
HAL Id: hal-00947569
https://hal.science/hal-00947569

Submitted on 19 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Top-Down Regularization of Deep Belief Networks
Hanlin Goh, Nicolas Thome, Matthieu Cord, Joo-Hwee Lim

To cite this version:
Hanlin Goh, Nicolas Thome, Matthieu Cord, Joo-Hwee Lim. Top-Down Regularization of Deep Belief
Networks. Advances in Neural Information Processing Systems 26, Dec 2013, Lake Tahoe, United
States. pp.1878-1886. �hal-00947569�

https://hal.science/hal-00947569
https://hal.archives-ouvertes.fr

Top-Down Regularization of Deep Belief Networks

Hanlin Goh∗, Nicolas Thome, Matthieu Cord
Laboratoire d’Informatique de Paris 6

UPMC – Sorbonne Universités, Paris, France
{Firstname.Lastname}@lip6.fr

Joo-Hwee Lim†

Institute for Infocomm Research
A*STAR, Singapore

joohwee@i2r.a-star.edu.sg

Abstract

Designing a principled and effective algorithm for learning deep architectures is a
challenging problem. The current approach involves two training phases: a fully
unsupervised learning followed by a strongly discriminative optimization. We
suggest a deep learning strategy that bridges the gap between the two phases, re-
sulting in a three-phase learning procedure. We propose to implement the scheme
using a method to regularize deep belief networks with top-down information. The
network is constructed from building blocks of restricted Boltzmann machines
learned by combining bottom-up and top-down sampled signals. A global op-
timization procedure that merges samples from a forward bottom-up pass and a
top-down pass is used. Experiments on the MNIST dataset show improvements
over the existing algorithms for deep belief networks. Object recognition results
on the Caltech-101 dataset also yield competitive results.

1 Introduction

Deep architectures have strong representational power due to their hierarchical structures. They
are capable of encoding highly varying functions and capture complex relationships and high-level
abstractions among high-dimensional data [1]. Traditionally, the multilayer perceptron is used to
optimize such hierarchical models based on a discriminative criterion that models P (y|x) using a
error backpropagating gradient descent [2, 3]. However, when the architecture is deep, it is challeng-
ing to train the entire network through supervised learning due to the large number of parameters,
the non-convex optimization problem and the dilution of the error signal through the layers. This
optimization may even lead to worse performances as compared to shallower networks [4].

Recent developments in unsupervised feature learning and deep learning algorithms have made it
possible to learn deep feature hierarchies. Deep learning, in its current form, typically involves two
consecutive learning phases. The first phase greedily learns unsupervised modules layer-by-layer
from the bottom-up [1, 5]. Some common criteria for unsupervised learning include the maxi-
mum likelihood that models P (x) [1] and the input reconstruction error of vector x [5–7]. This is
subsequently followed by a supervised phase that fine-tunes the network using a supervised, usu-
ally discriminative algorithm, such as supervised error backpropagation. The unsupervised learning
phase initializes the parameters without taking into account the ultimate task of interest, such as
classification. The second phase assumes the entire burden of modifying the model to fit the task.

In this work, we propose a gradual transition from the fully-unsupervised learning to the highly-
discriminative optimization. This is done by adding an intermediate training phase between the two
existing deep learning phases, which enhances the unsupervised representation by incorporating
top-down information. To realize this notion, we introduce a new global (non-greedy) optimization

∗Hanlin Goh is also with the Institute for Infocomm Research, A*STAR, Singapore and the Image and
Pervasive Access Lab, CNRS UMI 2955, Singapore – France.

†Joo-Hwee Lim is also with the Image and Pervasive Access Lab, CNRS UMI 2955, Singapore – France.

1

that regularizes the deep belief network (DBN) from the top-down. We retain the same gradient
descent procedure of updating the parameters of the DBN as the unsupervised learning phase. The
new regularization method and deep learning strategy are applied to handwritten digit recognition
and dictionary learning for object recognition, with competitive empirical results.

