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Introduction

Let d ≥ 2 be an integer. We consider the Navier-Stokes equations in R d , for an incompressible fluid submitted to an external force f :

R d × R + → R d :      ∂ t u + u • ∇u = ∆u -∇p + f divu = 0 u(x, 0) = a(x) (1) 
We want to investigate the effect of the external force on the large time and spatial asymptotics of the solution. In particular, we will show that even if f is small and well localized (say, compactly supported in space-time) but with non-zero mean, then the velocity of the fluid particles at all times t > 0 and in all point x outside of balls B(0, R(t)) with large radii, is consirerably faster than in the case of the free Navier-Stokes equations.

This sharply contrasts with the asymptotic properties of the solution of other semilinear parabolic equations, where localized external forces do not affect the behavior of the solution as |x| → ∞: only the large time behavior is influenced by the force.

The main results of the paper will be stated in Section 3: they include new sharp pointwise estimates of the form

ct|x| -d ≤ |u(x, t)| ≤ c ′ t|x| -d , (2) 
valid for 0 < t < t 0 small enough and |x| ≥ R(t). Such pointwise estimates should be compared to those in the case of the Navier-Stokes equations without forcing studied in [START_REF] Brandolese | New Asymptotic Profiles of nonstationnary solutions of the Navier-Stokes system[END_REF], where the behavior of u is like t|x| -d-1 . The constant c in (2) essentially depends on the integral of f . Estimates (2) can be applied, e.g. to the case of compactly supported initial data. In such case, they describe how fast fluid particles start their motion in the far field, at the beginning of the evolution. An even more precise description of the motion of flows with localized data at large distances will be given by the following asymptotic profile, valid for all t > 0 such that the strong solution u is defined and for all |x| ≥ R(t):

u(x, t) ≃ K(x) t 0 f (y, s) dy ds, (3) 
where K(x) is the matrix of the second order derivatives of the fundamental solution of the Laplacian in R d . As such, K j,k (x) is a homogeneneous function of degree -d. See Theorem 1, Section 3, for a more precise statement. As a consequence of our asymptotic profiles one can also recover some known bounds on the large time behavior of L p -norms for strong solutions with very short proofs. See, e.g., [START_REF] Amrouche | Schonbek Pointwise Decay of Solutions and of higher derivatives to Navier-Stokes Equations[END_REF][START_REF] Bae | Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations[END_REF][START_REF] Choe | Weighted estimates of the asymptotic profiles of the Navier-Stokes flow in R n[END_REF][START_REF] He | On the decay properties of Solutions to the nonstationary Navier-Stokes Equations in R 3[END_REF][START_REF] Kukavica | Weighted L p decay for solutions of the Navier-Stokes equations[END_REF][START_REF] Oliver | Remark on the rate of decay of higher order derivatives for solutions to the Navier-stokes equations in R n[END_REF][START_REF] Schonbek | L 2 decay for Weak Solutions of the Navier-Stokes Equations[END_REF][START_REF] Schonbek | Lower Bounds of Rates of Decay for Solutions to the Navier-Stokes Equations[END_REF][START_REF] Skaák | Asymptotic decay of higher-order norms of solutions to the Navier-Stokes equations in R 3[END_REF][START_REF] Qi | Global solutions of the Navier-Stokes equations with large L 2 norms in a new function space[END_REF][START_REF] Zhou | A remark on the decay of solutions to the 3-D Navier-Stokes equations[END_REF] for a small sample of recent works on this topic and related developements. Our approach is different from that of these papers since it consists in deducing information on spatial norms about the solution from information on their pointwise behavior. As such, it is not so well suited for the study of weak solutions as it is for that of strong, small solutions. However, its advantage is that it allows to get sharp estimates, both from above and below, also in the case of L p -norms with weight like, e.g., (1 + |x|) α , for a wider range of the parameters p and α. Namely, we will prove that, under localization assumptions on the datum and the force, and provided

∞ 0 f (y, s) dy ds = 0 R d , then, for 1 < p ≤ ∞, α ≥ 0 and t → ∞, (1 + |x|) α u(t) p ≃ ct -1 2 (d-α-d/p) , if α + d/p < d.
The above restriction on the parameters p and α are optimal, as we will show that, for all t > 0, and 1 ≤ p < ∞,

(1 + |x|) α u(t) p = +∞ if α + d/p ≥ d.
See Theorem 2, Section 3, for more precise statements.

