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Abstract

We consider a stable driven degenerate stochastic differential equation, whose coefficients satisfy a kind of

weak Hörmander condition. Under mild smoothness assumptions we prove the uniqueness of the martingale

problem for the associated generator. Also, in the scalar case we establish density bounds reflecting the

multi-scale behavior of the process.

1 Introduction

The aim of this paper is to study degenerate stable driven stochastic differential equations of the following
form:

dX1
t =

(

a1,1t X1
t + · · ·+ a1,nt Xn

t

)

dt+ σ(t,Xt−)dZt (1.1)

dX2
t =

(

a2,1t X1
t + · · ·+ a2,nt Xn

t

)

dt

dX3
t =

(

a3,2t X2
t + · · ·+ a3,nt Xn

t

)

dt

...

dXn
t =

(

an,n−1
t Xn−1

t + an,nt Xn
t

)

dt, X0 = x ∈ R
nd,

where Z is an R
d valued symmetric α stable process (α ∈ (0, 2)), σ : R+ × R

nd → R
d ⊗ R

d, ai,j : R+ →
R

d ⊗ R
d, i ∈ [[1, n]], j ∈ [[(i− 1) ∨ 1, n]]. Observe that X is R

nd valued. We will often use the shortened form:

dXt = AtXtdt+Bσ(t,Xt−)dZt, X0 = x, (1.2)

where B =
(

Id×d 0(n−1)d×d

)∗
denotes the injection matrix from R

d into R
nd and At is the matrix :

At =



















a1,1t . . . . . . . . . a1,nt

a2,1t

. . . a2,nt

0 a3,2t

. . . a3,nt
...

. . .
. . .

. . .
...

0 . . . 0 an,n−1
t an,nt



















.

The previous system appears in many applicative fields. It is for instance related for n = 2 to the pricing of
Asian options in jump diffusions models (see e.g. Jeanblanc et al [13] or Barucci et al [2] in the Brownian case).
The Hamiltonian formulation in mechanics can lead to systems corresponding to the drift part of (1.1) (still
with n = 2). The associated Brownian perturbation has been thoroughly studied, see e.g. Talay [32] or Stuart
et al. [22] for the convergence of approximation schemes to equilibrium, but to the best of our knowledge other
perturbations, like the current stable one, have not yet been considered. For a general n, equation (1.1) can
be seen as the linear dynamics of n coupled oscillators in dimension d perturbed by a stable anisotropic noise.
Observe also that in the diffusive case these oscillator chains naturally appear in statistical mechanics, see e.g
Eckman et al. [9].
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Equation (1.1) is degenerate in the sense that the noise only acts on the first component of the system.
Additionally to the non-degeneracy of the volatility σ, we will assume a kind of weak Hörmander condition on
the drift component in order to allow the noise propagation into the system.

A huge literature exists on degenerate Brownian diffusions under the strong Hörmander condition, i.e. when
the underlying space is spanned by the diffusive vector fields and their iterated Lie brackets. The major works
in that framework have been obtained in a series of papers by Kusuoka ans Stroock, [17], [18], [19], using a
Malliavin calculus approach.

For the weak Hörmander case, many questions are still open even in the Brownian setting. Let us mention
in this framework the papers [8], [24] and [16] dealing respectively with density estimates, martingale problems
and random walk approximations for systems of type (1.1) or that can be linearized around such systems. In
those works a global multi-scale Gaussian regime holds. For highly non-linear first order vector fields, Franchi
[10] and Cinti et al. [7] address issues for which there is not a single regime anymore. A specificity of the
weak Hörmander condition is the unbounded first order term which does not lead to a time-space separation
in the off-diagonal bounds for the density estimates as in the sub-Riemannian setting, see e.g. [19], Ben Arous
and Léandre [4] and references therein. The energy of the associated deterministic control problem has to be
considered instead, see e.g. [8]. We have a similar feature in our current stable setting.

In this work we are first interested in proving the uniqueness of the martingale problem associated to the
generator (Lt)t≥ of (1.1), i.e.

∀ϕ ∈ C1
0 (R

nd,R), ∀x ∈ R
nd, Ltϕ(x) = 〈Atx,∇ϕ(x)〉+

∫

Rd

(

ϕ(x+Bσ(t, x)z)−ϕ(x)−
〈∇ϕ(x), Bσ(t, x)z〉

1 + |z|2

)

ν(dz),

(1.3)
under some mild assumptions on the volatility σ and the Lévy measure ν of Z. To this end, the key tool consists
in exploiting some properties of the joint densities of stable processes and their iterated integrals, corresponding
to the proxy model in a parametrix continuity technique. Following the strategies developed in [3], [24] we
then derive uniqueness exploiting the smoothing properties of the parametrix kernel. Let us emphasize that
the above mentioned densities actually behave as the density of an α stable process in dimension nd with a
modified Lévy measure, where n−1 is the numbers of iterated integrals considered and d is the initial dimension
of the process. They also exhibit different time-scales. Roughly speaking, the typical time scale of the initial
stable process is t1/α and t(i−1)+1/α for the associated (i− 1)th integral. Also, the process will deviate from the
transport of the initial condition by the deterministic system, i.e. setting d

dtRt = AtRt, R0 = I, the mean of
the process is Rtx, accordingly to the associated component wise time scales. We establish two sided estimates
for those densities, see Proposition 3.3.

When turning to density estimates, one of the dramatic differences with the Gaussian case is the lack of
integrability of the driving process. For non-degenerate stable driven SDEs, this difficulty can be bypassed to
derive two-sided pointwise bounds for the SDE that are homogeneous to the density of the driving process,
see e.g. Kolokoltsov [14], establishing in the stable case the analogue of the Aronson bounds for diffusions,
see e.g. Sheu [28] or [1]. For approximation schemes of non-degenerate stable-driven SDEs we also mention
[15]. In our current degenerate framework, working under somehow minimal assumptions to derive pointwise
density bounds, that is Hölder continuity of the coefficients, we did not succeed to get rid of those integrability
problems. For technical reasons that will appear later on, we obtain when d = 1, n = 2 (scalar non-degenerate
diffusion and associated non-degenerate integral) the expected upper-bound up to an additional logarithmic
contribution and the expected diagonal lower bound, see Theorem 2.2. To this end we use a parametrix ap-
proach similar to the one of Mc Kean and Singer [23]. Working with smoother coefficients would have allowed to
consider Malliavin calculus type techniques. In the jump case, this approach has been investigated to establish
existence/smoothness of the density for SDEs by Bichteler et al. in the non-degenerate case [5], and Léandre in
the degenerate one, see [20],[21]. Let us eventually mention some related works. Priola and Zabczyk establish
in [26] existence of the density for processes of type (1.1), under the same kind of weak Hörmander assumption
and when σ is constant, for a general driving Lévy process Z provided its Lévy measure is infinite and has
itself a density on compact sets. Also, Picard, [25] investigates similar problems for singular Lévy measures.
Other results concerning the smoothness of the density of Lévy driven SDEs have been obtained by Ishikawa
and Kunita [11] in the non-degenerate case but with mild conditions on the Lévy measure and by Cass [6] who
gets smoothness in the weak Hörmander framework under technical restrictions.

The article is organized as follows. We state our main results in Section 2. In Section 3, we explain the
procedure to derive those results and also state the density estimates on the process in (1.1) when σ(t, x) = σ(t)
(frozen process). We then prove the uniqueness of the martingale problem in Section 4. Sections 5 and 6 are
the technical core of the paper. In particular, we prove there the existence of the density and the associated
estimates for the frozen process and establish the smoothing properties of the parametrix kernel. Appendices
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A and B are dedicated to the derivation of stable density bounds and kernels following the procedure of [14] in
our current degenerate setting.

2 Assumptions, and Main Result.

Let (Zt)t≥0 be an α stable symmetric process, defined on some filtered probability space (Ω,F , (Ft)t≥0,P),
that is a Lévy process with Fourier exponent:

Eei〈p,Zt〉 = exp

(

−t

∫

Sd−1

|〈p, ς〉|αµ(dς)

)

, ∀p ∈ R
d.

In the above expression, we denote by Sd−1 the unit sphere in R
d, and by µ the spectral measure of Z. This

measure is related to the Lévy measure of Z as follows. If ν is the Lévy measure of Z, its decomposition in
polar coordinates writes: ν(dz) = dρ

ρ1+α µ̃(dς), where z = ρς, (ρ, ς) ∈ R+ × Sd−1. Then, µ = Cα,dµ̃ ( see Sato

[27] for the exact value of Cα,d).
We will make the following assumptions:

[H-1]: (Hölder regularity) ∃H > 0, η ∈ (0, 1], ∀x, y ∈ R
nd and ∀t ≥ 0,

||σ(t, x) − σ(t, y)|| ≤ H |x− y|η.

[H-2]: (Non degeneracy of the spectral measure) ∃Λ1,Λ2 ∈ R
∗
+ , ∀u ∈ R

d,

Λ1|u|
α ≤

∫

Sd−1

|〈u, ς〉|αµ(dς) ≤ Λ2|u|
α. (2.1)

[H-3]: (Ellipticity) ∃ c, c > 0, ∀ξ ∈ R
d, ∀z ∈ R

nd and ∀t ≥ 0,

c|ξ|2 ≤ 〈ξ, σσ∗(t, z)ξ〉 ≤ c|ξ|2. (2.2)

[H-4]: (Hörmander-like condition for (At)t≥0) ∃α, α ∈ R
∗
+, ∀ξ ∈ R

nd and ∀t ≥ 0, α|ξ|2 ≤ 〈ai,i−1
t ξ, ξ〉 ≤

α|ξ|2, ∀i ∈ [[2, n− 1]]. Also, for all (i, j) ∈ [[1, n]]
2
, ‖ai,jt ‖ ≤ α.

We say that [H] holds if conditions [H-1] to [H-4] are fulfilled.
Our main results are the following.

Theorem 2.1 (Weak Uniqueness). Under [H], the martingale problem associated with the generator (Lt)t≥0,
defined in (1.3), of the degenerate equation (1.1):

dXt = AtXtdt+Bσ(t,Xt−)dZt,

admits a unique solution. That is, for every x ∈ R
nd, there exists a unique probability measure P on Ω =

D(R+×R
nd,R) the space of càdlàg functions, such that for all f ∈ C1,1

0 (R+×R
nd,R), denoting by (Xt)t≥0 the

canonical process, we have:

P(X0 = x) = 1 and f(t,Xt)−

∫ t

0

(∂u + Lu)f(u,Xu)du is a P- martingale.

Hence, weak uniqueness holds for (1.1).

Also, when d = 1 and n = 2 in (1.1) we are able to prove the following density estimates.

Theorem 2.2 (Density Estimates). Assume that d = 1, n = 2. Under [H], the unique weak solution of
(1.1) has for every s > 0 a density with respect to the Lebesgue measure. Precisely, for all 0 ≤ t < s and
x ∈ R

2,
P(Xs ∈ dy|Xt = x) = p(t, s, x, y)dy. (2.3)

Also, for a deterministic time horizon T > 0, and fixed threshold K > 0, the following upper bound holds:
∃C2.2 := C2.2([H], T,K) ≥ 1, s.t. ∀0 ≤ t < s ≤ T, ∀(x, y) ∈ (R2)2,

p(t, s, x, y) ≤ C2.2p̄α(t, s, x, y)
(

1 + log(K ∨ |(Tα
s−t)

−1(y −Rs,t(x))|
)

, (2.4)

3



where

p̄α(t, s, x, y) = Cα
det(Tα

s−t)
−1

{K ∨ |(Tα
s−t)

−1(y −Rs,t(x))|}2+α
, and ∀u ∈ R+, T

α
u := Diag

(

(u1/α, u1+1/α)
)

.

Here, Rs,t stands for the resolvent associated to the deterministic part of (1.1), i.e. d
dsRs,t = AsRs,t, Rt,t = I2,

and Cα is s.t.
∫

R2 p̄α(t, s, x, y)dy = 1.
Eventually for 0 < T ≤ T0 := T0([H],K) small enough, the following diagonal lower bound holds:

∀0 ≤ t < s ≤ T, ∀(x, y) ∈ (R2)2 s.t. |(Tα
s−t)

−1(y −Rs,t(x))| ≤ K, p(t, s, x, y) ≥ C−1

2.2det(T
α
s−t)

−1. (2.5)

Under the current assumptions, Theorem 2.1 is proved following the lines of [3] and [24]. In the Gaussian
framework, those assumptions are sufficient to derive homogeneous two-sided multi-scale Gaussian bounds, see
[8]. However, in the current context, we only managed to obtain the expected upper bound up to a logarithmic
factor and a diagonal lower bound for d = 1 and n = 2. This is mainly due to a lack of integrability of the
stable process which becomes really delicate to handle in the degenerate case. Indeed, in the non-degenerate
context, Kolokoltsov [14] successfully gives two sided bounds for the density of the SDE. The technical reasons
leading to the restriction of Theorem 2.2 will be discussed thoroughly in the dedicated sections (see Sections 3.3
and 6). Let us mention that the above results could be extended to the case of a d-dimensional non-degenerate
stable-driven SDE and the integral of one of its components. We emphasize as well, that our estimates still
hold if we had a non-linear bounded drift in the dynamics of X1 if α > 1 (see Remark 5.5). We conclude this
paragraph saying that the uniqueness of the martingale problem and the estimates of Section 6 allow to extend
in the non-degenerate case, the stable two-sided Aronson like estimates of [14] for Hölder coefficients.

Constants and usual notations:

• The capital letter C will denote a constant whose value may change from line to line, and can depend
on the hypotheses [H]. Other dependencies (in particular in time), will be specified, using explicit under
scripts.

• We will often use the notation ≍ to express equivalence between functions. If f and g are two real valued
nonnegative functions, we denote f(x) ≍ g(x), x ∈ I ⊂ R

p, p ∈ N, when there exists a constant C ≥ 1,
possibly depending on [H], I s.t. C−1f(x) ≤ g(x) ≤ Cf(x), ∀x ∈ I.

• For x = (x1, · · · , xnd) ∈ R
nd and for all k ∈ [[1, n]], we define xk := (x(k−1)d+1, · · · , xkd) ∈ R

d. Accord-
ingly, x = (x1, · · · , xn).

From now on, we assume [H] to be in force.

3 Continuity techniques : the Frozen equation and the parametrix

series.

For density estimates, a continuity technique consists in considering a simpler equation as proxy model for
the initial equation. The proxy will be significant if it achieves two properties:

- It admits an explicit density or a density that is well estimated.

- The difference between the density of the initial SDE and the one of the proxy can be well controlled.

For the last point a usual strategy consists in expressing the difference of the densities through the difference
of the generators of the two SDEs, using Kolmogorov’s equations. This approach is known as the parametrix
method. In the current work, we will use the procedure developed by Mc Kean and Singer [23], which turns
out to be well-suited to handle coefficients with mild smoothness properties.

We first introduce the proxy model in Section 3.1, and give some associated density bounds. We then
analyze in Sections 3.2, 3.3 how this choice can formally lead through a parametrix expansion to a density
estimate, exploiting some suitable regularization properties in time. These arguments can be made rigorous
provided that the initial SDE admits a Feller transition function. The uniqueness of the martingale problem
will actually give this property.
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3.1 The Frozen Process.

In this section, we give results that hold in any dimension d, and for any fixed number of oscillators n. Let
T > 0 (arbitrary deterministic time) and y ∈ R

nd (final freezing point) be given. Heuristically, y is the point
where we want to estimate the density of (1.1) at time T provided it exists. We introduce the frozen process
as follows:

dX̃T,y
s = AsX̃

T,y
s ds+Bσ(s,Rs,T (y))dZs. (3.1)

In this equation, Rs,T (y) is the resolvent of the deterministic equation associated, i.e. it satisfies d
dsRs,T =

AsRs,T , with RT,T = Ind in R
nd ⊗ R

nd. Let us emphasize that the previous choice can seem awkward at first
sight. Indeed, a very natural approach for a proxy model would consist in freezing the diffusion coefficient at
the terminal point, see e.g. Kolokoltsov [14]. In our current weak Hörmander setting we need to take into
account the backward transport of the final point by the deterministic differential system. This particular
choice is actually imposed by the natural metric appearing in the density of the frozen process, see Proposition
3.3. This allows the comparison of the singular parts of the generators of (1.1) and (3.1) applied to the frozen
density, see Proposition 3.5 and Lemma 3.9.

Proposition 3.1. Fix (t, x) ∈ [0, T ]× R
nd. The unique solution of (3.1) starting from x at time t writes:

X̃t,x,T,y
s = Rs,tx+

∫ s

t

Rs,uBσ(u,Ru,T (y))dZu. (3.2)

Proof. Equation (3.1) is a linear SDE, with constant diffusion coefficient. As such, it admits a unique strong
solution. The representation (3.2) follows from Itô’s formula.

Introduce for all u ∈ R
+, the diagonal time scale matrix:

T
α
u =







u
1
α Id 0

. . .

0 un−1+ 1
α Id






. (3.3)

This extends the definition of Theorem 2.2 for n = 2. The entries of this matrix correspond to the intrinsic
time scales of the iterated integrals of a stable process with index α observed at time u. They reflect the
multi-scale behavior of our system. We first give an expression of the density of X̃t,x,T,y

s in terms of its inverse
Fourier transform. We refer to Section 5.2 for the proof of this result.

Proposition 3.2. The frozen process (X̃t,x,T,y
s )s≥t has for all s > t a density w.r.t. the Lebesgue measure,

that is:
P(X̃T,y

s ∈ dz|X̃T,y
t = x) = p̃T,y

α (t, s, x, z)dz.

For 0 < T − t ≤ T0 := T0([H]) ≤ 1 there exists a symmetric measure µ∗
S = µ∗

S(t, T, s, y) on Snd−1 satisfying
[H-2] in R

nd (non degeneracy of the spectral measure), uniformly in the parameters t, T, s, y, such that:

p̃T,y
α (t, s, x, z) =

det (Tα
s−t)

−1

(2π)nd

∫

Rnd

e−i〈q,(Tα
s−t)

−1(z−Rs,t(x))〉 exp

(

−

∫

Snd−1

|〈q, η〉|αµ∗
S(dη)

)

dq. (3.4)

Remark 3.1. The above proposition is important in that it shows why the density of a d-dimensional stable
process with index α ∈ (0, 2) and its n iterated integrals actually behaves as the density of an nd-dimensional
multi-scale stable process, where the various scales are read through the matrix T

α.

From the previous remark, following the computations in [14] which are recalled in the appendix, we derive
the following estimates.