2 Related Work

1

z
!

Latent layer!

I
in

p
u

t
u

n
it

s!

J
la

te
n

t
u

n
it

s!x
!

Input layer!

W
!

bc
!

Figure 1: Structure of the RBM.

Restricted Boltzmann Machines. A restricted Boltzmann
machine (RBM) [8] is a bipartite Markov random field with an
input layer x ∈ R

I and a latent layer z ∈ R
J (see Figure 1). The

layers are connected by undirected weights W ∈ R
I×J . Each

unit also receives input from a bias parameter bj or ci. The joint
configuration of binary states {x, z} has an energy given by:

E(x, z) = −z⊤Wx− b⊤z− c⊤x. (1)

The probability assigned to x is given by:

P (x) =
1

Z

∑

z

exp(−E(x, z)), Z =
∑

x

∑

z

exp(−E(x, z)), (2)

where Z is known as the partition function, which normalizes P (x) to a valid distribution. The units
in a layer are conditionally independent with distributions given by logistic functions:

P (z|x) =
∏

j

P (zj |x), P (zj |x) = 1/(1 + exp(−w⊤
j x− bj)), (3)

P (x|z) =
∏

i

P (xi|z), P (xi|z) = 1/(1 + exp(−wiz− ci)). (4)

This enables the model to be sampled via alternating Gibbs sampling between the two layers. To
estimate the maximum likelihood of the data distribution P (x), the RBM is trained by taking the
gradient of the log probability of the input data with respect to the parameters:

∂ logP (x)

∂wij

≈ 〈xizj〉0 − 〈xizj〉N , (5)

where 〈·〉t denotes the expectation under the distribution at the t-th sampling of the Markov chain.
The first term samples the data distribution at t = 0, while the second term approximates the equi-
librium distribution at t = ∞ using the contrastive divergence method [9] by using a small and finite
number of sampling steps N to obtain a distribution of reconstructed states at t = N . RBMs have
also been regularized to produce sparse representations [10, 11].

z
!

Latent
layer!

I
in

p
u

t
u

n
it

s!

J
la

te
n

t
u

n
it

s!

x
!

Inputs!

W
!

C
 o

u
tp

u
t

u
n

it
s!

y
!

Classes!

V
!

Concatenated!
layer!

Figure 2: A supervised RBM
jointly models inputs and outputs.
Biases are omitted for simplicity.

Supervised Restricted Boltzmann Machines. To introduce
class labels to the RBM, a one-hot coded output vector y ∈ R

C

is defined, where yc = 1 iff c is the class index. Another set of
weights V ∈ R

C×J connects y with z. The two vectors are con-
catenated to form a new input vector [x,y] for the RBM, which
is linked to z through [W⊤,V⊤], as shown in Figure 2. This
supervised RBM models the joint distribution P (x,y). The en-
ergy function of this model can be extended to

E(x,y, z) = −z⊤Wx− z⊤Vy − b⊤z− c⊤x− d⊤y (6)

The conditional distribution of the concatenated vector is now:

P (x,y|z) = P (x|z)P (y|z) =
∏

i

P (xi|z)
∏

c

P (yc|z), (7)

where P (xi|z) is given in Equation 4 and the outputs yc may
either be logistic units or the softmax units. The RBM may
again be trained using contrastive divergence algorithm [9] to
approximate the maximum likelihood of joint distribution.

2

During inference, only x is given and y is set at a neutral value, which makes this part of the RBM
‘noisy’. The objective is to use x to ‘denoise’ y and obtain the prediction. This can be done by
several iterations of alternating Gibbs sampling. If the number of classes is huge, the number of
input units need to be huge to maintain a high signal to noise ratio. Larochelle and Bengio [12]
suggested to couple this generative model P (x,y) with a discriminative model P (y|x), which can
help alleviate this issue. However, if the objective is to train a deep network, then with ever new
layer, the previous V has to be discarded and retrained. It may also not be desirable to use a
discriminative criterion directly from the outputs, especially in the initial layers of the network.

