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1 Introduction

Let d ≥ 2 be an integer. We consider the Navier–Stokes equations in R
d , for an incom-

pressible fluid submitted to an external force f : Rd × R
+ → R

d :










∂tu+ u · ∇u = ∆u−∇p+ f

divu = 0

u(x, 0) = a(x)

(1)

We want to investigate the effect of the external force on the large time and spatial
asymptotics of the solution. In particular, we will show that even if f is small and well
localized (say, compactly supported in space-time) but with non-zero mean, then the ve-
locity of the fluid particles at all times t > 0 and in all point x outside of balls B(0, R(t))
with large radii, is consirerably faster than in the case of the free Navier–Stokes equations.

This sharply contrasts with the asymptotic properties of the solution of other semilin-
ear parabolic equations, where localized external forces do not affect the behavior of the
solution as |x| → ∞ : only the large time behavior is influenced by the force.

The main results of the paper will be stated in Section 3: they include new sharp
pointwise estimates of the form

ct|x|−d ≤ |u(x, t)| ≤ c′t|x|−d, (2)

1



valid for 0 < t < t0 small enough and |x| ≥ R(t) . Such pointwise estimates should be
compared to those in the case of the Navier–Stokes equations without forcing studied in [5],
where the behavior of u is like t|x|−d−1 . The constant c in (2) essentially depends on the
integral of f .

Estimates (2) can be applied, e.g. to the case of compactly supported initial data. In
such case, they describe how fast fluid particles start their motion in the far field, at the
beginning of the evolution. An even more precise description of the motion of flows with
localized data at large distances will be given by the following asymptotic profile, valid for
all t > 0 such that the strong solution u is defined and for all |x| ≥ R(t) :

u(x, t) ≃ K(x)

∫ t

0

∫

f(y, s) dy ds, (3)

where K(x) is the matrix of the second order derivatives of the fundamental solution of
the Laplacian in R

d . As such, Kj,k(x) is a homogeneneous function of degree −d . See
Theorem 1, Section 3, for a more precise statement.

As a consequence of our asymptotic profiles one can also recover some known bounds
on the large time behavior of Lp -norms for strong solutions with very short proofs. See,
e.g., [1, 2, 7, 8, 12, 14, 15, 16, 17, 19, 20] for a small sample of recent works on this topic
and related developements. Our approach is different from that of these papers since it
consists in deducing information on spatial norms about the solution from information on
their pointwise behavior. As such, it is not so well suited for the study of weak solutions
as it is for that of strong, small solutions. However, its advantage is that it allows to get
sharp estimates, both from above and below, also in the case of Lp -norms with weight like,
e.g., (1 + |x|)α , for a wider range of the parameters p and α . Namely, we will prove that,
under localization assumptions on the datum and the force, and provided

∫ ∞

0

∫

f(y, s) dy ds 6= 0Rd ,

then, for 1 < p ≤ ∞ , α ≥ 0 and t → ∞ ,

‖(1 + |x|)αu(t)‖p ≃ ct−
1

2
(d−α−d/p), if α+ d/p < d.

The above restriction on the parameters p and α are optimal, as we will show that, for
all t > 0 , and 1 ≤ p < ∞ ,

‖(1 + |x|)αu(t)‖p = +∞ if α+ d/p ≥ d.

See Theorem 2, Section 3, for more precise statements.

2 Preliminary material

The assumptions on the external force will be the following:

|f(x, t)| ≤ ǫ
[

(1 + |x|)−d−2 ∧ (1 + t)−(d+2)/2
]

(4)

‖f‖L1(Rd×R+) ≤ ǫ (5)
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for some (small) ǫ > 0 and a.e. x ∈ R
d and t ≥ 0 . Note that assumption (5) can

be interpretated as a logarithmic improvement on the decay estimate (4). Of course, an
additional potential force ∇Φ could also be added, affecting in this way the pressure of
the fluid, but not its velocity field. On the other hand, because of condition (5), and due
to the unboundedness of singular integrals (the Riesz transforms) in L1 and, we are not
allowed to apply the Helmoltz decompsition to f . Therefore, we will not restrict ourselves
to divergence-free external forces, as it is sometimes the case in the literature.

