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Abstract

In this paper we propose an alternative tensorial decomposition to the Kelvin’s

one (introduced by Kelvin in 1856) for plane anisotropic elasticity using the polar

formalism (introduced by Verchery in 1979). In a first part of the paper, a parallel

between the two approaches is proposed. Thanks to it, some new results are found

; namely, the projectors introduced have a direct interpretation in terms of mate-

rial symmetry and are intrinsic for any type of symmetry considered, i.e. they do

not depend on any elastic modulus for any type of symmetry, unlike in the Kelvin

decomposition. The introduction of what we call, in the paper, the polar projec-

tors, stresses and strains gives a new insight into the polar formalism. The results

proposed in this paper will hopefully be useful in some cases, for example in the

modeling of anisotropic damage evolution in solids.

Keywords: Kelvin decomposition; Anisotropy; Polar formalism; Elastic invariants

1 Introduction

The classical Hooke’s law

σ = C ε (1)

can be written in a matrix form, exploiting the tensor symmetries of σ , ε and C. We

are concerned in this paper with planar elasticity; using a formalism originally due to

Kelvin, [1], we can write eq. (1) in the form







σ11

σ22√
2σ12







=





C1111 C1122

√
2C1112

C1122 C2222

√
2C2212√

2C1112

√
2C2212 2C1212











ε11

ε22√
2ε12







. (2)
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In this way, σ and ε are transformed into vectors and C into a square symmetric matrix

of R3. True advantages of the Kelvin formalism on the more used Voigt’s one [2],

are that C and its inverse S are transformed in the same way by a rotation and that the

matrix in eq. (2) algebraically corresponds to a symmetric second rank tensor, [3], [4].

Equation (2), by virtue of the spectral theorem for symmetric tensors, [5], can be

rewritten in such a manner that the matrix becomes a diagonal one. This possibility

was introduced the first by Kelvin as early as 1856, far before the development of

modern tensor algebra. Perhaps because too in advance with time, his pioneer work fell

almost completely in the oblivion, until some researchers reveal it again to the scientific

community in some rather recent works: starting from the eighties, Rychlewsky [6],

Mehrabadi and Cowin [3], François [7], R. Desmorat and Marull [8] and more recently

de Saxcé and Vallée [4], have used the Kelvin decomposition of elasticity to different

purposes.

The Kelvin decomposition of the elastic moduli is particularly important in anisotropic

elasticity. In fact, while all the components of C are frame dependent, i.e. they are not

intrinsic quantities describing the mechanical behavior of the material, the eigenvalues

of the matrix in eq. (2) are tensor invariants (their value, function of the components

of the matrix representing C in a given frame, do not change under a frame rotation),

though, of course, they do not form a complete set of independent invariants (in planar

elasticity, there are five independent invariants of C).

More recently, another representation of planar elasticity has been proposed by

Verchery [9]: the polar formalism. Its very origin is a complex variable transformation,

leading to a method for systematically finding all the invariants and syzigy relations of

a given tensor, so as to find a complete set of independent invariants. Nevertheless, and

unlike in several other approaches that can be found in the literature, all of them are not

polynomial invariants. This fact, contrarily to what can be thought, is not a drawback.

In fact, the very question in anisotropy is: what are the best elastic moduli to be used?

More properly: among the different independent invariants that can be used to repre-

sent a tensor, what have a special and interesting meaning for applications? It has been

shown that the polar invariants introduced by Verchery are directly linked to the sym-

metries of the mechanical behavior and to a particularly interesting decomposition of

the elastic energy. These facts have been widely and successfully exploited in a recent

past, and have brought a new and different insight in the matter of planar anisotropic

elasticity, [10], [11], [12], [13], [14].

It seems natural to compare the two methods above, the Kelvin decomposition and

the polar formalism, which is the topic of this paper. We proceed hence as follows: the

Kelvin decomposition and the main features of the polar formalism are firstly recalled.

Then, the Kelvin decomposition is re-interpreted using the polar formalism and finally

a new elasticity tensor decomposition is proposed, leading to the definition of what can

be called the polar projectors, stresses, strains and energies. A list of the interesting

new properties with respect to the Kelvin decomposition is finally presented in the last

section, and a potential application to damage mechanics is described.
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2 The Kelvin decomposition

As said previously, the idea of the Kelvin decomposition is basically the diagonaliza-

tion of the matrix representing C in the Kelvin formalism, eq. (2); the problem is hence

the classical one of finding the eigenvalues λ i and eigenvectors Ei of matrix C (here

and in the following, an underlined subscript means no summation):

C Ei = λ i Ei, i = I, II, III. (3)

Eigenvalues λ i are homogeneous to a modulus while eigenvectors Ei to a strain. Let

us call Kelvin basis the set

E =
{

EI,EII,EIII
}

. (4)

By virtue of the spectral theorem, E is an orthonormal basis; following the suggestion

of some authors, e.g. François, [7], [15], the λ i will be named Kelvin moduli and the

eigenvectors Ei, Kelvin modes.

