
HAL Id: hal-00947730
https://hal.science/hal-00947730v1

Submitted on 17 Feb 2014 (v1), last revised 4 Mar 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Scalable and Skew-insensitive Algorithm for Join
Operations using Map/Reduce Model

Mostafa Bamha, Frédéric Loulergue

To cite this version:
Mostafa Bamha, Frédéric Loulergue. A Scalable and Skew-insensitive Algorithm for Join Operations
using Map/Reduce Model. 2014. �hal-00947730v1�

https://hal.science/hal-00947730v1
https://hal.archives-ouvertes.fr

A Scalable and Skew-insensitive
Algorithm for Join Operations

using Map/Reduce Model

Mostafa BAMHA, Frédéric Loulergue

LIFO, Université d’Orléans

Rapport no RR-2014-01

A Scalable and Skew-insensitive Algorithm for

Join Operations using Map/Reduce Model

Mostafa Bamha and Frédéric Loulergue

Université Orléans, INSA Centre Val de Loire, LIFO EA 4022, France
Mostafa.Bamha@univ-orleans.fr

Frederic.Loulergue@univ-orleans.fr

Abstract

For over a decade, Map/Reduce has become a prominent programming model to handle
vast amounts of raw data in large scale systems. This model ensures scalability, reliabil-
ity and availability aspects with reasonable query processing time. However these large
scale systems still face some challenges : data skew, task imbalance, high disk i/o and
redistribution costs can have disastrous effects on performance.

In this paper, we introduce MRFA-Join algorithm: a new Frequency Adaptive algo-
rithm based on Map/Reduce Programming model and distributed histograms for join pro-
cessing on large-scale datasets. A cost analysis of this algorithm shows that our approach
is insensitive to data skew and ensures perfect balancing properties during all stages of
join computation. Performances have been experimented on Grid’5000 infrastructure.

Keywords: Join operations, Data skew, Map/Reduce model, Hadoop framework.

1 Introduction

Join operation is one of the most widely used operations in relational database systems, but it is
also a heavily time consuming operation. For this reason it was a prime target for parallelization.
The join of two relations R and S on attribute A of R and attribute B of S (A and B of the
same domain) is the relation, written R ✶ S, obtained by concatenating the pairs of tuples from
R and S for which R.A = S.B.

Parallel join usually proceeds in two phases: a redistribution phase (generally based on join
attribute hashing) and then a sequential join of local fragments. Many parallel join algorithms
have been proposed. The principal ones are: Sort-merge join, Simple-hash join, Grace-hash

join and Hybrid-hash join [15]. All of them (called hashing algorithms) are based on hashing
functions which redistribute relations such that all the tuples having the same attribute value
are forwarded to the same node. Local joins are then computed and their union is the output
relation. Research has shown that join is parallelizable with near-linear speed-up on distributed
architectures but only under ideal balancing conditions : data skew may have disastrous effects
on the performance [13, 16]. To this end, several parallel algorithms were presented to handle
data skew while treating join queries on parallel database systems [1–3,8, 13, 16].

Today with the rapid development of network technologies, Internet search engines and
Data Mining applications, the need to manage and query a huge amount of datasets every day
becomes essential. Parallel processing of such queries on hundreds or thousands of nodes is
obligatory to obtain a reasonable processing time [7]. However, building parallel programs on
parallel and distributed systems is complicated because programmers must treat several issues
such as load balancing, fault tolerance, etc.

Search engine companies have developed Distributed File Systems (DFS) and parallel pro-
gramming infrastructures that treat these parallel processing related issues without the explicit

2

participation of the programmers [11]. Hadoop [10], Google’s MapReduce model [11], Google
file system [9], BigTable [6] are examples of such systems. These systems are built from thou-
sands of commodity machines and assure scalability, reliability and availability aspects [12].
To reduce disk i/o, each file in such storage systems is divided into chunks or blocks of data
and each block is replicated on several nodes for fault tolerance. Parallel programs are easily
written on such systems following the Map/Reduce paradigm where a program is composed of
a workflow of user defined map and reduce functions [7, 12]. The map function operates on a
(key, value) couple and produces intermediate key with an associated list of values. The reduce

function merges all the intermediate couples having the same key.

In this paper we are interested in the evaluation of join operations on large scale systems
using Map/Reduce model. This programming model is designed to simplify the development
of large-scale, distributed, fault-tolerant data processing applications.

In [17], three well known algorithms for join evaluation were implemented using an extended
Map/Reduce model. These algorithms are Sort-Merge-Join, Hash-Join and Block Nested-Loop

Join. Combining this model with DFS facilitates the task of programmers because they don’t
need to take care of fault tolerance and load balancing issues. However, load balancing in
the case of join operations is not straightforward in the presence of data-skew. In [4] Blanas
& all. have presented an improved versions of MapReduce sort-merge joins and semi-join
algorithms for Log processing, to fix the problem of buffering all records from both inner and
outer relations in “Standard repartition join” provided in Hadoop Contributed join package
(org.apach.hadoop.contrib). For the same reasons as in PDBMS1, even in the presence of
integrated functionality for load balancing and fault tolerance in MapReduce, these algorithms
still suffer from the effect of data skew since all tuples having the same join values in Map phase
are sent to the same reducer which limits the scalability of the presented algorithms [12].