The above assumptions on f , as well as the smallness assumption on the datum below,
look stringent: we simply put assumptions that allow us to provide the shortest possible
and self-contained construction of strong solutions with some decay. Indeed, our main
goal will be to show that even in the case of very nicely behaved external forces (with
non-zero mean) and data, the solution will be badly behaved at infinity. More precisely,
upper bounds on f and a = u(0) , no matter how good, will lead to lower bounds on u(t) .

But for the time being, we concentrate on the simpler problem of upper bounds on u ,
and start by establishing the following simple result.

Proposition 1 Assume that f satisfies (4)-(5). Let also a ∈ L1(Rd) be a divergence-free
vector field such that, ‖a‖1 < ǫ and |a(x)| ≤ ǫ(1 + |x|)−d for a.e. x ∈ R

d . If ǫ > 0 is
small enough, then there exists a unique strong solution u of the Navier-Stokes equation
(NS) satisfying, for some constant C > 0 , the pointwise decay estimates

|u(x, t)| ≤ Cǫ
[

(1 + |x|)−d ∧ (1 + t)−d/2
]

, (6)

and such that u(0) = a (in the sense of the a.e. and distributional convergence as t → 0).
In particular, for α ≥ 0 , 1 < p ≤ ∞ , we have

∥

∥

∥
(1 + |x|)αu(t)

∥

∥

∥

p
≤ C(1 + t)−

1

2
(d−α− d

p
), when α+ d/p < d. (7)

The above estimate remains true in the limit case (α, p) = (d,∞) .

Remark 1 The Proposition above can be viewed as the limit case of a previous result by
Takahashi [18], where pointwise decay estimates of the form |u(x, t)| ≤ C

[

(1 + |x|)−γ ∧
(1+ t)−γ/2] had been obtained for 0 ≤ γ < d , with a different method and under different
assumptions.

There are, on the other hand, many other methods for proving sharp upper bounds of
the form

‖(1 + |x|)αu(t)‖p ≤ Ct−
1

2
(d−α−d/p), .

For example, it would be possible to adapt the arguments of [7] or [12] to the case of
non-zero external forces. See also [1], [14] [19] for other different approaches for getting
decay estimates. However, the optimal range of the parameters α and p for the validity of
such estimate is not discussed in the previous papers. Our condition α+ d/p < d is more
general, and turns out to be optimal whenever f has non-zero mean, as we will show in
Theorem 2.

We denote by P be the usual Leray projector onto the solenoidal vector fields and with
et∆ the heat semigroup. The solution of Proposition 1 is obtained by a straightforward
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fixed point argument by solving the equivalent integral formulation:










u(t) = et∆a−
∫ t

0
e(t−s)∆

P∇ · (u⊗ u)(s) ds +

∫ t

0
e(t−s)∆

Pf(s) ds

diva = 0.

(8)

Let K(x, t) be the kernel of et∆P . It is well known, and easy to check that, for all t > 0 ,
K(·, t) belongs to C∞(Rd) and satisfies the scaling relation K(x, t) = t−d/2

K(x/
√
t, 1) , and

the decay estimates

|K(x, t)| ≤ C
[

|x|−d ∧ t−d/2
]

, (9)

|∇K(x, t)| ≤ C
[

|x|−d−1 ∧ t−(d+1)/2
]

. (10)

The following Lemma is an immediate consequence of the above decay estimates.

Lemma 1 For all (x, t) such that |x| ≥ e
√
t and t > 0 , the kernel K(x, t) satisfies:

∫ t

0

∫

|y|≤|x|
|K(y, s)| dy ds ≤ Ct log(|x|/

√
t). (11)

The proof of Proposition 1 relies on the following lemma.