Proposition 3.3. Fix T > 0, a threshold K > 0 and y ∈ R
nd. For all (t, x) ∈ [0, T ) × R

nd, the density
p̃T,y
α (t, s, x, z) of the frozen process (X̃t,x,T,y

s )s∈(t,T ] in (3.2) satisfies the following estimates. There exists

C3.3 := C3.3 (H-2,H-3,H-4,K)≥ 1, s.t. for all 0 ≤ t < s ≤ T, (x, z) ∈ (Rnd)2:

C−1

3.3p̄α(t, s, x, z) ≤ p̃T,y
α (t, s, x, z) ≤ C3.3p̄α(t, s, x, z), (3.5)

where extending the definition of Theorem 2.2, we write:

p̄α(t, s, x, y) = Cα
det(Tα

s−t)
−1

{K ∨ |(Tα
s−t)

−1(y −Rs,t(x))|}nd+α
. (3.6)
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We refer to Section 5.2 and Appendix A for the proof of this result. As a corollary, we have the following
important property.

Corollary 3.4 (“Semigroup" property). There exists C3.4 := C3.4 (H-2,H-3,H-4,K) ≥ 1 s.t. for all
0 ≤ t < τ < s, (x, y) ∈ (Rnd)2:

∫

Rnd

p̄α(t, τ, x, z)p̄α(τ, s, z, y)dz ≤ C3.4p̄α(t, s, x, y).

Proof. From the lower bound in (3.5) we get for all (s, y) ∈ R+ × R
nd:

∫

Rnd

p̄α(t, τ, x, z)p̄α(τ, s, z, y)dz ≤ C2
3.3

∫

Rnd

p̃s,yα (t, τ, x, z)p̃s,yα (τ, s, z, y)dz = C2
3.3p̃

s,y
α (t, s, x, y),

because p̃s,yα enjoys the semigroup property. The upper-bound of (3.5) finally yields:

∫

Rnd

p̄α(t, τ, x, z)p̄α(τ, s, z, y)dz ≤ C3
3.3p̄α(t, s, x, y).

Remark 3.2. As an easy corollary of this semigroup property, we derive that for all T1, T2, T3 > 0, y1, y2, y3 ∈
R

nd, for all t < τ < s and x, y ∈ R
nd:

∫

Rnd

p̃T1,y1
α (t, τ, x, z)p̃T2,y2

α (τ, s, z, y)dz ≤ C3
3.3p̃

T3,y3
α (t, s, x, y). (3.7)

The above control reads as a semigroup property on the frozen densities with possible different freezing points.

3.2 The Parametrix Series.

We assume here that the generator (Lt)t≥0 of (1.1) generates a Feller inhomogeneous semigroup (Pt,s)0≤t≤s.
Using the Chapman-Kolmogorov equations satisfied by the semigroup and the pointwise Kolmogorov equations
for the proxy model, we derive a formal representation of the semigroup in terms of a series, involving the
difference of the generators of the initial and frozen processes. Let Lt (already defined in (1.3)) and L̃T,y

t

denote the generators of Xt,x and X̃t,x,T,y at time t respectively. For φ ∈ C1
0 (R

nd,R), denoting by ν the Lévy
measure of Z, we have for all x ∈ R

nd:

Ltφ(x) = 〈∇φ(x), Atx〉+

∫

Rd

(

φ(x +Bσ(t, x)z)− φ(x) −
〈∇φ(x), Bσ(t, x)z〉

1 + |z|2

)

ν(dz),

L̃T,y
t φ(x) = 〈∇φ(x), Atx〉+

∫

Rd

(

φ(x +Bσ(t, Rt,T (y))z)− φ(x) −
〈∇φ(x), Bσ(t, Rt,T (y))z〉

1 + |z|2

)

ν(dz). (3.8)

Observe that for X̃t,x,T,y
s defined in (3.2), its density p̃T,y

α (t, s, x, ·) exists and is smooth under [H] for s > t
(see Proposition 3.2 above).

Proposition 3.5. Suppose that there exists a unique weak solution (Xt,x
s )0≤t≤s to (1.1) which has a Feller

semigroup (Pt,s)0≤t≤s. We have the following formal representation. For all 0 ≤ t < T, (x, y) ∈ (Rnd)2 and
any bounded measurable f : Rnd → R:

Pt,T f(x) = E[f(XT )|Xt = x] =

∫

Rnd

(

+∞
∑

r=0

(p̃α ⊗H(r))(t, T, x, y)

)

f(y), (3.9)

where H is the parametrix kernel:

∀0 ≤ t < T, (x, y) ∈ (Rnd)2, H(t, T, x, y) := (Lt − L̃T,y
t )p̃T,y

α (t, T, x, y). (3.10)

In equation (3.9), we denote for all 0 ≤ t < u ≤ T, (x, z) ∈ (Rnd)2, p̃α(t, u, x, z) := p̃u,zα (t, u, x, z). Also, the
notation ⊗ stands for the time space convolution:

f ⊗ g(t, T, x, y) =

∫ T

t

du

∫

Rnd

dzf(t, u, x, z)g(u, T, z, y).
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Besides, H(0) = I and ∀r ∈ N, H(r)(t, T, x, y) = H(r−1) ⊗H(t, T, x, y).
Furthermore, when the above representation can be justified, it yields the existence as well as a representation

for the density of the initial process. Namely P[XT ∈ dy|Xt = x] = p(t, T, x, y)dy where :

∀0 ≤ t < T, (x, y) ∈ (Rnd)2, p(t, T, x, y) =

+∞
∑

r=0

(p̃α ⊗H(r))(t, T, x, y). (3.11)

Proof. Let us first emphasize that the density p̃T,y
α (t, s, x, z) of X̃t,x,T,y

s at point z solves the Kolmogorov
backward equation:

∂p̃T,y
α

∂t
(t, s, x, z) = −L̃T,y

t p̃T,y
α (t, s, x, z), for all t < s, (x, z) ∈ R

nd × R
nd, limt↑s p̃

T,y
α (t, s, ·, z) = δz(·). (3.12)

Here, L̃T,y
t acts on the variable x. Let us now introduce the family of operators (P̃t,s)0≤t≤s. For 0 ≤ t ≤ s and

any bounded measurable function f : Rnd → R:

P̃t,sf(x) :=

∫

Rnd

p̃T,y
α (t, T, x, y)f(y)dy :=

∫

Rnd

p̃α(t, T, x, y)f(y)dy. (3.13)

Observe that the family (P̃t,s)0≤t≤s is not a semigroup. Anyhow, we can still establish, see Lemma 4.1, that
for a continuous f :

lim
s→t

P̃s,tf(x) = f(x). (3.14)

This convergence is not a direct consequence of the bounded convergence theorem since the freezing parameter
is also the integration variable.

The boundary condition (3.14) and the Feller property yield:

(Pt,T − P̃t,T )f(x) =

∫ T

t

du
∂

∂u

{

Pt,u(P̃u,T f(x))

}

.

Computing the derivative under the integral leads to:

(Pt,T − P̃t,T )f(x) =

∫ T

t

du

{

∂uPt,u(P̃u,T f(x)) + Pt,u(∂u(P̃u,T f(x)))

}

.

Using the Kolmogorov equation (3.12) and the Chapman-Kolmogorov relation ∂uPt,uϕ(x) = Pt,u(Luϕ(x)), ∀ϕ ∈
C1

b (R
nd,R) we get:

(Pt,T − P̃t,T )f(x) =

∫ T

t

duPt,u

(

LuP̃u,T f
)

(x)− Pt,u

(∫

Rnd

f(y)L̃T,y
u p̃α(u, T, ·, y)dy

)

(x).

Define now the operator:

Hu,Tϕ(z) :=

∫

Rnd

ϕ(y)(Lu − L̃T,y
u )p̃α(u, T, z, y)dy =

∫

Rnd

ϕ(y)H(u, T, z, y). (3.15)

We can thus rewrite:

Pt,T f(x) = P̃t,T f(x) +

∫ T

t

Pt,u

(

Hu,T (f)
)

(x)du.

The idea is now to reproduce this procedure for Pt,u applied to Hu,T (f). This recursively yields the formal
representation:

Pt,T f(x) = P̃t,T f(x) +
∑

r≥1

∫ T

t

du1

∫ u1

t

du2 . . .

∫ ur−1

t

durP̃t,ur

(

Hur ,ur−1 ◦ · · · ◦ Hu1,T

)

(f)(x).

Equation (3.9) then formally follows from the following identification. For all r ∈ N
∗:

∫ T

t

du1

∫ u1

t

du2 . . .

∫ ur−1

t

durP̃t,ur

(

Hur ,ur−1 ◦ · · · ◦ Hu1,T

)

(f)(x)du =

∫

Rnd

dyf(y)p̃α ⊗H(r)(t, T, x, y)dy.
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We can proceed by immediate induction:
∫ T

t

du1

∫ u1

t

du2 . . .

∫ ur−1

t

durP̃t,ur

(

Hur ,ur−1 ◦ · · · ◦ Hu1,T

)

(f)(x)du

=

∫ T

t

du1

∫ u1

t

du2 . . .

∫ ur−1

t

dur

∫

Rnd

dzHur ,ur−1 ◦ · · · ◦ Hu1,T (f)(z)p̃α(t, ur, x, z) (3.16)

(3.15)
=

∫ T

t

du1

∫ u1

t

du2 . . .

∫ ur−1

t

dur

∫

Rnd

dz

∫

Rnd

dyHur−1,ur−2 ◦ · · · ◦ Hu1,T (f)(y)H(ur, ur−1, z, y)p̃α(t, ur, x, z)

=

∫ T

t

du1

∫ u1

t

du2 . . .

∫ ur−2

t

dur−1

∫

Rnd

dyHur−1,ur−2 ◦ · · · ◦ Hu1,T (f)(y)p̃α ⊗H(t, ur−1, x, y).

Thus, we can iterate the procedure from (3.16) with p̃α ⊗H instead of p̃α.

Observe that in order to make the identification above, we have exchanged various integrals. Hence, so far
the representation (3.11) is formal. It will become rigorous provided that we manage to show the convergence
of the series and get integrable bounds on the sum of the series. To answer these queries, one needs to give
precise bounds on the iterated time-space convolutions appearing in the series. Such controls are stated in
Section 3.3 and proved in Section 6 below.

3.3 Controls on the iterated kernels

From now on, we assume w.l.o.g. that 0 < T ≤ T0 := T0([H]) ≤ 1. The choice of T0 depends on the
constants appearing in [H] and will be clear from the proof of Lemma 5.1. Theorems 2.1 and 2.2 can anyhow
be obtained for an arbitrary fixed finite T > 0, from the results for T sufficiently small. Indeed, the uniqueness
of the martingale problem simply follows from the Markov property whereas the upper density estimate stems
from the semigroup property of p̄α (see Corollary 3.4 and Lemma 3.11 for the convolutions involving the
logarithmic correction). From now on, we consider that the threshold K > 0 appearing in Lemma 3.3 is fixed.

We first give pointwise results on the convolution kernel, that hold in any dimension d, and for any number
of oscillators n.

Lemma 3.6 (Control of the kernel). There exists constants C3.6 := C3.6([H],K), δ := δ([H]) > 0 s.t.
for all T ∈ (0, T0] and (t, x, y) ∈ [0, T )× (Rnd)2:

|H(t, T, x, y)| ≤ C3.6
δ ∧ |x−Rt,T (y)|

η(α∧1)

T − t
p̃T,y
α (t, T, x, y). (3.17)

Once integrated in space, this pointwise estimate yields the following smoothing property in time.

Lemma 3.7. There exists C3.7 := C3.7([H],K) s.t. for all T ∈ (0, T0], (x, y) ∈ (Rnd)2, τ ∈ [t, T ), we have
the estimate

∫

Rnd

δ ∧ |z −Rτ,T (y)|
η(α∧1)p̃T,y

α (τ, T, z, y)dz ≤ C3.7(T − τ)η(
1
α∧1), (3.18)

∫

Rnd

δ ∧ |z −Rτ,t,(x)|
η(α∧1)p̃T,y

α (t, τ, x, z)dz ≤ C3.7(τ − t)η(
1
α∧1). (3.19)

The proof of these results will be given in Section 5.3 and Appendix B.

Remark 3.3. We can now justify from this Lemma our previous choice for the proxy model. Indeed, the
contributions |z − Rτ,T (y)|

η(α∧1), |z − Rτ,t(x)|
η(α∧1) come from the difference of the generators and turn out

to be compatible, up to using the Lipschitz property of the flow, with the bounds appearing in Proposition 3.3
for the frozen density. This is what gives this smoothing property and thus allows to get rid-off the diagonal
singularities coming from the bound (3.17).

The technical computations in Section 6, based on the previous controls on the kernel H , yield the following
bound for the first step of the parametrix procedure.

Lemma 3.8. There exist C3.8 := C3.8([H],K), ω := ω([H]) ∈ (0, 1] s.t. for all T ∈ (0, T0] and (t, x, y) ∈
[0, T )× (Rnd)2:

|p̃α ⊗H(t, T, x, y)| ≤ C3.8p̃α(t, T, x, y)
(

(T − t)ω + δ ∧ |x−Rt,T (y)|
η(α∧1)

+ log(K ∨ |(Tα
T−t)

−1(y −RT,t(x))|)
)

.
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Remark 3.4. We point out that this control is not sufficient to establish the convergence of the series (3.11).
The additional logarithmic contribution prevents indeed from getting a smoothing effect in time at each itera-
tion. The first term in the above r.h.s. regularizes, the second one also, but at the next iteration step thanks
to Lemma 3.7. The last one would appear as such at each iteration. Actually, this contribution comes from
the fact that, when the frozen density is in the off-diagonal regime through one of its first n0 := n0(α, d, n)

components, i.e. ∃i ∈ [[1, n0]], s.t.
|(RT,tx−y)i|

(T−t)(i−1)+1/α ≍ |(Tα
T−t)

−1(RT,tx− y)| ≥ K, we are led to integrate in time

the contribution (T − τ)−1 in (3.17) up to a time τ0 = T − |(Tα
T−t)

−1(RT,tx − y)|γ for γ > 0 to be specified
later on (see the proof of Lemma 6.2). This is a specific feature of our multi-scale framework. When a slow
component dominates there are cases for which the smoothing effect in time coming from the intrinsic time
scales of the components is not enough to compensate the faster diagonal decay. If a fast component dominates
in |(Tα

T−t)
−1(RT,tx − y)|, the analysis is similar to the non-degenerate case of Kolokoltsov [14]. We mention

that this problem occurs when considering the tails of the density and would be very likely to disappear adding
some integrability at infinity considering for instance tempered stable processes.

Up to the end of section we restrict to the case d = 1 and n = 2, for which we have been able to refine the
above results and to derive the convergence of (3.11). This restriction will be discussed thoroughly in Section
6.

Lemma 3.9 (Control of the iterated kernels). There exist C3.9 := C3.9([H],K), ω := ω([H]) ∈ (0, 1] s.t.
for all T ≤ T0 and (t, x, y) ∈ [0, T )× (R2)2:

|p̃α ⊗H(t, T, x, y)| ≤ C3.9

(

(T − t)ω p̃α(t, T, x, y) + q̄α(t, T, x, y)
)

,

|q̄α ⊗H(t, T, x, y)| ≤ C3.9(T − t)ω
(

p̃α(t, T, x, y) + q̄α(t, T, x, y)
)

,

where we denoted

q̄α(t, T, x, y) = δ ∧ |x−Rt,T (y)|
η(α∧1)p̃α(t, T, x, y)

(

1 + log(K ∨ |(Tα
T−t)

−1(y −RT,t(x))|)
)

.

Now for all k ≥ 1,

|p̃α ⊗H(2k)(t, T, x, y)| ≤ (4C3.9)
2k(T − t)kω

(

(T − t)kω p̃α(t, T, x, y) + (p̃α + q̄α)(t, T, x, y)
)

,

|p̃α ⊗H(2k+1)(t, T, x, y)| ≤ (4C3.9)
2k+1(T − t)kω

(

(T − t)(k+1)ω p̃α + (T − t)ω(p̃α + q̄α) + q̄α

)

(t, T, x, y).

The above controls allow to derive under the sole assumption [H] an upper bound for the sum of the
parametrix series (3.11) in small time.

Proposition 3.10 (Sum of the parametrix series). Assume [H] is in force. There exists T̄0 := T̄0([H]) ≤
T0, C3.10 := C3.10([H],K, T̄0) s.t. for all T ∈ (0, T̄0] and (t, x, y) ∈ [0, T )× (R2)2:

∑

r≥0

|p̃α ⊗H(r)(t, T, x, y)| ≤ C3.10

(

p̃α(t, T, x, y) + q̄α(t, T, x, y)
)

,

C3.10det(T
α
T−t)

−1 ≤
∑

r≥0

p̃α ⊗H(r)(t, T, x, y), for |(Tα
T−t)

−1(RT,t(x) − y)| ≤ K.

The proofs of Lemmas 3.6 and 3.9 are postponed to Section 6.4. Using those controls on the iterated
convolutions, we can prove Proposition 3.10.

Proof. Let us write:

∑

r≥0

|p̃α ⊗H(r)|(t, T, x, y) =
∑

k≥0

|p̃α ⊗H(2k)(t, T, x, y)|+
∑

k≥0

|p̃α ⊗H(2k+1)(t, T, x, y)|.

Plugging for each sum the corresponding estimate of Lemma 3.9 yields:

∑

k≥0

|p̃α ⊗H(2k)(t, T, x, y)| ≤
∑

k≥0

C2k
3.9(T − t)kω

(

(T − t)kω p̃α(t, T, x, y) + (p̃α + q̄α)(t, T, x, y)
)

≤ p̃α(t, T, x, y)
1

1− C2
3.9(T − t)2ω

+ (p̃α + q̄α)(t, T, x, y)
1

1− C2
3.9(T − t)ω

,
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∑

k≥0

|p̃α ⊗H(2k+1)(t, T, x, y)| ≤
∑

k≥0

C2k+1

3.9 (T − t)kω
(

(T − t)(k+1)ω p̃α + (T − t)ω(p̃α + q̄α) + q̄α

)

(t, T, x, y)

≤ p̃α(t, T, x, y)
C3.9(T − t)ω

1− C2
3.9(T − t)2ω

+ (p̃α + q̄α(t, T, x, y)
C3.9(T − t)ω

1− C2
3.9(T − t)ω

+q̄α(t, T, x, y)
C3.9

1− C2
3.9(T − t)ω

,

using that C2
3.9(T̄0)

ω < 1. To get the diagonal lower bound, we first write:

∑

k≥0

p̃α ⊗H(k)(t, T, x, y) = p̃α(t, T, x, y) +





∑

k≥0

p̃α ⊗H(k)



⊗H(t, T, x, y).

