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Abstract

This paper is concerned with semiparametric discrete kernel estimators when the
unknown count distribution can be considered to have a general weighted Pois-
son form. The estimator is constructed by multiplying the Poisson estimate with a
nonparametric discrete kernel-type estimate of the Poisson weight function. Com-
parisons are then carried out with the ordinary discrete kernel probability mass
function estimators. The Poisson weight function is thus a local multiplicative cor-
rection factor, and is considered as the uniform measure to detect departures from
the equidispersed Poisson distribution. In this way, the effects of dispersion and
zero-proportion with respect to the standard Poisson distribution are also mini-
mized. This method of estimation is also applied to the weighted binomial form for
the count distribution having a finite support. The proposed estimators, in addition
to being simple, easy-to-implement and effective, also outperform the competing
nonparametric and parametric estimators in finite-sample situations. Two exam-
ples illustrate this new semiparametric estimation.
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1 Introduction

Let X1, . . . , Xn be independent observations from a count distribution with
unknown probability mass function (pmf) f(x) = Pr(Xi = x) on the nonneg-
ative integers set N = {0, 1, 2, · · · }. A discrete analogue of the (asymmetric)
continuous kernel estimator for f can be expressed as

f̃n(x) =
1

n

n∑

i=1

Kx,h(Xi), x ∈ N, (1)

where h = h(n) > 0 is an arbitrary sequence of smoothing parameters (or
bandwidths) that fulfills limn→∞ hn = 0, while Kx,h(·) is a suitably chosen
discrete associated-kernel function (to be made precise later, in Section 2).
This estimator has been proposed by Kokonendji et al. (2007b). It is connected
to the classical kernel estimator of a probability density function in which the
kernel function takes the form Kx,h(·) = (1/h)K{(x − ·)/h}, where K(·) is
typically a bona-fide probability density function with zero mean and unit
variance; see, for example, Rosenblatt (1956).

Except for the specification of the count framework, the nonparametric esti-
mator in (1) is known to be completely impartial to special features of the
underlying pmf; see, for example, Izenman (1991) for continuous cases. How-
ever, this robustness feature of the estimator comes at a price. In general, the
choice of kernel function is not very important asymptotically, like ‘frequency
estimator’. But, in small samples, the kernel structure may play a more crucial
role in approximating the distribution especially for count random variables;
see Senga Kiessé (2008) for more details. Hence, the choice of the discrete
associated-kernel is also important along with the smoothing parameter for
both small and moderate sample sizes. Moreover, the convergence rate of the
continuous kernel estimators is in general slower than that of the parametric
estimators, and the bias induced by the discrete smoothing procedure can be
substantial even for moderate sample sizes. Since count distribution has sup-
port on N bounded on the left, it also becomes necessary to solve the possible
problem due to boundary bias or the so-called ‘edge effect’ which depends
on the kernel-type or particular count phenomenon. However, in this paper,
our aim is not to solve this problem of boundary bias. Note here that, set-
ting apart the frequency (or ‘naive’) estimator and that of Kokonendji et al.
(2007b) in (1), there is some literature on nonparametric smoothing of dis-
crete variables or functions dating back to the pioneering work of Aitchison
and Aitken (1976); however, the corresponding discrete kernel has a unique
form and is ideal for categorial data or finite discrete distributions. One may
also refer to Böhning (2000) for a nonparametric approach but in terms of the
mixing distribution.
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Until recently in the literature, the traditional approach of estimation for count
data distribution is totally parametric. In fact, the classical approach starts
with a specific structure of count distribution, such as the Poisson model that
is equidispersed. It may then become necessary to modify the initial distribu-
tion to another related family of count distributions having the same support
in order to account for the special features of the counting phenomemon; see,
for example, Johnson et al. (2005), Kokonendji et al. (2007a), Shmueli et al.
(2005), Kokonendji et al. (2008), and the references therein. The Poisson dis-
tribution provides a standard framework for such an analysis of count data,
but since it has a single parameter (having no dispersion parameter), it be-
comes necessary in many instances to construct suitable count distributions
by using some indices as measures to detect departures from the Poisson dis-
tribution. For example, the well-known and well-studied such departures are
the overdispersion and zero-inflation. The opposite phenomena such as under-
dispersion and zero-deflation are also possible, but are somewhat uncommon.
For some properties and applications, one may refer to Puig and Valero (2006)
and Nikoloulopoulos and Karlis (2008).

The most general form of modifying Poisson distribution in this way is to
multiply it by a weight function; see Kokonendji et al. (2008) and the references
therein and also Balakrishnan and Kozubowski (2008). Such weighted Poisson
distributions (WPDs) provide a unified approach to handle, among others,
both dispersion and zero-proportion phenomena. WPDs, used widely as a
tool in the selection of appropriate models for observed data drawn without
a proper frame, was originally introduced as follows. Let X be a standard
Poisson random variable with pmf p(x; θ) = Pr(X = x), where θ ∈ R is
the canonical parameter. Suppose that when the event X = x occurs, the
probability of ascertaining it is w(x). The recorded x is thus a realization of
the random variable Xw, which is said to be the weighted version of X. Its
pmf pw(x; θ) = Pr(Xw = x) is given by

pw(x; θ) =
w(x) p(x; θ)

∑
x∈N w(x)p(x; θ)

, x ∈ N, (2)

where the denominator is the normalizing constant depending on θ. The weight
(or recording) function w(x) is a nonnegative function on N and, from (2),
is clearly such that 0 <

∑
x∈N w(x)p(x; θ) < ∞. The discrete weight function

w(x) ≡ w(x; φ) can depend on a parameter φ representing the recording mech-
anism, and it may also be connected to the underlying Poisson parameter θ.
We easily observe that any count distribution can be formulated as WPD. Of
course, this fact does not mean that their generating process is necessarily
imperfect recording of the classical Poisson distribution. Clearly, the standard
Poisson distribution is a WPD with unit weight function w(x) = 1 ∀x ∈ N.
Also, several other count distributions which are more complex are WPDs.
Finally, the Poisson weight function of a count distribution can be considered
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as a uniform measure to detect departures from the basic Poisson distribution;
see Kokonendji et al. (2008) for more theoretical properties on w in (2).