Calling Kelvin projectors the fourth-order dimensionless tensors

P
i = Ei ⊗Ei, ∀i ∈ {I, II, III}, (5)

then we get

C= λ i
P

i. (6)

Each Kelvin projector is represented in the Kelvin formalism by a square singular ma-

trix such that

P
I +P

II +P
III = I. (7)

Calling Kelvin strains and Kelvin stresses respectively each one of the tensors

ε i = P
iε, σ i = P

iσ ∀i ∈ {I, II, III}, (8)

by their same construction, Kelvin strains and stresses are mutually orthogonal:

ε i · ε j = 0, σ i ·σ j = 0 ∀i 6= j ∈ {I, II, III}. (9)

The Hooke’s law (1) in the basis E is hence

σ = λ i ε i, (10)

and we get

ε i =
1

λ i
σ i, σ i = λ i ε i ∀i ∈ {I, II, III}, (11)

Let us consider now the strain energy Ws stored in an elastic body:

Ws =
1

2
ε ·Cε =

1

2
λ iε ·Piε =

1

2
λ iε i · ε i. (12)

Ws can hence be decomposed into three terms W i
s ,

W i
s =

1

2
λ iε i · ε i ∀i ∈ {I, II, III}, (13)
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each one of these three terms being associated to the corresponding Kelvin mode. For

this reason, we will denote them as Kelvin modal energies. The same procedure can be

applied verbatim also to the stress (complementary) energy,

Wc =
1

2
σ ·Sσ . (14)

3 The polar method: basic equations

In the polar formalism, the Cartesian components of tensor C, in a frame turned coun-

terclockwise by an angle θ with respect to the x1 axis, are expressed as

C1111(θ) = T0 +2T1 +R0 cos4(Φ0 −θ)+4R1 cos2(Φ1 −θ) ,

C1112(θ) = R0 sin4(Φ0 −θ)+2R1 sin2(Φ1 −θ) ,

C1122(θ) =−T0 +2T1 −R0 cos4(Φ0 −θ) ,

C1212(θ) = T0 −R0 cos4(Φ0 −θ) ,

C1222(θ) =−R0 sin4(Φ0 −θ)+2R1 sin2(Φ1 −θ) ,

C2222(θ) = T0 +2T1 +R0 cos4(Φ0 −θ)−4R1 cos2(Φ1 −θ) .

(15)

The polar moduli T0, T1, R0 and R1, along with the difference Φ0 −Φ1 of the polar

angles are tensor invariants. It appears clearly from eq. (15) that the polar formalism

splits each Cartesian component into its isotropic, T0 and T1, and anisotropic parts, R0,

R1 and Φ0 −Φ1.

By inverting eqs. (15), the expressions of the polar invariants can be obtained:

T0 =
[C1111(θ)−2C1122(θ)+4C1212(θ)+C2222(θ)]

8
,

T1 =
[C1111(θ)+2C1122(θ)+C2222(θ)]

8
,

R0 =

√
[C1111(θ)−2C1122(θ)−4C1212(θ)+C2222(θ)]

2+16[C1112(θ)−C1222(θ)]
2

8
,

R1 =

√
[C1111(θ)−C2222(θ)]

2+4[C1112(θ)+C1222(θ)]
2

8
,

cos4(Φ0 −Φ1) = [C1111(θ)−2C1122(θ)−4C1212(θ)+C2222(θ)]
{

[C1111(θ)−C2222(θ)]
2 −4 [C1112(θ)+C1222(θ)]

2
}

+

+16 [C1111(θ)−C2222(θ)]
[

C2
1112(θ)−C2

1222(θ)
]

;

(16)

the above equations show that both the isotropy moduli T0 and T1 are linear invariants,

the anisotropy moduli R0 and R1 are the square roots of quadratic invariants while the

angular difference Φ0 −Φ1 is a function of a cubic invariant. Hence, only T0 and T1

are polynomial invariants, among the five polar ones.

For the compliance tensor S, the inverse of C, relations similar to those in eqs. (15)

and (16) exist; usually, in this case lower case letters are used for the polar parameters

(t0, t1, r0, r1, ϕ0 and ϕ1).
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The polar anisotropic invariants define intrinsically all the possible symmetries of

the elastic behavior: it is known that the condition for ordinary orthotropy is linked to

a third-order invariant, and in the polar formalism this gets a very simple expression:

Φ0 −Φ1 = K
π

4
, K = {0,1}; (17)

the value of the invariant K determines the shape of the ordinary orthotropy, and it has

a strong role in determining the solution in several optimization problems concerning

orthotropic materials. Actually, for the same set of polar moduli T0, T1, R0 and R1,

two distinct orthotropic materials can exist, one with K = 0, the other one with K = 1,

whose mechanical properties are different.

Besides condition (17), it is simple to check that orthotropy can be obtained in eq.

