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ABSTRACT

Constructing regular graphs with a given girth, a given degree and the fewest possible
vertices is hard. This problem is called the cage graph problem and has some links with
the error code theory. G-graphs can be used in many applications: symmetric and semi-
symmetric graph constructions, (Bretto and Gillibert (2008) [ 12]), hamiltonicity of Cayley
graphs, and so on. In this paper, we show that G-graphs can be a good tool to construct some
upper bounds for the cage problem. For p odd prime we construct (p, 6)-graphs which are
G-graphs with orders 2p? and 2p? — 2, when the Sauer bound is equal to 4(p — 1)3. We
construct also (p, 8)-G-graphs with orders 2p* and 2p* — 2p, while the Sauer upper bound
is equal to 4(p — 1)°.

1. Preliminaries

The problem of cages has been introduced by TUTTE in 1947 [1]. It is an important part of both extremal graph theory and
algebraic graph theory. So this topic has been widely studied and some interesting applications to computer science have
been developed, [2-9]. There exist both an upper bound (SAUER bound) and a lower bound (MooRe bound) for the problem
of cages but these bounds are actually rarely reached. Consequently there is no general method to construct arbitrary cages.
In this paper, we construct several infinite families of G-graphs with a girth of 6 or 8 and regular of degree p, for any odd
prime number p. For families the best upper bound known so far is given for both the (p, 6)-cage problem and the (p, 8)-cage
problem. Some other families give us a best new upper bound.

Let I' = (V;E) be a simple graph, (without loop or multiple edge). A chain is a sequence ({vq, v2}, {v2, v3}, ...,
{vk—l ) Uk}).

A cycle C is a chain such that v; = v, and all edges are distinct.

An elementary cycle is a chain such that v; = vy and all vertices are distinct except the first one and the last one.

So any cycle contains an elementary cycle.

The G-graphs have been introduced in [10] to study the isomorphism problem. Their properties have been studied
in [11,12]. Some applications of these graphs to symmetric and semi-symmetric graph-construction have been developed
in [13]. Here we reminded the reader the construction of this type of graph. We denote by (G, S) a finite group G with a
subset S. For any s € S, we consider the right action of G on the right cosets Hx of the subgroup H = {(s).

Thus we have a partition G = |_|X€TS (s)x, where T; is a right transversal of (s). The cardinality of (s) is o(s), the order of
the element s. Let us consider the cycles (s)x = (x, sx, s2x, .. ., s°®@~1x) of the permutation g;: x —> sx. Notice that (s)x is
the support of the cycle (s)x. We now define a graph denoted by @ (G; S) = (V; E) as follows:

o The vertices of @ (G; S) are the cycles of g5, s € S: V = Ues Vs with Vs = {(s)x, x € T}.
e For (s)x, (t)y € V, {(s)x, (t)y} is an n-edge if |(s)x N (t)y| =n, n > 1.
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Fig. 1. The octahedral graph.

Thus, @(G; S) is a k-partite graph and any vertex has an o(s)-loop. We denote by 5(6; S) the graph @(G; S) without
loops and multi-edges. N

Both graphs @ (G; S) and @ (G; S) are called G-graphs, and we say that the graph is associated by the group (G; S).

An example of a G-graph construction is given below.

Let G be the KLEIN group, the product of two cyclic groups of order 2. So G = {e, a, b, ab} with o(a) = 2, o(b) = 2 and
ab = ba. The set S = {a, b, ab} is a family of generators of G. Let us compute the graph @ (G; S).

The cycles of the permutation g, are:

(@)e = (e, ae) = (e, a)
(a)b = (b, ab).
The cycles of the permutation g, are:
(b)e = (e, be) = (e, b)
(b)a = (a, ba) = (a, ab).
The cycles of the permutation g, are:
(ab)e = (e, abe) = (e, ab)
(ab)a = (a, aba) = (a, b).
The graph 5(6; S) is isomorphic to the octahedral graph (see Fig. 1). The octahedral graph is a 3-partite symmetric quartic
graph.
2. Properties of G-graphs
The two following results can be found in [11,12].
Proposition 2.1. If (s1) N (s3) = 1, then the G-graph @ (G; {s1, s2}) has just loops as multi-edges.
Proposition 2.2. Let @ (G; S) = (V; E) be a G-graph. This graph is connected if and only if S is a set of generators of G.