Deep Belief Networks. Deep belief networks (DBN) [1] are probabilistic graphical models made
up of a hierarchy of stochastic latent variables. Being universal approximators [13], they have been
applied to a variety of problems such as image and video recognition [1, 14], dimension reduc-
tion [15]. It follows a two-phase training strategy of unsupervised greedy pre-training followed by
supervised fine-tuning.

For unsupervised pre-training, a stack of RBMs is trained greedily from the bottom-up, with the
latent activations of each layer used as the inputs for the next RBM. Each new layer RBM models the
data distribution P (x), such that when higher-level layers are sufficiently large, the variational bound
on the likelihood always improves [1]. A popular method for supervised fine-tuning backpropagates
the error given by P (y|x) to update the network’s parameters. It has been shown to perform well
when initialized by first learning a model of input data using unsupervised pre-training [15].

An alternative supervised method is a generative model that implements a supervised RBM (Fig-
ure 2) that models P (x,y) at the top layer. For training, the network employs the up-down back-
fitting algorithm [1]. The algorithm is initialized by untying the network’s recognition and generative
weights. First, a stochastic bottom-up pass is performed and the generative weights are adjusted to
be good at reconstructing the layer below. Next, a few iterations of alternating sampling using the
respective conditional probabilities are done at the top-level supervised RBM between the concate-
nated vector and the latent layer. Using contrastive divergence the RBM is updated by fitting to its
posterior distribution. Finally, a stochastic top-down pass adjusts bottom-up recognition weights to
reconstruct the activations of the layer above.

In this work, we extend the existing DBN training strategy by having an additional supervised train-
ing phase before the discriminative error backpropagation. A top-down regularization of the net-
work’s parameters is proposed. The network is optimized globally so that the inputs gradually map
to the output through the layers. We also retain the simple method of using gradient descent to
update the weights of the RBMs and retain the same convention for generative RBM learning.

3 Top-Down RBM Regularization: The Building Block

We regularize RBM learning with targets obtained by sampling from higher-level representations.

Generic Cross-Entropy Regularization. The aim is to construct a top-down regularized building
block for deep networks, instead of combining the optimization criteria directly [12], which is done
for the supervised RBM model (Figure 2). To give control over individual elements in the latent
vector, one way to manipulate the representations is to point-wise bias the activations for each latent
variable j [11]. Given a training dataset Dtrain, a regularizer based on the cross-entropy loss can be
defined to penalize the difference between the latent vector z and a target vector ẑ:

LRBM+reg(Dtrain) = −

|Dtrain|∑

k=1

logP (xk)− α

|Dtrain|∑

k=1

J∑

j=1

logP (ẑjk|zjk). (8)

The update rule of the cross-entropy-regularized RBM can be modified to:

∆wij ∝ 〈xisj〉0 − 〈xizj〉N , (9)

where
sj = (1− λ) zj + λẑj (10)

is the merger of the latent and target activations used to update the parameters. Here, the influences
of ẑj and zj are regulated by parameter λ. If λ = 0 or when the activationes match (i.e. zj = ẑj),
then the parameter update is exactly that the original contrastive divergence learning algorithm.