(15) also when

R0 = 0, (18)

or

R1 = 0. (19)

Both these cases are special orthotropies, determined by a condition on a quadratic

invariant; in particular, the last condition corresponds to the well known 3D case of

cubic syngony, the so-called square symmetry, characterized by a periodicity of π/2 of

the Cartesian components, while the first one is a the so-called R0-orthotropy, a special

case of orthotropy discovered by the aid of the polar method, [11], in the plane case,

and confirmed by Forte for the 3D case, [16]. We remark that there are five independent

and non null invariants for the K = 1 ordinary orthotropy, four for the K = 0 case and

three for the two special orthotropies.

Finally, isotropy is stated by the two simultaneous intrinsic conditions (18) and (19)

and can be interpreted as the simultaneous presence of two special orthotropies.

The above conditions for the orthotropy of C can be repeated verbatim for S, sim-

ply replacing the uppercase with lowercase letters. Nevertheless, while condition (19)

implies the same for r1, condition (18) does not imply that r0 = 0. This fact, by reci-

procity, implies the independent existence of another case of symmetry of the elastic

behaviour, the r0-orthotropy, concerning S, but not C, [13], just as R0-orthotropy con-

cerns C but not S. In particular, it can be proved that for r0-orthotropic materials it is

R0 =
R2

1

T1
, K = 1; (20)

so the number of independent non null invariants is four for C, and three for S.

The polar formalism apply as well to tensors of any rank; we are concerned here

also with the polar representation of σ and ε:

σ11 = T +Rcos2(Φ −θ), ε11 = t + r cos2(ϕ −θ),

σ22 = T −Rcos2(Φ −θ), ε22 = t − r cos2(ϕ −θ),

σ12 = Rsin2(Φ −θ), ε12 = r sin2(ϕ −θ);

(21)
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T and R are invariants, while Φ is an angle fixing the frame; their expression is

T = σ11(θ)+σ22(θ)
2

,

R =

√

[

σ11(θ)−σ22(θ)
2

]2

+σ2
12(θ),

tan2Φ = 2σ12(θ)
σ11(θ)−σ22(θ)

.

(22)

Similar results are valid also for the polar parameters of ε: t, r and ϕ . A last remark: it

is apparent from eqs. (21) and (22) that the polar formalism for second rank symmetric

tensors is nothing but the algebraic translation of the Mohr’s circle.

The strain energy Ws takes the following form with the polar formalism, [10]

Ws = 4T1t2 +8R1t r cos2(Φ1 −ϕ)+2 [R0 cos4(Φ0 −ϕ)+T0] r2. (23)

In this formula, we can see that T1 acts only on the spherical part t of ε , T0 and R0

only on the deviatoric part r, and R1 on both. Using this result, it can be shown that

condition (19) is the minimal requirement for splitting Ws into two separated parts,

W
sph
s , the spherical part, and W dev

s , the deviatoric one, depending, the first, only upon

the spherical parts of σ and ε (T and t respectively), the second only upon the deviatoric

parts (R and r respectively).

To end this section, we remark that the above polar invariants (16) are completely

equivalent to those found by de Saxcé and Vallée, following an approach starting from

the Kelvin decomposition. Actually, the invariants given in eqs. (54) to (59) of [4], can

be shown to be equal to

λ = 2T1 −T0, µ = T0, I2
2 = 16R2

1, I2
4 = R2

0, − ζi

ζr

= tan4(Φ0 −Φ1) . (24)

4 The Kelvin decomposition with the polar formalism

We use now the polar formalism to express the Kelvin moduli, modes, projectors,

strains and strain energy. The procedure is almost straightforward: relations (15) are

introduced into the matrix in eq. (2) to express the Cartesian components Ci jkl of C by

the polar formalism. Then, the type of symmetry, if any, is introduced using conditions

(17), (18), (19) or (20). The eigenvalues λ i and eigenvectors Ei of the matrix in eq. (2)

are so calculated and they are of course given as functions of the polar parameters of

C. The Kelvin projectors Pi, strains ε i and modal energies W i are then computed (the

polar stresses, not given here for the sake of shortness, have the same expression of the

polar strains, and can be obtained simply swapping upper- and lower-case letters for

all of the polar parameters appearing in the expressions of the polar strains). The polar

formalism allows hence to distinguish the results upon the type of the elastic symmetry

and to express all the quantities as functions of intrinsic quantities, the polar invariants.

We give here the results for the different types of orthotropies and for isotropy;

the general case of totally anisotropic material can be formulated, but it is not given

here, because of its complexity (the solution of the characteristic equation to find the
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eigenvalues is not simple in such a case). For the sake of simplicity, and without loss

of generality, in the following we will put Φ1 = 0 in eq. (2) to fix the frame. Also, in

order to give a simpler form to the results, let us introduce the following two modules,

that are invariants too:

A = T0 −2T1 +(−1)KR0, B =
√

16R2
1 +A2. (25)

4.1 Ordinary orthotropy

If eq. (17) is introduced into eq. (2), then we get:

• Kelvin moduli

λ I = 2
[

T0 − (−1)KR0

]

, λ II = A−B+4T1, λ III = A+B+4T1. (26)

• Kelvin modes

EI =







0

0

1







,

EII = |A|√
A2+(B−4R1)

2







B−4R1
A

1

0







,

EIII = |A|√
A2+(B+4R1)

2







−B+4R1
A

1

0







.