Preliminary material

The assumptions on the external force will be the following:

|f (x, t)| ≤ ǫ (1 + |x|) -d-2 ∧ (1 + t) -(d+2)/2 (4) f L 1 (R d ×R + ) ≤ ǫ (5) 
for some (small) ǫ > 0 and a.e. x ∈ R d and t ≥ 0. Note that assumption (5) can be interpretated as a logarithmic improvement on the decay estimate [START_REF] Brandolese | Asymptotic behavior of the energy and pointwise estimates for solutions to the Navier-Stokes equations[END_REF]. Of course, an additional potential force ∇Φ could also be added, affecting in this way the pressure of the fluid, but not its velocity field. On the other hand, because of condition [START_REF] Brandolese | New Asymptotic Profiles of nonstationnary solutions of the Navier-Stokes system[END_REF], and due to the unboundedness of singular integrals (the Riesz transforms) in L 1 and, we are not allowed to apply the Helmoltz decompsition to f . Therefore, we will not restrict ourselves to divergence-free external forces, as it is sometimes the case in the literature.

The above assumptions on f , as well as the smallness assumption on the datum below, look stringent: we simply put assumptions that allow us to provide the shortest possible and self-contained construction of strong solutions with some decay. Indeed, our main goal will be to show that even in the case of very nicely behaved external forces (with non-zero mean) and data, the solution will be badly behaved at infinity. More precisely, upper bounds on f and a = u(0), no matter how good, will lead to lower bounds on u(t).

But for the time being, we concentrate on the simpler problem of upper bounds on u, and start by establishing the following simple result.

Proposition 1 Assume that f satisfies (4)- [START_REF] Brandolese | New Asymptotic Profiles of nonstationnary solutions of the Navier-Stokes system[END_REF]. Let also a ∈ L 1 (R d ) be a divergence-free vector field such that, a 1 < ǫ and |a(x)| ≤ ǫ(1 + |x|) -d for a.e. x ∈ R d . If ǫ > 0 is small enough, then there exists a unique strong solution u of the Navier-Stokes equation (NS) satisfying, for some constant C > 0, the pointwise decay estimates

|u(x, t)| ≤ Cǫ (1 + |x|) -d ∧ (1 + t) -d/2 , (6) 
and such that u(0) = a (in the sense of the a.e. and distributional convergence as t → 0).

In particular, for α ≥ 0, 1 < p ≤ ∞ , we have

(1 + |x|) α u(t) p ≤ C(1 + t) -1 2 (d-α-d p ) , when α + d/p < d. ( 7 
)
The above estimate remains true in the limit case (α, p) = (d, ∞).

Remark 1

The Proposition above can be viewed as the limit case of a previous result by Takahashi [START_REF] Takahashi | A weighted equation approch to decay rate estimates for the Navier-Stokes equations[END_REF], where pointwise decay estimates of the form |u(x,

t)| ≤ C (1 + |x|) -γ ∧ (1 + t) -γ/2
] had been obtained for 0 ≤ γ < d, with a different method and under different assumptions.

