247 344.0
tai80a.dat 13 600 443.0 13 596 785.0
tai100a.dat 21 182 692.0 21 183 809.0
tai40b.dat 637 250 948.0 637 250 948.0
tai50b.dat 459 220 263.0 458 870 273.0
tai60b.dat 608 874 816.0 608 421 396.0
tai80b.dat 823 590 370.5 818 907 741.5
tai100b.dat 1 189 813 387.0 1 187 741 740.5
sko49.dat 23 386.0 23 386.0
sko56.dat 34 462.0 34 458.0
sko64.dat 48 498.0 48 498.0
sko72.dat 66 290.0 66 274.0
sko81.dat 91 042.0 91 028.0
sko90.dat 115 662.0 115 618.0
sko100a.dat 152 140.0 152 090.0
sko100b.dat 153 986.0 153 940.0
sko100c.dat 147 930.0 147 888.0

Table 8. Comparison on the median objective function values of RTS-QAPbest and
RoTSSVM-QAP. Statistically significant improvements are highlighted in boldface.



Table 8 shows the median solution qualities of the two algorithms over 1000
runs of 60 CPU-seconds on the reference machine. The solution qualities achieved
by RoTSSVM-QAP are significantly better than those achieved by RTS-QAPbest

on 15 out of 19 instances as assessed by a Wilcoxon rank-sum test at significance
level 0.05. A stratified one-sided rank-based permutation test (akin to a stratified
version of the Mann-Whitney U test) rejects at a 0.05 significance level the
null hypothesis in favour of RoTSSVM-QAP finding solutions with better solution
quality than RTS-QAPbest.

4 Conclusions

Our aim in this work was at checking two hypotheses on the parameter adap-
tation scheme of RTS. The first hypothesis we studied was that the adaptation
scheme converges to an instance-specific value and that this value is close to the
best one for the instance being optimised. We started our study on RTS-MCP by
analysing the benchmark instances used in the literature. Looking at the surface
of the number of steps to reach the best-known solution for combinations of the
two parameters that drive diversification, that is, the tabu list length and the
restart parameter, it is clear that for most instances, there is a large interval of
good values for the tabu list length that allow quickly finding the best-known
solution. For the Mannino family of instances, the opposite is true, the restart
parameter is important to converge quickly to the best-known solutions, while
the tabu list length plays a less important role. By studying the dynamics of the
tabu list length adaptation, we observed that RTS-MCP’s adaptation scheme
converges within few steps to good, instance-wise values of the tabu list length
with average values slightly larger or slightly smaller than the instance-optimal
tabu-list length.

For what concerns the second hypothesis, we observed that the parameter
adaptation scheme implemented by RTS does not adapt to the local character-
istics of the search space, or if it adapts, the adaptation is not effective. We
drew these conclusions after comparing the average number of steps to find the
best-known solution of RTS-MCP with an algorithm that uses the best fixed
tabu list length for the instance being optimised. An effective adaptation of the
parameter setting to the local characteristics of the search space should give
RTS-MCP an advantage over an analogous algorithm that keeps the parameter
setting fixed to the best instance-wise value. However, using a fixed parameter
setting improves over RTS-MCP on almost all instances. Moreover, setting the
parameter randomly with the same empirical distribution of the reactive adapta-
tion scheme leads to results that are close to the ones obtained from RTS-MCP.
Even a uniformly random parameter setting is competitive, which suggests that
the impact of the adaptation scheme on the algorithm ability to find quickly
best-known solutions is fairly limited.

To see if these results could be representative of a more general picture, we
extended the study on RTS-QAP. We found that also in this case, a fixed param-
eter setting improves the solution qualities achieved by the reactive algorithm.



Furthermore, setting the parameters with the same empirical distribution of the
parameter adaptation scheme leads to solution qualities that are close to the one
obtained from RTS-QAP. This confirms that also in this case there is no evidence
that the algorithm effectively adapts to local characteristics of the search space.

Eventually, we also showed that the results obtained by RTS-MCP and RTS-QAP
can be matched and for some instances even improved, with a RoTS, in which
the parameters are set randomly with small deviations from settings that are
modelled from instance properties. Single models have been fit on the whole
benchmark sets, but it is reasonable to expect even better results by learning
different settings for specific instance families.

RTS is extremely effective across a heterogeneous set of instance families,
with no need for off-line tuning the parameters and with small sensitivity to its
meta-parameters [33]. Nevertheless, it is interesting to look into the details to
understand which aspect contribute more to its efficacy, and in this work, we
shed some light in this direction. Further investigation is needed to understand
why the reactive parameter adaptation studied is not able to exploit the local
characteristics of the search space. For example, it could be that it reacts too
slowly to have measurable effects on the algorithm performance. A further nat-
ural extension of this work could be aimed at analysing further reactive search
algorithms, and more generally to other parameter adaptation schemes.
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