The aim of join operations is to combine information from two or more data sources, Un-
fortunately, MapReduce framework is somewhat inefficient to perform such operations since
data from one source must be maintained in memory for comparison to other source of data.
Consequently, adapting well-known join algorithms to MapReduce is not as straightforward as
one might hope, and MapReduce programmers often use simple but inefficient algorithms to
perform join operations especially in the presence of skewed data [4, 12, 14].

To avoid the effect of data skew in join operations using Map/Reduce model, we introduce
MRFA-Join (Map/Reduce Frequency Adaptive Join) algorithm based on distributed histograms
and randomized key’s redistribution approach. This algorithm, inspired from our previous
research on Join and Semi-join operations in PDBMS, is well adapted to manage huge amount
of data on large scale systems even for highly skewed data.

2 The Map-Reduce Programming Model

Google’s Map/Reduce programming model presented in [7] is based on two functions: Map and
Reduce. Dean and Ghemawat stated that they have inspired their Map/Reduce model from
Lisp and other functional languages [7]. The programmer is only required to implement two
functions Map and Reduce having the following signatures:

map: (k1, v1) −→ list(k2, v2),
reduce: (k2, list(v2)) −→ list(v3).

1PDBMS: Parallel Database Management Systems.

3

The user must write the map function that has two input parameters, a key k1 and an associated
value v1. Its output is a list of intermediate key/value pairs (k2, v2). This list is partitioned
by the Map/Reduce framework depending on the values of k2, where all pairs having the same
value of k2 belong to the same group.

The reduce function, that must also be written by the user, has two parameters as input:
an intermediate key k2 and a list of intermediate values list(v2) associated with k2. It applies
the user defined merge logic on list(v2) and outputs a list of values list(v3).

Map/Reduce is a simple yet powerful framework for implementing distributed applications
without having extensive prior knowledge of issues related to data redistribution, task allocation
or fault tolerance in large scale distributed systems.

Distributed File

System (DFS)

Mapper

Reducer

split
split
split
split
split
split
split
split
split

Mapper

Mapper

Mapper

bucket

bucketbucket

bucket

Reducer

Reducer

bucket

bucketbucket

bucket

bucket

bucketbucket

bucket

bucket

bucketbucket

bucket

split
split
split
split
split
split
split

Map phase Reduce phase

DFS data read.

Sort, Combine and Partition data.

DFS data write.

Shuffle and Sort data

Distributed File

System (DFS)

Figure 1: Map-reduce framework.

In this paper, we used an open source version of Map/Reduce called Hadoop developed
by ”The Apache Software Foundation”. Hadoop framework includes a distributed file system
called HDFS2 designed to store very large files with streaming data access patterns.

For efficiency reasons, in Hadoop Map/Reduce framework, users may also specify a “Com-
bine function”, to reduce the amount of data transmitted from Mappers to Reducers during
shuffle phase (see fig 1). The “Combine function” is like a local reduce applied (at map worker)
before storing or sending intermediate results to the reducers. The signature of Combine func-
tion is:

combine: (k2, list(v2)) −→ (k2, list(v3)).

To cover a large range of applications need in term of computation and data redistribution,
in Hadoop framework, the user can optionally implement two additional functions : init() and
close() called before and after each map or reduce task. The user can also specify a “partition
function” to send each key k2 generated in map phase to a specific reducer destination. The
reducer destination may be computed using only a part of the input key k2 (Hadoop’s default
“partition function” is based on “hashing“ the whole input key k2). The signature of the
partition function is :

2HDFS: Hadoop Distributed File System.

4

partition: (Key k2) −→ Integer. /* Integer is between 0 and the number

of reducers #numReduceTasks */

3 MRFA-Join: A Map-Reduce Skew Insensitive Join Al-
gorithm

As stated in the introduction section, Map/Reduce hash based join algorithms presented in
[4,17] may be inefficient in the presence of highly skewed data [14] due to the fact that in Map
function in these algorithms, all the key-value pairs (k1, v1) representing the same entry for the
join attribute are sent to the same reducer (In Map phase, emitted key-value pairs (k2, v2), the
key k2 is generated by only using join attribute values in the manner that all records with the
same join attribute value will be forwarded to the same reducer).

To avoid the effect of repeated keys, Map user-defined function should generate distinct
output keys k2 even for records having the same join attribute value. This is made possible by
using a user defined partitioning function in Hadoop : the reducer destination for a key k2 can
be computed from different parts of key k2 and not by a simple hashing of all input key k2. To
this end, we introduce, in the next section, a join algorithm called MRFA-Join (Map/Reduce
Frequency Adaptive Join) based on distributed histograms and a random redistribution of
repeated join attribute values combined with an efficient technique of redistribution where only
relevant data is redistributed across the network during the shuffle phase of reduce step. A cost
analysis for MRFA-Join is also presented to give for each computation step, an upper bound of
execution time in order to prove the strength of our approach.

In this section, we describe the implementation of MRFA-Join using Hadoop MapReduce
framework as it is, without any modification. Therefore, the support for fault tolerance and load
balancing in MapReduce and Distributed File System are preserved if possible: the inherent
load imbalance due to repeated values must be handled efficiently by the join algorithm and
not by the Map/Reduce framework.