There are, on the other hand, many other methods for proving sharp upper bounds of the form

(1 + |x|) α u(t) p ≤ Ct -1 2 (d-α-d/p) , .
For example, it would be possible to adapt the arguments of [START_REF] Choe | Weighted estimates of the asymptotic profiles of the Navier-Stokes flow in R n[END_REF] or [START_REF] Kukavica | Weighted L p decay for solutions of the Navier-Stokes equations[END_REF] to the case of non-zero external forces. See also [START_REF] Amrouche | Schonbek Pointwise Decay of Solutions and of higher derivatives to Navier-Stokes Equations[END_REF], [14] [19] for other different approaches for getting decay estimates. However, the optimal range of the parameters α and p for the validity of such estimate is not discussed in the previous papers. Our condition α + d/p < d is more general, and turns out to be optimal whenever f has non-zero mean, as we will show in Theorem 2.

We denote by P be the usual Leray projector onto the solenoidal vector fields and with e t∆ the heat semigroup. The solution of Proposition 1 is obtained by a straightforward fixed point argument by solving the equivalent integral formulation:

     u(t) = e t∆ a - t 0 e (t-s)∆ P∇ • (u ⊗ u)(s) ds + t 0 e (t-s)∆ Pf (s) ds diva = 0. (8)
Let K(x, t) be the kernel of e t∆ P. It is well known, and easy to check that, for all t > 0, K(•, t) belongs to C ∞ (R d ) and satisfies the scaling relation K(x, t) = t -d/2 K(x/ √ t, 1), and the decay estimates

|K(x, t)| ≤ C |x| -d ∧ t -d/2 , ( 9 
) |∇K(x, t)| ≤ C |x| -d-1 ∧ t -(d+1)/2 . ( 10 
)
The following Lemma is an immediate consequence of the above decay estimates.

Lemma 1 For all (x, t) such that |x| ≥ e √ t and t > 0, the kernel K(x, t) satisfies:

t 0 |y|≤|x| |K(y, s)| dy ds ≤ Ct log(|x|/ √ t). (11) 
The proof of Proposition 1 relies on the following lemma.

Lemma 2 Let f be such that (4)-( 5) holds. Let L be the linear operator defined by

L(f ) = t 0 e (t-s)∆ Pf (s) ds. ( 12 
)
Then there is a constant C > 0 such that

|L(f )(x, t)| ≤ Cǫ (1 + |x|) -d ∧ (1 + t) -d/2 . ( 13 
)
Proof. We give a proof based on Lorentz spaces L p,q , see [START_REF] Bergh | Interpolation Spaces, an Introduction[END_REF][START_REF] Lemarié-Rieusset | Recent developements in the Navier-Stokes problem[END_REF] for their definition and basic properties, since Lorentz spaces will play a role also in the sequel. For simplicity, we will drop the constant ǫ throughout the proof. By inequality (4) we readily get

f (t) L p,∞ ≤ C(1 + t) -1 2 (d+2-d p ) , 1 < p < ∞.
Now, interpolating the L p,q -space between L p 1 ,∞ and L ∞ , with 1 < p 1 < p and 1 ≤ q ≤ ∞, we deduce

f (t) L p,q ≤ C(1 + t) -1 2 (d+2-d p ) , 1 < p < ∞, 1 ≤ q ≤ ∞. (14) 
In particular, choosing p = q = d,

f (s) L d ≤ C(1 + s) -(d+1)/2 .
On the other hand, it follows from (9) (or by well known L p -estimates on the kernel K),

that K(•, t -s) d/(d-1) ≤ C(t -s) -1/2 . By Young inequality we get K(t -s) * f (s) ∞ ≤ C(t -s) -1/2 (1 + s) -(d+1)/2 .
Another obvious estimate estimate is

K(t -s) * f (s) ∞ ≤ C(t -s) -d/2 f (s) 1 .
Now splitting the intergral defining L at s = t/2 we get

L(f )(t) ∞ ≤ C(1 + t) -d/2 .
In particular, for |x| ≤ e √ t , we obtain |L(f )(x, t)| ≤ C(1 + |x|) -d and now we can limit ourselves to the case |x| ≥ e √ t and |x| ≥ 1. We write

