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Energy saving in railway timetabling:
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alternative running times

Rémy Chevrier∗, Paola Pellegrini, Joaqúın Rodriguez

Université Lille Nord de France, IFSTTAR – ESTAS
20 rue Élisée Reclus, 59650 Villeneuve d’Ascq, France

Abstract

The timetabling step in railway planning is based on the estimation of the
running times. Usually, they are estimated as the shortest running time
increased of a short time supplement. Estimating the running time amounts
to define the speed profile which indicates the speed that the train driver
must hold at each position. The approach proposed in this paper produces a
set of solutions optimizing both the running time and energy consumption.
The approach is based on an original method of speed profiling performed
by a multi-objective evolutionary algorithm. The speed profiles found by the
evolutionary algorithm are all compromises between running time on the one
hand and energy consumption on the other hand. A set of results obtained
on two lines are analyzed and discussed to highlight the relevance of such an
approach in an practical context.

Key words: Running time, Energy saving, Railway timetabling,
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1. Introduction

Over the years, the increase of traffic volumes in Western Europe and the
increase of emission of pollutants have put a stronger and stronger accent
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(Joaqúın Rodriguez)

Preprint submitted to Transportation Research Part(C) June 24, 2013

mbidal
Texte tapé à la machine
CHEVRIER, Remy ; PELLEGRINI, Paola ; RODRIGUEZ, Joaquin, 2013, Energy saving in railway timetabling: A bi-objective evolutionary approach for computing alternative running times, Transportation research - Part C : Emerging technologies, 37, ELSEVIER, pp.20-41
DOI:10.1016/j.trc.2013.09.007



on the development of more eco-aware transportation systems. A direct
consequence is the search for a better management of energy. In railways,
this better management may be sought, first of all, in the planning phase,
during which the timetables are built.

All information required for the trips are computed during the planning
phase. In particular, the train running times between stations are estimated
during this phase to then compute notably the timetable of each train. Based
on the timetable and the predefined running times, the energy-optimal train
trajectories are computed offline and then communicated to the driver in a
roadmap that he must follow [1]. The corresponding speed profiles precise
the speed at each position on the track and they give also the switch-points
indicating to the driver when changing the driving regime. In order to effi-
ciently switching the regimes, the train drivers are trained and accustomed
to the energy-efficient driving, notably by learning it under supervision in a
train simulator.

As the timetabling process is based on the predefined running times be-
tween stations, the definition of alternative running times will directly im-
pact, of course, the traffic planning, but also the whole energy consumption.
Indeed, changing the running speed or the driving regimes that the train must
hold to respect the time constraints, will modify the energy consumption and
lead to have potentially energy-efficient timetables. Thus, the goal is to find
energy-efficient speed profiles compliant to the requirements (signaling, time
constraints) so that alternative timetables are possible.

The problem of speed-profiling has been addressed in the literature in
several ways, taking energy into account or not, involving one or several
objectives.

For optimizing energy efficiency of train operation, there exist methods
searching for a single optimal solution minimizing energy consumption for a
given running time. The problem can be solved with an analytical method
calculating the sequence of optimal controls and change points such as in [2],
or with switch-points and differential equations systems as explained in [1].

Furthermore, due to the critical aspects of real-time railway management,
a body of work has been carried out to solve the optimal speed profile ac-
cording to an available running time, such as in [3] or in [4] for multi-train
scheduling. It is also possible to re-optimize the running times in real-time
at network scale [5].

More recently, a method based on mixed integer linear programming has
been proposed to optimize running times by using an objective function which
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is a tradeoff between energy consumption and riding comfort [6].
Differently to most of the works, trajectory optimization can be addressed

without optimal control theory, as in [7, 8] where the authors exploit the
dynamic programming to solve the problem.

Most of the methods are designed to provide a single solution to the
decision-makers, though they could need more flexibility in the timetabling
process.

As far as we know, there are still few multi-objective approaches to opti-
mize speed profiles. Differential Evolution [9] has been used for mass tran-
sit systems [10] involving three objectives: punctuality, energy consumption
and passenger comfort (by reducing jerks). Another evolutionary method
has been developed to perform a speed-based model [11, 12], building speed
profiles in a multi-objective way according to a set of predefined rules.

Although estimating the appropriate running time is crucial for the time-
tabling process, in practice, the running times are usually based on the fastest
journey multiplied by an arbitrary factor slightly greater than 1 to have a
running time supplement [13]. In general, the time supplement allows the
train driver to adapt the speed to the traffic. However, the time supplements
can be reduced by relaxing the timetables of some specifications (tracks,
platforms, time windows, ...) for reducing the use of railway capacity [14].

If perturbations occur, it may happen that the running times have to be
modified to take conflicts or delays into account. In [15], the authors propose
to forecast delays to produce a distribution of possible running times to be
used when the timetable cannot be respected. The authors solve systems of
linear differential equations to estimate possible running times.

The time supplement could also be used to save energy. Indeed, we can
identify the most energy-friendly speed profile, which benefits of this addi-
tional time for using energy-free driving regimes. The speed profile designed
in this way differs from the one of the fastest journey in duration (longer)
and energy consumption (weaker).

In this paper, we propose an original approach to compute train run-
ning times by concurrently minimizing both energy consumption and run-
ning time. Usually, the running time is estimated for an entire trip including
a set of journeys between stations and the time supplement is spread over
the trip [16]. However, as a preliminary work, we consider here the defini-
tion of running time between two stations. Since a trip includes a succession
of journeys from one station to another, the approach proposed performs a
running time calculation of one journey. This calculation is done by building
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the speed profile according to a set of rules that we propose to determine the
order of driving regimes that the train driver must follow. In particular, a
braking must not be followed by an acceleration, because it is absurd from an
energy consumption point of view. Moreover, the approach under considera-
tion must be capable of providing a set of tradeoff-solutions for the decision-
makers in a single run. In such a way, they will be able to choose a running
time adapted to their needs in the timetabling process. Thus, the paper
deals with a bi-objective optimization of speed profiling with energy saving.
Given that evolutionary algorithms (EA) are well-suited to multi-objective
optimization [17], our approach is based on a state-of-the-art multi-objective
EA: the Indicator-Based Evolutionary Algorithm (IBEA) [18].

The paper is organized as follows. At first, Section 2 concerns the basic
principles of train dynamics and running time calculation used in the opti-
mization model. Then, Section 3 presents the problem under study and its
formulation. The algorithms for building a speed profile and evaluating a
solution are presented and detailed in Section 4. In Section 5, we present
both the principles of multi-objective optimization and IBEA. The specific
components of the algorithm are also presented in this section. Section 6
presents two case-studies (including one real railway line), as well as the re-
sults of speed profile optimization obtained on these instances. Analysis and
discussion are provided for highlighting the interest of such a method in the
planning process. Finally, Section 7 concludes the paper.

2. Running times and train dynamics

In this section, we explain how the running times are calculated and we
recall the basic formulas of train dynamics used to perform this calculation.
The reader can refer to [19, 20] to have a more detailed explanation of train
dynamics. The formulas presented may be modified or replaced without
changing the nature of optimization problem defined in the following. The
model used here is an approximation of the reality. However, a more accurate
model implying, for example, to consider the length of the train, the cars and
their positions on the track, but also the axles and the wheels, requires to
develop a more precise railway dynamics model.