To compute the join, R ✶ S, of two relations (or datasets) R and S, we assume that input
relations R and S are divided into blocks (splits) of data. These splits are stored in Hadoop
Distributed File System (HDFS). These splits are also replicated on several nodes for reliability
issues. Throughout this paper, for a relation T ∈ {R,S}, we use the following notations:

• |T |: number of pages (or blocks of data) forming T ,

• ||T ||: number of tuples (or records) in relation T ,
• T : the restriction (a fragment) of relation T which contains tuples which appear in the
join result. ||T || is, in general, very small compared to ||T ||,

• T
map
i : the split(s) of relation T affected to mapper i,

• T red
i : the split(s) of relation T affected to reducer i,

• Ti: the split(s) of relation T affected to mapper i,

• ||Ti||: number of tuples in split Ti,

• Histmap(Tmap
i): Mapper’s local histogram of Tmap

i , i.e. the list of pairs (v, nv) where v is
a join attribute value and nv its corresponding frequency in relation T

map
i on mapper i,

• Histredi (T) : the fragment of global histogram of relation T on reducer i,

• Histredi (T)(v) is the global frequency nv of value v in relation T ,

• HistIndex(R ✶ S): join attribute values that appear in both R and S and their corre-
sponding three parameters: Frequency index, Nb buckets and random int used in commu-
nications templates,

5

• cr/w: read/write cost of a page of data from/to distributed file system (DFS),
• ccomm: communication cost per page of data,

• tis: time of a simple search in a Hashtable on node i,

• tih: time to add an entry to a Hashtable on node i,

• NB mappers: number of job mapper nodes,

• NB reducers: number of job reducer nodes.

We will describe MRFA-Join algorithm while giving a cost analysis for each computation
phase. Join computation in MRFA-Join proceeds in two map-reduce jobs:

a. the first map-reduce job is performed to compute distributed histograms and to create
randomized communications templates to redistribute only relevant data while avoiding
the effect of data skew,

b. the second one, is used to generate join output result by using communications templates
carried out in the previous step.

In the following, we will describe MRFA-Join steps while giving an upper bound on the
execution time of each map-reduce step. The O(. . .) notation only hides small constant fac-
tors: they only depend program’s implementation but neither on data nor on the machine
parameters. Data redistribution in MRFA-Join algorithm is the basis for efficient and scalable
join processing while avoiding the effect of data skew in all the stages of join computation.
MRFA-Join algorithm proceeds in 4 steps:

a.1 Map phase to generate a tagged “local histogram” for input relations:
In this step, each mapper i reads its assigned data splits (blocks) of relation R and S
from distributed file system (DFS) and emits a couple (<K,tag>,1) for each record in
R

map
i (resp. Smap

i) where K is join key value and tag represents input relation tag. The
cost of this step is :

T ime(a.1.1) = O
(NB mappers

max
i=1

cr/w ∗ (|R
map
i |+ |Smap

i |) +
NB mappers

max
i=1

(||Rmap
i ||+ ||Smap

i ||)
)

.

Emitted couples (<K,tag>,1) are then combined and partitioned using a user defined
partitioning function by hashing only key part K and not the whole mapper tagged key
<K,tag>. The result of combine phase is then sent to reducers destination in the shuffle
phase of the the following reduce step. The cost of this step is at most : T ime(a.1.2) =

O

(

NB mappers
max
i=1

(

||Hist
map(Rmap

i)|| ∗ log ||Hist
map(Rmap

i)||+ ||Hist
map(Smap

i)||∗

log ||Hist
map(Smap

i)||) + ccomm ∗ (|Hist
map(Rmap

i)|+ |Hist
map(Smap

i)|
)

)

.

And the global cost of this step is: T imestepa.1
= T ime(a.1.1) + T ime(a.1.2).

We recall that, in this step, only local histograms Histmap(Rmap
i) and Histmap(Smap

i) are
sorted and transmitted across the network and the size of these histograms are very small
compared to the size of input relations R

map
i and S

map
i owing to the fact that, for a

relation T , Histmap(T) contains only distinct entries of the form (v, nv) where v is a join
attribute value and nv the corresponding frequency.

a.2 Reduce phase to create join result global histogram index and randomized

communication templates for relevant data:

At the end of shuffle phase, each reducer i will receive a fragment of Histredi (R)

6

(resp. Histredi (S)) obtained through hashing of distinct values of Histmap(Rmap
j) (resp.

Histmap(Smap
j)) of each mapper j. Received Histredi (R) and Histredi (S) are then merged to

compute global histogram HistIndexi(R ✶ S) on each reducer i. HistIndex(R ✶ S) is used
to compute randomized communication templates for only records associated to relevant
join attribute values (i.e. values which will effectively be present the join result).
In this step, each reducer i, computes the global frequencies for join attribute values which
are present in both left and right relations and emits, for each join attribute K, an entry
of the form : (K,<Frequency index(K),Nb buckets1(K),Nb buckets2(K)>) where:

– Frequency index(K) ∈ {0, 1, 2} will allow us to decide if, for a given relevant join
attribute value K, the frequencies of tuples of relations R and S having the value K
are greater (resp. smaller) than a defined threshold frequency f0. It also permits us
to choose dynamically the probe and the build relation for each value K of the join
attribute. This choice reduces the global redistribution cost to a minimum.
For a given join attribute value K ∈ HistIndexi(R ✶ S),

➠ Frequency index(K) = 0, means that the frequency of tuples of relations R and S,
associated to value K, are less than the threshold frequency: Histredi (R)(K) < f0

and Histredi (S)(K) < f0,

➠ Frequency index(K) = 1, means that the frequency of tuples of relation R having
the value K are greater than the threshold frequency, and the frequency in
relation R for this attribute value is greater than the corresponding frequency
in relation S: Histredi (R)(K) ≥ f0 and Histredi (R)(K) ≥ Histredi (S)(K).