Now, since
∑

k≥0

|p̃α ⊗H(k)(t, T, x, y)| ≤ C(p̃α + q̄α)(t, T, x, y),

we derive:
∣

∣

∣

∣

∣

∣





∑

k≥0

p̃α ⊗H(k)



⊗H(t, T, x, y)

∣

∣

∣

∣

∣

∣

≤ C|(p̃α + q̄α)⊗H(t, T, x, y)|.

Using once again the first part of Lemma 3.9, we thus get that
∣

∣

∣

∣

∣

∣





∑

k≥0

p̃α ⊗H(k)



⊗H(t, T, x, y)

∣

∣

∣

∣

∣

∣

≤ C {(T − t)ωp̃α(t, T, x, y) + q̄α(t, T, x, y) + (T − t)ω(p̃α + q̄α)(t, T, x, y)} .

Now, if the global regime is diagonal, i.e. |(Tα
T−t)

−1(y−RT,t(x))| ≤ K, the logarithm contribution vanishes in
q̄α. Observe also that

δ ∧ |x−Rt,T (y)|
η(α∧1) ≤ Cη(α∧1)|RT,t(x) − y|η(α∧1) ≤ Cη(α∧1)(T − t)η(1/α∧1)|(Tα

T−t)
−1(RT,t(x) − y)|η(α∧1)

≤ (CK)η(α∧1)(T − t)η(1/α∧1).

Hence
∣

∣

∣

(

∑

k≥0 p̃α ⊗H(k)
)

⊗H(t, T, x, y)
∣

∣

∣
≤ C(T − t)ω det(Tα

T−t)
−1. Taking T − t small enough yields the

announced bound.

The additional logarithmic contribution prevents us from deriving two-sided global bounds as in the non-
degenerate case of [14]. We conclude anyhow the section stating a Lemma that allows to extend the upper
bound in Theorem 2.2 to an arbitrary given fixed time. The arguments for its proof would be similar to those
of Lemma 6.3.

Lemma 3.11 (Semigroup property for q̄α). With the notations of Proposition 3.10, for any T ∈ [0, T̄0),
we have that there exists C3.11 := C3.11([H], T̄0) ≥ 1 s.t.:

∀(x, y) ∈ R
nd, ∀n ∈ N,

∫

Rnd

q̄α(0, nT, x, z)q̄α(nT, (n+ 1)T, z, y)dz ≤ Cn+2

3.11q̄(0, (n+ 1)T, x, y).

Observe now that Theorem 2.1 yields that (Xt)t≥0, the canonical process of P, admits a Feller transition
function. On the other hand, when d = 1, n = 2 we have from Proposition 3.10 that the series appearing
in equation (3.9) of Proposition 3.5 is absolutely convergent. This allows to derive that the Feller transition
is absolutely continuous, which in particular means that the process (Xt)t≥0 admits for all t > 0 a density,
satisfying the bounds of Proposition 3.10.

4 Proof of the uniqueness of the Martingale Problem associated with

(1.1).

In this section, d and n are arbitrary integers. As a corollary to the bounds of Section 3.3, specifically Lemmas
3.6 and 3.7 (controls on the kernel and associated smoothing effect), we prove here Theorem 2.1. The existence
of a solution to the martingale problem can be derived by compactness arguments adapting the proof of
Theorem 2.2 from [30], even though our coefficients are not bounded.
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Uniqueness of the Martingale Problem associated with (1.3). Suppose we are given two solutions P
1 and P

2

of the martingale problem associated to (Ls)s∈[t,T ], starting in x at time t. We can assume w.l.o.g. that

T ≤ T0 := T0([H]). Define for a bounded Borel function f : [0, T ]× R
nd → R,

Sif = E
i

(

∫ T

t

f(s,Xs)ds

)

, i ∈ {1, 2},

where (Xs)s∈[t,T ] stands for the canonical process associated with (Pi)i∈{1,2}. Let us specify that Sif is a priori
only a linear functional and not a function since P

i does not need to come from a Markov process. We denote:

S∆f = S1f − S2f.

If f ∈ C1,1
0 ([0, T )× R

nd,R), since (Pi)i∈{1,2} both solve the martingale problem, we have:

f(t, x) + E
i

(

∫ T

t

(∂s + Ls)f(s,Xs)ds

)

= 0, i ∈ {1, 2}. (4.1)

For a fixed point y ∈ R
nd and a given ε ≥ 0, introduce now for all f ∈ C1,1

0 ([0, T )×R
nd,R) the Green function:

∀(t, x) ∈ [0, T )× R
nd, Gε,yf(t, x) =

∫ T

t

ds

∫

Rnd

dzp̃s+ε,y
α (t, s, x, z)f(s, z).

We recall here that p̃s+ε,y
α (t, s, x, z) stands for the density at time s and point z of the process X̃s+ε,y defined

in (3.2) starting from x at time t. In particular, ε can be equal to zero in the previous definition. One now
easily checks that:

∀(t, x, z) ∈ [0, s)× (Rnd)2,
(

∂t + L̃s+ε,y
t

)

p̃s+ε,y
α (t, s, x, z) = 0, lim

s↓t
p̃s+ε,y
α (t, s, x, ·) = δx(.). (4.2)

Introducing for all f ∈ C1,1
0 ([0, T )× R

nd,R) the quantity:

M ε,y
t,x f(t, x) =

∫ T

t

ds

∫

Rnd

dzL̃s+ε,y
t p̃s+ε,y

α (t, s, x, z)f(s, z), (4.3)

we derive from (4.2) and the definition of Gε,y that the following equality holds:

∂tG
ε,yf(t, x) +M ε,y

t,x f(t, x) = −f(t, x), ∀(t, x) ∈ [0, T )× R
nd. (4.4)

Now, let h ∈ C1,1
0 ([0, T )× R

nd,R) be an arbitrary function and define for all (t, x) ∈ [0, T )× R
nd:

φε,y(t, x) := p̃t+ε,y
α (t, t+ ε, x, y)h(s, y),Ψε(t, x) :=

∫

Rnd

dyGε,y(φε,y)(t, x).

Then, by semigroup property, we have:

Ψε(t, x) =

∫

Rnd

dy

∫ T

t

ds

∫

Rnd

dzp̃s+ε,y
α (t, s, x, z)p̃s+ε,y

α (s, s+ ε, z, y)h(s, y)

=

∫

Rnd

dy

∫ T

t

dsp̃s+ε,y
α (t, s+ ε, x, y)h(s, y).

Hence,

(∂t + Lt)Ψε(t, x) =

∫

Rnd

dy(∂t + Lt)(G
ε,yφε,y)(t, x)

=

∫

Rnd

dy{∂tG
ε,yφε,y(t, x) +M ε,y

t,x φ
ε,y(t, x)}

+

∫

Rnd

dy{LtG
ε,yφε,y(t, x)−M ε,y

t,x φ
ε,y(t, x)}

(4.4)
= −

∫

Rnd

dyφε,y(t, x) +

∫

Rnd

dy{LtG
ε,yφε,y(t, x)−M ε,y

t,x φ
ε,y(t, x)}

= Iε1 + Iε2 .

We now need the following lemma whose proof is postponed to the end of Section 5.2.
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Lemma 4.1. For all bounded continuous function f : Rnd → R, x ∈ R
nd:

∣

∣

∣

∣

∫

Rnd

f(y)p̃T,y
α (t, T, x, y)dy − f(x)

∣

∣

∣

∣

−→
T↓t

0. (4.5)

We emphasize that the above lemma is not a direct consequence of the convergence of the law of the frozen
process towards the Dirac mass when T ↓ t. Indeed, the integration parameter is also the freezing parameter
which makes things more subtle. Lemma 4.1 yields Iε1 −→

ε→0
−h(t, x). On the other hand, we have the following

identity:

Iε2 =

∫ T

t

ds

∫

Rnd

dy(Lt − L̃s+ε
t )p̃s+ε,y

α (t, s+ ε, x, y)h(s, y)

=

∫ T

t

ds

∫

Rnd

dyH(t, s+ ε, x, y)h(s, y).

The bound of Lemma 3.7 now yields:

|Iε2 | ≤ C

∫ T

t

ds

∫

Rnd

dy
δ ∧ |x−Rt,s+ε(y)|

η(α∧1)

s+ ε− t
p̃s+ε,y
α (t, s+ ε, x, y)|h(s, y)|

≤ C|h|∞

∫ T

t

(s+ ε− t)η(
1
α∧1)−1ds ≤ C|h|∞[(T − t) ∨ ε]η(

1
α∧1).

Hence, we may choose T and ε small enough to obtain

|Iε2 | ≤ 1/2|h|∞. (4.6)

Observe now that (4.1) gives S∆
(

(∂· + L·)Ψε

)

= 0 so that |S∆(Iε1 )| = |S∆(Iε2)|. From Lemma 4.1 and (4.6)

we derive:

|S∆h| = lim
ε→0

|S∆Iε1 | = lim
ε→0

|S∆Iε2 | ≤ ‖S∆‖ lim sup
ε→0

|Iε2 | ≤ 1/2‖S∆‖|h|∞, ‖S∆‖ := sup
|f |∞≤1

|S∆f |.

By a monotone class argument, the previous inequality still holds for bounded Borel functions h compactly
supported in [0, T )×R

nd. Taking the supremum over |h|∞ ≤ 1 leads to ‖S∆‖ ≤ 1/2‖S∆‖. Since ‖S∆‖ ≤ T − t,
we deduce that ‖S∆‖ = 0 which proves the result on [0, T ]. Regular conditional probabilities allow to extend
the result on R

+, see e.g. Theorem 4, Chapter II, §7, in [29], see also Chapter 6 in [31] and [30].

5 Proof of the results involving the Frozen process.

Introduce for a given t > 0 and all s ≥ t the process:

Λs :=

∫ s

t

Rs,uBσudZu, (5.1)

solving dΛs = AsΛsds + BσsdZs, Zt = 0, i.e. Λs can be viewed as the process of the iterated integrals of
Z weighted by the entries of the resolvent. In (5.1), (σu)u≥t is a deterministic R

d ⊗ R
d-valued function s.t.

(σuσ
∗
u)u≥t satisfies [H-3] (uniform ellipticity). It can be seen from Proposition 3.1 that the frozen process

will have a density if and only if Λ does for s > t. This is what we establish through Fourier inversion. The
structure of the resolvent is crucial: it gives the multi-scale behaviour of the frozen process and allows to prove
in Proposition 5.3 that the Fourier transform is integrable. Recalling as well that B stands for the embedding
matrix from R

d into R
nd, we observe that only the first d columns of the resolvent are taken into account in

(5.1). Reasoning by blocks we rewrite: Rs,t =







R1,1
s,t · · · R1,n

s,t
...

. . .
...

Rn,1
s,t · · · Rn,n

s,t






, where the entries (Ri,j

s,t)(i,j)∈[[1,n]]2 belong

to R
d ⊗ R

d.
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5.1 Analysis of the Resolvent.

Lemma 5.1 (Form of the Resolvent). Let 0 ≤ t ≤ s ≤ T ≤ T0 := T0([H]) ≤ 1. We can write the first
column of the resolvent in the following way:

R·,1
s,t =













R̄1
s,t

(s− t)R̄2
s,t

...
(s−t)n−1

(n−1)! R̄n
s,t













, (5.2)

where the (R̄i
s,t)i∈[[1,n]] are non-degenerate and bounded matrices in R

d ⊗R
d, i.e. ∃C := C([H], T0) s.t. for all

ξ ∈ Sd−1, C−1 ≤ |R̄i
s,tξ| ≤ C.

Proof. We are going to prove the result by induction. Let us first consider the case n = 2. We have, for
i ∈ {1, 2}:

d

ds
R1,1

s,t = a1,1s R1,1
s,t + a1,2s R2,1

s,t ,
d

ds
R2,1

s,t = a2,1s R1,1
s,t + a2,2s R2,1

s,t .

In order to obtain, for i ∈ {1, 2}, a semi-integrated representation of the entry Ri,1
s,t, we use the resolvent Γi

u,v

satisfying d
duΓ

i
u,v = ai,iu Γi

u,v, Γi
v,v = Id. This yields:

R1,1
s,t = Γ1

s,t +

∫ s

t

Γ1
s,ua

1,2
u R2,1

u,tdu, R2,1
s,t =

∫ s

t

Γ2
s,u

{

a2,1u R1,1
u,t

}

du.

Hence for all 0 ≤ t ≤ s ≤ T :

R1,1
s,t = Γ1

s,t +

∫ s

t

Γ1
s,ua

1,2
u

{∫ u

t

Γ2
u,v

{

a2,1v R1,1
v,t

}

dv

}

du,

|R1,1
s,t | ≤ CT (1 +

∫ s

t

|R1,1
v,t |(s− t)dv) ≤ CT , |R2,1

s,t | ≤ CT (s− t),

using Gronwall’s lemma for the last but one inequality. This in particular yields

R2,1
s,t =

∫ s

t

Γ2
s,ua

2,1
u (Γ1

u,t +O((u − t)2))du.

From the non-degeneracy of a2,1 (Hörmander like assumption [H-4]) and the resolvents on a compact set
we derive that for T small enough R2,1

s,t = (t − s)R̄2
s,t where R̄2

s,t is non-degenerate and bounded. Rewriting

R1,1
s,t = Γ1

s,t + O((s − t)2) we derive similarly that R1,1
s,t = R̄1

s,t, R̄
1
s,t being non-degenerate and bounded. This

proves (5.2) for n = 2. Let us now assume that (5.2) holds for a given n ≥ 2 and let us prove it for n+ 1.
We first need to introduce some notations to keep track of the induction hypothesis. To this end, we

denote by An+1
t := At and Rn+1

s,t := Rs,t the matrices in R
(n+1)d ⊗ R

(n+1)d associated with the linear system
d
dsRs,t = AtRs,t, Rt,t = I(n+1)d. Observe now that:

An+1
t =















a1,1t · · · · · · a1,n+1
t

a2,1t

0
... An

t

0















,

where An
t is an R

nd ⊗ R
nd matrix satisfying [H-4]. Hence, denoting by Rn

s,t the associated resolvent, i.e.
d
dsR

n
s,t = An

sR
n
s,t, Rn

t,t = Ind, R
n
s,t satisfies (5.2) from the induction hypothesis, so that

∀i ∈ [[1, n]], ∀0 ≤ t ≤ s ≤ T, (Rn
s,t)

i,1 =
(s− t)i−1

(i− 1)!
R̄i,n

s,t ,

where the (R̄i,n
s,t )i∈[[1,n]] are non-degenerate and bounded. Let us now observe that the differential dynamics of

(Rn+1
s,t )2:n+1,1 :=

(

(Rn+1
s,t )2,1, · · · , (Rn+1

s,t )n+1,1
)∗

writes:

d

ds
(Rn+1

s,t )2:n+1,1 = An
s (R

n+1
s,t )2:n+1,1 +Gn+1

s,t , Gn+1
s,t :=

(

a2,1s (Rn+1
s,t )1,1 0n×n · · · 0n×n

)∗
,
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where

(Rn+1
s,t )1,1 = Γn+1,1

s,t +

∫ s

t

Γn+1,1
s,u







n+1
∑

j=2

a1,ju (Rn+1
u,t )j,1







du, (5.3)

Γn+1,1 standing for the resolvent associated with a11. Using now the resolvent Rn
s,t, the above equation can be

integrated. We get:

(

Rn+1
s,t

)2:n+1,1
=

∫ s

t

Rn
s,uG

n+1
u,t du. (5.4)

From the above representation, using the induction assumption, (5.3) and Gronwall’s lemma we derive:

|(Rn+1
s,t )n+1,1| ≤ CT

∫ s

t

(s− u)n−1

(n− 1)!

{

1 +

∫ u

t

n
∑

j=2

|(Rn+1
v,t )j,1|dv

}

du.

By induction one also derives for all i ∈ [[2, n+ 1]]:

|(Rn+1
s,t )i,1| ≤ CT

∫ s

t

(s− u)i−2

(i− 2)!

{

1 +

∫ u

t

i−1
∑

j=2

|(Rn+1
v,t )j,1|dv

}

du,

up to modifications of CT at each step. These controls yield that for all i ∈ [[2, n]], 0 ≤ t ≤ s ≤ T :

|(Rn+1
s,t )i,1| = O((s − t)i−1). (5.5)

Now from (5.4), (5.3) and the induction assumption, we obtain, for all i ∈ [[2, n]], 0 ≤ t ≤ s ≤ T :

(Rn+1
s,t )i,1 =

∫ s

t

(s− u)i−2

(i− 2)!
R̄i−1,n

s,u a2,1u {Γn+1,1
u,t +

∫ u

t

Γn+1,1
u,v

{

n+1
∑

j=2

a1,jv (Rn+1
v,t )j,1dv

}

}du.

From the non degeneracy of R̄i−1,n, a2,1,Γn+1,1 and (5.5), we can conclude as for the case n = 2.

To conclude our analysis of the resolvent Rs,t, we give here a technical lemma that will be useful for the
controls of Section 6.

Lemma 5.2 (Scaling Lemma). Under [H-4], the resolvent (Rs,T )s∈[t,T ], for 0 ≤ t < T associated with the

linear system d
dsRs,T = AsRs,T , RT,T = I can be written as

Rs,T = T
α
T−tR̂

t,T
s−t
T−t

(Tα
T−t)

−1,

where R̂t,T
s−t
T−t

is non-degenerate and bounded uniformly on s ∈ [t, T ] with constants depending on T .

Proof. The proof of the above statement follows from the structure of the matrix At (Assumption H-4), setting
for all u ∈ [0, 1], R̂t,T

u := (Tα
T−t)

−1Rt+u(T−t),TT
α
T−t and differentiating:

∂uR̂
t,T
u = (T − t)(Tα

T−t)
−1At+u(T−t)Rt+u(T−t),TT

α
T−t

=

(

(T − t)(Tα
T−t)

−1At+u(T−t)T
α
T−t

)

R̂t,T
u := At,T

u R̂t,T
u .

Remark 5.1. Let us observe that the scaling Lemma already gives the right orders for the entries (Ri,1
t,s)i∈[[1,n]]

of the resolvent. However for the analysis of the Fourier transform of Λ, we explicitly need that those entries
write in the form of equation (5.2).
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5.2 Estimates on the frozen density

5.2.1 Existence and first estimates

The main result of this section is the following.