Lemma 2 Let f be such that (4)-(5) holds. Let L be the linear operator defined by

L(f) =

∫ t

0
e(t−s)∆

Pf(s) ds. (12)

Then there is a constant C > 0 such that

|L(f)(x, t)| ≤ Cǫ
[

(1 + |x|)−d ∧ (1 + t)−d/2
]

. (13)

Proof. We give a proof based on Lorentz spaces Lp,q , see [3, 10] for their definition and
basic properties, since Lorentz spaces will play a role also in the sequel. For simplicity, we
will drop the constant ǫ throughout the proof. By inequality (4) we readily get

‖f(t)‖Lp,∞ ≤ C(1 + t)−
1

2
(d+2− d

p
), 1 < p < ∞.

Now, interpolating the Lp,q -space between Lp1,∞ and L∞ , with 1 < p1 < p and 1 ≤ q ≤
∞ , we deduce

‖f(t)‖Lp,q ≤ C(1 + t)−
1

2
(d+2− d

p
), 1 < p < ∞, 1 ≤ q ≤ ∞. (14)

In particular, choosing p = q = d ,

‖f(s)‖Ld ≤ C(1 + s)−(d+1)/2.

On the other hand, it follows from (9) (or by well known Lp -estimates on the kernel K),
that ‖K(·, t− s)‖d/(d−1) ≤ C(t− s)−1/2 . By Young inequality we get ‖K(t− s)∗f(s)‖∞ ≤
C(t− s)−1/2(1 + s)−(d+1)/2 . Another obvious estimate estimate is

‖K(t− s) ∗ f(s)‖∞ ≤ C(t− s)−d/2‖f(s)‖1.
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Now splitting the intergral defining L at s = t/2 we get

‖L(f)(t)‖∞ ≤ C(1 + t)−d/2.

In particular, for |x| ≤ e
√
t , we obtain |L(f)(x, t)| ≤ C(1 + |x|)−d and now we can

limit ourselves to the case |x| ≥ e
√
t and |x| ≥ 1 . We write L(f) = L1(f) + L2(f) ,

where L1(f) =
∫ t
0

∫

|x−y|≤|x|/2 . . . and L2(f) =
∫ t
0

∫

|x−y|≥|x|/2 . . . . For treating L1(f) , we

use assumption (4) and obtain, after changing the variables z = x− y and τ = t− s , by
Lemma 1,

|L1(f)(x, t)| ≤ Ct|x|−d−2 log(|x|/
√
t) ≤ C|x|−d,

where we used that |x| ≥ e
√
t . Using estimate (9) and assumption (5) we get |L2(f)(x, t)| ≤

C|x|−d .
�

Direct estimates on the heat kernel show that for a ∈ L1(Rn) satisfying ‖a‖1 ≤ ǫ and
|a(x)| ≤ ǫ(1 + |x|)−d , we have, for some constant C > 0 independent on x and t ≥ 0 ,

|et∆a(x)| ≤ Cǫ
[

(1 + |x|)−d ∧ (1 + t)−d/2
]

. (15)

Owing to estimate (13), the fixed point argument argument used in Miyakawa [13], where
the solution was constructed in the special case f ≡ 0 , goes through in our situation. More
precisely, the approximate solutions uk , constructed in the usual manner (see, e.g. [9, 13])
converge in the Banach space of measurable functions of the (x, t)-variables bounded by
the right-hand side of (15). The existence and the unicity of a solution u satisfying the
pointwise estimates (6) follows.

It is straightforward to see that any function satisfying estimates (6) must also verify
the weighted-Lp bounds (7). This can be proved first by bounding the Lp,∞ -norms of
(1+|x|)αu(t) and then interpolating the Lp -space between Lp1,∞ and L∞ with 1 < p1 < p .
This is exactly the same argument that we applied to deduce estimate (14).