3

Building Block. The same principle of regularizing the latent activations can be used to combine
signals from the bottom-up and top-down. This forms the building block for optimizing a DBN
with top-down regularization. The basic building block is a three-layer structure consisting of three
consecutive layers: the previous zl−1 ∈ R

I , current zl ∈ R
J and next zl+1 ∈ R

H layers. The
layers are connected by two sets of weight parameters Wl−1 and Wl to the previous and next
layers respectively. For the current layer zl, the bottom-up representations zl,l−1 are sampled from
the previous layer zl−1 through weighted connections Wl−1 with:

P (zl,l−1,j | zl−1;Wl−1) = 1/(1 + exp(−w⊤
l−1,jzl−1 − bl,j)), (11)

where the two terms in the subscripts of a sampled representation zdest,src refer to the destination
(dest) and source (src) layers respectively. Meanwhile, sampling from the next layer zl+1 via
weights Wl drives the top-down representations zl,l+1:

P (zl,l+1,j | zl+1;Wl) = 1/(1 + exp(−wl,jzl+1 − cl,j)). (12)

The objective is to learn the RBM parameters Wl−1 that map from the previous layer zl−1 to
the current latent layer zl,l−1, by maximizing the likelihood of the previous layer P (zl−1) while
considering the top-down samples zl,l+1 from the next layer zl+1 as target representations. The loss
function for a network with L layers can be broken down as:

LDBN+topdown =

L∑

l=2

Ll,RBM+topdown (13)

where the cross-entropy regularization the loss function for the layer is

Ll,RBM+topdown = −

|Dtrain|∑

k=1

logP (zl−1,k)− α

|Dtrain|∑

k=1

J∑

j=1

logP (zl,l+1,jk|zl,l−1,jk). (14)

This results in the following gradient descent:

∆wl−1,ij = ε
(
〈zl−1,l−2,isl,j〉0 − 〈zl−1,l,izl,l−1,j〉N

)
, (15)

where

sl,jk = (1− λl) zl,l−1,jk

︸ ︷︷ ︸

Bottom-up

+λl zl,l+1,jk

︸ ︷︷ ︸

Top-down

, (16)

is the merged representation from the bottom-up and top-down signals (see Figure 3), weighted by
hyperparameter λl. The bias towards one source of signal can be adjusted by selecting an appropriate
λl. Additionally, the alternating Gibbs sampling, necessary for the contrastive divergence updates,
is performed from the unbiased bottom-up samples using Equation 11 and a symmetric decoder:

P (zl−1,l,j = 1 | zl,l−1;Wl−1) = 1/(1 + exp(−wl−1,izl,l−1 − cl−1,j)). (17)

Bottom-up! Top-down!

Merged!

zl,l−1 zl+1zl−1

zl−1,l

zl,l+1

zl,l−1

1-step CD!

sl

Wl−1 Wl

Previous layer! Next layer!Intermediate layer!

Figure 3: The basic building block learns a bottom-up latent representation regularized by top-
down signals. Bottom-up zl,l−1 and top-down zl,l+1 latent activations are sampled from zl−1 and
zl+1 respectively. They are merged to get the modified activations sl used for parameter updates.
Reconstructions independently driven from the input signals form the Gibbs sampling Markov chain.

4

4 Globally-Optimized Deep Belief Networks

Forward-Backward Learning Strategy. In the DBN, RBMs are stacked from the bottom-up in
a greedy layer-wise manner, with each new layer modeling the posterior distribution of the previous
layer. Similarly, regularized building blocks can also be used to construct the regularized DBN
(Figure 4). The network, as illustrated in Figure 4(a), comprises of a total of L − 1 RBMs. The
network can be trained with a forward and backward strategy (Figure 4(b)). It integrates top-down
regularization with contrastive divergence learning, which is given by alternating Gibbs sampling
between the layers (Figure 4(c)).

Input! Output!Layer 2! Layer 4!Layer 3!

x z3,2

z4,5

z2,1

z2,3 z3,4

z4,3 yz5,4

z2,3 z3,4z2,1 z3,2 z4,3z1,2

s2 s3 s4 s5

z4,5 z5,4

(a) Top-down regularized deep belief network.

x z3,2

z4,5

z2,1

z2,3 z3,4

Merged!

z4,3 yz5,4

s2 s3 s4

s5
Forward pass!

Backward pass!