In this paper, we investigate a semiparametric discrete kernel estimator of a
count distribution of the WPD form in (2), where p(x; θ) is the parametric

part and w(x)∑
x∈N

w(x)p(x;θ)
= w(x; θ) is the discrete nonparametric part. This

semiparametric estimation method was mentioned as a possibility by Koko-
nendji et al. (2008) at the end of their article. This will be a natural competitor
to the nonparametric estimator in (1) as well as the parametric estimator in
(2). If the unknown count distribution is concentrated on a finite set of N,
we may consider a weighted binomial distribution; see, for example, Johnson
et al. (2005) [pp. 149–150], Chakraborty and Das (2006), and the references
therein. This semiparametric estimation for a count distribution is a compro-
mise between pure nonparametric estimation in (1) and the usual parametric
modified Poisson estimation. When the discrete Poisson weight function w
does not represent theoretically the real recording mechanism or is not well-
specified, it is better to allow the count data to yield an estimate of the weight
function w by the nonparametric method. The proposed estimator will be the
discrete analogue and a particular version of estimator proposed by Hjort and
Glad (1995) for continuous data. In the present case, the weight function at
each point can be considered as the local multiplicative correction factor aimed
to accommodate any pointwise departure from Poisson/binomial distribution.
This method of estimation, in addition to being simple and effective for esti-
mating any unknown count distribution, is intended to work well even if the
unknown pmf can not be well approximated by either Poisson or binomial
distributions. We discuss some basic statistical properties of this estimation
procedure and then compare it to other available estimators for the count
distribution.

The rest of the paper is organized as follows. In Section 2, we briefly recall the
discrete associated-kernel method for the sake of completeness. Section 3 de-
fines the semiparametric estimator of count distribution under the assumption
of WPD and then presents some of its properties. We also compare the perfor-
mance of this estimator with the traditional discrete associated-kernel estima-
tor in (1). In Section 4, we discuss the effects of dispersion and zero-proportion
on the proposed estimation procedure through the bandwidth selection. Sec-
tion 5 extends this idea to the case of the weighted binomial distribution for
estimating a count data distribution with finite support. In Section 6, we pro-
vide two examples from the literature in order to illustrate the model fitting
and the model diagnostics: the first is the data set of goals in championship
football games (see Kokonendji et al., 2007b); the second data set is from a
sociological experiment about the number of days per week in which alcohol is
consumed (see Alanko and Lemmens, 1996). Finally, some concluding remarks
are made in Section 7.
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2 Discrete associated-kernel method

2.1 Definition

In order to accommodate the discreteness of f , for any target x in N and any
bandwidth h > 0, we will select an associated-kernel Kx,h(·) of (1) which is
itself a discrete pmf with support ℵx (not depending on h). To avoid having a
zero function, we will require that ℵx contains at least x implying ∪x∈Nℵx ⊇
N. Besides, for reasons that will become apparent later (see below), we also
impose the following two conditions:

lim
h→0

E(Kx,h) = x, (3)

lim
h→0

V ar(Kx,h) = 0, (4)

where Kx,h is the discrete random variable whose pmf is Kx,h(·).

That definition unifies the notion of associated-kernel that might be either
continuous or discrete (Senga Kiessé, 2008). Then, the conditions (3) and (4)
are important because they allow us to obtain pointwise convergence of the
discrete associated-kernel estimator (1). In fact, the basic condition in (3)
clearly points out that f̃n defined by (1) is a kind of variable kernel estimate
by giving a general discrete kernel form K. It also allows for more flexibility to
construct different discrete associated-kernels from any discrete distribution
K: for example, E(Kx,h) = x + h and E(Kx,h) = x. It is implicitly used in
asymmetric continuous cases by Chen (1999, 2000) and then by Scaillet (2004).
It should be noted that all associated-kernels satisfying (3) share the property
that the shape of kernel changes according to the value of the target x. This
discrete associated-kernel (or varying kernel shape) changes the amount of
smoothing applied to the asymmetric kernel since its variance V ar(Kx,h) may
or may not depend on the target x as we move away from the boundary. The
last condition (4) insures an asymptotic behaviour equivalent to the frequency
estimator for the discrete associated-kernel estimator f̃n of f defined by (1).

2.2 Properties

Now, we can deduce several properties of the discrete associated-kernel estima-
tor f̃n of the unknown count distribution f as follows. Up to the normalizing
constant C̃ =

∑
x∈N f̃n(x), we assume that x 7→ f̃n(x) is a pmf. Then:

E{f̃n(x)} =
∑

y∈ℵx∩N

Kx,h(y)f(y) =
∑

y∈ℵx∩N

f(y) Pr(Kx,h = y) = E{f(Kx,h)}.

(5)
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This enables us to approximate the pointwise bias, using the discrete Taylor
expansion (see, for example, Schumaker, 1981, p. 343), as

bias{f̃n(x)}= E{f(Kx,h)} − f(x)

= f{E(Kx,h)} − f(x) +
1

2
V ar(Kx,h)f

(2)(x) + o(h), (6)

where f (2) is the finite difference of second order

f (2)(x) =





{f(x + 2) − 2f(x) + f(x − 2)}/4 if x ∈ N \ {0, 1}

{f(3) − 3f(1) + 2f(0)}/4 if x = 1

{f(2) − 2f(1) + f(0)}/2 if x = 0

(7)

which is recursively obtained through the finite difference of order k ∈ N\{0}:

f (k)(x) = {f (k−1)(x)}(1) and f (1)(x) =





{f(x + 1) − f(x − 1)}/2 if x ∈ N \ {0}

f(1) − f(0) if x = 0.

(8)
Here, it is not necessary to suppose certain regularity or differentiability on
f because it is a pmf and the finite difference replaces the derivative in the
continuous case. The pointwise variance can be expressed as

V ar
{
f̃n(x)

}
=

1

n

∑

y∈ℵx

f(y) {Pr(Kx,h = y)}2 −
1

n





∑

y∈ℵx

f(y) Pr(Kx,h = y)





2

=
1

n
f(x){Pr(Kx,h = x)}2 −

1

n
f 2(x) + Rn(x; h), (9)

with

Rn(x; h) =
1

n

∑

y∈ℵx\{x}

f(y) {Pr(Kx,h = y)}2 +
1

n
f2(x)

−
1

n


f(x) +

∑

y∈ℵx

{f(y) − f(x)}Pr(Kx,h = y)




2

. (10)

Under the condition (4) of the discrete associated-kernel, we can show that
Rn(x; h) −→ 0 when n → ∞ and h = h(n) → 0; see, for example, Senga
Kiessé (2008).