This completes the proof of Proposition 1.
�

Denote by Γ the Euler Gamma function and by Ed the fundamental solution of −∆
in R

d . The following Lemma (proved in [6]) will be useful:

Lemma 3 Let K = (Kj,k) , where Kj,k(x) is the homogeneous function of degree −d

Kj,k(x) = ∂2
xj ,xk

Ed(x) =
Γ(d/2)

2πd/2
·
(

−δj,k|x|2 + dxjxk
)

|x|d+2
. (16)

Then the following decomposition holds:

K(x, t) = K(x) + |x|−dΨ
(

x/
√
t
)

, (17)

where Ψ is a function defined on R
d , smooth outside the origin and such that, for all

α ∈ Nd , and x 6= 0 , |∂αΨ(x)| ≤ Ce−c|x|2 , where C and c are positive constant, depending
on |α| but not on x .
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Before going further, let us put an additional assumption on the external force, namely

‖ |x|f(·, t)‖1 ≤ C(1 + t)−1/2, for some C > 0 and all x ∈ R
d , t ≥ 0 . (18)

Just like condition (5), we can view assumption (18) as another logarithmic improvement on
the decay estimate (4). However, here the smallness of the constant C > 0 is unessential.

Next Lemma provides an explicit asymptotic expansion for L(f)(x, t) , as |x| → ∞ .
The function of the (x, t)-variables Rf defined by relation (19) below can be viewed as a
remainder term, that can be neglected at large distances, when |x| >>

√
t .

Lemma 4 Let f such that assumptions (4)-(5) and (18) hold. For x 6= 0 , and t > 0 ,
define Rf (x, t) , through the relation

L(f)(x, t) = K(x)

∫ t

0

∫

f(y, s) dy ds+Rf (x, t). (19)

Then Rf (x, t) satisfies, for some constant C > 0 ,

∀ |x| ≥ e
√
t : |Rf (x, t)| ≤ C|x|−d−1

√
t. (20)

Remark 2 The product on the right hand side of (19) is the usual product between the
d×d matrix K(x) and the d-vector field

∫ t
0

∫

fk(y, s) dy ds . The j -component is thus given

by
∑d

k=1 Kj,k(x)
∫ t
0

∫

fk(y, s) dy ds .

Proof. We introduce a function φ(x, t) through the relation

f(x, s) =

(
∫

f(y, t) dy

)

g(x) + φ(x, t), (21)

where gt(x) = (4πt)−d/2 exp(−|x|2/(4t)) is the gaussian and g = g1 . Identity (21) is
inspired by a paper by Schonbek, [16]. See also [5], where a similar idea was used to write
an asymptotic expansion of the nonlinear term. From et∆g = gt+1 and from the fact that
P commutes with the heat kernel we get (applying also Lemma 3) the decomposition

L(f)(x, t) = K(x)

∫ t

0

∫

f(y, s) dy ds+R1(x, t) +R2(x, t),

where

R1(x, t) = |x|−d

∫ t

0
Ψ(x/

√
t+ 1− s)

∫

f(y, s) dy ds

and

R2(x, t) =

∫ t

0

∫

K(x− y, t− s)φ(y, s) dy ds.

Using that |Ψ(x)| ≤ C|x|−1 (this is a consequence of Lemma 3) we obtain

|R1(x, t)| ≤ C|x|−d−1

∫ t

0

√
t+ 1− s ‖f(s)‖1 ds ≤ C

√
t|x|−d−1.
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For treating R2 we use that
∫

φ(y, s) dy = 0

and apply the Taylor formula. We thus obtain the decomposition R2 = R2,1 + · · ·+R2,4 ,
with

R2,1 = −
∫ t

0

∫

|y|≤|x|/2

∫ 1

0
∇xK(x− θy, t− s) dθ · yφ(y, s) dy ds,

next

R2,2 +R2,3 =

(
∫ t

0

∫

|x−y|≤|x|/2
+

∫ t

0

∫

|y|≥|x|/2, |x−y|≥|x|/2

)

K(x− y, t− s)φ(y, s) dy ds,

and

R2,4 = −
∫ t

0
K(x, t− s)

∫

|y|≥|x|/2
φ(y, s) dy ds.