(b) Forward and backward passes for top-down regularization.

x z3,2z2,1 z4,3 z5,4

z2,3 z3,4z2,1 z3,2 z4,3z1,2 z4,5 z5,4

1-step CD!

(c) Alternating Gibbs sampling chains for contrastive divergence learning.

Figure 4: Constructing a top-down regularized deep belief network (DBN). All the restricted Boltz-
mann machines (RBM) that make up the network are concurrently optimized. (a) The building
blocks are connected layer-wise. Both bottom-up and top-down activations are used for training the
network. (b) Activations for the top-down regularization are obtained by sampling and merging the
forward pass and the backward pass. (c) From the activations of the forward pass, the reconstructions
can be obtained by performing alternating Gibbs sampling with the previous layer.

In the forward pass, given the input features, each layer zl is sampled from the bottom-up, based on
the representation of the previous layer zl−1 (Equation 11). The top-level vector zL is activated with
the softmax function. Upon reaching the output layer, the backward pass begins. The activations zL
are combined with the output labels y to produce sL given by

sL,ck = (1− λL)zL,L−1,ck + λLyck, (18)

The merged activations sl (Equation 16), which besides being used for parameter updates, have a
second role of activating the lower layer zl−1 from the top-down:

P (zl−1,l,j | sl;Wl) = 1/1 + exp(−wl−1,jsl − cl−1,j). (19)

This is repeated until the second layer is reached (l = 2) and s2 is computed.

5

Top-down sampling encourages the class-based invariance of the bottom-up representations. How-
ever, sampling from the top-down, with the output vector y as the only source will result in only
one activation pattern per class. This is undesirable, especially for the bottom layers, which should
have representations more heavily influenced by bottom-up data. By merging the top-down repre-
sentations with the bottom-up ones, the representations will encode both instance-based variations
and class-based variations. In the last layer, we typically set λL as 1, so that the final RBM given by
WL−1 learns to map to the class labels y. Backward activation of zL−1,L is a class-based invariant
representation obtained from y and used to regularize WL−2. All other backward activations from
this point onwards are based on the merged representation from instance- and class-based represen-
tations.

Three-Phase Learning Procedure. After greedy learning models P (x) and the top-down regu-
larized forward-backward learning is executed. The eventual goal of the network is to be able to give
a prediction of P (y|x). This suggest that the network can adopt a three-phase strategy for training,
whereby the parameters learned in one phase initializes the next, as follows:

• Phase 1 – Unsupervised Greedy. The network is constructed by greedily learning a new
unsupervised RBM on top of the existing network. To enhance the representations, various
regularizations, such as sparsity [10], can be applied. The stacking process is repeated for
L− 2 RBMs, until layer L− 1 is added to the network.

• Phase 2 – Supervised Regularized. This phase begins by connecting the L − 1 to a final
layer, which is activated by the softmax activation function for a classification problem.
Using the one-hot coded output vector y ∈ R

C as its target activations and setting λL to 1,
the RBM is learned as an associative memory with the following update:

∆wL−1,ic ∝ 〈zL−1,L−2,i yc〉0 − 〈zL−1,L,i zL,L−1,c〉N . (20)

This final RBM, together with the other RBMs learned from Phase 1, form the initialization
for the top-down regularized forward-backward learning algorithm. This phase is used to
fine-tune the network using generative learning, and binds the layers together by aligning
all the parameters of the network with the outputs.

• Phase 3 – Supervised Discriminative. Finally, the supervised error backpropagation al-
gorithm is used to improve class discrimination in the representations. Backpropagation
can also be described in two passes. In the forward pass, each layer is activated from the
bottom-up to obtain the class predictions. The classification error is then computed based
on the groundtruth and the backward pass performs gradient descent on the parameters by
backpropagating the errors through the layers from the top-down.

From Phase 1 to Phase 2, the form of the parameter update rule based on gradient descent does not
change. Only that top-down signals are also taken into account. Essentially, the two phases are
performing a variant of the contrastive divergence algorithm. Meanwhile, from Phase 2 to Phase 3,
the inputs to the phases (x and y) do not change, while the optimization function is modified from
performing regularization to being completely discriminative.