6



Since the mean integrated squared error

MISE(n, h, K, f) =
∑

x∈N

V ar{f̃n(x)} +
∑

x∈N

bias2{f̃n(x)}

of the estimator f̃n of f defined in equation (1) is the common measure of
accuracy for an estimator, we can establish the following result of convergence
(see Senga Kiessé, 2008):

Theorem 1 Let f be a pmf on N with limx→∞ f(x) = 0. Then, the discrete
associated-kernel estimator in (1) satisfies

MISE ≤
C1

n

∑

x∈N

{Pr(Kx,h = x)}2+
∑

x∈N

[
f{E(Kx,h)} − f(x) +

1

2
V ar(Kx,h)f

(2)(x)
]2

,

with C1 = fmax ≤ 1. Furthermore, for n → ∞ and h = h(n) → 0, we have
MISE(n, h, K, f) −→ 0 if

1

n

∑

x∈N

{Pr(Kx,h = x)}2 −→ 0 and

∑

x∈N

[
f{E(Kx,h)} − f(x) +

1

2
V ar(Kx,h)f

(2)(x)
]2

−→ 0.

Remark 1. For nonparametric estimator in (1), a relative efficiency be-

tween two (associated) discrete kernels K
(1)
x,h and K

(2)
x,h with E(K

(1)
x,h) = E(K

(2)
x,h)

can be measured via (6) in terms of the difference between their variances

V ar(K
(1)
x,h) − V ar(K

(2)
x,h) for discrete kernels. Thus, to choose an appropriate

discrete associated-kernel, we retain in general the one which has a small vari-
ance.

Remark 2. From (1), we can write the well-known frequency estimator f̃F
n

of f as

f̃F
n (x) =

1

n

n∑

i=1

Dx,0(Xi), x ∈ N,

where Dx,0(·) is the discrete associated-kernel with h = 0, and which is con-
nected to the Dirac random variable Dx at x with E(Dx) = x and V ar(Dx) =
0. Its exact MISE given by

MISE(n, 0, D, f) =
1

n

∑

x∈N

f(x){1 − f(x)} =
1

n



1 −

∑

x∈N

f2(x)





may be considered as the reference for the convergence of discrete associated-
kernel estimators.
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2.3 Examples

Presented below are two examples of the usual and competitive families of
discrete kernels taken from Senga Kiessé (2008). Figure 1 presents a quick
glance at the set and we summarize the main properties in Table 1.

Example 2.1 (Binomial). Consider the binomial distribution B(N, p), N ∈ N,
p ∈ [0, 1]. The binomial kernel Bx,h follows the binomial distribution B{x +
1, (x + h)/(x + 1)} =: Bx,h with h ∈ (0, 1] and ℵx = {0, 1, . . . , x + 1}. From
Remark 1, it is better in the class of the so-called standard asymmetric discrete
kernels Kx,h, such as Poisson and negative binomial, having exactly E(Kx,h) =
x + h and ∪x∈Nℵx = N but they do not satisfy (4). This is because it is
underdispersed: V ar(Bx,h) = (x + h)(1− h)/(x + 1) < x + h. Hence, from (1),
the corresponding binomial kernel estimator of f is

f̃B
n (x) =

1

n

n∑

i=1

(x + 1)!

Xi!(x + 1 − Xi)!

(
x + h

x + 1

)Xi
(

1 − h

x + 1

)x+1−Xi

, x ∈ N,

with Xi ≤ x + 1. Its pointwise variance can be deduced from (9) as

V ar{f̃B
n (x)} =

(1 − h)2

n
f(x)

(
x + h

x + 1

)2x

−
1

n
f 2(x) + RB

n (x; h),

with RB
n (x; h) 9 0 when n → ∞ and h = h(n) → 0. For the pointwise bias,

a direct calculus gives

bias{f̃B
n (x)} = f(x)

{
(1 − h)

(
x + h

x + 1

)x

− 1

}
+

∑

y∈ℵx\{x}

f(y)Bx,h(y)

which does not tend to 0 when n → ∞ and h = h(n) → 0. Note that, from
(6) we can express this pointwise bias of f̃B

n as

bias{f̃B
n (x)} = hf (1)(x) +

1

2

(
x + h − xh

x + 1

)
f (2)(x) + o(h)

because f{E(Bx,h)} = f(x + h) = f(x) + hf (1)(x) + o(h) and V ar(Bx,h) =

(x + h)/(x + 1) − xh/(x + 1) + o(h). Thus, it follows that f̃B
n does not con-

verge in the sense of MISE. However, Senga Kiessé (2008) showed that the
estimator f̃B

n of f can be better (in the sense of MISE) than the frequency
estimator f̃F

n for some finite sample sizes. This estimator and all others of
the class are not subject to boundary bias, but they do involve the first finite
difference of the unknown pmf. This is because x is not the mean of the cor-
responding asymmetric kernel, but rather its mode. This is different for the
family of discrete triangular kernel estimators below, whose bias involves f (2)
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only, the finite difference of second order of the unknown pmf f . Finally, the
bandwidth selection for the standard asymmetric discrete kernel estimators
can be obtained by the well-known cross-validation method, or through the
particular situation of excess of zeros (zero-proportion method) by solving the
equation

n∑

i=1

Pr (KXi,h0
= 0) = n0, (11)

where n0 represents the number of observations equal to zero. In particu-
lar, the adapted bandwidth h0 for the binomial kernel estimator is such that∑n

i=1 {(1 − h0)(Xi + 1)−1}
Xi+1

= n0, which is determined numerically.

(Table 1 and Figure 1 about here)
Example 2.2 (Triangular). The discrete triangular distributions, introduced
by Kokonendji et al. (2007b), are useful to construct a family of symmetric
discrete kernel estimators for a pmf. For given (a, x, h) ∈ N × N × (0,∞),
the discrete triangular associated-kernel Ta;x,h is defined through the pmf of
its corresponding random variable Ta;x,h on ℵa;x = {x, x ± 1, . . . , x ± a} as

Pr(Ta;x,h = y) =
(a + 1)h − |y − x|h

P (a, h)
, y ∈ ℵa;x,

where P (a, h) = (2a+1)(a+1)h − 2
∑a

k=0 kh is the normalizing constant. The
three parameters are such that a denotes the arm and is fixed, x = E(Ta;x,h) is
the center and represents the target, and h is the order which corresponds to
the bandwidth. The particular case T0;x,h provides the Dirac random variable
at x. From (1), the class of discrete triangular kernel estimators is given, for
fixed a 6= 0, as

f̃Ta

n (x) =
1

n

n∑

i=1

(a + 1)h − |Xi − x|h

P (a, h)
, x ∈ N.