Proposition 5.3 (Existence of the density). Let T0 := T0([H]) be as in Lemma 5.1. The process
(Λs)s∈[t,t+T0], t ≥ 0, defined in (5.1) has for all s ∈ (t, t+ T0] a density pΛs given for all z ∈ R

nd by:

pΛs(z) =
det(Tα

s−t)
−1

(2π)nd

∫

Rnd

e−i〈q,(Tα
s−t)

−1z〉 exp

(

−

∫

Snd−1

|〈q, η〉|αµ∗
S(dη)

)

dq,

where µ∗
S := µ∗

S(t, T, s, σ) is a symmetric measure on Snd−1 satisfying [H-2] uniformly in s ∈ (t, t+ T0]. As a
consequence of this representation, we get the following global (diagonal) estimate:

∃C := C([H], T0), ∀s ∈ (t, t+ T0], ∀z ∈ R
nd, pΛs(z) ≤ C det(Tα

s−t)
−1. (5.6)

Remark 5.2. The previous result emphasizes that the process (Λs)s∈[t,t+T0] can actually be seen as an α-stable
symmetric process in dimension nd, with non-degenerate spectral measure, (left) multiplied by the intrinsic
scale factor (Tα

s−t)s∈[t,t+T0] .

Proof. The proof is divided into two steps:

- The first step is to compute the Fourier transform.

Starting from the representation (5.1), we write the integral as a limit of its increments. Let τn := {(ti)i∈[[0,n]]; t =
t0 < t1 < · · · < tn = s} be a subdivision of [t, s], whose mesh |τn| := maxi∈[[0,n−1]] |ti+1 − ti| tends to zero when

n → ∞. Write now for all p ∈ R
nd:

〈p,Λs〉 = lim
|τn|→0

n−1
∑

i=0

〈p,Rs,tiBσti(Zti+1 − Zti)〉 = lim
|τn|→0

n−1
∑

i=0

〈σ∗
tiB

∗R∗
s,tip, (Zti+1 − Zti)〉.

Recalling that µ is the spectral measure of Z which has independent increments, and using the bounded
convergence theorem, we get that:

∀p ∈ R
nd, ϕΛs(p) := E(ei〈p,Λs〉) = exp

(

−

∫ s

t

∫

Sd−1

|〈p,Rs,uBσuς〉|
αµ(dς)du

)

. (5.7)

- The second one is to prove its integrability.

Setting v = (s− u)/(s− t) and denoting u(v) := s− v(s− t), the exponent in (5.7) writes:

∫ s

t

∫

Sd−1

|〈p,Rs,uBσuς〉|
αµ(dς)du =

∫ 1

0

∫

Sd−1

|〈p, (s− t)
1
αR·,1

s,u(v)σu(v)ς〉|
αµ(dς)dv.

Now, from Lemma 5.1, we have the identity

(s− t)
1
αR·,1

s,u(v) = T
α
s−tR̄v,

setting with a slight abuse of notation R̄v =











R̄1
v

vR̄2
v

...
vn−1

(n−1)! R̄
n
v











, where the (R̄k
v)k∈[[1,n]] ∈ R

d⊗R
d are non-degenerate

and bounded. The exponent in (5.7) thus rewrites:

∫ s

t

∫

Sd−1

|〈p,Rs,uBσuς〉|
αµ(dς)du =

∫ 1

0

∫

Sd−1

|〈Tα
s−tp, R̄vσu(v)ς〉|

αµ(dς)dv.

From the non degeneracy of µ and the uniform ellipticity of σ in assumptions [H], we can conclude that:

∫ 1

0

∫

Sd−1

|〈Tα
s−tp, R̄vσu(v)ς〉|

αµ(dς)dv ≥ C

∫ 1

0

|σ∗
u(v)R̄

∗
vT

α
s−tp|

αdv ≥ C

∫ 1

0

|R̄∗
vT

α
s−tp|

αdv.

The lower bound of the following lemma, whose proof is postponed to Subsection 5.2.3, gives that ϕΛs ∈ L1(Rnd)
and therefore yields the existence of the density.
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Lemma 5.4. There exists a constant C5.4 := C5.4([H], T0) > 0, such that for all s ∈ [t, t+ T0]:
∫ 1

0

|R̄∗
vT

α
s−tp|

αdv ≥ C5.4|T
α
s−tp|

α. (5.8)

Since ϕΛs is integrable, we can write by Fourier inversion that for all z ∈ R
nd:

pΛs(z) =
1

(2π)nd

∫

Rnd

dpe−i〈p,z〉 exp

(

−

∫ 1

0

∫

Sd−1

|〈Tα
s−tp, R̄vσu(v)ς〉|

αµ(dς)dv

)

. (5.9)

We now define the function
f : [0, 1]× Sd−1 −→ Snd−1

(v, ς) 7−→
R̄vσu(v)ς

|R̄vσu(v)ς|
,

and on [0, 1]× Sd−1 the measure:
mα(dv, dς) = |R̄vσu(v)ς |

αµ(dς)dv.

The exponent in (5.9) thus rewrites:
∫ 1

0

∫

Sd−1

|〈Tα
s−tp, R̄vσu(v)ς〉|

αµ(dς)dv =

∫ 1

0

∫

Sd−1

|〈Tα
s−tp, f(v, ς)〉|

αmα(dv, dς).

Denoting by µ∗ the image measure of mα by f (which is a measure on Snd−1), we have:
∫ 1

0

∫

Sd−1

|〈Tα
s−tp, R̄vσu(v)ς〉|

αµ(dς)dv =

∫

Snd−1

|〈Tα
s−tp, η〉|

αµ∗(dη).

Symmetrizing µ∗ as follows: µ∗
S(A) =

µ∗(A)+µ∗(−A)
2 , and using the fact that η 7→ |〈Tα

s−tp, η〉|
α is symmetric as

well, we can write the exponent as:
∫ 1

0

∫

Sd−1

|〈Tα
s−tp, R̄vσu(v)ς〉|

αµ(dς)dv =

∫

Snd−1

|〈Tα
t−sp, η〉|

αµ∗
S(dη).

Lemma 5.4 directly yields that µ∗
S satisfies [H-2]. Plugging this equality into (5.9) and setting q = T

α
t−sp leads

to the announced expression for the density. The global upper bound then readily follows.

5.2.2 Final derivation of the density bounds

Let us fix a threshold K > 0. Starting from the representation formula in Proposition (5.3), we can derive follow-
ing the computations of [14] that for (Λs)s∈[t,t+T0], t ≥ 0 defined in (5.1), there exists C := C([H], T0,K) ≥ 1,

s.t. for all z ∈ R
nd:

C−1det(Tα
s−t)

−1

{K ∨ |Tα
s−tz|}

nd+α
≤ pΛs(z) ≤

Cdet(Tα
s−t)

−1

{K ∨ |Tα
s−tz|}

nd+α
.

For the sake of completeness, we sketch the proof in Appendix A. The result follows directly from the asymptotic
representation of Propositions A.1 and A.2 that respectively give the diagonal and off-diagonal expansions of
the density.

From those expansions, considering for given T ∈ (0, T0], y ∈ R
nd, σu := σ(u,Ru,T (y)), u ∈ [t, T ] in the

definition of (Λs)s∈[t,T ] in (5.1), we derive from (3.2) that Xt,x,T,y
T := RT,tx + ΛT so that p̃T,y

α (t, T, x, y) =
pΛT (y − RT,t(x)). The above control then gives the important bounds of Proposition 3.3 in small time. The
results can then be generalized for an arbitrary fixed T > 0 by convolution arguments. For T = t + 2T0 we
have:

p̃T,y
α (t, t+ 2T0, x, y) =

∫

Rnd

p̃T,y
α (t, t+ T0, x, z)p̃

T,y
α (t+ T0, t+ 2T0, z, y)dz

Prop. 3.3
≍

∫

Rnd

det(Tα
T0
)−1

K ∨ |(Tα
T0
)−1(Rt+T0,t(x) − z)|nd+α

det(Tα
T0
)−1

K ∨ |(Tα
T0
)−1(Rt+2T0,t+T0(z)− y)|nd+α

dz

Lemma 5.2
≍

∫

Rnd

det(Tα
T0
)−1

K ∨ |(Tα
T0
)−1(Rt+T0,t(x) − z)|nd+α

det(Tα
T0
)−1

K ∨ |(Tα
T0
)−1(z −Rt+T0,t+2T0(y))|

nd+α
dz

≍
det(Tα

2T0
)−1

K ∨ |(Tα
2T0

)−1(Rt+T0,t(x)−Rt+T0,t+2T0(y))|
nd+α

Lemma 5.2
≍

det(Tα
2T0

)−1

K ∨ |(Tα
2T0

)−1(Rt+2T0,t(x)− y)|nd+α
,
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using stable convolution arguments for the last but one equivalence. The result follows by induction.

5.2.3 Proof of Lemma 5.4.

It is enough to show that there exists C5.4 := C5.4([H], T0), s.t. for any θ ∈ Snd−1,
∫ 1

0 |R̄∗
vθ|

αdv ≥ C5.4. We
define

C̄ := inf
θ∈Snd−1

∫ 1

0

|R̄∗
vθ|

αdv.

By continuity of the involved functions and compactness of Snd−1, the infimum is actually a minimum. We
need to show that this quantity is not zero. We proceed by contradiction. Assume that C̄ = 0. Then, there
exists θ0 ∈ Snd−1 such that for almost all v ∈ [0, 1], |R̄∗

vθ0| = 0. But since R̄∗
v is a continuous function in v,

the previous statement holds for all v ∈ [0, 1], i.e. ∃θ0 ∈ Snd−1, ∀v ∈ [0, 1], |R̄∗
vθ0| = 0, or equivalently, that

∃θ0 ∈ Snd−1, ∀v ∈ [0, 1], θ0 ∈ Ker(R̄∗
v). Take now arbitrary (vi)i∈[[1,n]] in [0, 1]. We have for each i ∈ [[1, n]]:

(

(R̄1
vi)

∗ vi(R̄
2
vi)

∗ · · ·
vn
i

(n−1)!(R̄
n
vi)

∗
)







θ10
...
θn0






= 0Rd .

This equivalently writes in matrix form:









(R̄1
v1 )

∗ v1(R̄
2
v1)

∗ · · ·
vn
1

(n−1)! (R̄
n
v1)

∗

...
...

...

(R̄1
vn)

∗ vn(R̄
2
vn)

∗ · · ·
vn
n

(n−1)! (R̄
n
vn)

∗















θ10
...
θn0






= 0Rnd .

Now, taking v1 → 0 in the first line yields (R̄1
v1)

∗θ10 = 0Rd . Since the (R̄i
v)i∈[[1,n]] are from Lemma 5.1 non

degenerate, we have that θ10 = 0Rd . Hence, the second line becomes:

v2(R̄
2
v2)

∗θ20 + · · ·+
vn2

(n− 1)!
(R̄n

v2)
∗θn0 = 0Rd .

Dividing by v2, and taking v2 → 0, we get (R̄2
v2 )

∗θ20 = 0Rd . Hence, θ20 = 0Rd . By induction, we have that all
components θi0 = 0Rd , but this contradicts θ0 ∈ Snd−1. This yields C̄ := C5.4 > 0, which concludes the proof.

�

Remark 5.3. In the previous argument, the fact that the powers are increasing plays a key-role. Indeed, we
rely on the multi-scale property reflected by the scale matrix T

α.

5.2.4 Proof of Lemma 4.1.

Let us write:
∫

Rnd

f(y)p̃T,y
α (t, T, x, y)dy − f(x) =

∫

Rnd

f(y)
(

p̃T,y
α (t, T, x, y)− p̃T,RT,t(x)

α (t, T, x, y)
)

dy

+

∫

Rnd

f(y)
(

p̃T,RT,t(x)
α (t, T, x, y)

)

dy − f(x).

From Proposition 3.2, the second term tends to zero as T tends to t. Let us discuss the first term. Define:

I =

∫

Rnd

f(y)
(

p̃T,y
α (t, T, x, y)− p̃T,RT,t(x)

α (t, T, x, y)
)

dy. (5.10)

For a given threshold K > 0 and a certain β > 0 to be specified, we split R
nd into D1 ∪D2 where:

D1 = {y ∈ R
nd; |(Tα

T−t)
−1(y −RT,t(x))| ≤ K(T − t)−β},

D2 = {y ∈ R
nd; |(Tα

T−t)
−1(y −RT,t(x))| > K(T − t)−β}.

From Proposition 3.3, the two densities in (5.10) are equivalent to
det(Tα

T−t)
−1

K ∨ |(Tα
T−t)

−1(y −RT,t(x))|nd+α
. The idea

is that on D2 they are both in the off-diagonal regime so that tail estimates can be used. On the other hand,
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we will explicitly exploit the compatibility between the spectral measures and the Fourier transform on D1.

Set for i ∈ {1, 2}, IDi :=
∫

Di
f(y)

(

p̃T,y
α (t, T, x, y)− p̃

T,RT,t(x)
α (t, T, x, y)

)

dy. We derive:

|ID2 | ≤ C|f |∞

∫

D2

det(Tα
T−t)

−1

K ∨ |(Tα
T−t)

−1(y −RT,t(x))|nd+α
dy = C|f |∞

∫ +∞

K(T−t)−β

rnd−1

K ∨ rnd+α
≤ C(T − t)βα.

Thus, for β > 0, ID2 −→
T↓t

0. On D1, we will start from the inverse Fourier representation of p̃T,z
α deriving from

(5.9), for z = y or RT,t(x). The Fourier exponent writes:

∀(p, z) ∈ (Rnd)2, F (p, z) = −

∫ 1

0

∫

Sd−1

|〈Tα
T−tp, R̄vσ(u(v), Ru(v),T (z))ς〉|

αµ(dς)dv.

We thus rewrite:
(

p̃T,y
α − p̃T,RT,t(x)

α

)

(t, T, x, y) =
1

(2π)nd

∫

Rnd

dpe−i〈p,y−RT,t(x)〉
(

(eF (p,y) − eF (p,RT,t(x))
)

=
1

(2π)nd

∫

Rnd

dpe−i〈p,y−RT,t(x)〉

∫ 1

0

dλ
(

F (p, y)− F (p,RT,t(x))
)

e(λF (p,y)+(1−λ)F (p,RT,t(x))).

The key point is now to observe that from [H-3] and the bound of Lemma 5.4, we have:

∀(p, z) ∈ (Rnd)2, F (p, z) ≤ −C5.4|T
α
T−tp|

α.

Hence, exp(λF (p, y) + (1− λ)F (p,RT,t(x))) ≤ exp(−C5.4|T
α
T−tp|

α), independently on λ ∈ [0, 1]. On the other
hand, since σ is η-Hölder continuous in its second variable (see [H-2]), we have:

|F (p, y)− F (p,RT,t(x))|

≤

∫ 1

0

∫

Sd−1

∣

∣

∣|〈Tα
T−tp, R̄vσ(u(v), Ru(v),T (y))ς〉|

α − |〈Tα
T−tp, R̄vσ(u(v), Ru(v),t(x))ς〉|

α
∣

∣

∣µ(dς)dv

≤ C|Tα
T−tp|

α|y −RT,t(x)|
η(α∧1),

using the Lipschitz property of the flow for the last inequality. To summarize, we get:

|ID1 | ≤ |f |∞

∫

D1

dy
∣

∣p̃T,y
α (t, T, x, y)− p̃T,x

α (t, T, x, y)
∣

∣

≤ C

∫

D1

dy

∫

Rnd

dp|Tα
T−tp|

α|y −RT,t(x)|
η(α∧1)e

−C5.4|T
α
T−tp|

α

.

Changing variables, and integrating over p yields

|ID1 | ≤ C det(Tα
T−t)

−1

∫

{|(Tα
T−t)

−1(y−RT,t(x))|≤K(T−t)−β}

dy|y −RT,t(x)|
η(α∧1)

≤ C

∫

{|Y |≤K(T−t)−β}

dY |Tα
T−tY |η(α∧1) ≤ C(T − t)η(1/α∧1)−β(nd+η(α∧1)).

Choosing now η(1/α∧1)
nd+η(α∧1) > β > 0 gives that |ID1 | −→

T↓t
0, which concludes the proof. �

5.3 Estimates on the convolution kernel H.

In order to derive pointwise bounds on the kernel H(t, T, x, y) := (Lt − L̃T,y
t )p̃T,y

α (t, T, x, y), it is convenient,

since p̃T,y
α is given in terms of Fourier inversion, to compute the symbols of the operators Lt, L̃

T,y
t . Precisely,

we denote by lt(p, x) (resp. l̃T,y
t (p, x)) the functions of (p, x) ∈ (Rnd)2 s.t.

∀φ ∈ C1
0 (R

nd), ∀x ∈ R
nd, Ltφ(x) =

1

(2π)nd

∫

Rnd

dp exp(−i〈p, x〉)lt(p, x)φ̂(p),

L̃T,y
t φ(x) =

1

(2π)nd

∫

Rnd

dp exp(−i〈p, x〉)l̃T,y
t (p, x)φ̂(p).

We refer to Jacob [12] for further properties of the symbols associated to an integro-differential operator. From
usual properties of the (inverse) Fourier transform and the polar decomposition of the Lévy measure ν (see
Section 2), we derive the following expressions.
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Lemma 5.5. Let (p, x) ∈ (Rnd)2 be given. Recalling that B stands for the injection matrix of Rd into R
nd, we

have:

lt(p, x) = 〈p,Atx〉+

∫

Rd

e−i〈p,Bσ(t,x)z〉 − 1− i
〈p,Bσ(t, x)z〉

1 + |z|2
ν(dz)

= 〈p,Atx〉 −

∫

Sd−1

|〈p1, σ(t, x)ς〉|αµ(dς),

l̃T,y
t (p, x) = 〈p,Atx〉+

∫

Rd

e−i〈p,Bσ(t,Rt,T (y))z〉 − 1− i
〈p,Bσ(t, Rt,T (y))z〉

1 + |z|2
ν(dz)

= 〈p,Atx〉 −

∫

Sd−1

|〈p1, σ(t, Rt,T (y))ς〉|
αµ(dς).

From Lemma 5.5 we rewrite:

H(t, T, x, y) =
1

(2π)nd

∫

Rnd

dpe−i〈p,y−RT,t(x)〉

(∫

Sd−1

(

|〈p,Bσ(t, Rt,T (y))ς〉|
α − |〈p,Bσ(t, x)ς〉|α

)

µ(dς)

)

× exp

(

−

∫ T

t

∫

Sd−1

|〈p,R1,·
T,uσ(u,Ru,T (y))ς〉|

αµ(dς)

)

=
δ ∧ |Rt,T (y)− x|η(α∧1)

(2π)nd

∫

Rnd

dpe−i〈p,y−RT,t(x)〉

(∫

Sd−1

|〈p,Bσ(t, Rt,T (y))ς〉|
α − |〈p,Bσ(t, x)ς〉|α

δ ∧ |Rt,T (y)− x|η(α∧1)
µ(dς)

)

× exp

(

−

∫ T

t

∫

Sd−1

|〈p,R1,·
T,uσ(u,Ru,T (y))ς〉|

αµ(dς)

)

,

if Rt,T (y) 6= x, and where we can chose δ := H ∧ 2|σ|∞ (H being the Hölder modulus of σ, see [H-1]).