Table 1 summarizes the main symbols used in the paper.
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Table 1: Definition of the symbols used in train dynamics

T journey duration [s]
E mechanical energy [J]
v train speed [m/s]
P (t) mechanical power at instant t [W]
FT (v) tractive effort, function of speed v [N]
Fm(v) Maximal tractive, function of speed v [N]
FR(v) sum of resistances [N]
LR line resistance [N]
CR curve resistance [N]
MR(v) vehicle resistance, function of speed v [N]
γ train acceleration [m/s2]
b braking [m/s2]
m train mass [kg]
ρ mass correction factor
β angle of the slope
q gradient of the slope [‰]
c radius of the curve [m]

2.1. Setting sequences of driving regimes

In order to define accurate running times, it is necessary to build speed
profiles, which are indicated in the roadmaps that the train driver must
follow. According to the theory of optimal control, there are four optimal
regimes defined by application of the Maximum Principle (see [21, 1] for
details): Acceleration at full power; Cruising at constant speed; Coasting
(inertia motion while the engine is stopped); Maximum braking (according
to the service braking, softer than emergency braking). Since acceleration is
very energy-consuming, the inefficiency of applying unnecessary sequences of
braking followed by acceleration is straightforward. Hence, it is a principle
of the method that we propose in the paper. In the roadmaps to provide to
the drivers, a braking must not be followed by an acceleration.

The problem we deal with consists in designing the most suited speed
profile over the track. This track is composed of a sequence of sections,
in which the speed has to be tuned. A section is defined by a length and a
constant and fixed maximal speed. Consecutive sections always have different
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maximal speed (see Fig. 1).

Speed

41 3 5 6

Position

2

Figure 1: Decomposition of the track according to the maximal speeds

In principle, a one-section journey can be divided in four steps as depicted
in Fig. 2 (we assume there is neither slope nor curve in this example). Let
vm be the maximal speed. First, the train accelerates (A) in order to reach
speed vm as quickly as possible. Then, a cruising phase (Cr) follows during
which the acceleration is nil and the traction effort equals the resistance to
the train advance. Given that the wheel/rail adhesion is weak, it is common
to let the train coast over long distances [22, 23], e.g. points Co(1), Co(2)
indicate two positions from which coasting can be started. Coasting from
point Co(1) may increase the journey duration a little while reducing the use
of mechanical energy. By coasting from point Co(2), the energy consumption
may be further decreased with a consequent increase of journey duration.
The sooner the coasting starts, the greater the economy, but the longer the
journey duration. Point Co(0) indicates the last position from which the
train can brake with its normal service braking (B) for being able to stop at
the end of the section.

2.2. Elements of railway dynamics

The fundamental equation of dynamics states the relation between the
forces FT , FR, speed v, mass m and acceleration γ:

FT (v)− FR(v) = ρ m γ, (1)

ρ being a mass correction factor usually set to ρ = 1.04 [23, 1].
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Figure 2: Usual speed profile over one section in four steps (assuming no slope): acceler-
ation (A), cruising (Cr), coasting (Co) and Braking (B).

2.2.1. Tractive effort

Tractive effort FT is the effort that the train produces for running, bounded
by the maximum tractive effort Fm. The maximum tractive effort that a train
can produce is a function of both the train characteristics and the current
speed.

2.2.2. Constraints

Train’s speed, tractive effort and braking are bounded. Let vcm be the
maximum speed of train c, Fm(v) the maximum tractive effort that the train
can exert when traveling at speed v, and bm the maximum service braking.

v ≤ vcm (2)

FT (v) ≤ Fm(v) (3)

b ≤ bm. (4)

Given that the deceleration depends also on the gradient of the track, it
may happen that using the maximum service braking bm is not sufficient to
slowdown the train if it runs in a steep descent. The respective effect in
acceleration may appear if the train runs in a climb so steep that it cannot
accelerate though using the maximum tractive effort Fm(v). However, such
gradients are unusual in practice, given that the tracks are designed in such
a way that the rolling stocks can move without difficulty. The problem may
appear with materials not planned to run on some tracks.
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2.2.3. Resistances

The resistance to the train advance FR corresponds to the sum of line
(LR), curve (CR) and vehicle (MR) resistances:

FR(v) = LR + CR +MR(v). (5)

Line resistance LR depends on the train mass and the slope angle β:

LR = m g sin β, (6)

g being the gravity constant: g = 9.81 N/kg. However, line resistance LR is
often approximated as:

LR = m g q, (7)

with q = tan β. This is considered a good approximation since, for small
values of β as the ones considered, sin β and tan β are very similar. The
quantity q is a gradient measured in meters per thousand.

Concerning curve resistance, the value of CR is approximated by

CR = m g
700

c
. (8)

Finally, vehicle resistance MR combines both rolling resistance and air
resistance. The former linearly increases as a function of the adhesion and
the wheel rims. The latter quadratically increases as a function of the train
velocity. Resistance MR depends on the physical properties of the train and
its current speed. In order to simplify its calculation, we use the Davis’ equa-
tion [24] proposed in the 1920s and still used today. This formula introduces
constants A,B and C, specific to the rolling stock, and allows to approximate
the vehicle resistance MR as follows:

MR(v) = A+Bv + Cv2. (9)

2.2.4. Mechanical energy consumption

Let E be the mechanical energy needed to move the train. It can be
calculated as the integral of the mechanical power over the running time T
[1]. For convenience, let F (t) and v(t) be the tractive effort and the train’s
speed at instant t, respectively:

E =

∫ T

0

P (t) dt with P (t) = F (t) v(t). (10)
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Power P (t) generated by the train at instant t is calculated in function of the
regime adopted, within function apply regime (Algorithm 1 in Section 4.1).

If we want to consider aspects as electrical-mechanical energy conversion
(for instance, motors and inverters), it is possible to use another railway
dynamic model including the principles mentioned. In no case, the opti-
mization model will be affected because it uses the objective values T,E.
However, changing the dynamic model will impact the objective value E,
and consequently the speed profiles generated.

2.3. Description of the driving regimes

As mentioned in Section 2.1, according to the Maximum Principle, four
regimes can be adopted by the train, when power recovery (regenerative
braking) is not used [8]: acceleration, cruising phase, coasting and braking.
Energy consumption and running time evolve differently during each of them.

As mentioned by Miyatake and Ko in [8], there are difficulties in effi-
cient utilization of regenerative braking. In particular, an accelerating train
must be close to the braking one so that the former can absorb the regener-
ative energy. However, only one train is actually considered in our method,
whereas the problem of recovering energy by another train is relevant when
considering several trains at once. Moreover, such a problem implies the
optimization of the synchronization of the trains in the construction of the
timetable, which is out of the scope of the paper. Hence, we do not consider
the regenerative braking.