L(f ) = L 1 (f ) + L 2 (f ), where L 1 (f ) = t 0 |x-y|≤|x|/2 . . . and L 2 (f ) = t 0 |x-
y|≥|x|/2 . . . . For treating L 1 (f ), we use assumption (4) and obtain, after changing the variables z = x -y and τ = t -s, by Lemma 1,

|L 1 (f )(x, t)| ≤ Ct|x| -d-2 log(|x|/ √ t) ≤ C|x| -d ,
where we used that |x| ≥ e √ t. Using estimate [START_REF] Kato | Strong L p -Solutions of the Navier-Stokes Equations in R m , with applications to weak solutions[END_REF] and assumption (5

) we get |L 2 (f )(x, t)| ≤ C|x| -d .
Direct estimates on the heat kernel show that for a ∈ L 1 (R n ) satisfying a 1 ≤ ǫ and |a(x)| ≤ ǫ(1 + |x|) -d , we have, for some constant C > 0 independent on x and t ≥ 0,

|e t∆ a(x)| ≤ Cǫ (1 + |x|) -d ∧ (1 + t) -d/2 . ( 15 
)
Owing to estimate [START_REF] Miyakawa | On space time decay properties of nonstationary incompressible Navier-Stokes flows in R n[END_REF], the fixed point argument argument used in Miyakawa [START_REF] Miyakawa | On space time decay properties of nonstationary incompressible Navier-Stokes flows in R n[END_REF], where the solution was constructed in the special case f ≡ 0, goes through in our situation. More precisely, the approximate solutions u k , constructed in the usual manner (see, e.g. [START_REF] Kato | Strong L p -Solutions of the Navier-Stokes Equations in R m , with applications to weak solutions[END_REF][START_REF] Miyakawa | On space time decay properties of nonstationary incompressible Navier-Stokes flows in R n[END_REF]) converge in the Banach space of measurable functions of the (x, t)-variables bounded by the right-hand side of [START_REF] Schonbek | L 2 decay for Weak Solutions of the Navier-Stokes Equations[END_REF]. The existence and the unicity of a solution u satisfying the pointwise estimates ( 6) follows.

It is straightforward to see that any function satisfying estimates (6) must also verify the weighted-L p bounds [START_REF] Choe | Weighted estimates of the asymptotic profiles of the Navier-Stokes flow in R n[END_REF]. This can be proved first by bounding the L p,∞ -norms of (1+|x|) α u(t) and then interpolating the L p -space between L p 1 ,∞ and L ∞ with 1 < p 1 < p. This is exactly the same argument that we applied to deduce estimate [START_REF] Oliver | Remark on the rate of decay of higher order derivatives for solutions to the Navier-stokes equations in R n[END_REF].

This completes the proof of Proposition 1.

Denote by Γ the Euler Gamma function and by E d the fundamental solution of -∆ in R d . The following Lemma (proved in [START_REF] Brandolese | Fine properties of self-similar solutions of the Navier-Stokes equations[END_REF]) will be useful:

Lemma 3 Let K = (K j,k ), where K j,k (x) is the homogeneous function of degree -d K j,k (x) = ∂ 2 x j ,x k E d (x) = Γ(d/2) 2π d/2 • -δ j,k |x| 2 + dx j x k |x| d+2 . ( 16 
)
Then the following decomposition holds:

K(x, t) = K(x) + |x| -d Ψ x/ √ t , ( 17 
)
where Ψ is a function defined on R d , smooth outside the origin and such that, for all α ∈ N d , and x = 0, |∂ α Ψ(x)| ≤ Ce -c|x| 2 , where C and c are positive constant, depending on |α| but not on x.

Before going further, let us put an additional assumption on the external force, namely

|x|f (•, t) 1 ≤ C(1 + t) -1/2 , for some C > 0 and all x ∈ R d , t ≥ 0. (18) 
Just like condition (5), we can view assumption [START_REF] Takahashi | A weighted equation approch to decay rate estimates for the Navier-Stokes equations[END_REF] as another logarithmic improvement on the decay estimate (4). However, here the smallness of the constant C > 0 is unessential.