The term R2,1 is bounded using estimate (10) and the estimate (deduced from (18))

‖ |x|φ(s)‖1 ≤ C(1 + s)−1/2.

This yields |R2,1(x, t)| ≤ C|x|−d−1
√
t .

The other three terms can be treated observing that

|φ(y, s)| ≤ C(1 + |y|)−d−2.

Then applying Lemma 1 we get, for |x| ≥ e
√
t , |R2,2(x, t)| ≤ Ct|x|−d−2 log(|x|/

√
t) ≤

C|x|−d−1
√
t . For the R2,3 term, we can observe that the integrand is bounded by C|y|−2d−2 .

Therefore, |R2,3(x, t)| ≤ Ct|x|−d−2 ≤ C|x|−d−1
√
t . The term R2,4 can be estimated in

the same way.
�

3 Main results

From the previous Lemma we now deduce the following result: it completes to the case
f 6= 0 the asymptotic profile constructed in [5].

Theorem 1 Let f , a and u be as in Proposition 1. We assume that f satisfies also
condition (18). Then (the notation is explained in Remark 2)

u(x, t) = et∆a(x) + K(x)

∫ t

0

∫

f(y, s) dy ds+R(x, t), (22)

for some function R satisfying

∀ |x| ≥ e
√
t : |R(x, t)| ≤ C|x|−d−1

√
t, (23)

where C > 0 is a constant independent on x and t .
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Remark 3 This theorem essentially states that if t > 0 is fixed and
∫ t
0

∫

f(y, s) dy ds 6=
0Rd , then

u(x, t) ≃ et∆a(x) + K(x)

∫ t

0

∫

f(y, s) dy ds as |x| → ∞ .

Proof. Owing to our previous Lemma, the only thing that remains to do is to write u
through Duhamel formula (8) and show that

B(u, u) ≡
∫ t

0
e(t−s)∆

P∇ · (u⊗ u)(s) ds

can be bounded by C|x|−d−1
√
t . In fact, a stronger estimate will be proved. Note that the

convolution kernel F (x, t) of et∆P∇ satisfies to the same decay estimates of ∇K (see (10)).
Therefore, after writing

B(u, u)(x, t) =

∫ t

0

∫

F (x− y, t− s)(u⊗ u)(y, s) dy ds,

then splitting the spatial integral into |y| ≤ |x|/2 and |y| ≥ |x|/2 , and using that ‖F (·, t−
s)‖1 = c(t− s)−1/2 , we get

|B(u, u)|(x, t) ≤ C|x|−d−1

∫ t

0
‖u‖22 ds + (1 + |x|)−2d

√
t.

When d ≥ 3 , by estimate (7) with α = 0 and p = 2 , we get
∫ t
0 ‖u(s)‖22 ds ≤ C(1 ∧ t) ,

which is enough to conclude. When d = 2 , we have only
∫ t
0 ‖u(s)‖22 ds ≤ C log(1 + t) .

(such facts on the L2 -norm on u also follow from Schonbek’s results [15, 16]). This yields
in particular the required bound

|B(u, u)|(x, t) ≤ C
√
t|x|−d−1.

�

Remark 4 The asymptotic profile (22) leads us to study the homogeneous vector fields
of the form:

~m(x) = K(x)~c, ~c = (c1, . . . , cd).

Notice that ~m has a zero in R
d\{0} if and only if ~c = ~0 . Indeed, we can limit ourselves

to the points ω ∈ S
d−1 and recalling (16) we see that ~m vanishes at the point ω if and

only if
dωjω · ~c = cj , for j = 1, . . . , d.