(27)

• Kelvin projectors

P
I =





0 0 0

0 0 0

0 0 1



 ,

P
II = 1

A2+(B−4R1)
2





(B−4R1)
2

A(B−4R1) 0

A(B−4R1) A2 0

0 0 0



 ,

P
III = 1

A2+(B+4R1)
2





(B+4R1)
2 −A(B+4R1) 0

−A(B+4R1) A2 0

0 0 0



 .

(28)
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• Kelvin strains

ε I =
√

2r sin2ϕ







0

0

1







,

ε II = (A+B−4R1)t−(A−B+4R1)r cos2ϕ

A2+(B−4R1)
2







B−4R1

A

0







,

ε III = (−A+B+4R1)t−(A+B+4R1)r cos2ϕ

A2+(B+4R1)
2







B+4R1

−A

0







.

(29)

• Kelvin modal energies

W I
s = 2

[

T0 − (−1)KR0

]

r2 sin2 2ϕ,

W II
s = (B+4R1)(A−B+4T1)

4A2B
[(A+B−4R1) t − (A−B+4R1)r cos2ϕ]2 ,

W III
s = (B−4R1)(A+B+4T1)

4A2B
[(−A+B+4R1) t +(A+B+4R1)r cos2ϕ]2 .

(30)

• Total strain energy

Ws =W I
s +W II

s +W III
s = 2T0r2 +4T1t2 +2(−1)KR0r2 cos4ϕ +8R1t r cos2ϕ,

(31)

which of course is the corresponding of (23) for the case of ordinarily orthotropic

materials.

4.2 R0-orthotropy

Inserting condition (18) into eq. (2) leaves unchanged almost all the results found for

ordinary orthotropy; the only changes are:

R0 = 0 →























A = T0 −2T1,

λ I = 2T0,

W I
s = 2T0r2 sin2 2ϕ,

Ws = 2T0r2 +4T1t2 +8R1t r cos2ϕ.

(32)
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4.3 r0-orthotropy

If conditions (20) are introduced into eq. (2), then the only changes in the results found

for ordinary orthotropy are

r0 = 0 →























































R0 =
R2

1

T1
, K = 1,

A = T0 −2T1 −
R2

1

T1
,

W I
s = 2

(

T0 −
R2

1

T1

)

r2 sin2 2ϕ,

Ws = 2T0r2 +4T1t2 +2
R2

1

T1
r2 cos4ϕ +8R1tr cos2ϕ.

(33)

4.4 Square symmetry (R1 = 0)

This is a particularly interesting case, because, unlike all the previous cases, the eigen-

vectors Ei, and by consequence the Kelvin projectors Pi, do not depend upon the elastic

moduli: all the square symmetric plies share the same Ei and P
i. We list below all the

results for this case:

• Kelvin moduli

λ I = 2(T0 −R0) , λ II = 2(T0 +R0) , λ III = 4T1. (34)

• Kelvin modes

EI =







0

0

1







, EII =
1√
2







−1

1

0







, EIII =
1√
2







1

1

0







. (35)

• Kelvin projectors

P
I =





0 0 0

0 0 0

0 0 1



 , P
II =

1

2





1 −1 0

−1 1 0

0 0 0



 , P
III =

1

2





1 1 0

1 1 0

0 0 0



 .

(36)

• Kelvin strains

ε I =
√

2r sin2ϕ







0

0

1







, ε II = r cos2ϕ







1

−1

0







, ε III = t







1

1

0







. (37)

• Kelvin modal energies

W I
s = 2(T0 −R0)r2 sin2 2ϕ, W II

s = 2(T0 +R0)r2 cos2 2ϕ, W III
s = 4T1t2. (38)

• Total strain energy

Ws = 2T0r2 +4T1t2 +2R0r2 cos4ϕ. (39)
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4.5 Isotropy

Now, conditions (18) and (19) must be inserted into eq. (2); the Kelvin modes, projec-

tors and strains are the same of the previous case, while:

• Kelvin moduli

λ I = λ II = 2T0, λ III = 4T1. (40)

Because of the existence of a double eigenvalue λ I = λ II, it is convenient to

introduce only two Kelvin projectors, two Kelvin strains and two modal energies.

• Kelvin projectors

P
I/II = P

I +P
II =

1

2





1 −1 0

−1 1 0

0 0 2



 , P
III =

1

2





1 1 0

1 1 0

0 0 0



 . (41)

• Kelvin strains

ε I/II = r







cos2ϕ
−cos2ϕ√
2 sin2ϕ







, ε III = t







1

1

0







. (42)

ε I/II and ε III are nothing else than the deviatoric and spherical parts of the strain

tensor.

• Kelvin modal energies

W
I/II
s = 2T0r2, W III

s = 4T1t2. (43)

• Total strain energy

Ws = 2T0r2 +4T1t2. (44)

5 An alternative formalism: the polar decomposition

We introduce now a new formalism for plane elasticity, inspired by the Kelvin decom-

position but based upon the polar formalism. The way we find it is rather easy: eq.