Its pointwise variance can be written from (9) as

V ar{f̃Ta

n (x)} =
1

n
f(x)

{
(a + 1)h

P (a, h)

}2

−
1

n
f2(x) + RTa

n (x; h),

with limh→0(a + 1)h/P (a, h) = 1 and RTa
n (x; h) → 0 when n → ∞ and h =

h(n) → 0. While its pointwise bias can be directly obtained by using (6) as

bias{f̃Ta

n (x)} =
1

2
V (a, h)f (2)(x) + o(h),

where f (2) is as given in (7), we have

V (a, h) = V ar(Ta;x,h) =
1

P (a, h)

{
a(2a + 1)(a + 1)h+1

3
− 2

a∑

k=0

kh+2

}
(12)
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tends to 0 when h → 0. Both conditions (3) and (4) hold for Ta;x,h and we

can therefore apply Theorem 1 to get the convergence of f̃Ta
n in the sense of

MISE. From Remark 1, Ta1;x,h is more efficient than Ta2;x,h when a1 < a2.

The bias of f̃Ta
n do not depend on the first finite difference f (1) as in the

case of symmetric continuous kernels. However, for fixed a 6= 0, these discrete
triangular kernel estimators induce a boundary bias on the left of N because
the set ∪x∈Nℵa;x = {−a, . . . ,−1} ∪ N contains strictly the support N of the
unknown pmf f . One of the remedies for this is, for significant observations
to the boundary {0, 1, . . . ,m} (m too small, like 0, 1 or 2), to consider the
modified arm a0 of a such that, for given k ∈ N \ {0} and x ∈ N,

a0 = k ⇐⇒ a0 =





j if x = j, j ∈ {0, 1, . . . , k − 1}

k if x ∈ {k, k + 1, . . .}.
(13)

This procedure preserves the structure of the local symmetry of the discrete
kernel around every target, and could resolve the zero-inflation phenomenon as
well. The bandwidth selection is made essentially by cross-validation method,
but not by using the zero-proportion equation (11) which has no solution under
the consideration of discrete triangular kernels (Kokonendji et al., 2007b).

3 Semiparametric estimator under WPD

¿From (2), any count distribution or random variable X with unknown pmf
f(x) = Pr(X = x) can be written as a WPD:

f(x) = w(x; µ) p(x; µ) =: fw(x; µ), ∀x ∈ N, (14)

where p(x; µ) = µxe−µ/x! > 0 is the pmf of the Poisson distribution with mean
parameter µ > 0, and x 7→ w(x; µ) = w(x) {

∑
x∈N w(x)p(x; µ)}−1 is the non-

negative (normalized) Poisson weight function. To estimate f(·) ≡ fw(·; µ) in
(14), a natural way is to consider the estimation problem in a semiparametric
setup with p(x; µ) as the parametric part relative to µ and x 7→ w(x; µ) as the
nonparametric part on N. The process is to start out with a parametric pmf
estimate p(x; µ̂n) where µ̂n can be obtained by maximum likelihood method,
and then multiply with a nonparametric discrete associated-kernel estimate of
the Poisson weight function w(x; µ̂n) = f(x)/p(x; µ̂n).

More precisely, let X1, . . . , Xn be independent observations from the unknown
pmf f on N presented in (14). Following Hjort and Glad (1995), our semipara-
metric estimator of f is expressed as
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f̂n(x) = p(x; µ̂n)
1

n

n∑

i=1

Kx,h(Xi)

p(Xi; µ̂n)
(15)

=
1

n

n∑

i=1

Kx,h(Xi)
p(x; µ̂n)

p(Xi; µ̂n)
, x ∈ N, (16)

where µ̂n = Xn = n−1(X1 + · · · + Xn) is the sample mean which is the
maximum likelihood estimator of the Poisson mean µ, h > 0 is the bandwidth
and Kx,h(·) is a given discrete associated-kernel as detailed in the previous

section. Like the estimator f̃n in (1), the estimator f̂n of the pmf f is defined
up to the normalizing constant Ĉ =

∑
x∈N f̂n(x) and it is certainly simple

enough to implement.

Let us now look at these different expressions of the estimator f̂n of the pmf
f in (14). Firstly, from (15), we obviously deduce the nonparametric discrete
associated-kernel estimate

w̃n(x; µ̂n) =
1

n

n∑

i=1

Kx,h(Xi)

p(Xi; µ̂n)
, x ∈ N, (17)

of the Poisson weight function x 7→ w(x; µ̂n), which is the local multiplicative
correction factor depending on the parameter estimate µ̂n. Since p(x; µ̂n) is
already estimated in the expression of w(x; µ̂n) = f(x)/p(x; µ̂n), an alternative
estimator to (17) would be the so-called ‘external’ estimator w̃E

n (x; µ̂n) =
n−1 ∑n

i=1 Kx,h(Xi)/p(x; µ̂n) = f̃n(x)/p(x; µ̂n) which would imply f̂n = f̃n; see,
for example, Patil et al. (1994) in other context. Hence, we can indicate (17) as
the ‘internal’ estimator of w(x; µ̂n) and it is considered as the empirical mean
of the ratio Kx,h(·)/p(·; µ̂n). Of course, this internal estimator (17) is more
appropriate than the external estimator w̃E

n (x; µ̂n) because the semiparametric
estimate f̂n is really different to the nonparametric estimator f̃n of f defined
in (1). Also, we estimate from (17) the pointwise measures of departures from
the Poisson distribution. The correction or weight function estimate w̃n(x; µ̂n)
is uniformly equal to one if the Poisson start is well-specified. Secondly, from
(16), we note the new (parametric) part

p(x; µ̂n)

p(Xi; µ̂n)
=

Xi!(µ̂n)x−Xi

x!
, x ∈ N (18)

is brought into the ordinary discrete associated-kernel estimator in (1) for im-
proving it. Note also that a constant (18) gives back the purely nonparametric
estimator in (1) with an implicit initial parametric start which is given by an
improper discrete uniform distribution.

We now examine the bias and variance of the proposed estimator (16) and
compare them to those of the traditional estimator (1). We carry this out here
under two assumptions, viz., known and unknown Poisson distribution.
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3.1 Known Poisson start

Let p0(x) = p(x; µ0) be a fixed pmf of Poisson start in (14), an enlightened
supposition of f which is chosen, for example, from a goodness-of-fit test.
We therefore write f = p0w and then estimate the nonparametric weight
function w by w̃n(x) = n−1 ∑n

i=1 Kx,h(Xi)/p0(Xi) with a discrete associated-
kernel method, resulting in the estimator

f̂n(x) = p0(x) w̃n(x) =
1

n

n∑

i=1

Kx,h(Xi)
p0(x)

p0(Xi)
, x ∈ N. (19)

Theorem 2 For n → ∞ and h = h(n) → 0, the semiparametric estimator in
(19) with fixed Poisson start p0 possesses the following bias and variance:

bias{f̂n(x)} = p0(x)

[
w{E(Kx,h)} −

f(x)

p0(x)
+

1

2
V ar(Kx,h)w

(2)(x)

]
{1 + o(1)},

V ar
{
f̂n(x)

}
=

1

n
f(x){Pr(Kx,h = x)}2 −

1

n
f2(x) + Rn(x; h),

where w(2) is the finite difference of second order as in (7), o(1) does not
depend on n and tends to 0 when h → 0, and Rn(x; h) is as in (10).