Remark 5.4. Observe the interesting fact that since the drift is linear, it disappears in the difference of the
generators.

Recalling that σ is a bounded, Hölder continuous function of its second variable ([H-1], [H-3]), we also get:

∣

∣

∣

∣

∫

Sd−1

|〈p,Bσ(t, Rt,T (y))ς〉|
α − |〈p,Bσ(t, x)ς〉|α

δ ∧ |Rt,T (y)− x|η(α∧1)
µ(dς)

∣

∣

∣

∣

≤
C

T − t
{(T − t)|p1|α},

where p1 stands for the d first entries of p = (p1, · · · , pn) ∈ R
nd. Formally, the contribution (T − t)|p1|α is

homogeneous to the contributions associated with p1 in the exponential (see [H-3] and Lemmas 5.1, 5.4). This
explains heuristically why we obtain the control:

|H(t, T, x, y)| ≤ C
δ ∧ |x−Rt,T (y)|

η(α∧1)

T − t
p̃T,y
α (t, T, x, y).

A precise proof is given in Appendix B. The technique is quite similar to the one giving the density bounds on
the frozen density.

Remark 5.5. We emphasize here that we could also consider an additional bounded drift term in the first d
components when α > 1. Denoting this term by b : R+ × R

nd → R
d, we could still use the previous frozen

process as proxy. Exploiting the above symbol representation, the additional term coming from the difference
of the generators would write

〈b(t, x),∇x1 p̃α(t, T, x, y)〉 =
1

(2π)nd

∫

Rnd

dpe−i〈p,y−RT,t(x)〉〈b(t, x), p1〉

× exp

(

−

∫ T

t

∫

Sd−1

|〈p,R1,·
T,uσ(u,Ru,T (y))ς〉|

αµ(dς)

)

,

where ∇x1 stands for the derivative w.r.t. to the first d components. Following the previous heuristics it can
be observed that |p1|(T − t)1/α is homogeneous to the the contributions associated with p1 in the exponential.
This actually yields:

|〈b(t, x),∇x1 p̃α(t, T, x, y)〉| ≤
|b|∞

(T − t)1/α
p̃α(t, T, x, y),

which for α > 1 gives an integrable singularity in time.
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6 Controls of the convolutions.

In this section we assume w.l.o.g. that T ≤ T0 = T0([H]) ≤ 1, as in Lemma 5.1. We first prove Lemma 3.7
that emphasizes how the spatial contribution in the r.h.s. of (3.17) yields, once integrated, a regularizing effect
in time.

6.1 Proof of Lemma 3.7.

We prove the first estimate only, the other is obtained similarly. Let us naturally split the space according to
the regimes of p̃T,y

α . With the notations of Proposition 3.3 we introduce the partition:

D1 = {z ∈ R
nd; |(Tα

T−τ )
−1(y −RT,τ (z))| ≤ K}, D2 = {z ∈ R

nd; |(Tα
T−τ )

−1(y −RT,τ (z))| > K}.

On D1, the diagonal expansion holds for p̃T,y
α , that is, for z ∈ D1 and recalling the definition of T

α
T−τ in

Theorem 2.2:
p̃T,y
α (τ, T, z, y) ≤ C3.3 det(T

α
T−τ )

−1 = C3.3(T − τ)−d(n/α+n(n−1)/2).

On the other hand, denoting by ‖ · ‖ the matricial norm, we have:

|z −Rτ,T (y)|
η(α∧1) ≤ ‖Rτ,T‖

η(α∧1)‖Tα
T−τ‖

η(α∧1)|(Tα
T−τ )

−1(y −RT,τ (z))|
η(α∧1) ≤ C(T − τ)η(1/α∧1),

where the last inequality follows from the boundedness of the resolvent on compact sets and the definition of
T
α
T−τ .

Besides, the Lebesgue measure of the set D1 is bounded by C det(Tα
T−τ ), compensating exactly the time

singularity appearing in p̃T,y
α . In conclusion, we obtained on D1:

∫

D1

δ ∧ |z −Rτ,T (y)|
η(α∧1)p̃T,y

α (τ, T, z, y)dz ≤ (T − τ)η(
1
α∧1).

Similarly, for z ∈ D2, the off-diagonal bound holds for p̃T,y
α , i.e.:

p̃T,y
α (τ, T, z, y) ≤ C

det(Tα
T−τ )

−1

|(Tα
T−τ )

−1(y −RT,τ (z))|nd+α
.

From the Lipschitz property of the flow we derive |z − Rτ,T (y)|
η(α∧1) ≤ C|y − RT,τ (z)|

η(α∧1) ≤ C(T −

τ)η(
1
α∧1)|(Tα

T−τ )
−1(y −RT,τ (z))|

η(α∧1). Hence setting ξ := |(Tα
T−τ )

−1(y −RT,τ (z))| we derive

∫

D2

δ ∧ |z −Rτ,T (y)|
η(α∧1)p̃T,y

α (τ, T, z, y)dz ≤ C

∫

ξ>K

(

δ ∧ [(T − τ)η(
1
α∧1)ξη(α∧1)]

)

ξnd−1 dξ

ξnd+α
. (6.1)

Observe now that for η ∈ (0, 1), α > η(α ∧ 1). Hence, we directly get
∫

ξ>K

(

δ ∧ [(T − τ)η(
1
α∧1)ξη(α∧1)]

)

dξ
ξ1+α ≤

(T − τ)η(
1
α∧1)

∫

ξ>K
dξ

ξ1+α−η(α∧1) := C2(T − τ)η(
1
α∧1). When α ≤ η(α ∧ 1), which happens for η = 1, α ≤ 1, we

have to be more subtle. We refine the partition introducing:

D2,1 = {ξ ∈ R
nd;K ≤ ξ ≤ K(T − τ)−1/α}, D2,2 = {ξ ∈ R

nd; ξ > K(T − τ)−1/α}.

On D2,1, writing δ∧[(T−τ)η(
1
α∧1)ξη(α∧1)] ≤ [(T−τ)η(

1
α∧1)ξη(α∧1)] we get: (T−τ)η(

1
α∧1)

∫

ξ∈D2,1
dξξη(α∧1)−α−1 ≤

C(T − τ). On D2,2, using δ ∧ [(T − τ)η(
1
α∧1)ξη(α∧1)] ≤ δ we derive

∫

ξ∈D2,2

dξ
ξ1+α ≤ Cδ(T − τ). Plugging the

above controls in (6.1) yields the result. �

A useful extension of the previous result is the following lemma involving an additional logarithmic con-
tribution which is explosive in the off-diagonal regime. This anyhow does not affect much the smoothing
effect.

Lemma 6.1. For a given ε ∈ (0, α), there exists C6.1 := C6.1([H], T0, ε) > 0 s.t. for all T ∈ (0, T0], (x, y) ∈
(Rnd)2, τ ∈ (t, T ):

∫

Rnd

log(K ∨ |(Tα
T−τ )

−1(y −RT,τ (z))|)
{

δ ∧ |z −Rτ,T (y)|
η(α∧1)

}

p̃T,y
α (τ, T, z, y)dz ≤ C6.1(T − τ)η(

1
α−ε∧1),

∫

Rnd

log(K ∨ |(Tα
τ−t)

−1(z −Rτ,t(x))|)
{

δ ∧ |z −Rτ,t(x)|
η(α∧1)

}

p̃T,y
α (t, τ, x, z)dz ≤ C6.1(τ − t)η(

1
α−ε∧1).
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Proof. The proof does not change much from the previous one. Observe also that, from the supremum in
the logarithm, the only difference arises for off-diagonal regimes, that is, for z ∈ D2 referring to the partition
in the previous proof. The argument in the logarithm is however the same as the denominator of the off-
diagonal estimate. Now, for any ε ∈ (0, α), there exists Cε > 0 s.t. for all τ ∈ (t, T ], (x, z) ∈ (Rnd)2:

log(K ∨ |(Tτ−t)
−1(z−Rτ,t(x))|) ≤ Cε

(

K ∨ |(Tα
τ−t)

−1(z−Rτ,t(x))|
)ε

. For z ∈ D2, we get the following bound:

log(K ∨ |(Tα
τ−t)

−1(z −Rτ,t(x))|)p̃
T,y
α (t, τ, x, z) ≤

det(Tα
τ−t)

−1

|(Tα
τ−t)

−1(z −Rτ,t(x))|nd+α−ε
.

This bound allows to proceed as in the proof of Lemma 3.7.

We now state a key lemma for our analysis. It gives a control for the first convolution between the frozen
density p̃α and the parametrix kernel H . The result differs here from the expected one: we get an additional
logarithmic factor, w.r.t. the bounds established for this quantity in [8] for the Gaussian degenerate case, or
[14] for the stable non-degenerate case.

Lemma 6.2 (First Step Convolution.). There exist C6.2 := C6.2([H]) > 0, ω := ω([H]) ∈ (0, 1] s.t. for
all T ∈ (0, T0], T0 := T0([H]) ≤ 1, (x, y) ∈ (Rnd)2, t ∈ [0, T ),

|p̃α ⊗H |(t, T, x, y) ≤ C6.2p̃α(t, T, x, y)
(

(T − t)ω + δ ∧ |x−Rt,T (y)|
η(α∧1)

+ log(K ∨ |(Tα
T−t)

−1(y −RT,t(x))|)
)

.

Suppose now that n = 2. We can then improve the previous bound and derive:

|p̃α ⊗H |(t, T, x, y) ≤ C6.2

(

(T − t)ω p̃α(t, T, x, y) + q̄α(t, T, x, y)
)

, (6.2)

where we denote:

q̄α(t, T, x, y) = δ ∧ |x−Rt,T (y)|
η(α∧1)p̃α(t, T, x, y)

(

1 + log
[

K ∨ |(Tα
T−t)

−1(y −RT,t(x))|
])

.

Remark 6.1. The first part of the Lemma gives the bound of Lemma 3.8. Let us emphasize, as we have
already mentioned in Remark 3.4, that this bound is not sufficient to derive the convergence of the parametrix
series (3.11). The second control of the lemma might be seen as a slight improvement but is actually sufficient
to imply the convergence when d = 1, n = 2. It gives the first statement in Lemma 3.9.

Proof. To perform the analysis, we first bound H using (3.17). We thus obtain:

|p̃α ⊗H |(t, T, x, y) ≤ C

∫ T

t

dτ

∫

Rnd

p̃α(t, τ, x, z)
δ ∧ |z −Rτ,T (y)|

η

T − τ
p̃α(τ, T, z, y)dz. (6.3)

For the proof it will be convenient to split the time interval [t, T ] into two subintervals I1 := [t, t+T
2 ], I2 :=

[ t+T
2 , T ]. We observe that for τ ∈ I1, T − τ ≍ T − t whereas for τ ∈ I2, τ − t ≍ T − t.

The leading idea for the proof is to partition the space in order to say that one of the two densities involved
in (6.3) is homogeneous to the global one p̃α(t, T, x, y), and to get some regularization from the other contri-
bution, using thoroughly Lemma 3.7.

Diagonal Estimates. When the global diagonal regime holds, i.e. |(Tα
T−t)

−1(RT,t(x) − y)| ≤ K, we will
prove the following global diagonal estimate:

|p̃α ⊗H |(t, T, x, y) ≤ C
(

(T − t)ω + δ ∧ |x−Rt,T (y)|
η(α∧1)

)

p̃α(t, T, x, y). (6.4)

Indeed, on I1, if |(Tα
T−τ )

−1(y−RT,τ (z))| ≤ K, from Proposition 3.3 the diagonal estimate holds for p̃α(τ, T, z, y).
Since T − τ ≍ T − t, we have:

p̃α(τ, T, z, y) ≤ C det(Tα
T−τ )

−1 ≤ C det(Tα
T−t)

−1 ≤ Cp̃α(t, T, x, y).

On the other hand, if |(Tα
T−τ )

−1(y−RT,τ (z))| > K, the off-diagonal expansion holds for p̃α(τ, T, z, y) and from
Proposition 3.3:

p̃α(τ, T, z, y) ≤ C
det(Tα

T−τ )
−1

|(Tα
T−τ )

−1(y −RT,τ (z))|nd+α
≤ C det(Tα

T−τ )
−1 ≤ C det(Tα

T−t)
−1 ≤ Cp̃α(t, T, x, y)

1.

1Observe that we could have used here that the diagonal control is a global bound. We introduced the dichotomy on the regime

to emphasize that it is a crucial argument in this section.
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Additionally, the boundedness of the resolvent yields:

|z −Rτ,T (y)| ≤ |z −Rτ,t(x)| + |Rτ,t(x)−Rτ,T (y)| ≤ C
(

|z −Rτ,t(x)|+ |x−Rt,T (y)|
)

. (6.5)

Denoting by ⊗|I1 the time-space convolution, where the time parameter is restricted to the interval I1, we have
from (6.3), (6.5) and Lemma 3.7:

|p̃α ⊗|I1 H |(t, T, x, y) ≤ Cp̃α(t, T, x, y)

∫

I1

dτ

∫

Rnd

p̃α(t, τ, x, z)

(

δ ∧ |z −Rτ,t(x)|
η(α∧1)

τ − t

+
δ ∧ |x−Rt,T (y)|

η(α∧1)

T − t

)

dz

≤ Cp̃α(t, T, x, y)

∫

I1

dτ

(

(τ − t)η(
1
α∧1)−1 +

δ ∧ |x−Rt,T (y)|
η(α∧1)

T − t

)

≤ Cp̃α(t, T, x, y)((T − t)ω + δ ∧ |x−Rt,T (y)|
η(α∧1)). (6.6)

Now, when τ ∈ I2, we have p̃α(t, τ, x, z) ≤ p̃α(t, T, x, y), so that from Lemma 3.7:

|p̃α ⊗|I2 H |(t, T, x, y) ≤ Cp̃α(t, T, x, y)

∫

I2

dτ

∫

Rnd

δ ∧ |z −Rτ,T (y)|
η(α∧1)

T − τ
p̃α(τ, T, z, y)dz

≤ Cp̃α(t, T, x, y)

∫

I2

dτ(T − τ)η(
1
α∧1)−1 ≤ C(T − t)ω p̃α(t, T, x, y).

Thus, when the global diagonal estimate holds, the bound is true with ω = η( 1
α ∧ 1).

Off-Diagonal Estimates. We consider here the case |(Tα
T−t)

−1(y − RT,t(x))| ≥ K, i.e. the off-diagonal
estimate holds for p̃α(t, T, x, y). In our current degenerate setting, several scales are involved in the term

|(Tα
T−t)

−1(y − RT,t(x))|. The slow time scales, associated to the first ⌊α+nd(n+1)/2
nd+α ⌋ components of the pro-

cess, induce in the off-diagonal regime additional time singularities in the density w.r.t. to the non-degenerate
case. We thus need to be very careful when comparing the two densities appearing in the convolution p̃α ⊗H .
Observe anyhow from the scaling Lemma 5.2 that:

|(Tα
T−t)

−1(y −RT,t(x))| ≤ |(Tα
T−t)

−1(y −RT,τ (z))|+ |(Tα
T−t)

−1(Tα
T−tR̂

t,T
τ−t
T−t

(Tα
T−t)

−1{z −Rτ,t(x)})|

≤ |(Tα
T−t)

−1(y −RT,τ (z))|+ C|(Tα
T−t)

−1(z −Rτ,t(x))|

≤ |(Tα
T−τ )

−1(y −RT,τ (z))|+ C|(Tα
τ−t)

−1(z −Rτ,t(x))|, C := C([H], T0). (6.7)

Hence, at least one of the two densities involved in the convolution is off-diagonal. As emphasized below,
the main difficulty w.r.t. the non degenerate case consists in suitably controlling the multi-scale effects that
prevent from handling directly the time singularity of H in the convolution p̃α ⊗H , see e.g. Proposition 3.2
in Kolokoltsov [14]. Assume now that the component number k dominates in the global density p̃α(t, T, x, y)
when considering the flow at the current time τ of the convolution, the off-diagonal estimate becomes:

p̃T,y
α (t, T, x, y)

Lemma 5.2
≍

(det(Tα
T−t))

−1

|(Tα
T−t)

−1(Rτ,tx−Rτ,T y)|nd+α
≍

(T − t)nd(k−(n+1)/2)+α(k−1)+1

|Rk
τ,t(x)−Rk

τ,T (y)|
nd+α

.

According to the sign of the power to T − t, two cases arise. We call fast components those for which the
exponent nd(k − (n + 1)/2) + α(k − 1) is non negative. The slow ones are those for which the exponent is
negative. This is the aforementioned slow/fast dichotomy.

- When a fast component dominates, as the off-diagonal estimates are not singular in time anymore, no major
problem arises. We refine (6.7) in the following sense:

K(T − t)(k−1)+ 1
α ≤ |Rk

τ,T (y)−Rk
τ,t(x)| ≤ |Rk

τ,T (y)− zk|+ |zk −Rk
τ,t(x)|.

Thus, at least one of the two densities in (6.3) is off-diagonal through a fast component. On the one hand, if
1/2|Rk

τ,T (y)−Rk
τ,t(x)| ≤ |zk −Rk

τ,t(x)|,

p̃α(t, τ, x, z) ≤ C
det(Tα

τ−t)
−1

|(Tα
τ−t)

−1(z −Rτ,t(x))|nd+α
≤ C

(τ − t)nd(k−(n+1)/2)+α(k−1)+1

|zk −Rk
τ,t(x)|

nd+α

≤ C
(T − t)nd(k−(n+1)/2)+α(k−1)+1

|Rk
τ,t(x)−Rk

τ,T (y)|
nd+α

.
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On the other hand, if 1/2|Rk
τ,T (y)−Rk

τ,t(x)| ≤ |Rk
τ,T (y)− zk|,

1

T − τ
p̃α(τ, T, z, y) ≤ C

(T − τ)nd(k−(n+1)/2)+α(k−1)

|zk −Rk
τ,T (y)|

nd+α
≤

C

T − t

(T − t)nd(k−(n+1)/2)+α(k−1)+1

|Rk
τ,T (y)−Rk

τ,t(x)|
nd+α

.

In both cases, we are in position to apply Lemma 3.7, directly in the first case, similarly to (6.6) in the second
one. The proof is then the same as in Kolokoltsov [14]. Observe that in the second case, we have compensated
the singularity induced by the kernel H , independently of the position of the time parameter τ .

- We now focus on the second case, that is when the dominating component is such that nd(k−(n+1)/2)+α(k−1)
is negative. We consider the partition [t, T ] = I1 ∪ I2 and start with τ ∈ I2. In this case, we have T − t ≍ τ − t.
In other words, this is the case where the singularity induced by the kernel H is the worst.