Multiplying scalarly with ω we get (d− 1)ω ·~c = 0 for all ω ∈ S
d−1 . As d ≥ 2 , we obtain

~c = 0 . Applying this observation to our situation we get

inf
x 6=0

|x|d
∣

∣

∣

∣

K(x)

∫ t

0

∫

f(y, s) dy ds

∣

∣

∣

∣

> 0

for all t > 0 such that
∫ t
0

∫

f(y, s) dy ds 6= 0 .
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A first interesting consequence of Theorem 1 is the following:

Corollary 1 1. Let a , f and u as in Theorem 1. We additionally assume that
a = u(0) satisfies a(x) = o(|x|−d) as |x| → ∞ . Let t > 0 be fixed, such that
∫ t
0

∫

f(y, s) dy ds 6= 0Rd . Then for some locally bounded function R(t) > 0 (R(t) can
blow up for t → ∞ or t → 0) and all |x| ≥ R(t) , we have

ct|x|−d ≤ |u(x, t)| ≤ c′t|x|−d (24)

for some constant ct, c
′
t > 0 independent on x

2. (Short time behavior of the flow) If in addition f ∈ C(R+, L1(Rd)) and f0 = f(·, 0) is
such that

∫

f0(y) dy 6= 0Rd , then the behavior of u at the beginning of the evolution
can be described in the following way: there exists a time t0 > 0 such that for all
0 < t < t0 and all |x| ≥ R(t)

ct|x|−d ≤ |u(x, t)| ≤ c′t|x|−d,

for some constants c, c′ > 0 independent on x and t .

Proof. Let

~mt(x) ≡ K(x)

∫ t

0

∫

f(y, s) dy ds.

We apply the asymptotic expansion (22) for u and study each term in this expression.
By the non-zero mean condition on f and Remark 4, 3|~mt(x)| can be bounded from
above and from below as in (24), for some 0 < ct < c′t . Estimate (23) shows that
|R(x, t)| ≤ ct|x|−d provided |x| ≥ R(t) and R(t) > 0 is taken sufficiently large.

On the other hand, the bound |gt(x − y)| ≤ C|x − y|−d−1
√
t and ‖gt‖1 = 1 for the

heat kernel lead to

|et∆a(x)| ≤ C

∫

|y|≤|x|/2

√
t|x− y|−d−1|a(y)| dy +

∫

|y|≥|x|/2
gt(x− y)|a(y)| dy

≤ C|x|−d−1
√
t‖a‖1 + ess sup|y|≥|x|/2|a(y)|

(25)

and since |a(y)| = o(|y|−d) as |y| → ∞ , this expression is also bounded by ct|x|−d for
|x| ≥ R(t) and a sufficiently large R(t) .

In conclusion the first and third terms in expansion (22) can be absorbed by ~mt(x) .
The first conclusion of the corollary then follows. The second conclusion is now immediate,
because for t > 0 small enough and |x| ≥ R(t) large enough, one can find two constants
α, β > 0 such that

αt|x|−d ≤ |~mt(x)| ≤ βt|x|−d

(the condition
∫

f0(y) dy 6= 0Rd is needed only for the lower bound).
�

Remark 5 The result for the free Navier–Stokes equation (f ≡ 0) is different (see [5]):
instead of (24) one in general obtains estimates of the form

ct|x|−d−1 ≤ |u(x, t)| ≤ c′t|x|−d−1.

Therefore, an external force, even if small and compactly supported in space-time, has the
effect of increasing the velocity of the fluid particles at all points at large distances.
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We obtain, as another consequence of Theorem 1, the following result for the large time
behavior.

Theorem 2 Let a , f and u as in Theorem 1. We additionally assume that a = u(0)
satisfies a(x) = o(|x|−d) as |x| → ∞ and that

∫ ∞

0

∫

f(y, s) dy ds 6= 0Rd .