➠ Frequency index(K) = 2, means that the frequency of tuples of relation S asso-
ciated to value K are greater than the threshold frequency, and the frequency
in relation S for this attribute value is greater than the corresponding frequency
in relation R: Histredi (S)(K) ≥ f0 and Histredi (S)(K) > Histredi (R)(K),

– Nb buckets1(K): is the number of buckets used to partition records of relation asso-
ciated to the highest frequency for join attribute value K,

– Nb buckets2(K): is the number of buckets used to partition records of relation asso-
ciated to the lowest frequency for join attribute value K.

For a join attribute value K, the number of buckets Nb buckets1(K) and Nb buckets2(K)

are generated in a manner that each bucket will fit in reducer’s memory. This makes the
algorithm insensitive to the effect of data skew even for highly skewed input relations.
Using this information, each reducer i, has local knowledge of how relevant records of
input relations will be redistributed in the next following map phase.
To guarantee a perfect balancing of the load among processing nodes, communication
templates are carried out jointly by all reducers (and not by a coordinator node) for
only join attribute values which are present in join result : Each reducer deals with the
redistribution of the data associated to a subset of relevant join attribute values.

b.1 Map phase to create a local hash table and to redistribute relevant data using

randomized communication templates:

In this step, each mapper i reads join result global histogram index, HistIndex, to create
a local Hash table in time: T ime(b.1.1) = O(maxNB mappers

i=1
tih ∗ ||HistIndex(R ✶ S)||).

Once the local hash table is created on each mapper, input relations are then read from
DFS, and each record is either discarded (if record’s join key is not present in the local
hash table) or routed to a designated random reducer destination using communication
templates computed in step a.2 (Map phase details are described in Algorithm 6).
Figure 2 gives an example of communication templates used to partition data for

7

(K,Tag1)

(K,Tag2)

(K,0,1,Tag1) (K,1,1,Tag1) (K,2,1,Tag1) (K,3,1,Tag1)

(K,1,2,Tag2,0) (K,2,2,Tag2,0) (K,4,2,Tag2,0)(K,3,2,Tag2,0)(K,0,2,Tag2,0)

(K,1,2,Tag2,1) (K,2,2,Tag2,1) (K,4,2,Tag2,1)(K,3,2,Tag2,1)(K,0,2,Tag2,1)

(K,1,2,Tag2,2) (K,2,2,Tag2,2) (K,4,2,Tag2,1)(K,3,2,Tag2,2)(K,0,2,Tag2,2)

(K,4,1,Tag1)

Reducer: i0 Reducer: i0+1 Reducer: i0+2 Reducer : i0+2 Reducer : i0+4

Figure 2: Generated buckets associated to a join key K corresponding to a high frequency
where records from relation associated to Tag1 (i.e relation having the highest frequency) are
partitioned into five buckets and those of relation associated to Tag2 are partitionned into three
buckets.

(K,<Frequency index(K),Nb buckets1(K),Nb buckets2(K)>), corresponding to a join attribute
K associated to a high frequency, into small buckets. In this example, data associated
to relation corresponding to Tag1 is partitioned into 5 buckets (i.e. Nb buckets1(K) =
5) where as those of relation corresponding to Tag2 is partitioned into 3 buckets (i.e.
Nb buckets2(K) = 3). For these buckets, appropriate map keys are generated so that all
records in each bucket of relation associated to Tag1 are forwarded to the same reducer
holding all the buckets of relation associated to Tag2. This partitioning guarantees that
join tasks, are generated in a manner that the input data for each join task will fit in the
memory of processing node and never exceed a user defined size, even for highly skewed
data.
The global cost of this step is at most:

T imestepa.2
= O

(NB reducers
max
i=1

(||Hist
red
i (R)||+ ||Hist

red
i (S)||)

)

.

Note that, HistIndex(R ✶ S) ≡ ∪i(Histredi (R) ∩ Histredi (S)) and ||HistIndex(R ✶ S)|| is
very small compared to ||Histred(R)|| and ||Histred(S)||.
The cost of this step is :

T ime(b.1.2) = O

(

NB mappers
max
i=1

(cr/w ∗ (|R
map
i |+ |Smap

i |) + t
i
s ∗ (||R

map
i ||+ ||Smap

i ||)+

||R
map
i || ∗ log ||R

map
i ||+ ||S

map
i || ∗ log ||S

map
i ||+ ccomm ∗ (|R

map
i |+ |S

map
i |))

)

,

the term cr/w ∗ (|R
map
i |+ |Smap

i |) is time to read input relations from DFS on each mapper
i, the term tis ∗ (||R

map
i || + ||Smap

i ||) is the time to perform a hash table search for each
input record, ||R

map
i || ∗ log ||R

map
i || + ||S

map
i || ∗ log ||S

map
i || is time to sort relevant data on

mapper i, where as the term ccomm ∗ (|R
map
i | + |S

map
i |)) is time to communicate relevant

data from mappers to reducers, using our communication templates described in step a.2.