We split R
nd into

D1 := {z ∈ R
nd; (T − τ)β |(Tα

T−t)
−1(y −RT,t(x))| ≤ |(Tα

τ−t)
−1(z −Rτ,t(x))|},

D2 := {z ∈ R
nd; (T − τ)β |(Tα

T−t)
−1(y −RT,t(x))| > |(Tα

τ−t)
−1(z −Rτ,t(x))|}, (6.8)

for a parameter β > 0 to be specified later on. We define accordingly, for i ∈ {1, 2}:

p̃α ⊗|I2,Di
|H |(t, T, x, y) :=

∫

I2

dτ

∫

Di

p̃α(t, τ, x, z)
δ ∧ |z −Rτ,T (y)|

η(α∧1)

T − τ
p̃α(τ, T, z, y)dz. (6.9)

Let us first deal with z ∈ D1. Since τ ∈ I2, we have:

p̃α(t, τ, x, z) ≤ C
det(Tα

τ−t)
−1

|(Tα
τ−t)

−1(z −Rτ,t(x))|nd+α
≤ C

det(Tα
T−t)

−1

(T − τ)β(nd+α)|(Tα
T−t)

−1(y −RT,t(x))|nd+α
.

Hence, as we did in the first part of the proof, we take out p̃α(t, τ, x, z) off the integral (6.9). This is done here
up to the additional singular coefficient (T − τ)−β(nd+α). Still from Lemma 3.7, we get:

p̃α ⊗|I2,D1
|H |(t, T, x, y) ≤ Cp̃α(t, T, x, y)

∫

I2

dτ(T − τ)η(1/α∧1)−β(nd+α)−1.

Then, in order to get an integrable bound, we must take:

0 < β <
η(1/α ∧ 1)

nd+ α
. (6.10)

On D2, we have to be more subtle. From the previous partition, the idea is to say that if τ ∈ [τ0, T ] for
τ0 close enough to T , then the diagonal bound holds for the first density on D2. In such cases we manage to
get the global expected bound in the convolution. However, the previous τ0 will highly depend on the global
off-diagonal estimate |(Tα

T−t)
−1(RT,t(x) − y)|, and for τ ∈ I2, τ ≤ τ0, we did not succeed to do better than

integrating the singularity in (T − τ)−1 yielding the logarithmic contribution.

• Let us fix δ0 ∈ (0,K). Observe that for fixed (t, T, x, y), if τ ≥ τ0 := T −
(

δ0
|(Tα

T−t)
−1(y−RT,t(x))|

)
1
β

then

δ0 ≥ (T − τ)β |(Tα
T−t)

−1(y − RT,t(x))|. Then, since z ∈ D2, we have δ0 ≥ |(Tα
τ−t)

−1(z − Rτ,t(x))|, and the
diagonal estimate holds for p̃α(t, τ, x, z). We write:

p̃α ⊗|I2∩{τ≥τ0},D2
|H |(t, T, x, y) ≤ C

∫

I2∩{τ≥τ0}

dτ det(Tα
τ−t)

−1

∫

D2

δ ∧ |z −Rτ,T (y)|
η(α∧1)

T − τ
p̃α(τ, T, z, y)dz

Lemma 3.7
≤ C

∫

I2∩{τ≥τ0}

dτ det(Tα
τ−t)

−1(T − τ)η(1/α∧1)−1.

Now δnd+α
0 ≥ (T − τ)β(nd+α)|(Tα

T−t)
−1(y −RT,t(x))|

nd+α, so that:

p̃α ⊗|I2∩{τ≥τ0},D2
|H |(t, T, x, y) ≤

∫

I2

dτ det(Tα
T−t)

−1(T − τ)η(1/α∧1)−β(nd+α)−1 δnd+α
0

|(Tα
T−t)

−1(y −RT,t(x))|nd+α
.

Thus, as long as β satisfies (6.10), p̃α ⊗|I2∩{τ≥τ0},D2
|H |(t, T, x, y) ≤ (T − t)ωp̃α(t, T, x, y), ω := η(1/α ∧ 1)−

β(nd+ α).
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• Assume now that τ < τ0 = T −
(

δ0
|(Tα

T−t)
−1(y−RT,t(x))|

)
1
β

. The singularity induced by H is then integrable,

and yields the logarithmic contribution. Specifically:

p̃α ⊗|I2∩{τ<τ0},D2
|H |(t, T, x, y) ≤ C

∫

I2

dτ1τ≤τ0

∫

D2

p̃α(t, τ, x, z)
δ ∧ |z −Rτ,T (y)|

η

T − τ
p̃α(τ, T, z, y)dz,

≤ C

∫

I2

dτ
1

T − τ
1τ≤τ0

∫

D2

p̃α(t, τ, x, z)p̃α(τ, T, z, y)dz

≤ C log(|(Tα
T−t)

−1(y −RT,t(x))|)p̃α(t, T, x, y).

To get to the last equation, we used the semigroup property (3.7) in Remark 3.2, and the expression of τ0.
Observe also that since this term only appears when |(Tα

T−t)
−1(y − RT,t(x))| ≥ K, one can add w.l.o.g. a

K ∨ · inside the logarithm. This exactly gives the first control of the current lemma and completes the proof
of Lemma 3.8.

Let us now focus on the proof of (6.2), when n = 2. The key-point to get a smoothing effect is to keep the
δ ∧ |x − Rt,T (y)|

η(α∧1) part in the control of the convolution. In order to keep track of this term, we need to
determine which component dominates in |x−Rt,T (y)|. This can be rather intricate in the multi-scale setting.
In the case n = 2, the only slow component is the first one. Saying that it dominates at a given integration
time τ is asking:

|R2
τ,T (y)−R2

τ,t(x)| ≤ (T − t)|R1
τ,T (y)−R1

τ,t(x)|. (6.11)

Furthermore, we can write:

|R1
T,t(x) − y1| ≥ |R1

τ,t(x) −R1
τ,T (y)| − ‖RT,τ − I‖|Rτ,t(x) −Rτ,T (y)|.

From Lemma 5.1, and observing from its proof that we could also establish that
∑2

j=1 ‖(RT,τ−I)j,2‖+‖(RT,τ−

I)1,1‖ ≤ C(T − τ), C := C([H], T0), T0 ≤ 1 we get using (6.11):

|R1
T,t(x)− y1| ≥ |R1

τ,t(x)−R1
τ,T (y)|(1 − C(T − τ)).

Thus, for T small enough we get: (T − t)|R1
T,t(x)− y1| ≥ T−t

2 |R1
τ,t(x)−R1

τ,T (y)|
(6.11)

≥ 1
2 |R

2
τ,t(x)−R2

τ,T (y)|. We
then derive similarly that:

|R2
τ,t(x)−R2

τ,T (y)| ≥ |R2
T,t(x)− y2| − ‖Rτ,T − I‖|RT,t(x) − y|

≥
|R2

T,t(x) − y2|

2
− C(T − τ)|R1

T,t(x) − y1|.

This finally yields that

(T − t)|R1
T,t(x)− y1| ≥

|R2
T,t(x)− y2|

4(1 + C)
, (6.12)

that is, the first component dominates in the contribution |(Tα
T−t)

−1(RT,t(x)−y)| appearing in D2. Write now:

|z −Rτ,T (y)| ≤ |z1 −R1
τ,t(x)|+ |z2 −R2

τ,t(x)| + |Rτ,t(x) −Rτ,T (y)|. (6.13)

⋄ Suppose first that (τ − t)|z1 − R1
τ,t(x)| ≤ |z2 −R2

τ,t(x)|. Since z ∈ D2, we have from (6.12):

|z2 −R2
τ,t(x)| ≤ C(τ − t)(T − τ)β |R1

T,t(x) − y1|.

Consequently, plugging the last two inequalities into (6.13), we get:

|z −Rτ,T (y)| ≤

(

1

τ − t
+ 1

)

|z2 −R2
τ,t(x)| + |Rτ,t(x)−Rτ,T (y)|

≤
(

1 + (τ − t)
)

(T − τ)β |R1
T,t(x) − y1|+ |Rτ,t(x) −Rτ,T (y)|

≤ C|x −Rt,T (y)|,

using the Lipschitz property of the flow for the last inequality.
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⋄ Assume now that |z2 −R2
τ,t(x)| ≤ (τ − t)|z1 −R1

τ,t(x)| ≤ |z1 −R1
τ,t(x)|. We exploit that z ∈ D2 and (6.12) to

write:
|z1 −R1

τ,t(x)| ≤ C(T − τ)β |R1
T,t(x) − y1|.

Plugging the last two inequalities into (6.13) yields:

|z −Rτ,T (y)| ≤ 2|z1 −R1
τ,t(x)|+ |Rτ,t(x) −Rτ,T (y)|

≤ 2C(T − τ)β |R1
T,t(x)− y1|+ |Rτ,t(x) −Rτ,T (y)| ≤ C|x−Rt,T (y)|,

using again the Lipschitz property of the flow for the last inequality.

Thus, in both cases,

|z −Rτ,T (y)| ≤ C|x−Rt,T (y)| ⇒ δ ∧ |z −Rτ,T (y)|
η(α∧1) ≤ Cδ ∧ |x−Rt,T (y)|

η(α∧1). (6.14)

Taking out this contribution from the spatial integral we get:

p̃α ⊗|I2∩{τ≤τ0},D2
|H |(t, T, x, y) ≤ C

∫

I2

dτ
δ ∧ |x− Rt,T (y)|

η(α∧1)

T − τ
1τ≤τ0

∫

p̃α(t, τ, x, z)p̃α(τ, T, z, y)dz

≤ Cδ ∧ |x−Rt,T (y)|
η(α∧1) log

(

K ∨ |(Tα
T−t)

−1(y −RT,t(x))|
)

p̃α(t, T, x, y),

using the semigroup property (3.7) for the last inequality.

To complete the proof, it remains to consider the case τ ∈ I1. In this case, T − t ≍ T − τ , and we have by
triangle inequality:

δ ∧ |z −Rτ,T (y)|
η(α∧1) ≤ C

(

δ ∧ |z −Rτ,t(x)|
η(α∧1) + δ ∧ |x−Rt,T (y)|

η(α∧1)
)

.

Recalling that T − τ is not singular and splitting p̃α ⊗|I1 |H |(t, T, x, y) accordingly yields:

p̃α ⊗|I1 |H |(t, T, x, y) ≤ C

∫

I1

dτ

∫

Rnd

dzp̃α(t, τ, x, z)
δ ∧ |x−Rt,τ (z)|

η(α∧1)

τ − t
p̃α(τ, T, z, y)

+Cδ ∧ |x− Rt,T (y)|
η(α∧1)p̃α(t, T, x, y),

where we used the semigroup property (3.7) for the last term in the r.h.s. Now, for the first term in the
above r.h.s., the previous arguments apply. Similarly to (6.7) one of the two terms |(Tα

τ−t)
−1(Rτ,t(x) − z)|,

|(Tα
T−τ )

−1(RT,τ (z)−y)| is in the off-diagonal regime. If it is the second one, then p̃α(τ, T, z, y) ≤ Cp̃α(t, T, x, y)
and we conclude using Lemma 3.7. If it is the first term, then we can still perform the previous dichotomy
along the dominating component in |(Tα

τ−t)
−1(Rτ,t(x) − z)|. If the fast component dominates, the density is

not singular. When the first component dominates, we modify the previous partition (Di)i∈{1,2}, considering:

D1 = {z ∈ R
nd; (τ − t)β |(Tα

T−t)
−1(y −RT,t(x))| ≤ |(Tα

T−τ )
−1(z −Rτ,T (y))|},

D2 = {z ∈ R
nd; (τ − t)β |(Tα

T−t)
−1(y −RT,t(x))| > |(Tα

T−τ )
−1(z −Rτ,T (y))|}.

From this point on, the proof is similar: on D1, we compensate the singularity, as long as β is like in (6.10).
When z ∈ D2, we subdivide along δ0 ≤ or > (τ − t)β |(Tα

T−t)
−1(y −RT,t(x))|. The first case is dealt as above.

In the second case, we can integrate the time singularity.

Remark 6.2. The first term in the r.h.s. of (6.2) yields a smoothing effect in time. The second is similar
to the control obtained in [14]. However, the very last part is unexpected. The logarithmic contribution is
specific to the degenerate framework. The multi-scale stable process lacks integrability to compensate entirely
the singularities induced by the kernel H .

Remark 6.3. Let us mention that the previous proof still holds for n = 3 if d = 1 for all α ∈ (0, 2).

The convergence of the parametrix series (3.11) will now follow from controls involving the convolutions of
H with the last term q̄α(t, T, x, y). The following lemma completes the proof of Lemma 3.9.
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Lemma 6.3. There exist C6.3 := C6.3([H]) > 0, ω := ω([H]) ∈ (0, 1] s.t. for all T ∈ (0, T0], T0 := T0([H]) ≤
1, (x, y) ∈ (Rnd)2, t ∈ [0, T ),

|q̄α ⊗H |(t, T, x, y) ≤ C(T − t)ω
(

p̃α(t, T, x, y)

+δ ∧ |x−Rt,T (y)|
η(α∧1) log

(

K ∨ |(Tα
T−t)

−1(y −RT,t(x))|
)

p̃α(t, T, x, y)
)

.

Proof. Recall that q̄α(t, T, x, y) writes as the sum of

qα(t, T, x, y) := δ ∧ |x− Rt,T (y)|
η(α∧1)p̃α(t, T, x, y)

and
ρα(t, T, x, y) := δ ∧ |x−Rt,T (y)|

η(α∧1) log
(

K ∨ |(Tα
T−t)

−1(y −RT,t(x))|
)

p̃α(t, T, x, y).

Though the lines of the proof are similar to those of Lemma 6.2, we treat the two convolutions separately,
to emphasize the difficulties induced by the logarithmic factor. First, for |qα ⊗ H |(t, T, x, y), we bound |H |
using Lemma 3.6, to get:

|qα ⊗H |(t, T, x, y) ≤ C

∫ T

t

dτ

∫

Rnd

δ ∧ |z −Rτ,t(x)|
η(α∧1)p̃α(t, τ, x, z)

δ ∧ |z −Rτ,T (y)|
η(α∧1)

T − τ
p̃α(τ, T, z, y).

The above contribution can be handled as in Lemma 6.2, in the diagonal case |(Tα
T−t)

−1(y − RT,t(x))| ≤ K,
or in the off-diagonal case |(Tα

T−t)
−1(y − RT,t(x))| > K when for a given integration time τ ∈ [t, T ] the

fast component dominates, i.e. |R2
τ,T (y) − R2

τ,t(x)| ≥ (T − t)|R1
τ,T (y) − R1

τ,t(x)|. The only difference is that
we do not need to use the triangle inequality in order to apply Lemma 3.7. Indeed, the regularizing terms
δ ∧ |z −Rτ,T (y)|

η(α∧1), δ ∧ |z −Rτ,t(x)|
η(α∧1) already appear for both densities.

When |(Tα
T−t)

−1(y −RT,t(x))| > K and |R2
τ,T (y)−R2

τ,t(x)| ≤ (T − t)|R1
τ,T (y)−R1

τ,t(x)|, we split as in the

previous proof the time interval into I1 ∪ I2 := [t, T+t
2 ] ∪ [T+t

2 , T ]. Suppose τ ∈ I2, we consider the spatial
partition introduced in (6.8).

For z ∈ D1, we have p̃α(t, τ, x, z) ≤ (T − τ)−β(nd+α)p̃α(t, T, x, y). This yields a regularization property
from Lemma 3.7 when β satisfies (6.10). For z ∈ D2 and a given δ0 > 0, we use again the partition (T −
τ)β |(Tα

T−t)
−1(y − RT,t(x))| ≥ or < δ0. The case (T − τ)β |(Tα

T−t)
−1(y − RT,t(x))| ≤ δ0 yields a regularization

in time similarly to the previous proof.
In order for (T − τ)β |(Tα

T−t)
−1(y − RT,t(x))| to exceed δ0, we see that τ must be lower than τ0 := T −

(

δ0
|(Tα

T−t)
−1(y−RT,t(x))|

)
1
β

. In that case, the time singularity is still logarithmically explosive but integrable. We

are led to consider:
∫

I2

dτ
1

T − τ
1τ≤τ0

∫

δ ∧ |z −Rτ,t(x)|
η(α∧1)p̃(t, τ, x, z)δ ∧ |z −Rτ,T (y)|

η(α∧1)p̃(τ, T, z, y)dz. (6.15)

Using iteratively the scaling Lemma 5.2 we derive:

|y1 −R1
T,τ (z)|

(T − t)
1
α

+
|y2 −R2

T,τ (z)|

(T − t)1+
1
α

≥ c2|(T
α
T−t)

−1(y −RT,τ (z))|

≥ c2C
−1
{

|(Tα
T−t)

−1(Rτ,t(x) −Rτ,T (y))| − |(Tα
T−t)

−1(z −Rτ,t(x))|
}

≥ c2{C
−1|(Tα

T−t)
−1(Rτ,t(x)−Rτ,T (y))| − C−1(T − τ)β |(Tα

T−t)
−1(RT,t(x)− y)|}

≥ c2{C
−1 − (T − τ)β}|(Tα

T−t)
−1(Rτ,t(x)−Rτ,T (y))|, c2 > 0, C := C(T ) ≥ 1,

recalling that z ∈ D2 for the last but one inequality. Thus, for T small enough and up to a modification of C,
we have either |y1 −R1

T,τ (z)| ≥ C|R1
τ,t(x)−R1

τ,T (y)|, or |y2 −R2
T,τ (z)| ≥ C(T − t)|R1

τ,t(x)−R1
τ,T (y)|. In both

cases, p̃α(τ, T, z, y) ≤
1

|R1
τ,t(x)−R1

τ,T (y)|2+α , which is in dimension one the off-diagonal two-sided estimate for

p̃α(t, T, x, y). We emphasize that the technical restriction leading to consider the scalar case appears exactly
here. Indeed, for n = 2 and an arbitrary d ≥ 1, when the first component dominates, we have from Proposition
3.3 that the two-sided off-diagonal estimate for p̃α(τ, T, z, y) reads:

(T − τ)−(d−1)|R1
T,τ (z)− y1|−(2d+α).

Hence, we can get rid off the remaining diagonal singularity only if d = 1. This yields p̃α(τ, T, z, y) ≤
p̃α(t, T, x, y). In our current case, we then derive from (6.14) that:

δ ∧ |z −Rτ,T (y)|
η(α∧1)p̃α(τ, T, z, y) ≤ δ ∧ |x−Rt,T (y)|

η(α∧1)p̃α(t, T, x, y).
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Consequently, we can bound (6.15) by:

∫

I2

dτ(τ − t)ω
δ ∧ |x−Rt,T (y)|

η(α∧1)

T − τ
1τ≤τ0 p̃α(t, T, x, y).