Next Lemma provides an explicit asymptotic expansion for L(f )(x, t), as |x| → ∞. The function of the (x, t)-variables R f defined by relation [START_REF] Qi | Global solutions of the Navier-Stokes equations with large L 2 norms in a new function space[END_REF] below can be viewed as a remainder term, that can be neglected at large distances, when |x| > > √ t .

Lemma 4 Let f such that assumptions (4)-( 5) and (18) hold. For x = 0, and t > 0, define R f (x, t), through the relation

L(f )(x, t) = K(x) t 0 f (y, s) dy ds + R f (x, t). ( 19 
)
Then R f (x, t) satisfies, for some constant C > 0,

∀ |x| ≥ e √ t : |R f (x, t)| ≤ C|x| -d-1 √ t. ( 20 
)
Remark 2 The product on the right hand side of ( 19) is the usual product between the d× d matrix K(x) and the d-vector field t 0 f k (y, s) dy ds. The j -component is thus given by d k=1 K j,k (x) t 0 f k (y, s) dy ds.

Proof. We introduce a function φ(x, t) through the relation

f (x, s) = f (y, t) dy g(x) + φ(x, t), (21) 
where g t (x) = (4πt) -d/2 exp(-|x| 2 /(4t)) is the gaussian and g = g 1 . Identity ( 21) is inspired by a paper by Schonbek, [START_REF] Schonbek | Lower Bounds of Rates of Decay for Solutions to the Navier-Stokes Equations[END_REF]. See also [START_REF] Brandolese | New Asymptotic Profiles of nonstationnary solutions of the Navier-Stokes system[END_REF], where a similar idea was used to write an asymptotic expansion of the nonlinear term. From e t∆ g = g t+1 and from the fact that P commutes with the heat kernel we get (applying also Lemma 3) the decomposition

L(f )(x, t) = K(x) t 0 f (y, s) dy ds + R 1 (x, t) + R 2 (x, t),
where

R 1 (x, t) = |x| -d t 0 Ψ(x/ √ t + 1 -s) f (y, s) dy ds and R 2 (x, t) = t 0 K(x -y, t -s)φ(y, s) dy ds.
Using that |Ψ(x)| ≤ C|x| -1 (this is a consequence of Lemma 3) we obtain

|R 1 (x, t)| ≤ C|x| -d-1 t 0 √ t + 1 -s f (s) 1 ds ≤ C √ t|x| -d-1 .
For treating R 2 we use that φ(y, s) dy = 0 and apply the Taylor formula. We thus obtain the decomposition

R 2 = R 2,1 + • • • + R 2,4 , with R 2,1 = - t 0 |y|≤|x|/2 1 0 ∇ x K(x -θy, t -s) dθ • yφ(y, s) dy ds, next R 2,2 + R 2,3 = t 0 |x-y|≤|x|/2 + t 0 |y|≥|x|/2, |x-y|≥|x|/2
K(x -y, t -s)φ(y, s) dy ds, and

R 2,4 = - t 0 K(x, t -s) |y|≥|x|/2
φ(y, s) dy ds.

The term R 2,1 is bounded using estimate [START_REF] Lemarié-Rieusset | Recent developements in the Navier-Stokes problem[END_REF] and the estimate (deduced from ( 18))

|x|φ(s) 1 ≤ C(1 + s) -1/2 . This yields |R 2,1 (x, t)| ≤ C|x| -d-1 √ t.
The other three terms can be treated observing that

|φ(y, s)| ≤ C(1 + |y|) -d-2 .
Then applying Lemma 1 we get,

for |x| ≥ e √ t, |R 2,2 (x, t)| ≤ Ct|x| -d-2 log(|x|/ √ t) ≤ C|x| -d-1 √ t.
For the R 2,3 term, we can observe that the integrand is bounded by

C|y| -2d-2 . Therefore, |R 2,3 (x, t)| ≤ Ct|x| -d-2 ≤ C|x| -d-1 √ t.
The term R 2,4 can be estimated in the same way.