2.3.1. Acceleration

During this phase, the train accelerates at full power. The delivered
power, P , depends on both tractive effort FT and speed v. Hence, during an
acceleration:

FT (v) = Fm(v) (11)

P (v) = FT (v) v. (12)

2.3.2. Cruising phase

This regime consists in maintaining the speed constant, i.e., the accelera-
tion is nil: γ = 0. In fact, the resistance is counterbalanced by the minimum
necessary tractive effort: FT (v) = FR(v). In other words, the train must
adapt its effort to the resistance either by partially braking or producing an
effort according to the gradient and the resistances (line and vehicle).
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Since γ results from both the acceleration due to the forces of motion and
the braking, we denote a the acceleration due to the forces of motion and b
the service braking, so that: γ = a− b.

Let σ be the gradient representing the threshold under which the descent
may allow the train to accelerate without effort. We can formalize the effort
in the two cases defined below.

1. If q ≥ σ, the train has to produce effort to maintain the speed. First,
we determine the resistance FR(v) and then we set the tractive effort
FT (v) that the train should exert to counterbalance FR(v) ≥ 0:

FT (v) = FR(v) ⇔ γ = 0. (13)

Last but not least, the power delivered can be deduced as follows:

P (v) = FT (v) v. (14)

2. If q < σ, the train has to partially brake to maintain the speed. First,
we state resistance FR(v). Given that FR(v) < 0 in this case, we
determine the resulting acceleration a > 0 to deduce the braking b
necessary to keep γ = a− b = 0.

b = a =
−FR(v)

ρ m
. (15)

Finally, as no power recovery is considered, we set the power delivered
as nil:

P (v) = 0. (16)

2.3.3. Coasting

The coasting corresponds to an inertia motion, while the engine is stopped.
The tractive effort is therefore nil:

FT (v) = 0. (17)

As a consequence, the energy consumption during coasting is nil and P (v) = 0.

2.3.4. Braking

The braking is computed using the maximum service braking bm. When
braking, the tractive effort is therefore nil:

FT (v) = 0. (18)

Like in the coasting regime, the energy consumption during coasting is nil
and P (v) = 0.
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Table 2: Symbols used in the problem definition

S sequence of sections composing the train path
n number of sections
i section index: 1 ≤ i ≤ n
pi starting position of section i

with respect to a reference point
li length of section i
vm,i maximum speed in section i

(remark that vm,i > 0 for all i = 1, ..., n)
lf,i length of the first part of section i
ls,i length of the second part of section i
tf,i duration of the first part of section i
ts,i duration of the second part of section i
ef,i energy spent in the first part of section i
es,i energy spent in the second part of section i

3. Problem definition

In order to build a speed profile between two stations, we build the speed
profile within each section covered by the train, sequentially. Each section is
then decomposed according to a set of speeds for choosing the appropriate
driving regimes. The main symbols used in the following are defined in
Table 2.

3.1. Objectives formulation

The problem under study can be formulated as a set Φ of two objective
functions to be minimized while respecting constraints. The first objective
function represents the minimization of journey duration T , and the second
the reduction of energy consumption E.

Φ = (minT,minE). (19)

Objective values (Tu, Eu) of solution u are assessed by eval solution, which
is a function defined by Algorithm 3 in Section 4.2.
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3.2. Speed-based decomposition of a section

3.2.1. Using target-speeds as decision variables

As the train path is decomposed into a set of n sections, the speed profile
is successively built in each section. This construction is based on the use of
target-speeds, which allow the decomposition of each section into a sequence
of driving regimes. For each section i = 1, ..., n we define the following speeds:
ve,i, vx,i, va,i, vb,i ∈ R. The speeds ve,i and vx,i are, respectively, the entrance
and exit speeds of section i and they are determined while building the speed
profile.

The speeds va,i, vb,i are the decision variables searched for by the algorithm
and they are at the basis of the decomposition of the section. They represent
two speed-levels that the train must reach while running over the section.
The main idea is to allow the introduction of driving regimes following a set
of rules which depend on the speeds, as explained in the following.

3.2.2. Principle of decomposition of a section

Speed profiling is done in two phases, each depending on a set of speeds.
Figure 3 depicts the decomposition of the speed profile over one single section,
as well as the corresponding time-position diagram. The main idea consists
in splitting the section into two parts: a first part in which the acceleration
at full power (the most energy-consuming driving regime) can be used and
a second part for using energy-friendly (cruising) or energy-free (coasting,
braking) driving regimes.

During the first part, the train enters at speed ve,i and has to reach the
first target-speed va,i by braking or accelerating. Then, during the second
part, the train tries to reach speed vb,i, initially by coasting. Additional
regimes may be used to reach speed vb,i (braking) and complete the rest of
the section (cruising). Even if some of these driving regimes are not used,
globally, their use follows the order: coasting, cruising, braking. Building the
profile between the entrance speed ve,i and the first target-speed va,i allows
the identification of the length and the time necessary for the first part: lf,i
and tf,i, respectively. This building also allows the deduction the length
of the second part of the section: ls,i = li − lf,i. The construction of the
second part starts from position pi + lf,i and depends on target-speeds va,i
and vb,i. The produced sequence of driving regimes leads to determine the
exit speed vx,i of section i and, obviously, ve,i+1 = vx,i, i < n. The details of
the construction are explained right below.
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Figure 3: Decomposition of a section into two parts: (a) Speed profile describing the
sequence of the driving regimes according to the target-speeds; (b) Time position diagram
describing the corresponding train path as well as the required times to cover the section.

Constraints. During the solution construction, we impose Constraints (20)
to (22) to the decision variables for each section.

va,i ≥ vb,i ∀i = 1, ..., n (20)

vm,i ≥ va,i ∀i = 1, ..., n (21)

vb,i > 0 ∀i = 1, ..., n (22)

As explained in the following, the value of vb,i, i = 1, ..., n, may be changed
during the evaluation of the objective function, in case the original one results
unfeasible.

4. Solution assessment and running time calculation

In this section, the algorithms for building the speed profile and for assess-
ing a solution are given and detailed. But, beforehand, we provide algorithms
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for calculating train dynamics corresponding to a driving regime. These al-
gorithms are essential to compute distance covered, energy consumed and
time spent during a driving regime. After this description, we will give the
algorithms of speed profiling as a function of the target-speeds defined in each
section. In the following, symbols ac, cr, co, br, respectively, represent
acceleration, cruising, coasting and braking.

4.1. Calculation of driving regime

Based on the description of the possible driving regimes, Algorithm 1
defines function apply regime which calculates time spent, length, energy,
and speed at each position in function of the characteristics of the track and
the train, and also of the speeds given in input. The principle at the basis of
this iterative function is to determine efforts, resistances, acceleration, speed,
power and energy at each instant t (let ∆t be the time-slot).

Since function apply regime needs to be interrupted when changing the
driving regime, function end reached (Algorithm 2) indicates when the cur-
rent regime is implemented. The main reasons to interrupt a regime are either
that the target-speed is reached or that the limit position beyond which the
regime used must be changed is attained.

4.2. Objectives computation

For computing T and E, we apply the function eval solution described
in Algorithm 3. Within this function, T and E are calculated for each section
consecutively by the function eval section defined in Section 3.2.

Algorithm 4 describes the function named eval section. Based on the
characteristics of a section and the values of the decision variables, this func-
tion returns the time and the energy spent in the section itself. Within this
function, we use two additional sub-functions first part and second part,
which respectively build the speed profile on the first and the second part of
the section under consideration (Algorithms 5 and 6 respectively).