Then, for α ≥ 0 , 1 < p < ∞ , for some t0 > 0 , some constants c, c′ > 0 and and all t > t0
we have,

ct−
1

2
(d−α− d

p
) ≤

∥

∥

∥
(1 + |x|)αu(t)

∥

∥

∥

p
≤ c′t−

1

2
(d−α− d

p
), when α+ d/p < d. (26)

The above inequalities remain true in the limit case (α, p) = (d,∞) .
On the other hand,

∥

∥

∥
(1 + |x|)αu(t)

∥

∥

∥

p
= +∞ when α+ d/p ≥ d, (27)

and the above equality remains true in the limit cases p = 1 or (α > d and p = ∞).

Proof. The upper bound in (26) has been already proved in Proposition 1. The proof
makes use of an argument used before in [5]. By our assumption on f and Remark 4, the
homogeneous function

~m(x) ≡ K(x)

∫ ∞

0

∫

f(y, s) dy ds

does not vanish. Therefore, for some c0 > 0 , we obtain |~m(x)| ≥ c0|x|−d . Let us apply the
profile (22), writing the second term on the right hand side as ~m(x)−K(x)

∫∞
t

∫

f(y, s) dy ds .

We get for a sufficiently large M > 0 , all t > M and all |x| ≥ M
√
t ,

|u(x, t)− et∆a| ≥ |~m(x)| −C|x|−d−1
√
t− c0

2 |x|−d ≥ c0
3 |x|−d.

On the other hand the computation (25) guarantees that we can bound, for |x| ≥ M
√
t

and t > M , |et∆a(x)| ≤ c0
12 |x|−d . We thus get

|u(x, t)| ≥ c0
4 |x|−d, for all |x| ≥ M

√
t, t > M . (28)

Let 1 < p ≤ ∞ . Multiplying this inequality by the weight (1 + |x|)αp , then integrating
with respect to x on the set |x| ≥ M

√
t , we immediately deduce

∥

∥

∥
(1 + |x|)αu(x, t)

∥

∥

∥

p
≥ ct−

1

2
(d−α− d

p
)

for some c > 0 and all t > M . In the same way, inequality (28) also implies the lower
bound (26) in the limit case p = ∞ and conclusion (27). The upper bounds for u obtained
in Proposition 1 complete the proof.

�
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The lower bounds obtained in (26) are invariant under the time translation t → t+ t∗ ,
but the hypothesis made on f ,

∫∞
0

∫

f(y, s) dy ds 6= 0Rd , is not. The explanation is that
the conditions on the datum, a(x) = o(|x|−d) as |x| → ∞ , and a ∈ L1(Rd) , in general,
are not conserved at later times. In fact, according to (22), one has |u(x, t∗)| = o(|x|−d)
as |x| → ∞ if and only if

∫ t∗
0

∫

f(y, s) dy ds = 0Rd .

We did not treat the case of external forces with vanishing integrals. In that case, the
principal term in the asymptotic expansion (19) of u as |x| → ∞ disappears. A similar
method, however, can be used to write the next term in the asymptotics which equals

∇K(x) :

∫ t

0

∫

y ⊗ f(y, s) dy ds

(more explicitly,
∑

h,k ∂hKj,k(x)
∫ t
0

∫

yhfk(y, s) dy ds , for the j -component, j = 1, . . . , d).
For this we need to put more stringent assumptions on the decay of f : the spatial decay
must be increased of a factor (1 + |x|)−1 and the time decay by a factor (1 + t)−1/2 .
Assumptions (5)-(18) should also be sharpened accordingly. For well localized initial data
a(x) , then one would deduce, bounds of the form

ct|x|−d−1 ≤ |u(x, t)| ≤ c′t|x|−d−1

and
‖(1 + |x|)αu(t)‖p ≃ ct−

1

2
(d+1−α−d/p), for α+ d/p < d+ 1 .

However, as for the free Navier–Stokes equations (see [5]), suitable additional non-symmetry

conditions on the flow and on the matrix
∫ t
0

∫

y ⊗ f(y, s) dy ds should be added for the va-
lidity of the lower bounds.
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