Consequently, the new estimator f̂n in (19) can be better than the ordinary
one f̃n in (1), in the classical sense of MISE. While it is easy to verify that
this variance V ar{f̂n(x)} is same as V ar{f̃n(x)} given in (9), the difference in
the two estimators arises from their bias as follows. According to the discrete
kernel-type (Examples 2.1 and 2.2), the influential terms in the comparison
ensue from

f (1) = (p0w)(1) = p0w
(1) + p

(1)
0 w ≶ p0w

(1), and/or (20)

f (2) = (p0w)(2) = p0w
(2) + 2p

(1)
0 w(1) + p

(2)
0 w ≶ p0w

(2), (21)

where ≶ denotes ≤ or ≥. The inequalities (20) and (21) would depend on the
form and, thus, on the variations of the pmf start. For this approximation of
second order, the standard asymmetric discrete kernels (binomial) use both
inequalities (20) and (21), whereas the symmetric discrete kernels (triangular)
need only (21) as symmetric continuous kernels.

As mentioned by Hjort and Glad (1995), this describes a certain neighbour-
hood of count distribution around the fixed Poisson p0 where the proposed
method of estimation is better or not than the traditional one.

Proof of Theorem 2. From (19), it is enough to calculate E{w̃n(x)} and
V ar{w̃n(x)} due to the facts that bias{f̂n(x)} = p0E{w̃n(x)} − f(x) and
V ar{f̂n(x)} = p2

0(x)V ar{w̃n(x)}. Now, from (5)–(7), we obtain

12



E{w̃n(x)}=
∑

y∈ℵx

Kx,h(y)p−1
0 (y)f(y) =

∑

y∈ℵx

f(y)p−1
0 (y) Pr(Kx,h = y)

= E{f(Kx,h)p
−1
0 (Kx,h)} = E{w(Kx,h)}

=

[
w{E(Kx,h)} +

1

2
V ar(Kx,h)w

(2)(x)

]
{1 + o(1)}.

Proceeding in the same manner as in (9), we get

V ar{w̃n(x)}=
1

n
V ar

{
Kx,h(X1)p

−1
0 (X1)

}

=
1

n

∑

y∈ℵx

{Pr(Kx,h = y)}2 p−2
0 (y)f(y)

−
1

n





∑

y∈ℵx

Pr(Kx,h = y)p−1
0 (y)f(y)





2

= p−2
0 (x)

[
1

n
f(x){Pr(Kx,h = x)}2 −

1

n
f2(x) + Rn(x; h)

]
.

Hence, the result. ¤

3.2 Unknown Poisson start

Consider our general semiparametric estimator f̂n presented in (16) of f in
(14) such that the estimator µ̂n of µ is obtained by the maximum likelihood
method; see Hjort and Glad (1995) for quite a general estimator of µ. It is
well-known that when the parametric model p(x; µ) is misspecified, this µ̂n

converges in probability to the pseudo true value µ0 which minimizes the
Kullback-Leibler distance

∑

x∈N

f(x) log
f(x)

p(x; µ)
=: d {f(·), p(·; µ)}

of p(x; µ) from the true pmf f(x); see, for example, White (1982).

Let us write p0(x) = p(x; µ0) for this best parametric approximant, but
this p0 is not explicitly expressible as the one in (19). Denoting u0(x) =
∂ log p(x; µ0)/∂µ = x/µ0 − 1 for the corresponding score function and v0(x) =
∂2 log p(x; µ0)/∂µ2 = −x/µ2

0, a second-order Taylor expansion of (18) provides

13



p(x; µ̂n)

p(Xi; µ̂n)
= exp{log p(x; µ̂n) − log p(Xi; µ̂n)}

.
=

p0(x)

p0(Xi)

[
1 − {u0(Xi) − u0(x)}(µ̂n − µ0) +

1

2
τ(x,Xi)(µ̂n − µ0)

2

]

=
p0(x)

p0(Xi)

[
1 −

Xi − x

µ0

(µ̂n − µ0) +
(x − Xi)(x − Xi − 1)

2µ2
0

(µ̂n − µ0)
2

]
,

with τ(x, Xi) = v0(x) − v0(Xi) + {u0(x) − u0(Xi)}
2.

Hence, we can represent the proposed estimator f̂n in (16) as

f̂n(x)
.
=

1

n

n∑

i=1

Kx,h(Xi)
p0(x)

p0(Xi)

×

{
1 +

x − Xi

µ0

(µ̂n − µ0) +
(x − Xi)(x − Xi − 1)

2µ2
0

(µ̂n − µ0)
2

}
,

for which the following result provides approximate bias and variance. We
omit the proof of this theorem since it is analogous to the result of Hjort and
Glad (1995) [Proposition 1] in continuous case and our Theorem 2.

Theorem 3 Let p0(x) = p(x; µ0) be the best Poisson approximant of the un-
known pmf f under the Kullback-Leibler criterion, and let w = f/p0 be the
corresponding Poisson weight function. As n → ∞ and h = h(n) → 0, the
semiparametric estimator in (16) possesses the following bias and variance:

bias{f̂n(x)} = p0(x)

[
w{E(Kx,h)}−

f(x)

p0(x)
+

1

2
V ar(Kx,h)w

(2)(x)

]{
1+o(1)+n−2

}
,

V ar{f̂n(x)} =
1

n
f(x){Pr(Kx,h = x)}2 −

1

n
f 2(x) + Rn(x; h),

where w(2) is the finite difference of second order as in (7), o(1) does not
depend on n and tends to 0 when h → 0, and Rn(x; h) is as in (10).

As in the case of p0 known (Section 3.1), the proposed estimator f̂n in (16)
of f in (14) can once again be shown to be better or not than the traditional
one f̃n in (1). Hence, a simulation study is not necessary here to compare
the performance of the semiparametric and nonparametric estimates since the
performance depends on count data-type and discrete kernel-type; see also
Section 6.3 for some comments in this direction and, more generally, Senga
Kiessé (2008).