Construction of the speed profile in the first part. The first part corresponds
to the entrance in the section and depends on two speeds: the entrance speed
ve,i and the target-speed va,i. The latter is a decision variable of the problem
and it is searched for by the evolutionary algorithm. The construction of the
speed profile is carried out through Algorithm 5, which identifies the regime
to be used: acceleration if va,i > ve,i, braking otherwise. If the two speeds
are equal (ve,i = va,i), length, time and energy spent are nil: lf,i = 0, tf,i =
0, ef,i = 0; function end reached() returns 1 in such a case.
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Algorithm 1: Function apply regime(v1, v2, l, p, r)
Data: v1: initial speed, v2: speed to reach, l: distance to cover, p: start position, r: driving

regime to use
Result: (t, l, e, R): a vector containing the time spent, the length and the energy used during the

motion. R is a vector containing the pairs (pt, vt).
Initialization
t = h; l, e = 0; R = ()
vt = v1; pt = p
begin

while not end reached(vt, v1, v2, p, p+ l, r) do
Calculating LR, CR,MR as function of vt, pt (Eq. 7, 8, 9)
FR = LR + CR +MR

if r == { br or co } then
FT = 0
if r == br then

b = bm
else

b = 0

else
if r == cr then

FT = max(0,min(Fm, FR))
b = max(0,−FR/ρ.m)

else
– – r == ac
FT = Fm
b = 0

a = FT−FR
ρ m

+ b

vt = vt + a ∆t

pt = pt + vt ∆t
l = l + vt ∆t

e = e+ FT vt ∆t

R = R ∪ (pt, vt)
t = t+ ∆t

end

Construction of the speed profile in the second part. This part depends on
both variables defined for section i, namely va,i and vb,i and it depends on
the gradient, the maximum speed of the following section and the capability
to coast all over length ls,i. Let lco be the length of coasting, lcr the length of
cruising, lbr the length of braking. Algorithm 6 describes the construction of
the second part. It has to be noted that two additional functions are used in
the algorithm. The first is search for intersection which computes the
changing between two regimes by searching for the intersection of the speed
curves representing the driving regimes under consideration. The second
is apply reverse regime which is the counterpart of apply regime but it
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Algorithm 2: Function end reached(v1,v2, p1, p2, r)

Data: v1: current speed, v2: target-speed, p1: current position, p2: limit position, r: current
driving regime

Result: reached = {0|1}
begin

reached = 1;
switch r do

case br
if v1 > v2 or p1 < p2 then reached = 0

case co
if v1 < v2 or p1 < p2 then reached = 0

case cr
if p1 < p2 then reached = 0

case ac
if v1 < v2 or p1 < p2 then reached = 0

end

Algorithm 3: eval solution(u = (va,1, vb,1, ..., va,n, vb,n)).
Data: for each section i = 1, ..., n: va,i, vb,i, pi, li, vm,i
Result: vector (T,E) including the total running time and total energy consumption

(T,E) = (0, 0);
(T,E) = (T,E)+eval section(0, va,1, vb,1, va,2, p1, l1, vm,1, vm,2);
for i = 2, ..., n− 1 do

(T,E) = (T,E)+eval section(min{vb,i−1, vm,i}, va,i, vb,i, va,i+1, pi, li, vm,i, vm,i+1);

(T,E) = (T,E)+eval section(min{vb,n−1, vm,n}, va,n, vb,n, 0, pn, ln, vm,n, 0)

Algorithm 4: eval section(ve, va, vb, p, l, vm, vn)
Data: ve: entry speed, va: target speed in the first part, vb: target speed in the second part, p:

entry position, l: section length, vm: maximum speed of the section, vn: maximum speed
of the next section

Result: vector (t, e) including the total running time and total energy consumption in the section

begin1
(ta, la, ea, Ra) = first part(ve, va, l, p) ;2
(tco, tcr, tbr, eco, ecr, ebr, lco, lcr, lbr, Rco, Rcr, Rbr) = second part(va, vb, p, la, vm, vn) ;3
t = ta + tco + tbr + tcr;4
e = ea + eco + ebr + ecr;5

end6

computes the phase from the end-point to the beginning. This function is
used when no beginning-point is known for the driving regime to use, but
the end-point of the phase is known. Given that these two functions can be
retrieved easily, they are not defined in this paper.

If va,i = vb,i, the speed profile consists of a cruising phase at speed va,i
all along the section if vm,i+1 ≥ va,i (Fig. 4(a)), i.e., if the maximum speed
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Algorithm 5: first part(ve, va, l, p)
Data: ve: entry speed, va: target speed in the first part, p: start position, l: section length, vm:

maximum speed of the section
Result: vector (ta, la, ea, Ra) including the total running time, length, energy consumption and

regime used in the section.

begin1
if ve < va then2

(ta, la, ea, Ra)=apply regime(ve,va,l,p,ac) ;3
else4

(ta, la, ea, Ra)=apply regime(ve,va,l,p,br) ;5

end6

of the following section is higher than the current target-speed. Otherwise it
consists in a cruising phase at speed va,i followed by a braking to reach speed
vm,i+1 (Fig. 4(b)).

Let vl be the last speed measured at the end of the coasting and returned
by function exit coast (not defined in the paper). If va,i > vb,i, we try to
insert a coasting phase:

• If q ≥ σ the train decelerates by coasting, and thus vl < va,i because of
the slowdown due to the resistive efforts while coasting,

• If q < σ: there is a steep descent.

If the coasting permits to reach vb,i, then vl = vb,i. Otherwise, a number
of cases must be distinguised to be treated differently. When vl < va,i, we
distinguish four cases depending on the possibility to coast along a distance
smaller than or equal to the distance ls,i:

• if vb,i ≤ vm,i+1

i. if the train may reach speed vb,i, starting at speed va,i, by coast-
ing along the length ls,i, the speed profile includes the coasting
followed by a cruising regime at speed vb,i in the remaining dis-
tance (Fig. 4(c)). The exit speed vx,i equals vb,i,

ii. if the train covers the section by coasting and it never reaches
speed vb,i, then we set: vb,i = vl (Fig. 4(d)). In addition, vx,i = vb,i.

• if vb,i > vm,i+1

iii. if the train may reach speed vb,i, starting at speed va,i, by coasting
along the length ls,i, the same speed profile described in (i) is
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imposed, but a final braking is necessary to enter the following
section at speed vm,i+1 (Fig. 4(e)). In this case, vx,i = vm,i+1,

iv. if the train covers the second part of the section by coasting and
it never reaches speed vb,i, then a final braking is imposed for
attaining this speed (Fig. 4(f)). Let vc be the speed measured
when starting braking, i.e., vc is obtained after calling function
search for intersection. Since speed vb,i cannot be attained,
it is then corrected by replacing its value with: vb,i = vc. Last,
vx,i = vm,i+1.

As discussed above, it may happen that a coasting results in an acceler-
ation if q < σ, in this case:

• if vb,i ≤ vm,i+1, the coasting is interrupted by a braking to leave the
section at speed vb,i (Fig. 5(a)),

• if vb,i > vm,i+1, the train stops coasting and brakes to leave the section
at speed vm,i+1. Speed vb,i is therefore corrected to vm,i+1: vb,i = vm,i+1

(Fig. 5(b)).