Main results

From the previous Lemma we now deduce the following result: it completes to the case f = 0 the asymptotic profile constructed in [START_REF] Brandolese | New Asymptotic Profiles of nonstationnary solutions of the Navier-Stokes system[END_REF].

Theorem 1 Let f , a and u be as in Proposition 1. We assume that f satisfies also condition [START_REF] Takahashi | A weighted equation approch to decay rate estimates for the Navier-Stokes equations[END_REF]. Then (the notation is explained in Remark 2)

u(x, t) = e t∆ a(x) + K(x) t 0 f (y, s) dy ds + R(x, t), ( 22 
)
for some function R satisfying

∀ |x| ≥ e √ t : |R(x, t)| ≤ C|x| -d-1 √ t, ( 23 
)
where C > 0 is a constant independent on x and t.

Remark 3 This theorem essentially states that if t > 0 is fixed and

t 0 f (y, s) dy ds = 0 R d , then u(x, t) ≃ e t∆ a(x) + K(x) t 0 f (y, s) dy ds as |x| → ∞.
Proof. Owing to our previous Lemma, the only thing that remains to do is to write u through Duhamel formula [START_REF] He | On the decay properties of Solutions to the nonstationary Navier-Stokes Equations in R 3[END_REF] and show that

B(u, u) ≡ t 0 e (t-s)∆ P∇ • (u ⊗ u)(s) ds can be bounded by C|x| -d-1 √ t.
In fact, a stronger estimate will be proved. Note that the convolution kernel F (x, t) of e t∆ P∇ satisfies to the same decay estimates of ∇K (see [START_REF] Lemarié-Rieusset | Recent developements in the Navier-Stokes problem[END_REF]). Therefore, after writing

B(u, u)(x, t) = t 0 F (x -y, t -s)(u ⊗ u)(y, s) dy ds,
then splitting the spatial integral into |y| ≤ |x|/2 and |y| ≥ |x|/2, and using that

F (•, t - s) 1 = c(t -s) -1/2 , we get |B(u, u)|(x, t) ≤ C|x| -d-1 t 0 u 2 2 ds + (1 + |x|) -2d √ t.
When d ≥ 3, by estimate ( 7) with α = 0 and p = 2, we get 2 2 ds ≤ C log(1 + t). (such facts on the L 2 -norm on u also follow from Schonbek's results [START_REF] Schonbek | L 2 decay for Weak Solutions of the Navier-Stokes Equations[END_REF][START_REF] Schonbek | Lower Bounds of Rates of Decay for Solutions to the Navier-Stokes Equations[END_REF]). This yields in particular the required bound

t 0 u(s) 2 2 ds ≤ C(1 ∧ t), which is enough to conclude. When d = 2, we have only t 0 u(s)
|B(u, u)|(x, t) ≤ C √ t|x| -d-1 .
Remark 4 The asymptotic profile (22) leads us to study the homogeneous vector fields of the form:

m(x) = K(x) c, c = (c 1 , . . . , c d ).
Notice that m has a zero in R d \{0} if and only if c = 0. Indeed, we can limit ourselves to the points ω ∈ S d-1 and recalling [START_REF] Schonbek | Lower Bounds of Rates of Decay for Solutions to the Navier-Stokes Equations[END_REF] we see that m vanishes at the point ω if and only if

dω j ω • c = c j , for j = 1, . . . , d.
Multiplying scalarly with ω we get (d -1)ω • c = 0 for all ω ∈ S d-1 . As d ≥ 2, we obtain c = 0. Applying this observation to our situation we get

inf x =0 |x| d K(x) t 0
f (y, s) dy ds > 0 for all t > 0 such that t 0 f (y, s) dy ds = 0.