Finally, an important fact for count data or count distribution is that the effect
of V ar(Kx,h) in the expression of bias{f̂n(x)} is minimized within a class of
discrete kernels, such as the class of standard asymmetric discrete kernels con-
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taining over/equi/under-dispersed kernels. This is because the Poisson start
p0 is a multiplicative coefficient of the bias expression in Theorems 2 and 3.
This is realized when the Poisson approximation is well-specified for the count
data; see the first illustrative example presented in Section 6.1. Because of this,
the proposed estimator can be made even better by choosing an appropriate
bandwidth.

4 Bandwidth selection

In this section, we examine two methods of selecting the bandwidth for the
traditional discrete kernel estimator in (1) used in the semiparametric esti-
mator in (16), viz., cross-validation and zero-proportion methods. It is to be
noted that the first one is applicable in the present context, but the second
one is not (see below for the proof).

For the proposed estimator in (16), the optimal bandwidth h > 0 is obtained,
by the popular technique of cross-validation, as hcv = arg minh>0 CV (h),
where

CV (h) =
1

n2

∑

i,j

1

p(Xi; µ̂n)p(Xj; µ̂n)

∑

x∈N

p2(x; µ̂n)Kx,h(Xi)Kx,h(Xj)

−
2

n(n − 1)

∑

i,j

KXi,h(Xj)
p(Xi; µ̂n,−i)

p(Xj; µ̂n,−i)
(22)

with µ̂n,−i being computed as µ̂n by excluding Xi. Note that another alterna-
tive for the bandwidth selection is the minimization of the empirical Integrated
Squared Error that we define in Section 6.

In the particular situation of zero-inflation (or a certain proportion of excess
of zeros) for count data and in the case of the traditional discrete kernel
estimator in (1), Eq. (11) of nonparametric zero-proportion can be used to
find an adapted bandwidth for given standard asymmetric discrete kernels
but not for symmetric discrete triangular ones; see Kokonendji et al. (2007b).
For the semiparametric estimator in (16), all effects of excess zeros are taken
into account by the Poisson part.

Indeed, to show that the zero-proportion method is not applicable in the
semiparametric context, we point out here that the only solution of the corre-
sponding equation of semiparametric zero-proportion is h0 = 0 for the bino-
mial kernel. Similar results hold for Poisson and negative binomial kernels as
well, and that there is no solution for all discrete triangular associated-kernels.
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From (16) and (18), we have

E{f̂n(x)} =
∫

z≥0

∑

y∈N

Pr(Kx,h = y)f(y)
y!(z)x−y

x!
ϕ(z)dz, (23)

where ϕ is the probability density function of µ̂n on [0,∞). For excess zeros,
the semiparametric zero-proportion equation can be obtained by identifying
the number of theoretical zeros with y = z = 0 in (23) and f(0) = ϕ(0) = 1
into the empirical number n0 = ♯ (Xi = 0) of observations equal to zero in the
sample, yielding

n0 =
n∑

i=1|Xi=0

Pr(KXi,h0
= 0)00 +

n∑

i=1|Xi 6=0

Pr(KXi,h0
= 0)

0Xi

Xi!

=
n∑

i=1|Xi=0

Pr(KXi,h0
= 0) (24)

with 00 = 1 = 0! and 0Xi = 0 for Xi 6= 0. Consequently, it is easy to verify
Eq. (24) for the binomial kernel Kx,h = Bx,h (see Example 2.1) as

n∑

i=1|Xi=0

(Xi + 1)!

0!(Xi + 1)!

(
Xi + h0

Xi + 1

)0(
1 − h0

Xi + 1

)Xi+1

= n0,

which simply reduces to n0(1 − h0) = n0 and, therefore, h0 = 0.

5 Restriction to the weighted binomial case

In this section, we assume that the count distribution or random variable X
with unknown pmf f(x) = Pr(X = x) has, without loss of generality, the
finite support {0, 1, . . . , N} with fixed and known N ∈ N \ {0}. Hence, in the
same spirit of the WPD discussed earlier in (14), we write f as the weighted
binomial distribution (see, for example, Johnson et al., 2005 [pp. 149–150]):

f(x) = w(x; q) b(x; q) =: fw(x; q), ∀x ∈ {0, 1, . . . , N}, (25)

where b(x; q) = N !
x!(N−x)!

qx(1 − q)N−x is the pmf of binomial distribution with

probability of success q ∈ (0, 1), and x 7→ w(x; q) = w(x)∑
x∈{0,1,...,N}

w(x)b(x;q)
is the

nonnegative (normalized) binomial weight function.

Now, let X1, . . . , Xn be independent observations from the unknown pmf f
on {0, 1, . . . , N} presented in (25). The semiparametric estimator of f is then
obtained, for x ∈ {0, 1, . . . , N}, as
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f̂n(x) = b(x; q̂n)
1

n

n∑

i=1

Kx,h(Xi)

b(Xi; q̂n)

=
1

n

n∑

i=1

Kx,h(Xi)
Xi!(N − Xi)!

x!(N − x)!
q̂x−Xi

n (1 − q̂n)Xi−x, (26)

where q̂n = N−1Xn is the sample proportion of successes, h > 0 is the band-
width, and Kx,h(·) is a given discrete kernel as discussed in Section 2.

As in the case of earlier estimators, this estimator f̂n of the pmf f is defined
up to the normalizing constant Ĉ =

∑
x∈{0,1,...,N} f̂n(x). All properties and

discussions presented earlier in Sections 3 and 4 hold for this f̂n on the finite
support {0, 1, . . . , N} as well. However, in this situation, we must also take
into account the boundary bias on the right of {0, 1, . . . , N}. For this situation,
we can only use two types of existing discrete kernels: binomial and triangular,
which also have compact supports. The modified binomial kernel is the same
as in Example 2.1, except at the last target x = N where we can consider
the binomial distribution B{N, (N + h)/(N + 1)} with h ∈ (0, 1]. However,
this (modified) binomial kernel is unstable for smoothing a pmf on a compact
support since it considers all information on the left of each target value. For
the modified discrete triangular kernels, we also apply the modification of arm
(13) on the right of {0, 1, . . . , N} (that is, at the neighbourhood of the point
x = N) as follows: for given k ∈ {1, 2, . . . , N} and x ∈ {0, 1, . . . , N},

aN = k ⇐⇒ aN =





j if x = N − j, j ∈ {0, 1, . . . , k − 1}

k if x ∈ {k, k + 1, . . . , N − k}.
(27)

These modified discrete triangular kernels with (13) and (27) are more appro-
priate for compact pmf and also possibly for ordered categorial distribution.