4.3. Post processing: smoothing the speed profiles

Although the construction of speed profiles aims to avoid sequences com-
posed of braking followed by acceleration, a post-processing is necessary for
guaranteeing that it is always the case. In fact, if the slope in the second part
of the section is sufficiently steep to make the train accelerate while coasting,
then a braking is introduced to reach speed vb,i. If vb,i < vm,i+1, this braking
could be followed by an acceleration (if va,i+1 > vb,i).

For avoiding this, we use a smoothing post-processing to eliminate two
types of sequences: (Braking, Acceleration at full power); (Braking, Accel-
eration while coasting). Whatever the sequence under consideration, we can
distinguish two cases for which we determine a cruising phase replacing one
part of the sequence depending on speeds vc (defined as speed measured when
starting braking) and va,i+1 (Fig. 6(a, c)). The cruising speed corresponds
to the minimum between them: min(vc, va,i+1). Finally, Figures 6(c, d) are
respectively the smoothed profiles of Figures 6(b, d).

All along this inserted cruising phase, it is necessary to compute the
effort necessary to maintain the speed constant. This effort will replace
the one previously computed for the acceleration phase in the evaluation of
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Algorithm 6: second part(va, vb, p, l, vm, vn)
Data: va: target speed in the first part, vb: target speed in the second part, p: start position, l:

section length, vm: maximum speed of the section, vn: maximum speed of the next section
Result: vector (tco, tcr, tbr, eco, ecr, ebr, lco, lcr, lbr, Rco, Rcr, Rbr) including the total running

time, the total energy consumption and the total run length of each regime used in the
second part of the section.

begin1
if va == vb then2

if va < vn then3
(tcr, lcr, ecr, Rcr)=apply regime(va,vb,l − la,p+ la, cr) ;4

else5
(tbr, lbr, ebr, Rbr)=apply reverse regime(vb,vn,l − la,p+ l,br) ;6
(tcr, lcr, ecr, Rcr)=apply regime(va,vb,l − la − lbr,p+ la, cr);7

else8
// va > vb9
vl = exit coast(va, vb, l − la,p+ la);10
(tco, lco, eco, Rco)=apply regime(va,vb,l − la,p+ la, co);11
if vl > va then12

if vn ≤ vb then13
(tbr, lbr, ebr, Rbr)=apply reverse regime(vm,vn, l − la,p+ l, br) ;14
(tco, tbr, lbr, lco, eco, ebr, Rbr, Rco)= search for intersection(Rco,Rbr) ;15
vb = vn ;16

else17
(tbr, lbr, ebr, Rbr)=apply reverse regime(vm,vb, l − la,p+ l, br) ;18
(tco, tbr, lco, lbr, eco, ebr, Rco, Rbr)= search for intersection(Rco,Rbr) ;19

else20
if vl > vb then21

if vn ≤ vl then22
(tbr, lbr, ebr, Rbr)=apply reverse regime(vm,vn, l − la,p+ l, br) ;23
(Rco, Rbr, vc)= search for intersection(Rco,Rbr) ;24
vb = vc25

else26
vb = vl ;27

else28
vt = min(vb, vn) ;29
(tbr, lbr, ebr, Rbr)=apply reverse regime(vb,vt, l − la,p+ l, br) ;30
(tcr, lcr, ecr, Rcr)=apply regime(vb,vb,l − la − lco − lbr,p+ l, cr);31

t = ta + tco + tbr + tcr;32
e = ea + eco + ebr + ecr;33

end34

the second objective of the optimization. The same holds for the running
time associated to the speed profile. The advantage of inserting a cruising
phase instead of an inappropriate sequence is to reduce the journey duration
while also reducing the quantity of energy consumed, because acceleration is
replaced by a regime far less energy-consuming.

It has to be noted that the post processing is applied to any solution as
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Figure 4: Description of the possible situations in the second part of a section

soon as it is generated.
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Figure 6: Description of smoothing of speed profiles: profiles (a) and (b) have a braking
followed by an acceleration (at full power or by coasting in descent); profiles (c) and (d)
are the respective smoothed speed profiles.

5. Evolutionary Multi-objective Optimization

The problem under study is a multi-objective continuous optimization
problem. To tackle it, we propose to use an evolutionary algorithm because
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this kind of algorithm is known to be well-suited to multi-objective problems
[17]. First, we present multi-objective optimization principles and concepts.
Then, we introduce the state-of-the-art evolutionary algorithm which is used
in the experimental analysis. Finally, we present the mechanisms specific to
our application.

5.1. Multi-objective Optimization

A general Multi-objective Optimization Problem (MOP) can be defined
by a set of k objective functions f = (f1, f2, . . . , fk) and a set U of feasible
solutions in the decision space. Let Z be the objective space Z = f(U).
Without loss of generality, we assume here that each objective function is to
be minimized. To each solution u ∈ U is assigned an objective vector z ∈ Z
with z = {z1, z2, ..., zk} computed on the basis of the vector function f : U →
Z with z = f(u) = (f1(u), f2(u), . . . , fk(u)). An objective vector z ∈ Z is
said to dominate another objective vector z′ ∈ Z iff ∀i ∈ {1, 2, . . . , k}, zi ≤ z′i
and ∃j ∈ {1, 2, . . . , k} such that zj < z′j. A decision vector u ∈ U dominates
a decision vector u′ ∈ U if f(u) dominates f(u′). An objective vector z ∈ Z is
said to be non-dominated iff no other objective vector z′ ∈ Z exists such that
z′ dominates z. A solution u ∈ U is said to be efficient, or Pareto optimal, if
its mapping in the objective space results in a non-dominated point.

Due to the complexity of the underlying problem, the overall goal is of-
ten to identify a good approximation of the efficient set. Population-based
metaheuristics in general, and evolutionary algorithms in particular, are com-
monly used to this end, as they are capable of finding multiple and well-spread
non-dominated solutions in a single run [17].

5.2. Indicator Based Evolutionary Multi-objective Algorithm

Over the last decades, a very large number of evolutionary algorithms for
MOP solving have been proposed in the literature [17, 25]. These approaches
can be seen as frameworks in which problem-related components have to be
defined. In this work, we have used a state-of-the-art evolutionary multi-
objective optimization algorithm, namely the Indicator-Based Evolutionary
Algorithm (IBEA) [18]. This algorithm follows the main steps illustrated in
the flowchart of Fig. 7.

IBEA characterizes the trend in evolutionary computation dealing with
indicator-based search which has become popular over recent years. The
main idea is to introduce a total order between solutions by means of a
binary quality indicator. In multi-objective optimization, ‘quality’ represents
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Figure 7: Flowchart of an evolutionary multi-objective optimization algorithm.

the well-spread aspect of the solutions in a front. Each solution contributes
to the spread of the front, and hence to its quality [18].

The fitness assignment scheme is based on a pairwise comparison of so-
lutions from the current population with regard to the indicator Iε+ [26].
To each individual u is assigned a fitness value φ(u) which is to be max-
imized, and measuring the contribution of the solution u and hence the
‘loss in quality’ if u is removed from the current population Q, i.e., φ(u) =∑

u′∈Q\{u}(−e−I(u
′,u)/κ), where κ > 0 is a user-defined scaling factor.