5 Empirical Evaluation

In this work, the proposed deep learning strategy and top-down regularization method were eval-
uated and analyzed using the MNIST handwritten digit dataset [16] and the Caltech-101 object
recognition dataset [17].

5.1 MNIST Handwritten Digit Recognition

The MNIST dataset contains images of handwritten digits. The task is to recognize a digit from
0 to 9 given a 28 × 28 pixel image. The dataset is split into 60, 000 images used for training
and 10, 000 test images. Many different methods have used this dataset to perform evaluation on
classification performances, specifically the DBNN [1]. The basic version of this dataset, with
neither preprocessing nor enhancements, was used for the evaluation. A five-layer DBN was setup
to have the same topography as evaluated in [1]. The number of units in each layer, from the first to
the last layer, were 784, 500, 500, 2000 and 10, in that order. Five architectural setups were tested:

6

1. Stacked RBMs with up-down learning (original DBN reported in [1]),

2. Stacked RBMs with forward-backward learning and backpropagation,

3. Stacked sparse RBMs [11] with forward-backward learning and backpropagation, and

4. Stacked sparse RBMs [11] with backpropagation, and

5. Forward-backward learning from random weights.

In the phases 1 and 2, we followed the evaluation procedure of Hinton et al. [1] by initially using
44, 000 training and 10, 000 validation images to train the network before retraining it with the
full training set. In phase 3, sets of 50, 000 and 10, 000 images were used as the initial training
and validation sets. After model selection, the network was retrained on the training set of 60, 000
images.

To simplify the parameterization for the forward-backward learning in phase 2, the top-down mod-
ulation parameter λl across the layers were controlled by a single parameter γ using the function:

λl = |l − 1|γ/(|l − 1|γ − |L− l|γ). (21)

where γ > 0. The top-down influence for a layer l is also dependent on its relative position in the
network. The function assigns λl such that the layers nearer to the input will have stronger influences
from the input, while the layers near the output will be biased towards the output. This distance-
based modulation of their influences enables a gradual mapping between the input and output layers.

Our best performance was obtained using setting 3, which got an error rate of 0.91% on the test
set. Figure 5 shows the 91 wrongly classified test examples for this setting. When initialized with
the conventional RBMs but fine-tuned with forward-backward learning and error backpropagation,
the score was 0.98%. As a comparison, the conventional DBN obtained an error rate of 1.25%.
Directly optimizing the network from random weights produced an error of 1.61%, which is still
fairly decent, considering that the network was optimized globally from scratch. For each setup, the
intermediate results for each training phase are reported in Table 1.

Overall, the results achieved are very competitive for methods with the same complexity that rely on
neither convolution nor image distortions and normalization. A variant of the DBN, which focused
on learning nonlinear transformations of the feature space for nearest neighbor classification [18],
had an error rate of 1.0%. The deep convex net [19], which utilized more complex convex-optimized
modules as building blocks but did not perform fine-tuning on a global network level, got a score
of 0.83%. At the time of writing, the best performing model on the dataset gave an error rate of
0.23% and used a heavy architecture of a committee of 35 deep convolutional neural nets with
elastic distortions and image normalization [20].

From Table 1, we can observe that each of the three learning phases helped to improve the overall
performance of the networks. The forward-backward algorithm outperforms the up-down learn-
ing of the original DBN. Using sparse RBMs [11] and backpropagation, it was possible to further
improve the recognition performances. The forward-backward learning was effective as a bridge
between the other two phases, with an improvement of 0.17% over the setup without phase 2. The
method was even as a standalone algorithm, demonstrating its potential by learning from randomly
initialized weights.

Table 1: Results on MNIST after various phases of the training process.