6 Illustrative examples and model diagnostics

For evaluating the performance of any (semiparametric or nonparametric)
estimator f∗

n of f , we simply use the empirical Integrated Squared Error defined
by

ISE0 =
∑

x∈N

{f∗
n(x) − f0(x)}2 ,

where f0 ≡ f̃F
n is the frequency estimator. This can be directly observed from

graphical presentations; see, for example, Marron and Padgett (1987).

In the special case of count data, we can also measure this performance through
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the following χ2 distance:

χ2
0 =

∑

x′∈{0,1,...,N0}

n {f∗
n(x′) − f0(x

′)}2

f∗
n(x′)

,

where N0 + 1 represents the number of valid classes in the sense of χ2-test;
see, for example, Greenwood and Nikulin (1996). Thus, the statistic χ2

0 can be
suitably approximated by the χ2-distribution with N0 − r degrees of freedom
(df), where r is the number of estimated parameters (h, µ or q) in f∗

n. This is a
common measure of accuracy for fitting data and it is appropriate to compare
with a parametric model using the χ2 goodness-of-fit test; see below.

6.1 Goals in championship of football

Let us consider the data set of Table 2, used earlier by Kokonendji et al.
(2007b). Summary statistics reveal that these count data are slightly overdis-
persed (D = 0.113) and zero-inflated (Z = 0.059) with respect to the Poisson
distribution with mean 2.13421 = µ̂n. Although the Poisson distribution can
fit these data adequately (χ2 = 8.13326 with 6 df corresponding to the p-value
of 0.2285), we show here that the proposed semiparametric method yields
better results than the parametric and nonparametric methods upon using
certain discrete kernels. Note that, for a given number of goals g ∈ N, the
nearest integer to n × f ∗

n(g) is the semiparametric/nonparametric estimation
of the corresponding number of matches.

(Tables 2 and 3 about here)
Table 3 presents the numerical results of a comparison between the traditional
nonparametric estimate in (1) and the semiparametric estimate in (16) based
on Poisson start with different discrete kernels without boundary bias. While
the results for the semiparametric method look somewhat similar in the bino-
mial model, the difference becomes quite noticeable between semiparametric
and nonparametric methods in the cases of Poisson, negative binomial and
discrete triangular a0 ∈ {1, 2}. For these count data, the semiparametric es-
timator in (16) provides a good improvement over the nonparametric estima-
tor. Further, we observe no difference between semiparametric estimators with
standard asymmetric discrete kernels that are over/equi/under-dispersed. The
dispersion effect of associated discrete kernels are being taken into account
by the parametric part of this semiparametric method. Thus, for semipara-
metric smoothings, the choice between (modified) discrete triangular kernels
and asymmetric discrete kernels is clearly in favour of symmetric (modified)
discrete triangular kernels. All these conclusions are confirmed through both
ISE0 and χ2

0 measures calculated by using the optimal bandwidth in the sense
of cross-validation.

18



6.2 Daily alcohol consumption

A sociological experiment was carried out concerning the number of days per
week in which alcohol was consumed; see Alanko and Lemmens (1996). A
randomly selected sample of n = 399 Dutch respondents were asked to keep
a diary for two consecutive weeks in which they recorded their daily alcohol
consumption. To fit these data only for week 1 presented in Table 4, Alanko
and Lemmens (1996) used a beta-binomial distribution which is a mixture of
binomial distributions, with the probability of success in an individual trial
having a beta distribution; see, for example, Johnson et al. (2005) [pp. 253–
256]. The results obtained by these authors were not very satisfactory as the
p-values were obtained as 0.086 for the χ2 goodness-of-fit test. Thus, the beta-
binomial distribution and a fortiori binomial distribution do not seem to be
suitable models for these data. Furthermore, we observe that the data have
two modal values: the first for 1 day and the second for 7 days. Based on
these facts, we feel that it may be better to fit these data by the proposed
semiparametric method with a binomial start in (26).

(Table 4 about here)
Table 4 presents the numerical results of fits obtained by means of the semi-
parametric estimator with a binomial start in (26). For these count data,
only the modified discrete triangular kernels (a0 = aN ∈ {1, 2}) were used
with their optimal bandwidth (hcv = 0.001). In the sense of the χ2 goodness-
of-fit test, the fits are quite clearly the best as compared to the results ob-
tained from the beta-binomial distribution. For fixed modified arms a0 = aN ∈
{1, 2, . . . , 7} of the discrete triangular kernel, we could choose any bandwidth
h (6= hcv) for getting new discrete smoothings (or fits) having a better p-value
than the beta-binomial distribution. For fixed bandwidth h > 0 in the modi-
fied discrete triangular kernel, it is easy to observe (see also Kokonendji et al.
(2007b) [Remark 2.3 (ii)]) that if a0 = aN increases then both ISE0 and χ2

0

increase too; thus, the associated p-values decrease.

6.3 Model diagnostics

The estimated weight function [see Eq. (17)] provides useful information for
model diagnostics. The Poisson/binomial weight function should equal one if
the Poisson/binomial start pmf is indeed the true pmf. Hjort and Glad (1995)
[Section 8.2] proposed to check the adequacy of the model by examining a plot
of the weight function w for various potential models with pointwise confidence
bands to see if w(x) = 1 is reasonable or not. This plot allows to spot easily
where misspecification is locally the largest. For the estimated Poisson weight
function in (17), the bias and variance can be readily deduced from Theorem
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3 as:

E{w̃n(x)}
.
= w{E(Kx,h)} +

1

2
V ar(Kx,h)w

(2)(x) −
1

n
w(x)u0(x){1 + u0(x)/J},

V ar{w̃n(x)}
.
=

1

n

ω(x)

p0(x)
{Pr(Kx,h = x)}2 −

1

n
ω2(x){1 + u2

0(x)/J},

with J = −1/E{v0(Xi)} = µ/µ2
0 and u0(x) = x/µ0 − 1.

(Figures 2 and 3 about here)
Another possibility, also discussed by Hjort and Glad (1995) [Section 8.2], is
to plot the log weight function log w̃n(x; µ̂n) = log{f̂n(x)/p(x; µ̂n)} to see how
far away it is from zero. Then, a simple graphical goodness-of-fit emerges as
follows: plot x against

Z(x) =
log w̃n(x; µ̂n) + (2n)−1{p(x; µ̂n)}−1 Pr(Kx,h = x)

[
n−1{p(x; µ̂n)}−1 Pr(Kx,h = x)

]1/2
.