Proposition 2.3. Let (G; {s1, s2}) be a group with (s1) N (sy) = 1 and let 5(6; {s1, s2}) be its associated simple G-graph.
Each elementary cycle of length 2n in @ (G; {s1, s»}) stands for a relation

singkn shisk =1 (1)
With0 < ky, ky, ..., ky < o0(s1) and0 < Iy, I, ..., I, < o(sy).

Proof. We first fix two right transversals T, and Ts, of (s1) and (s,) and reminded the reader that every g € G can be written
in a unique way: g = s"lx, 0 <i<o(s1), x € T;; and in a unique way: g = s’zx, 0<j<o(s), xeT,.

(a) Let us consider an elementary cycle C = ({vy, va}, {va, v}, ..., {van, v1}) of length 2n (the graph is bipartite). We
can suppose vy € Vg andsov; € Ve, - There is an element which is both in (s1)x; and in (s3)x; (x1 € Ty, X, € T,). So there
are h and j, such that

2%, = sl'xy.
There is also an element which is both in (s;)x, and in (s1)x3, (x3 € Ts;) withx; 7 x3 because v3 # v; by hypothesis.

3y — o2y 2722, —hchy, . lich
S3x3 = $2xy = 2 252xy = 527 2shxy =i 5} slixg.

If I; = 0 mod o(sy), then s°x3 = s"x;, x; = x3 and v; = v3.S0 ; # 0 mod o(s,).
There exist i3, j4 such that

j4 i3 i3—j3 J3 i3=j3 1 ch . ke dich
Sixg = SPx3 = 57 Psixg = sP 7 Bs) sy = 5]

o 1
S5 81X1.



We have k, = 0 mod o(s;) (otherwise, we would have s£4x4 = s'z1 s’{x1 = slzlsézxz, which implies x4 = x; and vq4 = vy).
We continue the process up to:

j2n+1 ipn In k Iy h
S Xony1 = S Xoy = SSAT s sy

with [, # 0 mod o(s); X2n+1 = X7 implies:

In kn Iy h=janr1
S581 ... 558 =1

Finally we have k; := h — jo,+1 % 0 mod o(sy). Assume that this is not the case: s’fxz = s’{x1 = s'f”“szH = s?”sz. If
Xon # Xz, then there is an edge between (s;)x; and (s;)x2,, Which is impossible by construction. So x,,, = x5, which leads to
Von = (S2)X2n = (52)X2 = v,. But by hypothesis the cycle is elementary, a contradiction. O

3. The cage graph problem

The results of this section can be found in [2,14,3,5,15,7,16,17,9]. The girth is the length of the shortest graph cycle in a
simple graph. Acyclic graphs are considered to have infinite girth. A (k, g)-graph, with g > 3, is a k-regular graph of girth
g.The graph I = (V; E) is a (k, g)-cage if I" is a (k, g)-graph with |V| minimum; we denote this minimum by cage(k, g).
There are two problems.

1. calculation of the cage(k, g),
2. determination of all the (k, g)-cages.

There are special cases.

e cage(k, 3) = k+ 1, and the (k, 3)-cage are the complete graphs Kj. 1.
e cage(k, 4) = 2k, and the (k, 4)-cage are the complete bipartite graphs Kj .

The best lower bounds known for cage(v, g) are the Moore bounds.
1+k Y (k=1 ifgisodd
051‘5%3

cage(k, g) > Moore(k, g) = . g2
1+k Z k—1)"+(k—1)7 ifgiseven.

._g—4
O<i==5—

A (k, g)-graph I = (V; E) is a Moore-graph if |V| = Moore(k, g); if it exists, we have cage(k, g) = Moore(k, g).

For g = 5, a (k, g)-Moore-graph exists only if k = 3, 7 or 57.

* The Petersen graph is a (3, 5)-Moore-graph: cage(3, 5) = 10.

* The Hoffman-Singleton graphis a (7, 5)-Moore-graph: cage(7, 5) = 50.

* No example of (57, 5)-Moore-graph is known.

Forg =6,

* The incidence graph of PG(2, p™) (which is a finite projective plane with p prime andn > 1)is a (p" + 1, 6)-Moore-
graph; so for k = p" + 1, we have cage(k, 6) = Moore(k, 6) = 2k* — 2k + 2.

* The Heawood graph is a (3, 6)-Moore-graph: cage(3, 6) = 14. It is the incidence graph of PG(2, 2).