(15) shows that the matrix representing tensor C in the Kelvin formalism, eq. (2), can

be written as

C(θ) = T0 T0 +2T1 T1 +R0c R0c +R0s R0s +2R1 R1, (45)

where, for the sake of simplicity and without loss of generality, we have fixed a frame

choosing Φ1 = 0, and put

R0 cos4Φ0 = R0c, R0 sin4Φ0 = R0s. (46)

10



It is immediately recognized that R0c and R0s are tensor invariants too. If the material

is ordinarily orthotropic, then, see eq. (17) and recall that we have chosen Φ1 = 0,

Φ0 −Φ1(= Φ0) = K
π

4
, K = 0,1 → R0c = (−1)KR0, R0s = 0, (47)

while the invariant R0c vanishes whenever

Φ0 −Φ1(= Φ0) =
π

8
+κ

π

4
, κ ∈ N → R0c = 0. (48)

Finally, the particular case of r0−orthotropy gives, see eqs. (20) and (47),

R0c =−R2
1

T1
, R0s = 0. (49)

In eq. (45), T0, T1, R0c, R0s and R1 are fourth-rank tensors of R2 of the type of

elasticity, defined by (the set {e1,e2} is an orthonormal basis of R2)

T0 = (e1 ⊗ e1 − e2 ⊗ e2)⊗ (e1 ⊗ e1 − e2 ⊗ e2)+
(e1 ⊗ e2 + e2 ⊗ e1)⊗ (e1 ⊗ e2 + e2 ⊗ e1),

T1 = (e1 ⊗ e1 + e2 ⊗ e2)⊗ (e1 ⊗ e1 + e2 ⊗ e2),

R0c = c4[(e1 ⊗ e1 − e2 ⊗ e2)⊗ (e1 ⊗ e1 − e2 ⊗ e2)−
(e1 ⊗ e2 + e2 ⊗ e1)⊗ (e1 ⊗ e2 + e2 ⊗ e1)]−

s4[(e1 ⊗ e1 − e2 ⊗ e2)⊗ (e1 ⊗ e2 + e2 ⊗ e1)+
(e1 ⊗ e2 + e2 ⊗ e1)⊗ (e1 ⊗ e1 − e2 ⊗ e2)],

R0s = s4[(e1 ⊗ e1 − e2 ⊗ e2)⊗ (e1 ⊗ e1 − e2 ⊗ e2)−
(e1 ⊗ e2 + e2 ⊗ e1)⊗ (e1 ⊗ e2 + e2 ⊗ e1)]+

c4[(e1 ⊗ e1 − e2 ⊗ e2)⊗ (e1 ⊗ e2 + e2 ⊗ e1)+
(e1 ⊗ e2 + e2 ⊗ e1)⊗ (e1 ⊗ e1 − e2 ⊗ e2)],

R1 = 2 c2[(e1 ⊗ e1)⊗ (e1 ⊗ e1)− (e2 ⊗ e2)⊗ (e2 ⊗ e2)]+
s2[(e1 ⊗ e1 + e2 ⊗ e2)⊗ (e1 ⊗ e2 + e2 ⊗ e1)+

(e1 ⊗ e2 + e2 ⊗ e1)⊗ (e1 ⊗ e1 + e2 ⊗ e2)],

(50)

where, for the sake of conciseness,

c2 = cos2θ , s2 = sin2θ ,

c4 = cos4θ , s4 = sin4θ .
(51)

Tensors T0, T1, R0c, R0s and R1 play a role similar to that of the Kelvin projectors,

eq. (6), in the sense that they give a decomposition of the elasticity tensor C. For this

reason we will call them polar projectors and denote them in a general way by P
i
pol ,

i.e.

P
i
pol ∈ {T1,T0,R0c,R0s,R1} . (52)
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Their matrix form is quite simple:

T0 =





1 −1 0

−1 1 0

0 0 2



 , T1 =





1 1 0

1 1 0

0 0 0



 , R0c =





c4 −c4 −
√

2 s4

−c4 c4

√
2 s4

−
√

2 s4

√
2 s4 −2 c4



 ,

R0s =





s4 −s4

√
2 c4

−s4 s4 −
√

2 c4√
2 c4 −

√
2 c4 −2 s4



 , R1 =





2 c2 0
√

2 s2

0 −2 c2

√
2 s2√

2 s2

√
2 s2 0



 .

(53)

A relation similar to eq. (45) holds also for tensor S, it is sufficient to replace the

polar stiffness moduli by the corresponding compliance ones, in practice, they must be

written with lowercase letters, while the projectors are exactly the same.

The polar projectors have some algebraic properties, listed below:

‖T1‖= 2, ‖T0‖= ‖R0c‖= ‖R0s‖= ‖R1‖= 2
√

2,

det
(

P
i
pol

)

= 0,

P
i
pol ·P

j
pol = 0,

∑iP
i
pol 6= I,

∀ P
i
pol 6= P

j
pol ∈ {T1,T0,R0c,R0s,R1} .