The variation step comprises recombination (crossover) and mutation.
The selection for crossover consists of a binary tournament between randomly
chosen individuals and the selection for replacement consists in iteratively
removing the worst solution from the current population until the required
population size is reached. The fitness information of the remaining individ-
uals is updated whenever one is deleted. Moreover, all new non-dominated
solutions found during the process are archived in a separate population.
This archived population is updated every iteration in function of the new
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non-dominated solutions for discarding the dominated ones.

5.3. Solution representation and initialization

A solution is defined by a vector of speeds: 〈va,1 vb,1 ... va,n vb,n〉. Given
that two speeds are necessary to represent a section, the number of compo-
nents of solution u equals twice the number n of sections: #u = 2n.

To avoid too many unfeasible solutions at the beginning of the optimiza-
tion, a specific initialization strategy is developed based on the fastest jour-
ney, as described in Section 5.3.2.

5.3.1. Determination of the reference solution

In order to have a reference solution for further comparisons, we search
for the solution which minimizes the running time, denoted u∗. Concretely,
it consists in driving as fast as possible with respect to the speed constraints
of the track.

A complete description of this calculation is given in [20]. In few words,
the speed profile is built in three steps. First, the method consists in de-
termining all necessary braking at the end of the sections for respecting the
maximal speed of consecutive sections. Second, it consists in determining
the maximal acceleration at the beginning of each section. Third, cruising
phases are added between accelerations and brakings to complete the speed
profile. The obtained solution represents the lower-bound T of running time
and serves also as basis of comparison for the energy consumption. The
decision-maker will be able to limit the possible range of running time by
upper-bounding it to a duration equal to x× T , by setting parameter x > 1.

5.3.2. Initialization of the population

The solutions are based on solution u∗ and are successively initialized.
The initial population as well as the following ones are composed of a fixed
number N of solutions. Within each initialization of solution µ ∈ [1, N ],
the values of vµa,i, v

µ
b,i are determined from vu

∗
a,i, v

u∗

b,i in such a way that the
solution initialized is automatically longer and less energy-consuming than
the reference solution u∗. At every solution initialization, the solution is
longer than the previous one. In our implementation, we have chosen a very
easy way to do this. First, we assume that the population is limited to 50
solutions: N = 50. Then, the interval Ii for decreasing speeds vµa,i, v

µ
b,i per
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section i corresponds to half the maximal speed reachable:

∀i ≤ n, Ii =
vu
∗
a,i

2
(23)

∀µ ∈ [1, N ],∀i ≤ n, vµa,i = vu
∗

a,i − (Ii × i× 0.01) (24)

(25)

This strategy is clearly improvable. Nevertheless, it is satisfactory for pro-
ducing original solutions and the development of a new initialization strategy
is out of the scope of the paper. After initialization, the population is com-
posed of a set of N distinct solutions, which will be used to produce new and
improved ones.

5.4. Solution evaluation

Each solution u is evaluated during its construction. In particular, for
each section i, the running time ti and the energy consumption ei are com-
puted as explained in Section 3.

If a speed profile does not satisfy the constraints or cannot be built, then
the solution is not feasible and it is discarded. As the objectives have to be
minimized, their fitnesses are assigned huge values so that the solution will
not appear in the next population.

5.5. Solution variation

5.5.1. Crossover

Crossover is the mechanism allowing solutions to recombine with each
other in order to produce new solutions. As the solution space is continuous,
we use an operator adapted to the continuous search: the Simulated Binary
Crossover (SBX) [27]. It generates two new solutions from two initial ones
belonging to the current population. Its mechanism is inspired from the
single-point crossover used in the binary-coded genetic algorithm [27]. A
crossover rate indicates the percentage of individuals to recombine.

By assuming that there is one binary variable in the problem to solve,
the binary one point crossover states that the average value of the parents
is the same as that of the offspring. In the example of Figure 8, p1, p2 are
the parents used to generate children c1, c2. After recombination, we can see
that p = c and the values c1, c2 are spread around the average value c. The
spread factor β is defined as the ratio of the spread of the child points to
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p =121.5

p1=101︷ ︸︸ ︷
0 1 1 0 0 1 0 1

=⇒

c1=110︷ ︸︸ ︷
0 1 1 0 1 1 1 0

c =121.5
1 0 0 0 1 1 1 0︸ ︷︷ ︸

p2=142

1 0 0 0 0 1 0 1︸ ︷︷ ︸
c2=133

Figure 8: Illustration of the binary one point crossover

that of the parent points: β =
∣∣ c1−c2
p1−p2

∣∣. Finally, the values of the offspring
can be expressed as follows:

c1 = p− β × |p1 − p2|
2

and c1 = p+
β × |p1 − p2|

2
(26)

The SBX uses these properties: the average value and the spread fac-
tor properties. As the SBX deals with real variables, the spread factor β
is defined in R+. Moreover, the SBX is defined for scalar values, whereas
the crossover has to be performed on real vectors. To do that, the SBX is
uniformly applied over each scalar values of the decision vectors, with regard
to a probability, as illustrated in Figure 9. The spread factor β is randomly
defined according to a probability density function defined as follows:

P (β) =

{
0.5× (ηc + 1)× βηc β > 1

0.5× (ηc + 1)× 1
βηc+2

β ≤ 1
(27)

where the perturbation value ηc is a given positive parameter. Further details
and explanation can be found in [27].

p1
1 p2

1 p3
1 ... pn1 c1

1 p2
1 c3

1 ... cn1
...

...
... =⇒ β1

... β3
... βn

...
p1

2 p2
2 p3

2 ... pn2 c1
2 p2

2 c3
2 ... cn2

Figure 9: Illustration of the Simulated Binary Crossover (SBX).

5.5.2. Mutation

Mutation consists in providing diversity for the population by modifying
a solution randomly chosen. For the same reason mentioned for the crossover,
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we use an operator adapted to the continuous search: a polynomial mutation
[17, 27]. A mutation rate indicates the percentage of individuals to mutate.

The polynomial mutation is uniformly applied over each scalar values
of the decision vector, with regard to a probability: 1/2n. Let δ be the
deviation from the original value. Each scalar value is deviated using the
following probability distribution:

P (δ) =
(ηm + 1)(1− |δ|)ηm

2
, δ ∈ [−1, 1] (28)

where ηm is a given positive parameter.

6. Experimental analysis

6.1. Implementation

We implemented the algorithm by using the ParadisEO framework [28].
The ParadisEO framework is a ‘white box’ in which several algorithmic com-
ponents are already implemented, and must be combined and integrated by
the user. In addition to the problem-related modules that we have developed,
we use the ParadisEO implementations of SBX operator and polynomial mu-
tation. We performed the experiments on a PC (3.0 GHz with 6 GB) running
Linux release of ParadisEO framework.

Parameter settings. The population is composed of 50 solutions and evolves
over 60 seconds of computation, which is the stopping criterion. Crossover
and mutation rates are respectively set to 0.9 and 0.5. Specific parameter κ
for IBEA is set to 0.0001. We selected these values based on some preliminary
experiments.