* The Wong graph is a (4, 6)-Moore-graph: cage(4, 6) = 26. It is the incidence graph of PG(2, 3).

* What happens when k — 1 is not a prime power is not known.

e For g = 7, there exists no (k, 7)-Moore-graph. Hence cage(k, 7) > Moore(k, 7).

For g = 8, the generalized quadrangle is a (p" + 1, 8)-Moore-graph; for k = p" + 1, p prime, we have cage(k, 8) =

Moore(k, 8) = 2k — 4k? + 4k.

* What happens when k — 1 is not a prime power is not known.

The best upper bounds known for cage(k, g) are the Sauer bounds [ 16].

st )< swert )= (20217 et
Hence we have

Moore(k, 6) = 2k* — 2k + 2 < cage(k, 6) < 4(k — 2)* = Sauer(k, 6)
and

Moore(k, 8) = 2k> — 4k?® + 4k < cage(k, 8) < 4(k — 2)° = Sauer(k, 8).

We present a construction for a new graph, regular of degree p, p odd prime number, with a girth equal to 6, and 2p?
vertices.

Moore(p, 6) = 2p*> — 2p + 2 < cage(p, 6) < 2p* < Sauer(p, 6) = 4(p — 1)°.
Thus we improve the upper bound for the order of a (p, 6)-cage.



Then we present a new graph, regular of degree p, odd prime, with a girth equal to 8, and 2p> vertices.
Moore(p, 8) = 2p°> — 4p? + 4p < cage(p, 8) < 2p° < Sauer(p, 8) = 4(p — 1)°
improving the upper bound.

4. Construction of the (p, 6)-graph

Let p be a prime odd number, the group Aut(Z/pZ)? can be identified as the group GL,(Z/pZ) of invertible 2 x 2-matrices
with coefficients in Z/pZ. The matrix

v=( %)

is of order p, and gives rise to amorphism A : Z/pZ — Aut(Z/pZ)? by the rule A(m) = M™. Let G = (Z/pZ)? ;. Z./pZ be
the semi-direct product. For the convenience, we use the following.
Multiplicative notations: G = ({a, b)) x; (c), with ab = ba,a’ = b = ¢ = 1.The map 0: G = (Z/pZ)* x, Z/pZ —
({a, b)) x, (c) defined by 8 (k, I, m) = (a*b', c™) with k, I, m integers modulo p is an isomorphism between these two groups.
According to this identification we have A(c™)(a) = ab™, A(c™)(b) = b and so the product in G is:

(a"b', cm).(a"/bl/ , Cm’) — (ak+k’bl+l’+mk’ , Cm+m’)'

Lets; = (a, 1), s, = (1, ¢), because s = (d, 1), s} = (1, '), the order of both s; and s, are p in G.
1 2

Proposition 4.1. If S = {sq, s} then S is a set of generators of G.

Proof. Since G = ((a, 1), (b, 1), (1, ¢)), it is sufficient to obtain (b, 1) with s; and s;. We can notice that s’{s’2 =
(@, (1, c) = (d, c') and

sishsi sh = (@B, ) (n
so (b, 1) =s7's815; . O
Let us consider the G-graph 5(6; S).Since (s1) N (s;) = 1, this is a simple,connected, and regular graph of degree p.

Theorem 4.2. The girth of the graph 5(6; S) is equal to 6.

Proof. The G-graph I" = ®(G;S) is bipartite because |S| = 2 and so its girth is even. The graph I" is simple, so its girth is
greater than or equal to 4. We have to prove that there is no cycle of length 4 in the graph. If there is such a cycle, there is a
relation of type sts}sK's = 1,0 < k, K, I, I' < pin G, (the other form, beginning with s, is equivalent to this one); applying

(I) we obtain the system:

e k+k =0 modp

o Ik =0 modp

e+ 1'=0 modp
p being prime, the second equation implies [ = 0 mod p or k' = 0 mod p, which is impossible.
There is at least one cycle of length 6 in the graph, otherwise @ (G; S) would be a (p, 8)-graph with 2p? vertices, contrary to
the Moore-bound 2p® — 4p? + 4p. One can find such a relation in the following way: there exist two nonabelian groups of
order p3; our group G is the extra-special M (p) (see for example [18]), whose presentation is