When the Poisson start is indeed the true pmf, Z(x) is approximately dis-
tributed as standard normal for each target x, meaning that the Z(x)-values
should lie within ±1.96 about 95% of the time. Notice that the appreciated be-
haviours of x 7→ Z(x) are reduced to a suitable subset {x ∈ N; p(x; µ̂n) ≥ α >
0} of the support N because of very small values of individual Poisson proba-
bilities p(x; µ̂n). With regard to the binomial start in (26), we omit presenting
a similar expression of Z(x); it would be necessary in this case to examine the
corresponding x 7→ Z(x) over its entire support {0, 1, . . . , N}. Note, in addi-
tion, that an investigation of the convexity and concavity of x 7→ log w̃n(x; µ̂n)
provides a connection to the theoretical results presented in Kokonendji et al.
(2008) with respect to overdispersion and underdispersion.

Thus, applying first to different discrete kernels in Table 3 on the subset
{0, 1, . . . , 9} of N with 0.9998 =

∑
x∈{0,1,...,9} p(x; µ̂n), at least 80% of Z(x)-

values stay within ±1.96 (see Figure 2). This suggests that it would be also
of interest to consider the pure parametric Poisson distribution for modeling
these data than the semiparametric estimation with Poisson start. Hence,
we can validate here the choice of a parametric Poisson model for the count
data in Table 2. However, for the second example (see Table 4), only 25%
of Z(x)-values associated with the semiparametric estimation with binomial
start belong to the confidence band ±1.96 (see Figure 3). Hence, it is necessary
in this case to use the semiparametric estimation method for the count data
instead of the parametric binomial and beta-binomial models. Note however
that if at most 10% of Z(x)-values stay within ±1.96 (see, for example, Figure
4), an appropriate choice of method would be either the pure nonparametric
estimate in (1) or the one given by Böhning (2000).
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7 Concluding remarks

In this work, we have introduced a simple and efficient semiparametric estima-
tion for count data through weighted distributions. According to the original
idea of Hjort and Glad (1995) for continuous data, we could also start with
a different parametric discrete distribution than the Poisson or binomial dis-
tributions considered here. The proposed semiparametric estimators in (16)
and (26) outperform the nonparametric and parametric estimators in case of
finite samples when the pmf to estimate belongs to a neighbourhood of the
pmf start. We have more flexibility through choice of discrete kernels as well
as bandwidth choices which results in more improved fits for count data by
the semiparametric method as compared to the classical parametric method.
Moreover, the model diagnostics discussed in Section 6.3 will enable us to
make an appropriate choice of the method. Contrary to the pure nonparamet-
ric estimate in (1), the semiparametric estimate proposed here has a natural
interpretation for count distribution through the popular weighted Poisson
and weighted binomial distributions discussed in the literature. Further im-
provements are still possible with the discrete kernel choice in case of small
sample sizes. Two extensions of the results developed here that will be of inter-
est are to consider the multidimentional case and the nonparametric weighted
Poisson regression problems. Works in these directions are in progress with
respect to the discrete associated-kernel approach which has been recently
introduced by Kokonendji et al. (2007b) only for the univariate case.
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Senga Kiessé, T., 2008. Approche non-paramétrique par noyaux associés dis-
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Table 1
Summary of properties of some discrete kernel estimators (Senga Kiessé, 2008)

Type of discrete E(Kx,h) Var(Kx,h) lim
h→0

Var(Kx,h) Convergence Cross- Excess Symmetry Remarks

kernel of the MISE validation of zero of Kx,h

Dirac x 0 0 YES −− −− YES No

(n ր ∞) bandwidth

Poisson x + h x + h x ∈ N NO YES YES NO Equi-

dispersion

Binomial x + h (x + h)
(

1−h
x+1

)
0 ≤ x

x+1 < 1 NO YES YES NO Under-

dispersion

Negative x + h (x + h)
(
1 + x+h

x+1

)
x(2x+1)

x+1 ≥ 0 NO YES YES NO Over-

binomial dispersion

Triangular x V (a, h) : see (12) 0 YES YES NO YES Boundary

a ∈ N \ {0} (n ր ∞ and h ց 0) bias
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Fig. 1. Behavior of some discrete kernels for count distributions of Senga Kiessé
(2008) at the target y = x = 5 with the same bandwidth h = 0.1.

Table 2
Data of matches having a certain number of goals in the French League 1 of football
with n = 380 and season 2005-2006 taken from Kokonendji et al. (2007b).

Goals (g) 0 1 2 3 4 5 6 7 8 9 Total

Matches 51 90 109 61 44 12 9 3 0 1 380
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Table 3
Some comparative results of semiparametric and nonparametric estimates based on
the data in Table 2.

Discrete kernel: Triang a0 = 1 Triang a0 = 2 Binomial Poisson Neg. bin.

Semiparametric

hcv 0.001 0.001 0.001 0.540 0.820

Ĉ 1.00004 1.00007 1.01650 1.07392 1.12218

ISE0 1.65 10−8 3.50 10−8 0.00250 0.00301 0.00305

χ2
0 with 5 df 0.0036 0.0062 10.29 13.99 15.81

p-value 1.0 1.0 0.0674 0.0157 0.0074

Nonparametric

hcv 0.028 0.019 0.177 0.054 0.039

C̃ 0.99810 0.99780 0.95872 1.05082 1.12028

ISE0 0.00001 0.00004 0.00395 0.01580 0.02904

χ2
0 with 6 df 0.1396 0.2816 11.34 63.33 116.80

p-value 0.999946 0.999581 0.0784 9.45 10−12 0.0

Fig. 2. The Z(x)-values associated with the results in Table 3.
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Table 4
Number of alcohol drinking days for week 1 from Alanko and Lemmens (1996) and
semiparametric estimates in (26) using modified discrete triangular kernels with
hcv = 0.001

Number Observed Expected Expected SP Expected SP

of days frequencies beta-binomial Triang-1 Triang-2

per week frequencies frequencies frequencies

0 47 54.6 46.87 46.63

1 54 42.0 54.13 54.02

2 43 38.9 43.03 43.47

3 40 38.5 39.97 39.99

4 40 40.1 39.98 39.89

5 41 44.0 40.98 41.39

6 39 53.1 39.29 39.35

7 95 87.8 94.75 94.26

Total 399 399.00 399.00 399.00

Ĉ 1.00131 1.00487

ISE0 3.02 10−3 1.15 10−6 7.29 10−6

χ2
0 9.6 0.0035 0.0204

df 5 5 5

p-value 0.086 1.0 0.999997
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Fig. 3. The Z(x)-values associated with the results in Table 4.

Fig. 4. The Z(x)-values associated with the results of simulated count data from
the Poisson mixture distribution f = 0.4P(0.5) + 0.6P(10) for n = 300
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