8

Hence the global cost of this step is:

T imestepb.1
= T ime(b.1.1) + T ime(b.1.2).

We recall that, in this step, only relevant data is emitted by mappers (which reduces
communication cost in the shuffle step to a minimum) and records associated to high
frequencies (those having a large effect on data skew) are redistributed according to an
efficient dynamic partition/replicate schema to balance load among reducers and avoid
the effect of data skew. However records associated to low frequencies (these records have
no effect on data skew) are redistributed using hashing functions.

b.2 Reduce phase to compute join result:

At the end of step b.1, each reducer i receives a fragment R
red
i (resp. S

red
i) obtained

through randomized hashing of R
map
j (resp. S

map
j) of each mapper j and performs a local

join of received data. This reduce phase is described in detail in Algorithm 8. The cost
of this step is:

T imestepb.2 = O(
NB reducers

max
i=1

(||R
red
i ||+ ||S

red
i ||+ cr/w ∗ |R

red
i ✶ S

red
i |).

The global cost of MRFA-Join is therefore the sum of the above four steps :

T imeMRFA−Join = T imestepa.1
+ T imestepa.2

+ T imestepb.1
+ T imestepb.2

Using hashing technique, the join computation of R ✶ S requires at least the following lower
bound : boundinf =

Ω

(

NB mappers
max
i=1

(

(cr/w + ccomm) ∗ (|Rmap
i |+ |Smap

i |) + ||Rmap
i || ∗ log ||Rmap

i ||+ ||Smap
i || ∗ log ||Smap

i ||
)

+
NB reducers

max
i=1

(

||Rred
i ||+ ||S

red
i ||+ cr/w ∗ |R

red
i ✶ S

red
i |

)

)

,

where cr/w ∗ (|R
map
i | + |Smap

i |) is the cost of reading input relations from DFS on node i. The
term ||Rmap

i ||∗ log ||Rmap
i ||+ ||Smap

i ||∗ log ||Smap
i || represents the cost to sort input relations records

on map phase. The term ccomm ∗ (|R
map
i |+ |Smap

i |) represents the cost to communicate data from
mappers to reducers,the term ||Rred

i ||+ ||Sred
i || is time to scan input relations on reducer i and

cr/w ∗ |R
red
i ✶ Sred

i | represents the cost to store reducer’s i join result on the DFS.

MRFA-Join algorithm has asymptotic optimal complexity when: ||HistIndex(R ✶ S)||

≤ max

(

NB mappers
max
i=1

(||Rmap
i || ∗ log ||Rmap

i ||, |Smap
i || ∗ log ||Smap

i ||),
NB reducers

max
i=1

||Rred
i ✶ S

red
i ||)

)

, (1)

this is due to the fact that, all other terms in T imeMRFA−Join are bounded by those of
boundinf . Inequality 1 holds, in general, since HistIndex(R ✶ S) contains only distinct values
that appear in both relations R and S.

Remark: In practice, data imbalance related to the use of hashing functions can be due to:

• a bad choice of used hash function. This imbalance can be avoided by using the hashing
techniques presented in the literature making it possible to distribute evenly the values
of the join attribute with a very high probability [5],

9

• an intrinsic data imbalance which appears when some values of the join attribute ap-
pear more frequently than others. By definition a hash function maps tuples having
the same join attribute values to the same processor. There is no way for a clever
hash function to avoid load imbalance that results from these repeated values [8]. But
this case cannot arise here owing to the fact that histograms contain only distinct values
of the join attribute and the hashing functions we use are always applied to histograms
or applied to randomized keys.

4 Experiments

To evaluate the performance of MRFA-Join algorithm presented in this paper, we compared
our algorithm to the best known solutions called respectively Improved Repartition Join

and Standard Repartition Join. Improved Repartition Join was introduced by Blanas et
al. in [4], where as Standard Repartition Join is the join algorithm provided in Hadoop
framework’s contributions. We ran a large series of experiments on the Grid’5000 testbed
where 50 nodes were randomly selected from three clusters of Grid’5000 Sophia’s site. Nodes
characteristics are described in Table 1. Setting up a Hadoop cluster consisted of deploying
each centralized entity (namenode and jobtracker) on a dedicated machine and co-deploying
datanodes and tasktrackers on the rest of the nodes. Typically, we used a separate machine as
a Hadoop client to manage job submissions. Data replication parameter was fixed to three in
Hadoop Distributed File System (HDFS) configuration file.

Table 1: Grid’5000 - Sophia’s site computing resource characteristics

Cluster Number CPU CPUs Cores Memory Disk
ID of nodes per node per CPU (GB) Storage

1 56 AMD@2.2GHz 2 2 3GB RAM 135GB
2 50 AMD@2.6GHz 2 2 3GB RAM 232GB
3 45 Intel@2.26GHz 2 4 31GB RAM 557GB

To study the effect of data skew on performance, join attribute values in the generated data
have been chosen to follow a Zipf distribution [18] as it is the case in most database tests:
Zipf factor was varied 0 (for a uniform data distribution) to 1.0 (for a highly skewed data).
Input relations size was fixed to 200M records for the right relation (approximately 20GB of
data) and 10M of records for the left relation (approximately 1GB of data) and the join result
varying from approximately 40M to 1700M records (corresponding respectively to about 8GB
and 340GB of output data).