M@)=(x,y,z:x* =y =2 =1, xy =yx,yz =zy,xzx "'z ' = y)
the correspondance is x = (a~', 1),y = (b, 1),z = (1, c). If we denote by Qg 1t — gtg~! the inner automorphism
associated to g, xzx~'z=! = y can be read ¢,(z) = yz. Since ¢,(y) = y, we have ¢,2(z) = ¢,(y2) = y*z = (y2)?z7! =

0 (2)?z7 1 (zy = y2), 50 @ (2) 20,2 (2)z = 1 (y is eliminated). Hence Xz 2xzx "2z = land s; = x~!, s, = z give
s7sy sy Isys2s, = 1. O
The number of vertices of & (G; S) is 2p?, so:
Corollary 1. For p odd prime one has the following:
Moore(p, 6) = 2p* — 2p + 2 < cage(p, 6) < 2p* < Sauer(p, 6) = 4(p — 1)°
improving the Sauer bound.

Remark. For the case where k — 1 is not equal to a prime power, there are two bounds manually computed. We have
cage(7,6) = 90 [17,7] (our graph for p = 7 is of order 98). The best known upper bound for the (11, 6)-cage is a graph of
order 240 described in [19]; our graph for p = 11 is of order 242. In Section 7 we will see that, thanks to G-graph we can
find a best known upper bound for both the (11, 6)-cage and (13, 6)-cage.



5. Construction of the (p, 8)-graph

Let p be an odd prime number, the group Aut(Z/pZ)? can be identified as the group GL3(Z/pZ). The matrix

100
M = (1 1 o) € GL3(Z/pZ)

0o 1 1
verifies
1 0 0
- n 1 0
n(n2— 1) 1

so M is of order p in GL3(Z/pZ) and gives rise to a morphism A : Z/pZ —> Aut(Z/pZ)> by the rule A(n) = M". Let G be the
semi-direct product G = (Z/pZ)> x, Z/pZ. For convenience, we use the following.

Multiplicative notations: Let G = ({(a, b, ¢)) x; (d), with (a, b, c) abelian, and > = b’ = ¢? = d” = 1. The map 6:
G = (Z/p7)3 %, Z/pZ — ({a, b, c)) x,(d), defined by (k, I, m, n) = (a*blc™, d™) with k, I, m, n integers modulo p is an
isomorphism between these two groups. According to these identifications we have A(d")(a) = ab"c nerD , A(d™)(b) = bc"
and A(d")(c) = c. So the product in G is:

(@p'c™, d").(@'b'c™, d"y = (@b'c™ad®) (@ b ™), d"d™)
_ (ak+k’bl+l’+nk’cm+m’+—"(";1)k’7 dn+n’) )

Lets; = (a,1) € G,s, = (1,d) € G. Clearly 51 and s, are of order p. Let S = {s1, s}. The G-graph <I>(G S) is simple
({s1) N (s2) = 1) and regular of degree p; |G| = p* and |S| = 2, so the number of edges ofd>(G S) is equal to p*. Therefore
the order of <I>(G S)is 2p3.
Proposition 5.1. S is a set of generators of G.
Proof. Since G = ((a, 1), (b, 1), (c, 1), (1, d)), it is sufficient to obtain (b, 1) and (c, 1) with s; and s,. Notice that s’{s’2 =
(a*, 1)(1,d) = (a*, d') and

skshsh sy = (a"“‘/b”‘/cw"/, d'“) (I
so (b, 1) = s7's;815, ', and

kgl k' oI oK I Ktk ik S Gy K gl
5155571 85871 S5 = (@b ,d). (@ ,d)

/T i 1A=1) A0 =1) g
— (ak+k +k blk +(+1)k c 7T K+ ==K , dl+l +I ) . (III)

To obtain (c, 1) we have, by [3], to solve:

e k+ K +k"=0modp
o lk+ (I+1Nk" =0mod p

° l(l 1) k + (H—l)(H—l —1) k// =1 modp
ol+l’ l”—Omodp
Asolutionisk = -2,k = 1,k' =1, =1,I' = —2,1" = 1. Hence (c, 1) = 525,515, 25152 O

Theorem 5.2. The girth of the graph 5(6; S) is equal to 8.

Proof. The G-graph I' = 5(6; S) is bipartite because |S| = 2, so its girth is even. The graph I is simple, so its girth is
greater than or equal to 4. We have to prove that there is no cycle of length 4 or 6 in the graph.