6.2. Instances and rolling stock used in the analysis

The lines that we use for the experiments correspond to two lines de-
scribed in Figure 10(a) which reports the length and the maximal speed of
each section. The track slopes are depicted in Figure 10(b, c) and given as
gradient [‰].

Instance 1 corresponds to a line described and used in [7, 8]. It is 2.2 km
long and includes five sections. Instance 2 is the Saint-Étienne–Rive de Giers
line in France. It is 20.2 km long and includes five sections. It is interesting
to note that the gradient is mostly negative and thus the outward journey is
in descent for the most part of the line.
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Line 1
section 1 2 3 4 5
length (m) 1350 160 250 240 200
maximum speed (km/h) 95 70 40 25 40

Line 2
section 1 2 3 4 5
length (m) 3500 3900 3900 6600 2300
maximum speed (km/h) 90 110 105 120 105

(a) Length and maximum speed allowed on each section
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Figure 10: Description of the studied lines
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In both lines, the train is an AGC1. For computing energy consumption,
the relevant parameters about AGC, as well as the tractive effort curve, are
reported in Fig. 11.
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(a) Numerical data (b) Tractive effort curve

Figure 11: Technical parameters of train AGC

6.3. Results

Here, we analyze the results obtained on the two lines tackled in this
paper, separately detailed and discussed in the cases studied hereafter. For
each line, we consider two instances representing outward and inward jour-
neys, respectivel.

6.3.1. Line 1

Outward journey. Figure 12(a) depicts the objective space of Instance 1a
and the sets of produced solutions at different times. Three populations
are represented: the initial one (time t=0 second), the sets of non-dominated
solutions produced at time t=30 seconds and the corresponding set at the end
of the process (time t=60 seconds). The reference solution I1a* corresponds
to the fastest journey and is represented to have a basis of comparison. Note
that the limit of journey duration is fixed to 1.5× TI1a∗ .

Compared to the initial solutions, it clearly appears that the sets of so-
lutions improved during the process. Moreover, according to the stretched

1Autorail Grande Capacité
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shape of the sets, we can say that the solutions have been well diversified
during the search. Now, if we compare the set at time t=30 with that at
time t=60, we can see that the solutions have not been strongly improved
during the last 30 seconds. Hence, with the adopted parameter settings, the
largest part of the optimization has been performed during the first half of
the available time.

In Figure 12(b), three speed profiles are drawn: reference solution I1*,
and two others: I1 1 and I1 2. Solutions I1 1 and I1 2 are two alternative
solutions obtained in the same run. Duration and energy consumption of
each solution, as well as deviations from solution I1*, are reported in Table
3. As could be assumed, the decrease percentage of energy consumption is
much higher than the increase percentage of running time.

Table 3: Numerical results of three solutions obtained on instance 1a: reference solution
I1a* and two alternative solutions I1a 1, I1a 2.

Solution Duration [s] Dev. [%] Energy [kJ] Dev. [%]
I1* 175 4.9790 × 106

I1 1 189 +8.0 3.6917 × 106 -25.85
I1 2 213 +21.7 2.6327 × 106 -47.12

By analyzing the speed profile of solution I1a 1 (Figure 12(b)), we can
observe that, in the first section, after an acceleration at full power for at-
taining va,1 = 21 m/s, the train coasts for reaching the target-speed vb,1.
Then, in the second part, we can see that the train accelerates between po-
sitions 1100 m and 1300 m due to the steep descent of the track, even if
vb,1 = 18.48 m/s: the train cannot reach the target-speed and the situation
identified here corresponds to that described in Algorithm 6 line 18 (Fig.
5(a)). In the second section (from 1350 m to 1510 m), a braking covers the
whole available distance. It corresponds in fact to a braking when the train
enters in the section, followed by the same situation as before (Fig. 4(e)), but
coasting and cruising distances are equal to 0. In the third section, the train
enters at speed ve,3 = va,3 = 11 m/s so that the length of the first part is nil.
In the second part, the train coasts and then brakes to leave at the maximum
speed of the next section. With speeds va,3 = 11 m/s and vb,3 = 9.76 m/s,
that corresponds to the situation described in Algorithm 6 line 27 (Fig. 4(e))
with a cruising distance equal to 0. Finally, the train leaves section 3 at speed
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vx,3 = 6.94 m/s and enters section 4 at speed ve,4 = vx,3.
In section 4, the train drives at constant speed and this situation corre-

sponds to the one described in Figure 4(a). It is interesting to note that the
train runs at speeds lower than 6.94 m/s. In practice, it is obvious that the
train will run at the maximum speed of the section if the limitation is very
low (25 km/h in the paper mentioned). However the notion of low speed
is not taken into account in our method. Whatever the speed limitation in
the section under consideration, it is inherent to the optimization model to
find alternative speed profiles even in low-speed sections. Thus, even if the
speed limitation is low, the method can propose less energy-consuming speed
profiles taking more time than the solution running at the speed limitation.
It is therefore normal that other speed profiles are proposed by the method.
In order to avoid them, the notion of low speed should be defined for not
running at lower speeds. But, the question of what a low speed is, has to be
answered first.

Last, in section 5, the train accelerates to reach the first target-speed
before coasting until the compulsory braking when arriving at the end of the
path (see Fig. 5(b)).

The speed profile of solution I1 2 follows approximately the same driving
regimes but with lower target-speeds. Its consumption is weaker compared
to solution I1 1 but with, of course, a longer journey duration.

Inward journey. The sets of solutions obtained during the optimization are
represented in Figure 13(a). Even if there is a little improvement of the
solutions at time 60 seconds, we can say however that the best solutions
have been been often by time 30 seconds. Indeed, the improvement of the
solutions between times 30 and 60 seconds is quite weak.

Figure 13(b) represents three speed profiles obtained for the instance I1b.
The corresponding numerical results are reported in Table 4. In this di-
rection, there is now a steep climb which prevents the train to accelerate
strongly, as depicted by the reference solution I1b∗ (Fig. 12(b)) where the
speed increases less quickly between position 870 m and 1200 m. The solu-
tion I1b 1 introduces coastings and in particular in the last section around
the position 1000 m. Due to the steep climb, the slowdown is quite strong
compared to the coasting in the first section. The slowdown is directly fol-
lowed by a little acceleration in the descent around position 1100 m. But
from the position around 1300 m, the train decelerates gently until it has to
brake when arriving at the destination (position 2000 m).
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Figure 12: Results obtained on instance 1a: (a) Fronts of solutions at times t={0, 30, 60}
for outward journey; (b) Examples of speed profiles for outward journey.

The solution I2b 2 follows approximately the same trajectory than the
solution I2b 1, but it needs more time and saves more energy.

Through these examples, the relevance of a multi-objective approach of
speed profiling optimization is highlighted. Indeed, in a short computation
time, the approach has been capable of producing a set of distinct solutions.
Train-practitioners will have the possibility to choose a solution adapted to
their needs instead of working with the shortest running time increased of a
supplement. In this way, the proposed approach would help them to decide
what a good tradeoff is between time supplement and energy consumption
in the planning under consideration.
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Table 4: Numerical results of three solutions obtained on instance 1b: reference solution
I1b* and two alternative solutions I1b 1, I1b 2.