(54)

So, the polar projectors are singular orthogonal tensors, whose norm is not the unity

and whose sum is not the identity. Actually, they constitute another way to decompose

an elasticity tensor, that has some particular features and links with the material sym-

metries, through the polar invariants. It is worth recalling that the coefficients of the

linear combination giving the elastic tensor, eq. (45), are tensor invariants and that all

the dependence upon the orientation θ is in the three projectors R0c, R0s and R1, linked

to the anisotropic part, while the two projectors T0 and T1, linked to the isotropic part,

are insensible to the orientation. Fixing the orientation to zero gives

θ = 0 → R0c =





1 −1 0

−1 1 0

0 0 −2



 , R0s =





0 0
√

2

0 0 −
√

2√
2 −

√
2 0



 , R1 =





2 0 0

0 −2 0

0 0 0



 .

(55)

Some material symmetries, i.e., algebraically speaking, some particular values of

the polar invariants, make one or more anisotropic polar invariants vanish, so eliminat-

ing the corresponding polar projectors from the sum of tensors giving C. Namely, as

already recalled in eq. (47), ordinary orthotropy eliminates R0s, while condition (48)

eliminates R0c. Also, R0−orthotropy, eq. (18), eliminates both R0c and R0s, while

square symmetry, eq. (19), R1 and finally, isotropy eliminates all of them.

Just like for the Kelvin decomposition, let us now introduce the tensors

ε i
pol = P

i
polε, σ i

pol = P
i
polσ ∀i ∈ {I, ...,V}, (56)

that we will call polar strains and polar stresses respectively. Using eq. (21), one gets,

12



for the case of the polar strains,

ε I
pol = T0ε =







2r cos2(ϕ −θ)
−2r cos2(ϕ −θ)

2
√

2r sin2(ϕ −θ)







,

ε II
pol = T1ε =







2t

2t

0







,

ε III
pol = R0cε =







2r cos2(ϕ +θ)
−2r cos2(ϕ +θ)

−2
√

2r sin2(ϕ +θ)







,

ε IV
pol = R0sε =







2r sin2(ϕ +θ)
−2r sin2(ϕ +θ)

2
√

2r cos2(ϕ +θ)







,

εV
pol = R1ε =







2t cos2θ +2r cos2(ϕ −2θ)
−2t cos2θ +2r cos2(ϕ −2θ)

2
√

2t sin2θ







,

(57)

If one fixes the direction θ = 0, then the above expressions simplify to

θ = 0 →























































































































ε I
pol = T0ε =







ε1 − ε2

−ε1 + ε2

2ε6







=







2r cos2ϕ
−2r cos2ϕ

2
√

2r sin2ϕ







,

ε II
pol = T1ε =







ε1 + ε2

ε1 + ε2

0







=







2t

2t

0







,

ε III
pol = R0cε =







ε1 − ε2

−ε1 + ε2

−2ε6







=







2r cos2ϕ
−2r cos2ϕ

−2
√

2r sin2ϕ







,

ε IV
pol = R0sε =







√
2ε6

−
√

2ε6√
2(ε1 − ε2)







=







2r sin2ϕ
−2r sin2ϕ

2
√

2r cos2ϕ







,

εV
pol = R1ε =







2ε1

−2ε2

0







=







2t +2r cos2ϕ
−2t +2r cos2ϕ

0







.

(58)

Similar expressions hold also for the polar stresses σ i
pol , it is sufficient to replace t, r

and ϕ by T , R and Φ , respectively. It is worth noting that, unlike Kelvin strains and

stresses, the polar strains and stresses are not necessarily orthogonal and they do not

decompose strain and stress:

V

∑
i=I

ε i 6= ε,
V

∑
i=I

σ i 6= σ . (59)
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On the other hand, noticing that

ε I
pol = 2 εdev, ε II

pol = 2 εsph, (60)

it is possible to decompose strains or stresses with the first two polar strains or stresses:

ε = εsph + εdev =
1

2

(

ε I
pol + ε II

pol

)

,

σ = σ sph +σdev =
1

2

(

σ I
pol +σ II

pol

)

.

(61)

Unlike the case of σ and ε , the stored elastic energy can be perfectly decomposed

by the polar stresses or strains. Let us consider, for instance, the strain energy (similar

results exist of course also for the stress energy, it is sufficient to change ε with σ
and switch all the polar components denoted by lowercase letters to capital letters, and

those denoted by capital letters to lowercase letters):

Ws =
1

2
ε ·Cε =

1

2
ε ·

[

T0 T0 +2T1 T1 +R0c R0c +R0s R0s +2(−1)hR1 R1

]

ε. (62)

Using eqs. (56) we can get:

Ws =
V

∑
i=I

W i
s pol , (63)

with

W i
s pol =

1
2
ε ·β i

polε
i

pol ∀ ∈ {I, ...,V} →

W I
s pol =

1
2
ε ·T0ε I

pol =
1
2
T0

[

(ε1 − ε2)
2 +2ε2

6

]

= 2T0 r2,

W II
s pol =

1
2
ε ·2 T1ε II

pol = T1 (ε1 + ε2)
2 = 4T1 t2,

W III
s pol =

1
2
ε ·R0cε III

pol =
1
2
R0c

[

(ε1 − ε2)
2 −2ε2

6

]