Setup / Learning algorithm* Classification error rate

Phase 1 Phase 2 Phase 1 Phase 2 Phase 3

Deep belief network (reported in [1])

1. RBMs Up-down 2.49% 1.25% –

Proposed top-down regularized deep belief network

2. RBMs Forward-backward 2.49% 1.14% 0.98%
3. Sparse RBMs Forward-backward 2.14% 1.06% 0.91%
4. Sparse RBMs – 2.14% – 1.08%
5. Random weights Forward-backward – 1.61% –

*Phase 3 runs the error backpropagation algorithm whenever employed.

7

Figure 5: The 91 wrongly classified test examples from the MNIST dataset.

5.2 Caltech-101 Object Recognition

The Caltech-101 dataset [17] is one of the most popular datasets for object recognition evaluation.
It contains 9, 144 images belonging to 101 object categories and one background class. The images
were first resized while retaining their original aspect ratios, such that the longer spatial dimension
was at most 300 pixels. SIFT descriptors [21] were extracted from densely sampled patches of
16 × 16 at 4 pixel intervals. The SIFT descriptors were ℓ1-normalized by constraining each de-
scriptor vector to sum to a maximum of one, resulting in a quasi-binary feature. Additionally, SIFT
descriptors from a spatial neighborhood of 2× 2 were concatenated to form a macrofeature [22].

A DBN setup was used to learn a dictionary to map local macrofeatures to a mid-level representa-
tion. Two layers of RBMs were stacked to model the macrofeatures. Both RBMs were regularized
with population and lifetime sparseness during training [23]. First a single RBM, which had 1024
latent variables, was trained from macrofeature. A set of 200, 000 randomly selected macrofea-
tures was used for training this first layer. The resulting representations of the first RBM were then
concatenated within each spatial neighborhood of 2 × 2. The second RBM modeled this spatially
aggregated representation into a higher-level representation. Another set of 200, 000 randomly se-
lected spatially aggregated representations was used for training this RBM.

The higher-level RBM representation was associated to the image label. For each experimental
trial, a set of 30 training examples per class (totaling to 3060) was randomly selected for supervised
learning. The forward-backward learning algorithm was used to regularize the learning while fine-
tuning the network. Finally, error backpropagation was performed to further optimize the dictionary.
From these representations, max-pooling within spatial regions defined by a spatial pyramid was
employed [22, 24] to obtain a single vector representing the whole image. It is also possible to
employ more advanced pooling schemes [25]. A linear SVM classifier was then trained, using the
same train-test split from the previous supervised learning phase.

Table 2: Classification accuracy on Caltech-101.

Method / Training phase Accuracy

Proposed top-down regularized DBN
Phase 1: Unsupervised stacking 72.8%
Phase 2: Top-down regularization 78.2%
Phase 3: Error backpropagation 79.7%

Sparse coding & max-pooling [22] 73.4%
Extended HMAX [26] 76.3%
Convolutional RBM [27] 77.8%
Unsupervised & supervised RBM [23] 78.9%
Gated Convolutional RBM [28] 78.9%

Table 2 shows the average class-wise clas-
sification accuracy, averaged across 102
classes and 10 experimental trials. The re-
sults demonstrate a consistent improvement
moving from Phase 1 to phase 3. The final
accuracy obtained was 79.7%. This outper-
forms all existing dictionary learning meth-
ods based on a single image descriptors,
with a 0.8% improvement over the previous
state-of-the-art results [23, 28]. As a com-
parison, other existing reported dictionary
learning methods that encode SIFT-based lo-
cal descriptors are also included in Table 2.

6 Conclusion

We proposed the notion of deep learning by gradually transitioning from being fully unsupervised to
strongly discriminative. This is achieved through the introduction of an intermediate phase between
the unsupervised and supervised learning phases. This notion is implemented by incorporating
top-down information to DBNs through regularization. The method is easily integrated into the
intermediate learning phase based on simple building blocks. It can be performed to complement
greedy layer-wise unsupervised learning and discriminative optimization using error backpropaga-
tion. Empirical evaluation show that the method leads to competitive results for handwritten digit
recognition and object recognition datasets.