If there is a cycle of length 4, there is a relation s¥sbs¥s) = 1in G with0 < k,I,k',I' < p. By Eq. (Il) it implies
Ik’ = 0 mod p, where p being prime, [ = 0 mod p or k' = 0 mod p. There is a contradiction because we need 0 < I, k' < p.
So there is no cycle of length 4 in the graph d)(G S).

If there is a cycle of length 6, there is a relation s¥shs¥'s) s¥'s)" = 1in Gwith 0 < k, L, k', I', k", I” < p. By (IlI) we have:

e k+ K +k"=0modp

o lk+ (I+1Nk" =0mod p

. 1(1 W=Dy <1+1)<1+1 “Uj’ = 0 mod p
. l+l’ l”—Omodp



The third equation implies k'I(I— 1) + k" (I4+1I')(I4+1! —1) = 0 mod p, or [(I— D)k’ +1"(I" +1)k” = 0 mod p(I+1I' = -1");
therefore the second equation can be written Ik’ — I”k” = 0 mod p.
By using the third equation, I"k” (I — 1) + k"I"(I" + 1) = 0 mod p, i.e.I"k”(—I') = 0 mod p. Now p being prime, this implies
I” =0,0r k" = 0, or [ = 0 which is impossible. So there is no cycle of length 6 in the graph @ (G; S).

If there is no cycle of length 8 in I”, then we would have a graph of girth at least 10 with an order equal to 2p, contradicting
the fact that the Moore-bound 2p* — 6p> + 8p? — 4p + 2. So the girth of I is equal to 8.

Itis easy to find a relation between s, and s,. Indeed in the proof of Proposition 4.1 we have seenthat (b, 1) = 51_1525152_1 ;
but s; = (a, 1) commute with (b, 1), so s;(b, 1) = (b, 1)s; and

—1 —-1.-1 —1
Sy S281°S; s1s2818, = 1. O

Corollary 2. If p is an odd prime then:
Moore(p, 8) = 2p> — 4p? + 4p < cage(p, 8) < 2p> < Sauer(p, 8) = 4(p — 1)°
improving the Sauer bound.
Finally this work gives rise to the following.

Conjecture 3. For p prime and g even:

cage(p,g) <2p? .

6. Examples

The (3, 6)-graph shown in the figure below is well known, and is usually called the PApPUSs graph; the graph on the right
is our (3, 8)-graph.

Our (5, 6)-graph and our (7, 6)-graph.

7. Improvements of the bounds

7.1. Construction of another (p, 6)-graph
We are going to use the following result.

Proposition 7.1. Let @ (G; S), where S is not a generator set. Let (Cy)qe(1,2,..,r}» T = 2 be the set of connected components of
@(G; S). ThenCy = Cg, foralla, B € {1,2,...,1}.

Proof. LetS = {sq, S, S3, . . ., Sk} be a nongenerator subset of G. We know that @ (G; S) is not connected.

e Let C be a connected component of @ (G; S). Assume that C contains the vertex (s;)x;. Let x := x;. Foreveryj, 1 <j <k, x
must be in a cycle of 8s; say (sj)x;. Consequently C contains at least one vertex in each “layer”, (“stratum”) (s)O of each
permutation.

e Forevery g € G, consider the automorphism 8, : V —> V, defined by 8, ((s)x) = (s)xg~!, and 8;‘ : E — E associating
to the n-edge {(s)x, (t)y} and the n-edge {(s)xg ™!, (t)yg~!}. It is easy to see that § : g — 8g is a morphism from G to
Aut(®(G; S)).



e Let C, and Cg be two connected components of @ (G; S) and (s1)x, € Cy,(s1)Xg € Cg. The element g = x;lxa verifies
3g((s1)Xe) = (s1)xp. Hence §;(Cy) C Cg; we have also 8,-1((s1)Xg) = (S1)Xa, SO that §,-1(Cg) < Cq, therefore
Cg C 84(Cy), and finally 85 (Cy) = Cg. O

Let SL(2, p), where p is prime and p > 3, be the special linear group of 2 x 2 matrices over F,. We have |SL(2, p)| =
pp—Dp+1).
Leta = ((1, }) , b= (} (1)) and @ (SL(2, p); S) be the simple G-graph associated with SL(2, p), S = {a, b}.

Easy calculations give a" = ((1, '11) and b" = (,11 ?)for ne s

Theorem 7.2. The girth of ®(SL(2, p); {a, b}) is 6.