= 2R0c r2 cos4ϕ,

W IV
s pol =

1
2
ε ·R0sε

IV
pol =

√
2R0s (ε1 − ε2)ε6 = 2R0s r2 sin4ϕ,

W V
s pol =

1
2
ε ·2 R1εV

pol = 2R1

(

ε2
1 − ε2

2

)

= 8R1t r cos2ϕ,

(64)

where we have indicated by β i
pol any one of the polar invariants; the values of the β i

pol

are apparent from eq. (64). The different terms W i
s pol are the polar strain energies;

each one of them is linked to a polar modulus and to a part of the strain tensor: W I
s pol ,

W III
s pol and W IV

s pol depends upon the deviatoric part of ε , W II
s pol upon its spherical part

and W V
s pol on both of them. The sum of the terms in (64) is of course equal to the

expression of Ws given in (23), how it can be easily checked.

The above polar energies can be further decomposed. Recalling (61), we get

W i
s pol =

1

2
(εsph + εdev) ·β iε

i

pol =W
sph i
s pol +W dev i

s pol ∀ ∈ {I, ...,V}, (65)

where

W
sph i
s pol =

1

2
εsph ·β iε

i

pol =
1

4
ε II ·β iε

i

pol , W dev i
s pol =

1

2
εdev ·β iε

i

pol =
1

4
ε I ·β iε

i

pol . (66)
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The total number of non null W
sph i
s pol and W dev i

s pol is not of ten, as one could expect, but

only of six; this happens because, as can be easily checked using eq. (57), it is

ε II
pol · ε i

pol = 0 ∀i ∈ {I, III, IV}, ε III
pol · ε IV

pol = 0. (67)

We can hence find

W
sph I
s pol = 0, W dev I

s pol =W I
s pol = 2 T0r2,

W
sph II
s pol =W II

s pol = 4 T1t2, W dev II
s pol = 0,

W
sph III
s pol = 0, W dev III

s pol =W III
s pol = 2 R0cr2 cos4ϕ,

W
sph IV
s pol = 0, W dev IV

s pol =W IV
s pol = 2 R0sr

2 sin4ϕ,

W
sph V
s pol =W dev V

s pol = 1
2
W V

s pol = 4 R1t r cos2ϕ.

(68)

The only polar energy to have both the spherical and deviatoric part non null, and

identical, is W V
s pol . This term is more properly a mixt energy because always depending

on both the spherical and deviatoric parts of ε . Also,

W I
s pol >W III

s pol , W I
s pol >W IV

s pol ∀ {r, ϕ}, (69)

because it is always T0 > R0, [10], and hence, a fortiori, T0 > R0c and T0 > R0s, eq.

(46).

6 Conclusion

The main properties, with respect to the Kelvin decomposition, of the new tensorial

decomposition based on the polar formalism introduced in this paper are :

• Similarly to the Kelvin decomposition, the polar decomposition introduces iden-

tical polar projectors when considering the stiffness tensor C or the compliance

tensor C−1.

• The polar decomposition has a direct interpretation in terms of material symme-

try, which is not the case for the Kelvin decomposition outside the isotropic and

square symmetry cases.

• The projectors are intrinsinc in the polar decomposition for any type of symmetry

considered. More precisely, the polar projectors do not depend on any modulus

for any type of symmetry. This is true in the case of the Kelvin decomposition

only for isotropy and square symmetry.

• The dependence of the polar projectors with any global frame considered is ex-

plicitly given by the angle θ .

• Two polar projectors are found to be constant with respect to any material be-

haviour, i.e. to any polar moduli and to the global frame considered.
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• In the isotropic case, the Kelvin and polar decomposition are identical and the

projectors are found to be constant.

• In the square symmetry case, only one Kelvin and polar projector is identical.

For the Kelvin decomposition, the associated Kelvin stresses and strains are the

spherical part, the diagonal of the deviatoric part and the out of diagonal of the

devitoric part. For the polar decomposition, the associated polar stresses and

strains are the spherical part, the deviatoric part and the deviatoric part with an

opposite sign for the out of diagonal terms.

• For any considered symmetry, two of the polar strains (or stresses) are equal to

twice the spherical and deviatoric parts, which results in the fact that the strains

(or stress) is equal to the sum of the first two polar strains (or stresses).

• If we introduce another decomposition of σ that can be obtained using eq. (45)

and the Hooke’s law (1):

σ = µ I
pol +2 µ II

pol +µ III
pol +µ IV

pol +2 µV
pol , (70)

where
µ I

pol = T0 ε I
pol , µ II

pol = T1 ε II
pol , µ III

pol = R0c ε III
pol ,

µ IV
pol = R0s ε IV

pol , µV
pol = R1 εV

pol .
(71)

It follows immediately that, unlike for the Kelvin decomposition, eq. (11), a

polar stress can never be proportional to its corresponding polar strain; in fact,

if one considers for instance the case of σ I
pol and ε I

pol , it is

σ I
pol = µ I

pol = T0 ε I
pol ⇐⇒ σ = T0 ε, (72)

which can never be true, also in the isotropic case, by virtue of (45), because the

polar isotropic moduli T0 and T1 are strictly positive, [10]. This explains also,

mechanically, why the polar stresses cannot decompose σ , eq. (59). A similar

result is valid, of course, also for the polar strains.