Note that the case τ ∈ I1 could be handled similarly, see Lemma 6.2. Once integrated in time, the controls
become :

qα ⊗ |H |(t, T, x, y) ≤ C(T − t)ω
(

p̃α(t, T, x, y) + log
(

K ∨ |(Tα
T−t)

−1(y −RT,t(x))|
)

qα(t, T, x, y)
)

. (6.16)

We point out that the important contribution in the above equation is the factor (T − t)ω, whose power will
grow at each iteration. This key feature gives the convergence of the series (3.11).

Now, for ρα ⊗ |H |(t, T, x, y), we still bound |H | using Lemma 3.6:

ρα ⊗ |H |(t, T, x, y) ≤ C

∫ T

t

∫

Rnd

log
(

K ∨ |(Tα
τ−t)

−1(z −Rτ,t(x))|
)

δ ∧ |z −Rτ,t(x)|
η(α∧1)p̃α(t, τ, x, z)

×
δ ∧ |z −Rτ,T (y)|

η(α∧1)

T − τ
p̃α(τ, T, z, y).

(6.17)

W.r.t. the previous contribution, the main difference comes from the logarithm. However, the lines of the proof
remain the same. Suppose first that |(Tα

T−t)
−1(y−RT,t(x))| ≤ K. Depending on the time parameter τ , we can

show that we always have either p̃α(t, τ, x, z) ≤ Cp̃α(t, T, x, y) or p̃α(τ, T, z, y) ≤ Cp̃α(t, T, x, y). The second
case occurs when τ ∈ I1. Using the notations of the previous proof, this yields:

ρα ⊗|I1 |H |(t, T, x, y) ≤ Cp̃α(t, T, x, y)

∫

I1

dτ

∫

Rnd

log
(

K ∨ |(Tα
τ−t)

−1(z −Rτ,t(x))|
)

×
δ ∧ |z −Rτ,t(x)|

η(α∧1)

τ − t
p̃α(t, τ, x, z)dz,

and we conclude by Lemma 6.1. In the case when p̃α(t, τ, x, z) ≤ Cp̃α(t, T, x, y), which happens for τ ∈ I2, we
have:

|(Tα
τ−t)

−1(z−Rτ,t(x))| ≤ C(|(Tα
τ−t)

−1(y−RT,t(x))|+|(Tα
τ−t)

−1(y−RT,τ (z))|) ≤ C(K+|(Tα
T−τ )

−1(y−RT,τ (z))|).

Plugging this inequality into the logarithm and taking out the first density, we can bound:

ρα ⊗|I2 |H |(t, T, x, y) ≤ Cp̃α(t, T, x, y)

∫

I2

dτ

∫

Rnd

log
(

K ∨ |(Tα
T−τ )

−1(y −RT,τ (z))|
)

×
δ ∧ |z −Rτ,T (y)|

η(α∧1)

T − τ
p̃α(τ, T, z, y)dz,

and once again, we conclude by Lemma 6.1. Thus, we have so far managed to show that in the global diagonal
regime, ρα ⊗ |H |(t, T, x, y) ≤ C(T − t)ω p̃α(t, T, x, y).

It remains to deal with the case when |(Tα
T−t)

−1(y − RT,t(x))| ≥ K. Suppose first that τ ∈ I2, and that
the first component dominates in the global action |(Tα

T−t)
−1(y − RT,t(x))|, i.e. |(Tα

T−t)
−1(y − RT,t(x))| ≍

|y1−R1
T,t(x)|

(T−t)1/α
. We still consider the partition in (6.8).

When z ∈ D1, we can bound

p̃α(t, τ, x, z) ≤ C(T − τ)−β(2+α)p̃(t, T, x, y). (6.18)

On the other hand, the triangle inequality and the scaling Lemma 5.2 yield:

|(Tα
τ−t)

−1(z −Rτ,t(x))| ≤ C
(

|(Tα
τ−t)

−1(y −RT,τ (z))|+ |(Tα
τ−t)

−1(y −RT,t(x))|
)

.

Consequently, up to a modification of C, we have either:

|(Tα
τ−t)

−1(z −Rτ,t(x))| ≤ C|(Tα
τ−t)

−1(y −RT,t(x))| or |(Tα
τ−t)

−1(z −Rτ,t(x))| ≤ C|(Tα
τ−t)

−1(y −RT,τ (z))|.

Define accordingly,

D1,1 = {z ∈ D1; |(T
α
τ−t)

−1(z −Rτ,t(x))| ≤ C|(Tα
τ−t)

−1(y −RT,t(x))|},
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D1,2 = {z ∈ D1; |(T
α
τ−t)

−1(z −Rτ,t(x))| ≤ C|(Tα
τ−t)

−1(y −RT,τ (z))|}.

Observe that with this definition, D1,1 and D1,2 is not a partition of D1. However, D1 ⊂ D1,1 ∪D1,2.
When z ∈ D1,1, we can bound

log
(

K ∨ |(Tα
τ−t)

−1(z −Rτ,t(x))|
)

≤ log
(

K ∨ |(Tα
T−t)

−1(y −RT,t(x))|
)

+ C.

On the other hand, for τ ∈ I2, we get from the definition of D1,1:

δ ∧ |z −Rτ,t(x)|
η(α∧1) ≤ C(δ ∧ |x−Rt,T (y)|

η(α∧1)).

From (6.18), we thus have:

ρα ⊗|I2,D1,1
|H |(t, T, x, y) ≤ C

(

log
(

K ∨ |(Tα
T−t)

−1(y −RT,t(x))|
)

+ 1
)

δ ∧ |x−Rt,T (y)|
η(α∧1)

×

∫

I2

dτ

∫

D1,1

p̃α(t, τ, x, z)
δ ∧ |z −Rτ,T (y)|

η(α∧1)

T − τ
p̃α(τ, T, z, y)dz

≤ (T − t)ω(ρα + qα)(t, T, x, y),

choosing β satisfying (6.10).
When z ∈ D1,2, we can bound:

log
(

K ∨ |(Tα
τ−t)

−1(z −Rτ,t(x))|
)

≤ log
(

K ∨ |(Tα
τ−t)

−1(y −RT,τ (z))|
)

+ C.

Bounding also roughly δ ∧ |z −Rτ,t(x)|
η(α∧1) ≤ δ, and using the bound (6.18), we can write:

ρα ⊗|I2,D1,2
|H |(t, T, x, y) ≤ C

∫

I2

dτ

∫

D1,2

p̃α(t, τ, x, z)
(

log
(

K ∨ |(Tα
τ−t)

−1(y −RT,τ (z))|
)

+ 1
)

×
δ ∧ |z −Rτ,T (y)|

η(α∧1)

T − τ
p̃α(τ, T, z, y)dz

≤ Cp̃α(t, T, x, y)

∫

I2

dτ(T − τ)−β(2+α)

×

∫

D1,2

(

log
(

K ∨ |(Tα
τ−t)

−1(y −RT,τ (z))|
)

+ 1
) δ ∧ |z −Rτ,T (y)|

η(α∧1)

T − τ
p̃α(τ, T, z, y).

Thus, using Lemma 6.1, we have ρα ⊗|I2,D1,2
|H |(t, T, x, y) ≤ (T − t)ωp̃α(t, T, x, y).

We have to deal with z ∈ D2. In this case, and because d = 1, p̃α(τ, T, z, y) ≤ Cp̃α(t, T, x, y). As above, we
split for a given δ0 > 0, the time interval I2 in (T − τ)β |(Tα

T−t)
−1(y−RT,t(x))| ≥ δ0 and (T − τ)β|(Tα

T−t)
−1(y−

RT,t(x))| < δ0.
Assume first that (T − τ)β |(Tα

T−t)
−1(y − RT,t(x))| ≤ δ0. Then, taking δ0 ≤ K gives that the first density

is diagonal. Hence, the logarithm part disappears, and we have to deal with:

ρα ⊗I2,D2 |H |(t, T, x, y) ≤ C

∫ T

τ0

∫

D2

1

(T − t)2/α+1

δ ∧ |z −Rτ,T (y)|
η(α∧1)

T − τ
p̃α(τ, T, z, y)dz

Lemma 3.7
≤

δ2+α
0

(T − t)2/α+1|(Tα
T−t)

−1(y −RT,t(x))|2+α

∫ T

τ0

dτ(T − τ)η(1/α∧1)−1−β(2+α)

≤ (T − t)ωp̃α(t, T, x, y).

Finally, we have to deal with the case (T − τ)β |(Tα
T−t)

−1(y − RT,t(x))| ≥ δ0. Observe that, on I2, this

imposes that τ ∈ [T+t
2 , τ0], with τ0 defined above. In the considered set, we have from (6.14):

|z −Rτ,T (y)| ≤ |z −Rτ,t(x)| + C|x−Rt,T (y)| ≤ C(1 + (T − τ)β)|x −Rt,T (y)|.

Plugging this estimate into the convolution and recalling for z ∈ D2, p̃α(τ, T, z, y) ≤ Cp̃α(t, T, x, y), we obtain
from Lemma 6.1:

ρα ⊗I2,D2 |H |(t, T, x, y) ≤ C(δ ∧ |x−Rt,T (y)|
η(α∧1))p̃α(t, T, x, y)

∫ τ0

T+t
2

dτ
1

T − τ
(τ − t)ω .
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Hence, integrating over τ yields the logarithmic contribution:

ρα ⊗I2,D2 |H |(t, T, x, y) ≤ C(T − t)ωρα(t, T, x, y).

In order to complete the proof, we have to specify how to proceed in the remaining cases, that is when
τ ∈ I2 and the second component dominates or when τ ∈ I1. When a fast component dominates, as we have
seen in the previous proof, we can compensate the singularities brought by the kernel H , and conclude directly
with Lemmas 3.7 and 6.1. When τ ∈ I1, we can adapt the previous strategy following the procedure described
in Lemma 6.2.

Using the previous lemmas, we get the following result.

Corollary 6.4. Let T0 := T0([H]) ≤ 1 be as in Lemma 6.2. There exists C6.4 := 4C3.9 > 0, s.t. for all
T ∈ (0, T0], (x, y) ∈ (Rnd)2, t ∈ [0, T ), ∀k ∈ N:

|p̃α ⊗H(2k)(t, T, x, y)| ≤ C2k
6.4(T − t)kω

(

(T − t)kω p̃α(t, T, x, y) + (p̃α + q̄α)(t, T, x, y)
)

|p̃α ⊗H(2k+1)(t, T, x, y)| ≤ C2k+1

6.4 (T − t)kω
(

(T − t)(k+1)ω p̃α + (T − t)ω(p̃α + q̄α) + q̄α

)

(t, T, x, y).

Proof. We prove the estimate by induction. The idea is to use the controls of Lemmas 6.2 and 6.3 gathered
in Lemma 3.9 to get from an estimate to the following one. The bounds may not be very precise, as we will
sometimes bound (T − t)kω ≤ 1, but they are sufficient to prove the convergence of the Parametrix series (3.11).

Initialization:
Since (T − t)ω(p̃α + q̄α) ≥ 0, we clearly have:

|p̃α ⊗H(t, T, x, y)| ≤ C3.9

(

(T − t)ωp̃α + q̄α + (T − t)ω(p̃α + q̄α)
)

(t, T, x, y).

Now, using Lemmas 6.2 and 6.3, we have:

|p̃α ⊗H(2)(t, T, x, y)| ≤ C3.9

(

(T − t)ω|p̃α ⊗H |+ |q̄α ⊗H |
)

(t, T, x, y)

≤ C3.9

(

C3.9(T − t)2ω p̃α + C3.9(T − t)ω q̄α + C3.9(T − t)ω(p̃α + q̄α)
)

(t, T, x, y)

≤ (2C3.9)
2(T − t)ω

(

(T − t)ω p̃α + (p̃α + q̄α)
)

(t, T, x, y).

Induction:
Suppose that the estimate for 2k holds. Let us prove the estimate for 2k + 1.

|p̃α ⊗H(2k+1)|(t, T, x, y) ≤ (4C3.9)
2k(T − t)kω

(

(T − t)kω |p̃α ⊗H |(t, T, x, y) + |(p̃α + q̄α)⊗H |(t, T, x, y)
)

≤ (4C3.9)
2k(T − t)kω

(

C3.9(T − t)kω((T − t)ωp̃α + q̄α)(t, T, x, y)

+C3.9((T − t)ω p̃α + q̄α)(t, T, x, y) + C3.9(T − t)ω(p̃α + q̄α)(t, T, x, y)
)

.

Recalling that T − t ≤ 1, we have (T − t)kω q̄α ≤ (T − t)ω q̄α. Thus:

|p̃α ⊗H(2k+1)|(t, T, x, y)

≤ (4C3.9)
2k(T − t)kω

(

C3.9(T − t)(k+1)ω p̃α + 2C3.9(T − t)ω(p̃α + q̄α) + C3.9q̄α)
)

(t, T, x, y)

≤ (4C3.9)
2k(2C3.9)(T − t)kω

(

(T − t)(k+1)ω p̃α + (T − t)ω(p̃α + q̄α) + q̄α)
)

(t, T, x, y),

which gives the announced estimate.
Suppose now that the estimate for 2k + 1 holds. Let us prove the estimate for 2k + 2.

|p̃α ⊗H(2k+2)(t, T, x, y)|

≤ (4C3.9)
2k+1(T − t)kω

(

(T − t)(k+1)ω |p̃α ⊗H |+ (T − t)ω |(p̃α + q̄α)⊗H |+ |q̄α ⊗H |
)

(t, T, x, y)

≤ (4C3.9)
2k+1(T − t)kω

(

C3.9(T − t)(k+1)ω [(T − t)ωp̃α + q̄α]

+C3.9(T − t)ω [{(T − t)ωp̃α + q̄}+ C3.9(T − t)ω(p̃α + q̄α)] + C3.9(T − t)ω(p̃α + q̄α)
)

(t, T, x, y)

≤ (4C3.9)
2k+2(T − t)(k+1)ω

(

(T − t)(k+1)ω p̃α + (p̃α + q̄α)
)

(t, T, x, y),

where to get to the last equation, we used the fact that (T − t)ωp̃α ≤ p̃α, and (T − t)kω q̄α ≤ q̄α.
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The following part is rather technical and given for the sake of completeness. The proofs below do not differ
much from those developed in [14] for the non degenerate case. We refer to that work for further details.

A Proof of the estimates on the frozen density.

In this section we derive the so-called diagonal and off-diagonal expansions for the frozen density. Recall from
Proposition 5.3, that the frozen density pΛs is given for all z ∈ R

nd by:

pΛs(z) =
det(Tα

s−t)
−1

(2π)nd

∫

Rnd

e−i〈q,(Tα
s−t)

−1z〉 exp

(

−

∫

Snd−1

|〈q, η〉|αµ∗
S(dη)

)

dq.

The complex exponential can be written as a cosine. Denoting x̄ the projection of x ∈ R
nd on the sphere,

we change variable to the polar coordinates by setting q = |q|q̄, where (|q|, q̄) ∈ R+ × Snd−1. Also, we take
a parametrization of the sphere by setting q̄ = (θ, φ) ∈ [0, π] × Snd−2, along the axis directed by (Tα

s−t)
−1z.

Finally, let τ = cos(θ), the density writes:

pΛs(z) =
det(Tα

s−t)
−1

(2π)nd

∫ +∞

0

d|q||q|nd−1

∫ 1

−1

dτ(1 − τ2)
nd−3

2

∫

Snd−2

dφ

cos(|q||(Tα
s−t)

−1z|τ) exp

(

−|q|α
∫

Snd−1

|〈q̄, η〉|αµ∗
S(dη)

)

. (A.1)

The idea is as follows: if |(Tα
s−t)

−1z| is small, we can expand the cosine and show that the first term is pos-
itive, giving the two-sided diagonal estimate. If on the contrary, |(Tα

s−t)
−1z| is large, we set y = |q||(Tα

s−t)
−1z|,

which yields:

pΛs(z) =
det(Tα

s−t)
−1

(2π)nd|(Tα
s−t)

−1z|

∫ +∞

0

dyynd−1

∫ 1

−1

dτ(1 − τ2)
nd−3

2

∫

Snd−2

dφ

cos(yτ) exp

(

−
yα

|(Tα
s−t)

−1z|α

∫

Snd−1

|〈q̄, η〉|αµ∗
S(dη)

)

, (A.2)

and we can expand the exponential, giving the off-diagonal estimate.

Proposition A.1 (Diagonal expansion). For small |(Tα
s−t)

−1
z|, the following expansion holds:

pΛs(z) =
det (Tα

s−t)
−1

(2π)nd

N
∑

k=0

ak((Tα
s−t)

−1z)
(−1)k

(2k)!
|(Tα

s−t)
−1z|2k +RN (|(Tα

s−t)
−1z|),

where |(Tα
s−t)

−1
z|NRN (|(Tα

s−t)
−1

z|) tends to zero as |(Tα
s−t)

−1
z| tends to zero, and ak((Tα

s−t)
−1

z) is defined
as:

ak((Tα
s−t)

−1
z) =

∫ +∞

0

d|q||q|2k+nd−1

∫ 1

−1

dτ(1 − τ2)
nd−3

2 τ2k
∫

Snd−2

dφ exp

(

−|q|α
∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)

.

Also, using Lemma 5.4 to bound the spectral measure µ∗
S, the following estimate holds:

α−1And−2B
(

d−
1

2
, k+

1

2

)

Γ
(nd+ 2k

α

)

C
2k+nd

α

5.4 ≤ ak((Tα
s−t)

−1z) ≤ α−1And−2B
(

d−
1

2
, k+

1

2

)

Γ
(nd+ 2k

α

)

C
− 2k+nd

α

5.4 ,

where B stands for the β function.

Proof. There is no difference with the non degenerate case for the diagonal expansion. For small |(Tα
s−t)

−1
z|,

we use Taylor’s formula to expand cos(|q||(Tα
s−t)

−1z|τ) in equation (A.1):

pΛs(z) =
det (Tα

s−t)
−1

(2π)nd

∫ +∞

0

d|q||q|nd−1

∫ 1

−1

dτ(1 − τ2)
nd−3

2

(

N
∑

k=0

(−1)k

(2k)!
|q|2k|(Tα

s−t)
−1

z|2kτ2k + R̃N (|(Tα
s−t)

−1
z|)

)

×

∫

Snd−2

dφ exp

(

−|q|α
∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)

=
det(Tα

s−t)
−1

(2π)nd

N
∑

k=0

(−1)k

(2k)!
|(Tα

s−t)
−1z|2k

∫ +∞

0

d|q||q|2k+nd−1

∫ 1

−1

dτ(1 − τ2)
nd−3

2 τ2k

×

∫

Snd−2

dφ exp

(

−|q|α
∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)

+RN (|(Tα
s−t)

−1
z|).
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The estimate on the coefficient also serves to estimate the remainder RN (|(Tα
s−t)

−1
z|). To bound the

coefficient, we use the bound of Lemma 5.4 to get rid-off the integral on Snd−1 in the exponent. The estimate

readily follows form the definition of Euler’s Beta and Gamma function. Note that the coefficient ak((Tα
s−t)

−1z)

depends on (Tα
s−t)

−1
z because of the choice of the parametrization of the sphere Snd−2.