Proof. Assume that 5(SL(2, p); {a, b}) contains a 4-cycle. This one is of the form:
akbliak2b2 = id, with 0 < kq, Iy, ko, I, < p. In this case:

dphgleph — (Liky + 1) (hka + Dkily  ka(liky + 1) + k4 '
Lihka + 1)+ 1 liky +1
So lik; + 1 = 1 mod p implying l1k, = 0 mod p. Hence % or %2 sol; = 0 mod p or k; = 0 mod p. But, by hypothesis,

0 <1li <pand0 < k, < p, a contradiction. Hence 5(SL(2 p); {a, b}) does not contain any 4-cycle.
The graph d)(SL(Z p); {a, b}) has p(p — 1)(p + 1) edges and is bipartite. Because o(a) = o(b) = p, the degree of any
vertex is p. So <1>(SL(2 p); {a, b}) has M = 2p? — 2 vertices.

Suppose now that there is no 6-cycle in <1>(SL(2 p); {a, b}). So the girthis 8 at least, it leads to Moore(p, 8) = 2p> — 4p*> +
4p < 2p? — 2 which s false. O
Corollary 4. If p is an odd prime we have,

Moore(p, 6) = 2p* — 2p + 2 < cage(p, 6) < 2p* — 2 < 2p* < Sauer(p, 6) = 4(p — 1)°.

Corollary 5. Let S = {a, b} be a subset of SL(2, p), where p is prime and p > 3, and such that o(a) = o(b) = p. We have,
@ (SL(2, p); {a, b}) has a girth equal to 6 then S = {a, b} is a generator set of SL(2, p).

Proof. Assume thatS = {a, b} is not a generator set. Then 5(SL(2 p); {a, b}) is not connected, and by Proposition 7.1, each
connected component C, of <1>(SL(2 p); {a, b}) has the same vertex number, say Zp 2 neNn>2anda girth 6. So
Moore(p, 6) = 2p* — 2p + 2 < 222

, which is impossible. O
7.2. Construction of another (p, 8)-graph

Let G = -Z x SL(2, p), where p is prime and p > 3.Now letS = {a, b} witha = (1 z, 1 }))andb = (O z, (1 O)).
p-Z Pz bz

Like above we have, a" = (1%, ((1) ';)) b = (o‘%, ('11 ?)) ne Z.
For convenience, we note X; = 1 + k;l;. Hence,

Kl kol XiXo + kil  Xiky + Ky
aibranh? = (kl +he, (ll + L+ khl, 14kl

where every expression read modulo p.
If a1l ak2bf2 = 1, then the last equation implies 1+ 1k, = 1. Therefore 1k, = 0, which is impossible.
Now the graph <I>(G {a, b}) does not contain any 6-cycle; otherwise,

1 =d“phgkeplgbsps = <k1 + ky + ks, (Iil II\I/))

by brute calculation the three first equations are:

o ki +ky+ ks =0.

° X1X2X3k3 + k1lzX3 + X1kzl3 + k1 l3 =1 (I)

° X1X2k3 + k1lzk3 + X1k2 + k1 =0 (H).

Now (D)-(II) x I3 gives X1 X2 + ki1l = 1,i.e. X1Xo = 1 — kil,. We bring this in (I):
(1 —k1b)X3 4+ k1bLX3 + kal3X1 4+ kils = 1, or X3 + k13X + k1ls = 1, and ksl + k;13X1 + k1l3 = 0; since I3 % 0 we have

ks + ko X1 +k; = 0,andso X; = —% =1- % = 1(kq 4+ ko + k3 = 0); this implies k1l; = 0 which is impossible.
The girth cannot be greater than 8, since Moore(p, 10) = 2p* — 6p® + 8p?> — 4p + 2 cannot be majored by 2p> — 2p.



We have shown that:

Theorem 7.3. The girth of & (f—z x SL(2, p); {a, b}) is 8.

Corollary 6. For p odd prime one has the following:
Moore(p, 8) = 2p> — 4p® + 4p < cage(p, 8) < 2p> — 2p < 2p> < Sauer(p, 6) = 4(p — 1)°.

Corollary 7. The set S = {a, b} is a generator set of p% x SL(2, p), where p is prime and p > 3.

3 .. .
22 js impossible forn > 2. O

Proof. The argument is the same as in Corollary 4: 2p® — 4p? + 4p <

n
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