8

References

[1] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief networks,” Neural
Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[2] Y. LeCun, “Une procédure d’apprentissage pour réseau a seuil asymmetrique (a learning scheme for
asymmetric threshold networks),” in Cognitiva 85, 1985.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,”
Nature, vol. 323, pp. 533 – 536, October 1986.

[4] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends in Machine Learning, vol. 2,
no. 1, pp. 1–127, 2009.

[5] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep networks,” in
NIPS, 2006.

[6] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, “Efficient learning of sparse representations with an
energy-based model,” in NIPS, 2006.

[7] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features
with denoising autoencoders,” in ICML, 2008.

[8] P. Smolensky, “Information processing in dynamical systems: Foundations of harmony theory,” in Paral-
lel Distributed Processing: Volume 1: Foundations, ch. 6, pp. 194–281, MIT Press, 1986.

[9] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural Computation,
vol. 14, no. 8, p. 1771–1800, 2002.

[10] H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief net model for visual area V2,” in NIPS, 2008.

[11] H. Goh, N. Thome, and M. Cord, “Biasing restricted Boltzmann machines to manipulate latent selectivity
and sparsity,” in NIPS Workshop, 2010.

[12] H. Larochelle and Y. Bengio, “Classification using discriminative restricted Boltzmann machines,” in
ICML, 2008.

[13] N. Le Roux and Y. Bengio, “Representational power of restricted Boltzmann machines and deep belief
networks,” Neural Computation, vol. 20, pp. 1631–1649, June 2008.

[14] I. Sutskever and G. E. Hinton, “Learning multilevel distributed representations for high-dimensional se-
quences,” in AISTATS, 2007.

[15] G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science,
vol. 28, pp. 504–507, 2006.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, November 1998.

[17] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few training examples: An
incremental bayesian approach tested on 101 object categories,” CVPR Workshop, 2004.

[18] R. Salakhutdinov and G. E. Hinton, “Learning a nonlinear embedding by preserving class neighbourhood
structure,” in AISTATS, 2007.

[19] L. Deng and D. Yu, “Deep convex net: A scalable architecture for speech pattern classification,” in Inter-
speech, 2011.

[20] D. C. Cireşan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image classifica-
tion,” in CVPR, 2012.

[21] D. Lowe, “Object recognition from local scale-invariant features,” in CVPR, 1999.

[22] Y. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level features for recognition,” in CVPR,
2010.

[23] H. Goh, N. Thome, M. Cord, and J.-H. Lim, “Unsupervised and supervised visual codes with restricted
Boltzmann machines,” in ECCV, 2012.

[24] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid matching for recogniz-
ing natural scene categories,” in CVPR, 2006.

[25] S. Avila, N. Thome, M. Cord, E. Valle, and A. Araújo, “Pooling in image representation: the visual
codeword point of view,” Computer Vision and Image Understanding, pp. 453–465, May 2013.

[26] C. Theriault, N. Thome, and M. Cord, “Extended coding and pooling in the HMAX model,” IEEE Trans-
action on Image Processing, 2013.

[27] K. Sohn, D. Y. Jung, H. Lee, and A. Hero III, “Efficient learning of sparse, distributed, convolutional
feature representations for object recognition,” in ICCV, 2011.

[28] K. Sohn, G. Zhou, C. Lee, and H. Lee, “Learning and selecting features jointly with point-wise gated
boltzmann machines,” in ICML, 2013.

9

	Introduction
	Related Work
	Top-Down RBM Regularization: The Building Block
	Globally-Optimized Deep Belief Networks
	Empirical Evaluation
	MNIST Handwritten Digit Recognition
	Caltech-101 Object Recognition

	Conclusion