Solution Duration [s] Dev. [%] Energy [kJ] Dev. [%]
I1b* 174 7.59525 × 106

I1b 1 191 +9.7 3.91279 × 106 -48.48
I1b 2 200 +14.9 3.49579 × 106 -53.97

6.3.2. Line 2

Outward journey. In this case, steep descents are present in the track pro-
file. The interest of using a smoothing method will be highlighted in such a
context to produce optimized speed profiles.

Figure 14(a) presents the sets of solutions at different times (t={0, 30,
60}). As for the previous instances, the initial population (t=0 second) is
compared to populations at t=30 and t=60 seconds. The reference solution
I2* is also represented to have a basis of comparison. The journey duration
is limited to 1.5× TI2∗. Similarly to what observed in instances I1a and I1b,
the comparison of the three sets clearly indicates that the largest part of the
optimization is done during the first half of the computation.

The gap in energy consumption between the reference solution and the
others can be explained by the particular topology of the track. In this
example, given that the train can move with low effort by using coasting, the
engine can be utilized only little, so that the consumption falls dramatically.

In order to clarify this explanation, we can focus on the speed profile of
solution I2a 1 in Figure 14(b). A coasting is introduced in all sections except
the first. Moreover, still with the exception of the first section, the train does
not use very much the acceleration regime to increase speed: indeed it can
accelerate by coasting in descent. As soon as the train reaches the maximum
speed by coasting in sections 2, 3, 4, 5, it must partially brake to maintain
the speed, whereas in solution I2* the train has to accelerate at full power
to reach the maximum speed. It is the reason why solution I2* requires far
more energy than the other reported ones.

The acceleration occurring while entering in section 3 is due to the model
proposed: ve,3 = vx,2 < va,3, and the sequence (Braking, Acceleration) is
smoothed according to the method explained in Section 4.3. Indeed, given
that the coasting from speed va,2 to vb,2 brings to an acceleration, it is neces-
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Figure 13: Results obtained on instance 1b: (a) Fronts of solutions at times t={0, 30, 60}
for inward journey; (b) Examples of speed profiles for inward journey.

sary to brake for exiting section 2 at speed vb,2. Then, in section 3, speed va,3
is reached after accelerating as prescribed by the model. In such a case, due
to the negative gradient, the model produces a sequence of driving regimes
which will need to be smoothed: (Acceleration while coasting, Braking, Ac-
celeration). In the same way, the accelerating effect in coasting occurring
in sections 4 and 5 is also smoothed according to the same method. The
smoothed speed profile, denoted I2a 1s, is depicted in Figure 14(b).

Inward journey. In the inward way, the gradient of the track is mostly posi-
tive except for the last three kilometers. The topography of the track implies
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Table 5: Numerical results of two solutions obtained on instance 2: reference solution I2*
and one alternative solutions I2 1 and its smoothed counterpart I2 1s.

Solution Duration [s] Dev. [%] Energy [kJ] Dev. [%]
I2a* 734 10.5194 × 106

I2a 1 766 +4.35 7.26566 × 106 -30.93
I2a 1s 760 +3.54 6.61866 × 106 -37.08

for the train a greater energy consumption than in the outward journey. This
implication can be observed on the energy consumption values of the solu-
tions obtained during the optimization (Fig. 15(a)), which are far larger than
those obtained for the outward journey.

Figure 14(b) represents three speed profiles for the inward journey: the
reference solution I2b∗ and two compromise solutions denoted I2b 1 and
I2b 2. The detailed results are presented in Table 6. Contrary to the so-
lutions obtained for the outward journey, a coasting introduced in one of the
first four sections results in a slowdown.

If we consider the solution I2b 1, two coastings are respectively introduced
in the fourth and the last section. The former is realized while the train moves
in a climb. That results in a slowdown until reaching the speed to maintain.
The latter coasting results first in a slight slowdown directly followed by an
acceleration due to the negative gradient at the end of the track.

In the speed profile of the solution I2b 2, three coastings are used all
along the journey. The first two appear respectively in the second and the
fourth section, and result in a slowdown. In the last section, the coasting
begins with a slight slowdown before accelerating due to the steep descent.

Table 6: Numerical results of three solutions obtained on instance 2b: reference solution
I2b* and two alternative solutions I2b 1 and I2b 2.

Solution Duration [s] Dev. [%] Energy [kJ] Dev. [%]
I2b* 731 24.5206 × 106

I2b 1 747 +2.18 19.5501 × 106 -20.27
I2b 2 786 +7.52 19.1889 × 106 -21.74
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Figure 14: Results obtained on instance 2b: (a) Fronts of solutions at times t={0, 30, 60}
for inward journey; (b) Examples of speed profiles for inward journey.

The results reported in Tables 5 and 6 show the duration increases and en-
ergy savings occurring while using energy-free driving regimes such as coast-
ing or cruising with partial braking. As for line 1, the approach presents a
good capacity of producing a set of distinct solutions in a short computa-
tion time. Its relevance in decision-aid is shown in so far as it could help
train-practitioners to build timetables.
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Figure 15: Results obtained on instance 2b: (a) Fronts of solutions at times t={0, 30, 60}
for inward journey; (b) Examples of speed profiles for inward journey.

7. Conclusion and perspectives

In this paper, we consider a particular step of the train planning. This
step precedes the timetabling and concerns the calculation of running times.
This calculation is directly related to the construction of speed profiles, which
indicate the speed that the train must hold at each position. In this work, as
power recovery is not integrated, this problem is addressed with an approach
that uses conventional driving regimes following the Maximum Principle:
acceleration at full power, cruising, coasting and maximum braking.

Since timetabling process uses running times increased of a short time
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as supplement to prevent disturbances, the approach proposed here consists
in defining a running time directly adapted to the needs of planning and
optimizing also the energy consumption. Hence, one major contribution of
this work is to provide to the practitioners the capability of choosing the
solution the most adapted to their needs directly among a set of compromise
solutions.

In order to build a set of speed profiles adapted to a track, a specific model
has been developed. This model uses two target-speeds per section as decision
variables, and builds the speed profile within the section under consideration.
The optimization is performed by an evolutionary multi-objective algorithm.

The optimization model is independent of the train dynamics model that
we implemented. Indeed, due to the controversial aspects of certain approxi-
mations, anyone can use a different model of train dynamics without changing
neither the method of speed profiling nor the optimization model. That is
clearly an advantage for further comparisons of train dynamics models in the
future.

For illustrating the relevance of the approach, two lines have been pro-
posed and studied in both outward and inward directions, that is, four in-
stances in all. They have been tackled with a multi-objective optimization
algorithm, which has produced a set of solutions in a short time (60 sec-
onds). Moreover, as observed in the different experiments, satisfying results
have been obtained from around 30 seconds of computation.

In the future, we will integrate the calculation of alternative running
times in a planning context while building timetables. This will imply the
consideration of whole trips and not only point-to-point journeys and of
several trains at once, for optimizing their synchronization. It will make the
use of regenerative braking relevant for transferring recovered energy from
one train to another. This integration would allow the train-practitioners to
consider the energy spent per timetable produced with regards to the service
(dwell and transfer times, connections).
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