In several cases considered in the past, the polar formalism has proved to be an

effective method for handling problems concerning bi-dimensional anisotropy; some

new phenomena and results have been obtained thanks to its use (for instance, the exis-

tence of the special R0-orthotropy [11], the special orthotropy of paper [13], the pioneer

theoretical work on anisotropy of complex bodies [14], the unexplored phenomena of

interaction between geometry and anisotropy [17]).

As it has been recognized by de Saxcé and Vallée in [4], this has been the true

leading method in the last decade for the analysis of plane anisotropy, and the results

found thanks to the polar formalism have, at least in part, motivated a new interest in

the study of bi-dimensional anisotropic elasticity, as the work of de Saxcé and Vallée

shows. Nevertheless, the polar formalism has been applied to the study not only of

elasticity, but also of piezoelectricity [18], of strength [19] and of complex bodies [14].

This has not yet been done with other theoretical approaches, while the results found
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with the polar formalism have, in some cases, motivated similar studies also in three-

dimensions, as for instance in the case of R0-orthotropy in R
3, whose existence has

been confirmed by S. Forte [16], as said above, or the invariants of a third-order piezo-

electric tensor, generalized to the 3D case by F. Ahmad, [20].

Of course, other approaches and formalisms exist for describing an anisotropic

tensor and the polar method is not the oldest one. Some other approaches can be cited,

besides the most recent one, the already cited work of de Saxcé and Vallée: the very

classical formalism of Stroh [21], the works of Forte and Vianello [22], of Rychlewsky

[6] and, for those who are familiar with the mechanics of composite materials, the

so-called parameters of Tsai and Pagano [23].

A comparison between these last and the polar formalism has been already pro-

posed in [10], while the comparison with the Stroh formalism, the works of Forte and

Vianello or the representation of Rychlewsky is still to be done. Nevertheless, some

points are intrinsic to the polar formalism and constitute, to the opinion of the authors,

the key of the success of this approach in dealing with some problems, like those men-

tioned above or more generally in several works concerning the optimization of lami-

nated anisotropic structures appeared in the last few years, see for instance [24], [25],

[26]. To this purpose, it seems to the authors that the polar formalism has found much

more and different applications to engineering problems than, for instance, the param-

eters of Tsai and Pagano, whose use is rather bounded to a certain class of problems,

exclusively concerning the elasticity of laminates.

Namely, at its true origin the polar method is a mathematical technique to find the

invariants of a tensor of any order in R
2, so it is not at all bounded to the study of the

elasticity tensor. A second fundamental point, distinguishing the polar formalism from

other approaches, is that it does not makes use of only polynomial invariants: unlike

other methods, the polar formalism looks for invariants linked to the direction. Its true

peculiarity is to be based upon a representation of a tensorial quantity by modules and

angles, for any tensorial order.

In this way, the direction enters directly and explicitly in the expression of the phys-

ical quantities, which is not the case with any of the other approaches mentioned above.

The utility of such a result whenever the phenomenon to be described is direction-

dependent, which is of course always the case in anisotropy problems, is evident by

itself.

Perspective: application of the polar decomposition to damage mechanics. The

Kelvin decomposition has recently been used to define damage models using the Kelvin

stresses as multiple effective stresses [8] or using the Kelvin decomposition of a fourth-

order damage tensor [15]. One difficulty in such approaches is that for orthotropy, the

Kelvin projectors cannot be defined independently of the material moduli. In this case,

the polar decomposition could advantageously be used in 2D models for R0-orthotropy,

r0-orthotropy and ordinary orthotropy (or even anisotropy) in order to define new dam-

age models. That was the objective that mainly motivated the present research; this

paper contains its first paths, hopefully preparing some new results to come.
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of colloque Euromech 115, Villard-de-Lans, (France), 1979.

[10] P. Vannucci. Plane anisotropy by the polar method. Meccanica, 40:437–454,

2005.

[11] P. Vannucci. A special planar orthotropic material. Journal of Elasticity, 67:81–

96, 2002.

[12] P. Vannucci. Influence of invariant material parameters on the flexural optimal de-

sign of thin anisotropic laminates. International Journal of Mechanical Sciences,

51:192–203, 2009.

[13] P. Vannucci. On special orthotropy of paper. Journal of Elasticity, 99:75–83,

2010.

[14] P. Vannucci and G. Verchery. Anisotropy of plane complex elastic bodies. Inter-

national Journal of Solids and Structures, 47:1154–1166, 2010.

[15] M. François. A damage model based on Kelvin eigentensors and Curie principle.

Mechanics of Materials, 44:23 – 34, 2012.

[16] S. Forte. Classi di simmetria in elasticità piana. In Proc. of 17th AIMETA
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