We noticed in all the tests and also those presented in figure 3, that our MRFA-Join algorithm
outperforms both Improved Repartition Join and Standard Repartition Join algorithms
even for low or moderated skew. We recall that our algorithm requires the scan of input data
twice : the fist one for histogram processing and the second scan is performed for join processing.
The cost analysis and tests performed showed that the overhead related to histogram processing
is compensated by the gain in join processing since only relevant data (that appears in the join
result) is emitted by mappers in the map phase which reduce considerably the amount of data
transmitted over the network in shuffle phase (see figure 4). Moreover, for skew factors varying
from 0.6 to 1.0, both Improved Repartition Join and Standard Repartition Join jobs fails

10

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Jo
in

 P
ro

ce
ss

in
g

Ti
m

e
(S

ec
)

Attribute Value Skew : Zipf parameter

Improved_Repartition_Join
Standard_Repartition_Join

MRFA_Join_Preprocessing
MRFA_Join

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Figure 3: Data skew effect on Hadoop join processing time

 0

 5

 10

 15

 20

 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ed

uc
e

Sh
uf

fle
 (

G
by

te
s)

Attribute Value Skew : Zipf parameter

Improved_Repartition_Join
Standard_Repartition_Join

MRFA_Join_Preprocessing
MRFA_Join

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Jo
b

fa
ile

d
: O

ut
 o

f m
em

or
y

Figure 4: Data skew effect on the amount of data moved across the network during Shuffle phase

due to memory lack this is due to the fact that, in reduce phase, all the records emitted by the
mappers having the same join key are send and processed by the same reducer which makes
both Improved Repartition Join and Standard Repartition Join algorithms very sensitive
to data skew and limits their scalability. This can not occur in MRFA-Join owing to the fact
that attribute values associated to high frequencies are forwarded to distinct reducers using
randomized join attribute keys and not by a simple hashing of record’s join key. We expect
a higher gain related to histograms pre-processing in complex queries computation due to the
fact that histograms can be used to reduce drastically the costs of communication and disk
input/output of intermediate data by generating only relevant data for each sub-query.

11

5 Conclusion and future work

In this paper, we have introduced the first skew-insensitive join algorithm, called MRFA-Join,
using Map/Reduce model, based on distributed histograms and randomized keys redistribution
for highly skewed data. The detailed information provided by these histograms, allows us
to reduce communications costs to only relevant data while guaranteeing perfect balancing
processing due to the fact that, all the generated join tasks and buffered data do not never
exceed a user defined size using threshold frequencies. This makes the algorithm scalable and
outperforming existing map-reduce join algorithms which fail to handle skewed data whenever
a join task can not fit in the available node’s memory. We mention that MRFA-Join can also
benefit from Map/Reduce underlying load balancing framework in heterogeneous or a multi-user
environment since MRFA-Join is implemented without any change in Map/Reduce framework.

Our experience with the join operations shows that the overhead related to distributed his-
tograms processing remains very small compared to the gain in performance and communication
costs since only relevant data is processed or redistributed across the network.
Future work will consist in studying how distributed histograms could be used to compute
more complex or pipelined join queries to reduce communication and disk input/output costs
for intermediate data for each sub-query by generating only relevant data.

Acknowledgements

Experiments presented in this paper were carried out using the Grid’5000 experimental testbed, being

developed under the INRIA ALADDIN development action with support from CNRS, RENATER and

several Universities as well as other funding bodies (see https://www.grid5000.fr). This work is also

partly supported under the INEX project funded by the Conseil Général du Loiret.

References

[1] M. Bamha. An optimal and skew-insensitive join and multi-join algorithm for distributed archi-
tectures. In Proceedings of the International Conference on Database and Expert Systems Applica-
tions (DEXA’2005). 22-26 August, Copenhagen, Danemark, volume 3588 of LNCS, pages 616–625.
Springer, 2005.

[2] M. Bamha and G. Hains. A skew insensitive algorithm for join and multi-join operation on
Shared Nothing machines. In the 11th International Conference on Database and Expert Systems
Applications DEXA’2000, volume 1873 of Lecture Notes in Computer Science, pages 644–653,
London, United Kingdom, 2000. Springer-Verlag.

[3] M. Bamha and G. Hains. A frequency adaptive join algorithm for Shared Nothing machines.
Journal of Parallel and Distributed Computing Practices (PDCP), Volume 3, Number 3, pages
333-345, September 1999. Appears also in Progress in Computer Research, F. Columbus Ed. Vol.
II, Nova Science Publishers, 2001.

[4] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and Yuanyuan
Tian. A comparison of join algorithms for log processing in mapreduce. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, SIGMOD ’10, pages 975–986,
New York, NY, USA, 2010. ACM.

[5] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of Computer
and System Sciences, 18(2):143–154, April 1979.

[6] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a distributed storage system

12

https://www.grid5000.fr

for structured data. In OSDI ’06: Proceedings of the 7th symposium on Operating systems design
and implementation, pages 205–218, Berkeley, CA, USA, 2006. USENIX Association.

[7] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. In
OSDI ’ 04: Sixth Symposium on Operating System Design and Implementation, San Francisco,
CA, 2004.