We now turn to large distance estimates.

Proposition A.2 (Off-diagonal expansion). For large |(Tα
s−t)

−1
z|, the following expansion holds:

pΛs(z) =
det (Tα

s−t)
−1

(2π)nd|(Tα
s−t)

−1z|nd

N
∑

k=1

bk((Tα
s−t)

−1
z)

(−1)k+1

k!

(

1

|(Tα
s−t)

−1z|

)αk

+RN (|(Tα
s−t)

−1
z|),

where |(Tα
s−t)

−1
z|−NRN (|(Tα

s−t)
−1

z|) tends to zero as |(Tα
s−t)

−1
z| tends to infinity.

Also, the coefficients bk is the sum of b1k + b2k, with :

b1k((T
α
s−t)

−1
z) = ℜ

[∫ +∞

0

yαk+nd−1

∫ +∞

−∞

e−iτy(1− τ2)
nd−3

2 χ(τ)

∫

Snd−2

(

∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)k

dy

]

,

b2k((T
α
s−t)

−1
z) = ℜ

[

e−iπ2 (αk+nd)

∫ +∞

0

dξξαk+nd−1

∫ 1

1−2ε

dτ(1 − τ2)
nd−3

2 (1− χ(τ))e−τξ

×

∫

Snd−2

dφ

(∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)k]

,

where χ is a regular version of the indicator of [−1, 1]. Eventually, b1((Tα
s−t)

−1
z) is positive.

Proof. We start with the expression (A.2) for the density. As we mentioned above, the idea is to expand
the exponential to derive the off-diagonal expansion. To do so, define χ : R → [0, 1], a regular version of
the indicator of [−1, 1], such that χ(τ) = 1 when |τ | ≤ 1 − 2ε, and χ(τ) = 0 when |τ | ≥ 1 − ε. We split
pΛs = p1(z) + p2(z), with, for k = 1, 2:

pk(z) =
det (Tα

s−t)
−1

(2π)nd|(Tα
s−t)

−1
z|nd

∫ +∞

0

dyynd−1

∫ 1

−1

dτfk(τ) cos(τy)

∫

Snd−2

dφ exp

(

−
yα

|(Tα
s−t)

−1
z|α

∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)

,

where f1(τ) = (1− τ2)
nd−3

2 χ(τ) and f2(τ) = (1− τ2)
nd−3

2 (1− χ(τ)).
For p1(z), we can expand the exponential directly. Since χ is of compact support, we can write the integral

in τ as an integral over the whole line R.

p1(z) =
det (Tα

s−t)
−1

(2π)nd|(Tα
s−t)

−1
z|nd

ℜ

(∫ +∞

0

dyynd−1

∫ +∞

−∞

dτf1(τ)e
iτy

∫

Snd−2

dφ exp

(

−
yα

|(Tα
s−t)

−1z|α

∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)

)

=
detT

(2π)nd|(Tα
s−t)

−1z|nd

+∞
∑

k=0

b1k((T
α
s−t)

−1z)
(−1)k+1

k!
|(Tα

s−t)
−1z|−αk,

where

b1k((T
α
s−t)

−1
z) = ℜ

[∫ +∞

0

yαk+nd−1

∫ +∞

−∞

e−iτyf1(τ)

∫

Snd−2

(

∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)k

dy

]

.

Since f1 is of compact support and as a function of τ the integrand is regular, the function of y defined by

∫ +∞

−∞

eiτyf1(τ)

∫

Snd−2

(

∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)k

dy
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is in the Schwartz space, as the Fourier transform of a function C∞ with compact support. Consequently, the

coefficient b1k((T
α
s−t)

−1
z) is well defined.

For p2(z), we have to be more subtle, as the previous expansion fails in this case. The function of y defined
by:

ynd−1

∫ 1

−1

dτf2(τ) cos(τy)

∫

Snd−2

dφ exp

(

−
yα

|(Tα
s−t)

−1
z|α

∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)

,

is holomorphic, and we can show that its integral on the arc γR(t) = Re−it, t ∈ [0, π
2 ] if α ∈ (0, 1], and t ∈ [0, π

2α ]
if α ∈ (1, 2), tends to zero as R tends to infinity. Hence, from Cauchy’s theorem, we can rotate the positive
half-line accordingly and expand the exponential (roughly speaking, we change variables to y = −iξ if α ∈ (0, 1]
and y = ξ exp(−i π

2α ) if α ∈ (1, 2)):

p2(z) =
det (Tα

s−t)
−1

(2π)nd|(Tα
s−t)

−1
z|nd

ℜ
(

∫ +∞

0

dξ(−i)ndξnd−1

∫ 1

1−2ε

dτf2(τ)e
−τξ

∫

Snd−2

dφ exp

(

−
(−iξ)α

|(Tα
s−t)

−1
z|α

∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)

)

=
detTα

s−t
−1

(2π)nd|(Tα
s−t)

−1
z|nd

+∞
∑

k=0

b2k((T
α
s−t)

−1
z)

(−1)k

k!
|(Tα

s−t)
−1

z|−αk,

with coefficients defined as:

b2k((T
α
s−t)

−1
z) = ℜ

[

e−iπ2 (αk+nd)

∫ +∞

0

dξξαk+nd−1

∫ 1

1−2ε

dτf2(τ)e
−τξ

∫

Snd−2

dφ

(∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)k
]

.

To give an estimate on this coefficient, since the variable τ is not zero, we can change variables to ζ = τξ and
bound

∫

Snd−1 |〈q̄, ς〉|
αµ∗

S(dς) by some constant, so that after integration,

|b2k((T
α
s−t)

−1
z)| ≤ C22εΓ(αk + nd)And−1.

As per usual, the estimate on the coefficient serves as an estimate for the remainder. To get the announced

expansion, we define bk((Tα
s−t)

−1
z) = b1k((T

α
s−t)

−1
z) + b2k((T

α
s−t)

−1
z).

It remains to show that the b0 vanishes. Indeed, to show that b10 = 0, we use symmetry arguments. Also
b20 = 0, as it is the real part of a purely imaginary number.

B Proof of the Estimates on the Kernel H

In this section, we establish the bound (3.17) for the convolution kernel H . To this end, we define for a measure
ν on Sd−1, not necessarily positive, but such that |ν| is finite, the quantity:

φν
Λs
(z) :=

1

(2π)nd

∫

Rnd

dpe−i〈p,z〉

∫

Sd−1

|〈p1, ς〉|αν(dς) exp

(

−

∫

Snd−1

|〈Tα
s−tp, ς〉|

αµ∗
S(dς)

)

.

The calculations we did on pΛs can be carried out for φν
Λs

. In particular, we can change variables in the

exponent and define p = (Tα
s−t)

−1
q to get

φν
Λs
(z) =

det (Tα
s−t)

−1

(2π)nd(s− t)

∫

Rnd

dqe−i〈q,(Tα
s−t)

−1z〉|q|α
∫

Snd−1

|〈q̄, ς〉|αν̃(dς) exp

(

−|q|α
∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)

,

with
∫

Snd−1 |〈q, ς〉|
αν̃(dς) =

∫

Sd−1 |〈q1, ς〉|
αν(dς). We use the same change of variable as for pΛs to get:

φν
Λs
(z) =

det (Tα
s−t)

−1

(2π)nd(s− t)

∫ +∞

0

d|q||q|nd+α−1

∫ 1

−1

dτ(1 − τ2)
nd−3

2 cos(|(Tα
s−t)

−1
z||q|τ)

×

∫

Snd−2

dφ

∫

Snd−1

|〈q̄, ς〉|αν̃(dς) exp

(

−|q|α
∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)

=
det (Tα

s−t)
−1

(2π)nd(s− t)|(Tα
s−t)

−1
z|nd

∫ +∞

0

dyynd+α−1

∫ 1

−1

dτ(1 − τ2)
nd−3

2 cos(τy)

×

∫

Snd−2

dφ

∫

Snd−1

|〈q̄, ς〉|αν̃(dς) exp

(

−
yα

|(Tα
s−t)

−1z|α

∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)

.
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As we can see, the only difference between φν
Λs

and pΛs comes from the integral
∫

Snd−1 |〈q̄, ς〉|
αν̃(dς) and

the additional multiplier |q|α. Those additional terms will not change much the expansions.

Proposition B.1. For small |(Tα
s−t)

−1
z|, the following expansion holds:

φν
Λs
(z) =

detT

(2π)nd(s− t)

N
∑

k=0

aφk((T
α
s−t)

−1z)
(−1)k

(2k)!
|(Tα

s−t)
−1z|2k +RN (|(Tα

s−t)
−1z|),

where |(Tα
s−t)

−1
z|NRN (|(Tα

s−t)
−1

z|) tends to zero as |(Tα
s−t)

−1
z| tends to zero, and aφk((T

α
s−t)

−1
z) is defined

as:

aφk((T
α
s−t)

−1
z) =

∫ +∞

0

d|q||q|2k+α+nd−1

∫ 1

−1

dτ(1 − τ2)
nd−3

2 τ2k

∫

Snd−2

dφ

∫

Snd−1

|〈q̄, ς〉|αν̃(dς) exp

(

−|q|α
∫

Snd−1

|〈q̄, ς〉|αµ∗
S(dς)

)

.

Also, the following estimate holds:

|aφk((T
α
s−t)

−1
z)| ≤ α−1And−2B

(

d−
1

2
, k +

1

2

)

Γ
(nd+ 2k

α
+ 1
)

C− 2k+nd
α −1.

For large |(Tα
s−t)

−1z|, the following expansion holds:

φν
Λs
(z) =

detTα
s−t

−1

(2π)nd(s− t)|(Tα
s−t)

−1
z|nd

N
∑

k=0

bφk((T
α
s−t)

−1
z)

(−1)k

k!

(

1

|(Tα
s−t)

−1
z|

)αk

+RN (|(Tα
s−t)

−1
z|),

where
RN (|(Tα

s−t)
−1z|)

|(Tα
s−t)

−1z|N
tends to zero as |(Tα

s−t)
−1

z| tends to infinity.

Proof. The proof is fairly the same, up to the additional multipliers. For small |(Tα
s−t)

−1z|, the expansion is
straight forward. To get the estimate, on the coefficient, we observe that

∫

Snd−1 |〈q̄, ς〉|
αν̃(dς) is bounded by

some constant, and does not alter whatsoever the boundedness of the integrals. For large |(Tα
s−t)

−1
z|, we split

as in the proof of Proposition A.2, the additional terms do not change the definition of the coefficient. However,
the first term is no more zero, due to the presence of

∫

Snd−1 |〈q̄, ς〉|
αν̃(dς) under the integral, even for k = 0.

Comparing the major term in each expansion on φν
Λs

to the corresponding term in pΛs , we get the following
corollary:

Corollary B.2. There is a positive constant C such that, for all s ∈ [t, T ], for all z ∈ R
nd, the following bound

holds:

|φν
Λs
(z)| ≤

C

s− t
pΛs(z).

We now turn to the control of the convolution kernel H . Recall from Section 5.3, the expression of H :

H(t, T, x, y) =
δ ∧ |Rt,T (y)− x|η(α∧1)

(2π)nd

∫

Rnd

dpe−i〈p,y−RT,t(x)〉

×

(∫

Sd−1

|〈p,Bσ(t, Rt,T (y))ς〉|
α − |〈p,Bσ(t, x)ς〉|α

δ ∧ |Rt,T (y)− x|η(α∧1)
µ(dς)

)

× exp

(

−

∫ T

t

∫

Sd−1

|〈p,R1,·
T,uσ(u,Ru,T (y))ς〉|

αµ(dς)

)

.

Observe that after a change of variables, we can write
∫

Sd−1

|〈p,Bσ(t, Rt,T (y))ς〉|
α − |〈p,Bσ(t, x)ς〉|α

δ ∧ |Rt,T (y)− x|η(α∧1)
µ(dς) =

∫

Sd−1

|〈p1, ς〉|αm(dς),

where m is a signed measure such that |m| is finite. Thus, from the above definition of φm
Λs
(z), we have:

H(t, T, x, y) = δ ∧ |Rt,T (y)− x|η(α∧1)φm
Λs
(y −RT,t(x)).

Applying the controls we obtained for φm
Λs

, we get the upper bound:

|H(t, T, x, y)| ≤ C
δ ∧ |x−Rt,T (y)|

η(α∧1)

T − t
p̃T,y
α (t, T, x, y). (B.1)

33



References

[1] D. G. Aronson. Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc.,
73:890–896, 1967.

[2] E. Barucci, S. Polidoro, and V. Vespri. Some results on partial differential equations and asian options.
Math. Models Methods Appl. Sci, 3:475–497, 2001.

[3] R.F. Bass and E.A. Perkins. A new technique for proving uniqueness for martingale problems. From
Probability to Geometry (I): Volume in Honor of the 60th Birthday of Jean-Michel Bismut, pages 47–53,
2009.

[4] G. Ben Arous and R. Léandre. Décroissance exponentielle du noyau de la chaleur sur la diagonale. II.
Probab. Theory Related Fields, 90(3):377–402, 1991.

[5] K. Bichteler, J. B. Gravereaux, and J. Jacod. Malliavin calculus for processes with jumps. Gordon and
Breach Science Publishers, January 1987.

[6] T. Cass. Smooth densities for solutions to stochastic differential equations with jumps. Stochastic Process.
Appl., 119(5):1416–1435, 2009.

[7] C. Cinti, S. Menozzi, and S. Polidoro. Two-sided bounds for degenerate processes with densities supported
in subsets of Rn. http://arxiv.org/abs/1203.4918, 2012.

[8] F. Delarue and S. Menozzi. Density estimates for a random noise propagating through a chain of differential
equations. Journal of Functional Analysis, 259(6):1577–1630, September 2010.

[9] J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet. Non-equilibrium statistical mechanics of anharmonic
chains coupled to two heat baths at different temperatures. Comm. Math. Phys., 201–3:657–697, 1999.

[10] J. Franchi. Small time asymptotics for an example of strictly hypoelliptic heat kernel. To appear in
Séminaire de Probabilités, 2012.

[11] Yasushi Ishikawa and Hiroshi Kunita. Malliavin calculus on the Wiener-Poisson space and its application
to canonical SDE with jumps. Stochastic Process. Appl., 116(12):1743–1769, 2006.

[12] N. Jacob. Pseudo Differential Operators and Markov Process. Akademie Verlag, 1996.

[13] M. Jeanblanc, M. Yor, and M. Chesney. Mathematical methods for financial markets. Springer Finance.
Springer-Verlag London Ltd., London, 2009.

[14] V. Kolokoltsov. Symmetric stable laws and stable-like diffusion. Proceedings of the London Mathematical
Society, 80(03):725–768, 2000.

[15] V. Konakov and S. Menozzi. Weak error for stable driven sdes: expansion for the densities. Journal of
Theoretical Probability, 24(2):454–478, 2010.

[16] V. Konakov, S. Menozzi, and S. Molchanov. Explicit parametrix and local limit theorems for some degen-
erate diffusion processes. Annales de l’Institut Henri Poincaré, Série B, 46–4:908–923, 2010.

[17] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. I. Stochastic analysis (Katata/Kyoto,
1982), North-Holland Math. Library, 32:271–306, 1984.

[18] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. II. J. Fac. Sci. Univ. Tokyo Sect. IA
Math, 32:1–76, 1985.

[19] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. III. J. Fac. Sci. Univ. Tokyo Sect. IA
Math, 34:391–442, 1987.

[20] R. Léandre. Régularité de processus de sauts dégénérés. Annales de l’IHP Probabilités et statistiques,
21:125–146, 1985.

[21] R. Léandre. Régularité de processus de sauts dégénérés (II). In Annales de l’IHP Probabilités et statistiques,
volume 24, pages 209–236. Elsevier, 1988.

[22] J. Mattingly, A. Stuart, and D. Higham. Ergodicity for SDEs and approximations: locally Lipschitz vector
fields and degenerate noise. Stoch. Proc. Appl., 101–2:185–232, 2002.

34



[23] H. Mc Kean and I. Singer. Curvature and eigen values of the Laplacian. J. Differential Geometry, pages
43 – 69, 1967.

[24] S. Menozzi. Parametrix techniques and martingale problems for some degenerate kolmogorov equations.
Electronic Communications in Probability, 16:234–250, 2011.

[25] J. Picard. On the existence of smooth densities for jump processes. Probability Theory and Related Fields,
105(4):481–511, 1996.

[26] E. Priola and J. Zabczyk. Densities for Ornstein–Uhlenbeck processes with jumps. Bulletin of the London
Mathematical Society, 41(1):41–50, 2009.

[27] K. Sato. Lévy processes and Infinitely divisible Distributions. Cambridge University Press, 2005.

[28] S. J. Sheu. Some estimates of the transition density of a nondegenerate diffusion Markov process. Ann.
Probab., 19–2:538–561, 1991.

[29] A. Shiryaev. Probability. Springer, 1989.

[30] D. W. Stroock. Diffusion processes associated with Lévy generators. Probability Theory and Related Fields,
32(3):209–244, 1975.

[31] D.W. Stroock and S.R.S. Varadhan. Multidimensional diffusion processes. Springer-Verlag Berlin Heidel-
berg New-York, 1979.

[32] D. Talay. Stochastic Hamiltonian dissipative systems: exponential convergence to the invariant measure,
and discretization by the implicit Euler scheme. Markov Processes and Related Fields, 8–2:163–198, 2002.

35


	Introduction
	Assumptions, and Main Result.
	Continuity techniques : the Frozen equation and the parametrix series.
	The Frozen Process.
	The Parametrix Series.
	Controls on the iterated kernels

	Proof of the uniqueness of the Martingale Problem associated with (1.1).
	Proof of the results involving the Frozen process.
	Analysis of the Resolvent.
	Estimates on the frozen density
	Existence and first estimates
	Final derivation of the density bounds
	Proof of Lemma 5.4.
	Proof of Lemma 4.1.

	Estimates on the convolution kernel H.

	Controls of the convolutions.
	Proof of Lemma 3.7.

	Proof of the estimates on the frozen density.
	Proof of the Estimates on the Kernel H