A first interesting consequence of Theorem 1 is the following:

Corollary 1 1. Let a, f and u as in Theorem 1. We additionally assume that a = u(0) satisfies a(x) = o(|x| -d ) as |x| → ∞. Let t > 0 be fixed, such that t 0 f (y, s) dy ds = 0 R d . Then for some locally bounded function R(t) > 0 (R(t) can blow up for t → ∞ or t → 0) and all |x| ≥ R(t), we have

c t |x| -d ≤ |u(x, t)| ≤ c ′ t |x| -d (24)
for some constant c t , c ′ t > 0 independent on x 2. (Short time behavior of the flow)

If in addition f ∈ C(R + , L 1 (R d )) and f 0 = f (•, 0
) is such that f 0 (y) dy = 0 R d , then the behavior of u at the beginning of the evolution can be described in the following way: there exists a time t 0 > 0 such that for all 0 < t < t 0 and all |x| ≥ R(t)

ct|x| -d ≤ |u(x, t)| ≤ c ′ t|x| -d ,
for some constants c, c ′ > 0 independent on x and t.

Proof. Let

m t (x) ≡ K(x) t 0
f (y, s) dy ds.

We apply the asymptotic expansion ( 22) for u and study each term in this expression. By the non-zero mean condition on f and Remark 4, 3| m t (x)| can be bounded from above and from below as in (24), for some 0 < c t < c ′ t . Estimate (23) shows that |R(x, t)| ≤ c t |x| -d provided |x| ≥ R(t) and R(t) > 0 is taken sufficiently large.

On the other hand, the bound In conclusion the first and third terms in expansion ( 22) can be absorbed by m t (x). The first conclusion of the corollary then follows. The second conclusion is now immediate, because for t > 0 small enough and |x| ≥ R(t) large enough, one can find two constants α, β > 0 such that

|g t (x -y)| ≤ C|x -y| -d-
αt|x| -d ≤ | m t (x)| ≤ βt|x| -d
(the condition f 0 (y) dy = 0 R d is needed only for the lower bound).

Remark 5

The result for the free Navier-Stokes equation (f ≡ 0) is different (see [START_REF] Brandolese | New Asymptotic Profiles of nonstationnary solutions of the Navier-Stokes system[END_REF]): instead of (24) one in general obtains estimates of the form

c t |x| -d-1 ≤ |u(x, t)| ≤ c ′ t |x| -d-1
. Therefore, an external force, even if small and compactly supported in space-time, has the effect of increasing the velocity of the fluid particles at all points at large distances.

We obtain, as another consequence of Theorem 1, the following result for the large time behavior.

Theorem 2 Let a, f and u as in Theorem 1. We additionally assume that a = u(0) satisfies a

(x) = o(|x| -d ) as |x| → ∞ and that ∞ 0 f (y, s) dy ds = 0 R d .
Then, for α ≥ 0, 1 < p < ∞, for some t 0 > 0, some constants c, c ′ > 0 and and all t > t 0 we have,

ct -1 2 (d-α-d p ) ≤ (1 + |x|) α u(t) p ≤ c ′ t -1 2 (d-α-d p ) , when α + d/p < d. ( 26 
)
The above inequalities remain true in the limit case (α, p) = (d, ∞).

On the other hand,

(1 + |x|) α u(t) p = +∞ when α + d/p ≥ d, (27) 
and the above equality remains true in the limit cases p = 1 or (α > d and p = ∞).