[8] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Practical Skew Handling in
Parallel Joins. In Proceedings of the 18th VLDB Conference, pages 27–40, Vancouver, British
Columbia, Canada, 1992.

[9] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating systems principles, pages 29–43, New
York, NY, USA, 2003. ACM Press.

[10] Apache hadoop. http://hadoop.apache.org/core/.

[11] Ralf Lämmel. Google’s mapreduce programming model — revisited. Science of Computer Pro-
gramming, 68(3):208–237, 2007.

[12] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, and Bongki Moon. Parallel data
processing with mapreduce: A survey. ACM SIGMOD Record, 40(4):11–20, December 2011.

[13] A. N. Mourad, R. J. T. Morris, A. Swami, and H. C. Young. Limits of parallelism in hash join
algorithms. Performance evaluation, 20(1/3):301–316, May 1994.

[14] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. Dewitt, Samuel Madden,
and Michael Stonebraker. A comparison of approaches to large-scale data analysis. In In SIGMOD
’09: Proceedings of the 35th SIGMOD international conference on Management of data, pages
165–178. ACM, 2009.

[15] D. Schneider and D. DeWitt. A performance evaluation of four parallel join algorithms in a
shared-nothing multiprocessor environment. In J. Clifford, B. Lindsay, and D. Maier, editors,
Proceedings of the 1989 ACM SIGMOD International Conference on the Management of Data,
Portland, Oregon, pages 110–121, New York, NY 10036, USA, 1989. ACM Press.

[16] M. Seetha and P. S. Yu. Effectiveness of parallel joins. IEEE, Transactions on Knowledge and
Data Enginneerings, 2(4):410–424, December 1990.

[17] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-reduce-merge: sim-
plified relational data processing on large clusters. In SIGMOD ’07: Proceedings of the 2007
ACM SIGMOD international conference on Management of data, pages 1029–1040, New York,
NY, USA, 2007. ACM.

[18] G. K. Zipf. Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology.
Reading, MA, Adisson-Wesley, 1949.

13

6 Appendix: Implementation of MRFA-Join functions

Algorithm 1 MRFA-join algorithm workflow.

a.1◮ Map phase: /* To generate a tagged “Local histogram” for input relations */
✄ Each mapper i reads its assigned data splits (blocks) of relation R

map
i and S

map
i from the DFS

✄ Extract the join key value from input relation’s record.
✄ Get a tag to identify source input relation.
✄ Emit a couple ((join key,tag),1) /* a tagged join key with a frequency 1 */
◮ Combine phase: To compute local frequencies for each join key value in relations Rmap

i and S
map
i

✄ Each combiner, for each pair (join key,tag) computes the sum of generated local
frequencies associated to the join key value in each tagged join key generated in Map phase.
◮ Partition phase:
✄ For each emitted tagged join key, computes reducer destination according to only join key value.

a.2◮ Reduce phase: /* To combine Shuffle’s output records and to create Global join histogram index */
✄ Compute the global frequencies for only join key values present in both relations R and S.
✄ Emit, for each join key, a couple (join key,(frequency index,Nb buckets1, Nb buckets2)).
/* frequency index ∈ {0, 1, 2} used to get detailed information about data distribution in R and S */

b.1◮ Map phase:
✄ Each mapper, i, reads join result Global histogram index from DFS, and creates a local Hashtable.
✄ Each mapper, i, reads its assigned data splits (blocks) of relation R

map
i and S

map
i from DFS, and

generates randomized communication templates for records in R
map
i and S

map
i according to join key

value and its corresponding frequency index in HashTable. In communication templates, only relevant
records from R

map
i and S

map
i are emitted using a hash or a randomized partition/replicate schema.

Emit relevant randomised tagged records from relations Rmap
i and S

map
i .

◮ Partition phase:
✄ For each emitted tagged join key, compute reducer destination according to the value of join key,
and reducer random destination generated in Map phase;

b.2◮ Reduce phase: to combine Shuffle’s output records and to generate join result

Algorithm 2 Map function /* To generate local histograms values and tag input relation records */

map(K: null, V : a record from a split of either relation R or S) {
✄ relation tag ← get relation tag from current relation split;
✄ join key ← extract the join column from record V of relation R;
✄ Emit ((join key,relation tag), 1);

}

Algorithm 3 Combine function: /* To compute local histogram’s frequencies for join key */

combine(Key K,List List V) { /* List V is the list of values “1” corresponding to the unique
frequencies in relation Ri or Si emitted by Mappers */

✄ frequency ← sum of frequencies in List V ;
✄ Emit (K,frequency);

}

14

Algorithm 4 Partitioning function /* Returns for, each composite key K=(join key,relation tag)

emitted in Map phase, an integer corresponding to destination reducer for the input key K. */

int partition(K: input key){
✄ join key ← K.join key; /* extracts join key part from input key K */
✄ Return (HashCode(join key) % NB reducers);

}

Algorithm 5 Reduce function /* To compute HistIndex(R ✶ S) Global histogram index */

void reduce init(){
hash index ← 0; /* a flag to identify low frequencies records to redistribute using hashing */
partition index ← 1; /* a flag to identify relation’s records to partition */
replicate index ← 2 ; /* a flag to identify relation’s records to replicate */
last inner key ← ”” ; /* to store the last processed key in inner relation */
last inner frequency=0; /* to store the frequency of the last processed key in inner relation */