Proof. The upper bound in (26) has been already proved in Proposition 1. The proof makes use of an argument used before in [START_REF] Brandolese | New Asymptotic Profiles of nonstationnary solutions of the Navier-Stokes system[END_REF]. By our assumption on f and Remark 4, the homogeneous function f (y, s) dy ds. We get for a sufficiently large M > 0, all t > M and all |x| ≥ M √ t,

m(x) ≡ K(x) ∞ 0 f ( 
|u(x, t) -e t∆ a| ≥ | m(x)| -C|x| -d-1 √ t -c 0 2 |x| -d ≥ c 0 3 |x| -d .
On for some c > 0 and all t > M . In the same way, inequality (28) also implies the lower bound (26) in the limit case p = ∞ and conclusion (27). The upper bounds for u obtained in Proposition 1 complete the proof.

The lower bounds obtained in (26) are invariant under the time translation t → t + t * , but the hypothesis made on f , ∞ 0 f (y, s) dy ds = 0 R d , is not. The explanation is that the conditions on the datum, a(x) = o(|x| -d ) as |x| → ∞, and a ∈ L 1 (R d ), in general, are not conserved at later times. In fact, according to ( 22 We did not treat the case of external forces with vanishing integrals. In that case, the principal term in the asymptotic expansion [START_REF] Qi | Global solutions of the Navier-Stokes equations with large L 2 norms in a new function space[END_REF] of u as |x| → ∞ disappears. A similar method, however, can be used to write the next term in the asymptotics which equals ∇K(x) : t 0 y ⊗ f (y, s) dy ds

(more explicitly, h,k ∂ h K j,k (x) 
t 0 y h f k (y, s) dy ds, for the j -component, j = 1, . . . , d). For this we need to put more stringent assumptions on the decay of f : the spatial decay must be increased of a factor (1 + |x|) -1 and the time decay by a factor (1 + t) -1/2 . Assumptions ( 5)-( 18) should also be sharpened accordingly. For well localized initial data a(x), then one would deduce, bounds of the form

c t |x| -d-1 ≤ |u(x, t)| ≤ c ′ t |x| -d-1
and

(1 + |x|) α u(t) p ≃ ct -1 2 (d+1-α-d/p) , for α + d/p < d + 1.

However, as for the free Navier-Stokes equations (see [START_REF] Brandolese | New Asymptotic Profiles of nonstationnary solutions of the Navier-Stokes system[END_REF]), suitable additional non-symmetry conditions on the flow and on the matrix t 0 y ⊗ f (y, s) dy ds should be added for the validity of the lower bounds.

1 √ t and g t 1 = 1 2 √

 1112 for the heat kernel lead to |e t∆ a(x)| ≤ C |y|≤|x|/t|x -y| -d-1 |a(y)| dy + |y|≥|x|/2 g t (x -y)|a(y)| dy ≤ C|x| -d-1 √ t a 1 + ess sup |y|≥|x|/2 |a(y)| (25) and since |a(y)| = o(|y| -d ) as |y| → ∞, this expression is also bounded by c t |x| -d for |x| ≥ R(t) and a sufficiently large R(t).

  y, s) dy ds does not vanish. Therefore, for some c 0 > 0, we obtain | m(x)| ≥ c 0 |x| -d . Let us apply the profile (22), writing the second term on the right hand side as m(x)-K(x) ∞ t

  ), one has |u(x, t * )| = o(|x| -d ) as |x| → ∞ if and only if t * 0 f (y, s) dy ds = 0 R d .

  the other hand the computation (25) guarantees that we can bound, for |x| ≥ M √ t and t > M , |e t∆ a(x)| ≤ c 0 12 |x| -d . We thus get Multiplying this inequality by the weight (1 + |x|) αp , then integrating with respect to x on the set |x| ≥ M √ t , we immediately deduce (1 + |x|) α u(x, t)

	|u(x, t)| ≥ c 0 4 |x| -d ,	for all |x| ≥ M	√	t, t > M .	(28)
	Let 1 < p ≤ ∞. p	≥ ct -1 2 (d-α-d p )

Acknowledgments

The preparation of this paper was supported by EGIDE, through the program Huber-Curien "Star" N. 16560RK