/* THRESHOLD FREQ: a user defined threshold frequency used for communication templates */
}
reduce(Key K,List List V) { /* List V : list of local frequencies of join key in either Rmap

i or Smap
i */

✄ join key ← K.join key; /* extracts join key part from input key K */
✄ relation tag ← K.relation tag; /* extracts relation tag part from input key K */
If (relation tag corresponds to inner relation) Then

✄ last inner key ← join key;
✄ last inner frequency ← sum of frequencies in List V ;

Else If (join key = last inner key) Then
frequency ← sum of frequencies in List V ;
If ((last inner frequency<THRESHOLD FREQ) and (frequency<THRESHOLD FREQ) Then
Emit (join key, (hash index,1,1));

ElseIf (last inner frequency ≥ frequency)
Nb buckets1 ← ⌈last inner frequency / THRESHOLD FREQ⌉ ;
Nb buckets2 ← ⌈frequency / THRESHOLD FREQ⌉;
Emit (join key, (partition index,Nb buckets1,Nb buckets2));

Else
Nb buckets1 ← ⌈frequency / THRESHOLD FREQ⌉;
Nb buckets2 ← ⌈last inner frequency / THRESHOLD FREQ⌉;
Emit (join key, (replicate index,Nb buckets1,Nb buckets2));

End If;
End If;

End If;
}

15

Algorithm 6 Map function: /* To generate relevant randomized tagged records for input relations

using HistIndex communication templates.*/

void map init(){
inner tag ← 1 ; /* a tag to identify relation R records */
outer tag ← 2 ; /* a tag to identify relation S records */
hash index ← 0; /* a flag to identify hash based records */
partition index ← 1; /* a flag to identify records to partition */
replicate index ← 2 ; /* a flag to identify records to replicate */
Read HistIndex(R ✶ S): histogram index from DFS;
Build HashTable: a hash table using join key values and frequency’s index present in HistIndex(R ✶ S);
}
map(K: null, V : a record from a split of either relation R or S) {
✄ relation tag ← get relation tag from current relation split;
✄ join key ← extract the join column from record V of relation R;
If (join key ∈ HashTable) Then
✄ frequency index ← HashTable(join key).frequency index; /* gets join key’s frequency index from HashTable */
✄ Nb buckets1 ← HashTable(join key).Nb buckets1; /* extracts Nb buckets1 for join key from HashTable */
✄ Nb buckets2 ← HashTable(join key).Nb buckets2; /* extracts Nb buckets2 for join key from HashTable */
✄ random integer ← Generate Random Integer(join key); /* generates a random integer for join key */
If (frequency index = hash index) Then

Emit ((join key,-1,relation tag, V); /* reducer dest=-1 for records, with low frequencies, to be hashed */
ElseIf

(

((frequency index = partition index) and (relation tag = inner tag))
or ((frequency index = replicate index) and (relation tag=outer tag))

)

random dest ← (random integer+SRAND(Nb buckets1)) % Nb buckets1;
/* To generate a random integer between 0 and Nb buckets1 */
Emit ((join key,random dest,(partition index,relation tag)), V);

Else
For (int i=0; i<Nb buckets1; i++) Do
random dest ← (random integer+i) % Nb buckets1;
bucket dest ← i % Nb buckets2;
Emit ((join key,random dest,(replicate index,relation tag,bucket dest)), V);

End For ;
End If ;

End If ;
}

Algorithm 7 Partitioning function /* Returns for each composite input key

K =(join key,random integer,DataTag) emitted in Map phase, an integer corresponding to des-

tination reducer for key K. */

int partition(K: input key){
join key ← K.join key; /* extracts join key part from input key K */
relation tag ← K.relation tag; /* extracts relation tag part from input key K */
reducer dest ← K.random dest; /* extracts reducer destination number from input key K */
If (reducer dest 6= -1) Then
Return (reducer dest % NB reducers);

Else
Return (HashCode(join key) % NB reducers);

End If ;
}

16

Algorithm 8 Reduce function: /* to generate join result. */

void reduce init(){
last key ← ”” ; /* to store the last processed key */
inner relation tag ← 1 ; /* a tag to identify Inner relation records */
outer relation tag ← 2 ; /* a tag to identify Outer relation records */
Array buffer ← NULL ; /* an array list used to buffer records from one relation */
}
reduce(Key K,List List V) { /* List List V : the list of records from either relation R or S */
✄ join key ← K.join key; /* extracts the join key part from input key K */
✄ relation index ← K.relation index; /* extracts relation index part from input key K */
✄ relation tag ← K.relation tag; /* extracts relation tag part from input key K */
If ((join key = last key) and (relation index 6= inner relation tag)) Then

For each record (x ∈ List V) Do
For each record (y ∈ Array buffer) Do

If (relation tag = outer relation tag) Then
Emit (NULL, x⊕ y);

Else
Emit (NULL, y ⊕ x);

End If ;
End For ;

End For ;
Else
✄ Array buffer.Clear();
For each record (x ∈ List V) Do

Array buffer.Add(x);
End For ;
✄ last key ← K.join key;

End if
}

17

	Introduction
	The Map-Reduce Programming Model
	MRFA-Join: A Map-Reduce Skew Insensitive Join Algorithm
	Experiments
	Conclusion and future work
	Appendix: Implementation of MRFA-Join functions

