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BLOCK DECOMPOSITION OF THE CATEGORY OF `-MODULAR

SMOOTH REPRESENTATIONS OF GLnpFq AND ITS INNER FORMS

by

Vincent Sécherre & Shaun Stevens

Abstract. — Soit F un corps commutatif localement compact non archimédien de caractéristique
résiduelle p, soit D une F-algèbre à division centrale de dimension finie et soit R un corps algébri-
quement clos de caractéristique différente de p. A toute représentation lisse irréductible du groupe
G � GLmpDq, m ¥ 1 à coefficients dans R correspond une classe d’inertie de paires supercuspidales
de G. Ceci définit une partition de l’ensemble des classes d’isomorphisme de représentations irréduc-
tibles de G. Notons RpGq la catégorie des représentations lisses de G à coefficients dans R et, pour
toute classe d’inertie Ω de paires supercuspidales de G, notons RpΩq la sous-catégorie formée des
représentations lisses dont tous les sous-quotients irréductibles appartiennent au sous-ensemble dé-
terminé par cette classe d’inertie. Nous prouvons que RpGq est le produit des RpΩq, où Ω décrit les
classes d’inertie de paires supercuspidales de G, et que chaque facteur RpΩq est indécomposable.

Résumé. — Let F be a nonarchimedean locally compact field of residue characteristic p, let D
be a finite dimensional central division F-algebra and let R be an algebraically closed field of cha-
racteristic different from p. To any irreducible smooth representation of G � GLmpDq, m ¥ 1 with
coefficients in R, we can attach a uniquely determined inertial class of supercuspidal pairs of G.
This provides us with a partition of the set of all isomorphism classes of irreducible representations
of G. We write RpGq for the category of all smooth representations of G with coefficients in R.
To any inertial class Ω of supercuspidal pairs of G, we can attach the subcategory RpΩq made of
smooth representations all of whose irreducible subquotients are in the subset determined by this
inertial class. We prove that the category RpGq decomposes into the product of the RpΩq’s, where
Ω ranges over all possible inertial class of supercuspidal pairs of G, and that each summand RpΩq
is indecomposable.

2010 Mathematics Subject Classification: 22E50
Keywords and Phrases: Modular representations of p-adic reductive groups, Semisimple
types, Inertial classes, Supercuspidal support, Blocks

Introduction

When considering a category of representations of some group or algebra, a natural step is to
attempt to decompose the category into blocks; that is, into subcategories which are indecom-
posable summands. Thus any representation can be decomposed uniquely as a direct sum of
pieces, one in each block; any morphism comes as a product of morphisms, one in each block;
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and this decomposition of the category is the finest decomposition for which these properties
are satisfied. Then a full understanding of the category is equivalent to a full understanding of
all of its blocks.

In the case of representations of a finite group G, over an algebraically closed field R, there
is always a block decomposition. In the simplest case, when the characteristic of R is prime
to the order of G, this is particularly straightforward: all representations are semisimple so
each block consists of representations isomorphic to a direct sum of copies of a fixed irreducible
representation. In the general case, there is a well-developed theory, beginning with the work of
Brauer and Nesbitt, and understanding the block structure is a major endeavour.

Now suppose G is the group of rational points of a connected reductive algebraic group over a
nonarchimedean locally compact field F, of residue characteristic p. When R has characteristic
zero, a block decomposition of the category RRpGq of smooth R-representations of G was given
by Bernstein [1], in terms of the classification of representations of G by their cuspidal support.
Any irreducible representations π of G is a quotient of some (normalized) parabolically induced
representation iGM%, with % a cuspidal irreducible representation of a Levi subgroup M of G; the
pair pM, %q is determined up to G-conjugacy by π and is called its cuspidal support. Then each
such pair pM, %q determines a block, whose objects are those representations of G all of whose
subquotients have cuspidal support pM, %χq, for some unramified character χ of M.

One important tool in proving this block decomposition is the equivalence of the following
two properties of an irreducible R-representation π of G:

 π is not a quotient of any properly parabolically induced representation; equivalently, all
proper Jacquet modules of π are zero (π is cuspidal);
 π is not a subquotient of any properly parabolically induced representation iGM% with % an

irreducible representation (π is supercuspidal).

When R is an algebraically closed field of positive characteristic different from p (the modular
case), these properties are no longer equivalent and the methods used in the characteristic zero
case cannot be applied. Instead, one can attempt to define the supercuspidal support of a smooth
irreducible R-representation π of G: it is a pair pM, %q consisting of an irreducible supercuspidal
representation % of a Levi subgroup M of G such that π is a subquotient of iGM%. However, for
a general group G, it is not known whether the supercuspidal support of a representation is
well-defined up to conjugacy; indeed, the analogous question for finite reductive groups of Lie
type is also open.

In any case, one can define the notion of an inertial supercuspidal class Ω � rM, %sG: it is the
set of pairs pM1, %1q, consisting of a Levi subgroup M1 of G and a supercuspidal representation %1

of M1, which are G-conjugate to pM, %χq, for some unramified character χ of M. Given such a
class Ω, we denote by RRpΩq the full subcategory of RRpGq whose objects are those representa-
tions all of whose subquotients are isomorphic to a subquotient of iGM1%1, for some pM1, %1q P Ω.

The main purpose of this paper is then to prove the following result:

Theorem . — Let G be an inner form of GLnpFq and let R be an algebraically closed field of
characteristic different from p. Then there is a block decomposition

RRpGq �
¹
Ω

RRpΩq,

where the product is taken over all inertial supercuspidal classes.
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This theorem generalizes the Bernstein decomposition in the case that R has characteris-
tic zero, and also a similar statement, for general R, stated by Vignéras [24] in the split ca-
se G � GLnpFq; however, the authors were unable to follow all the steps in [24] so our proof is
independent, even if some of the ideas come from there.

Our proof builds on work of Mı́nguez and the first author [15, 16], in which they give a clas-
sification of the irreducible R-representations of G, in terms of supercuspidal representations,
and of the supercuspidal representations in terms of the theory of types. In particular, they
prove that supercuspidal support is well-defined up to conjugacy, so that the irreducible objects
in RRpΩq are precisely those with supercuspidal support in Ω.

One question we do not address here is the structure of the blocks RRpΩq. Given the explicit
results on supertypes here, it is not hard to construct a progenerator Π for RRpΩq as a compactly-
induced representation; for G � GLnpFq this was done (independently) by Guiraud [11] (for level
zero blocks) and Helm [12]. Then RRpΩq is equivalent to the category of EndGpΠq-modules. In
the case that R has characteristic zero, the algebra EndGpΠq was described as a tensor product
of affine Hecke algebras of type A in [22] (or [7] in the split case); indeed, we use this description
in our proof here. For R an algebraic closure F` of a finite field of characteristic ` � p, and a
block RRpΩq with Ω � rGLnpFq, %sGLnpFq, Dat [9] has described this algebra; it is an algebra of
Laurent polynomials in one variable over the R-group algebra of a cyclic `-group. It would be
interesting to obtain a description in the general case.

We now describe the proof of the theorem, which relies substantially on the theory of semisim-
ple types developed in [22] (see [7] for the split case). Given an inner form G of GLnpFq, in [22]
the authors constructed a family of pairs pJ,λq, consisting of a compact open subgroup J of G
and an irreducible complex representation λ of J. This family of pairs pJ,λq, called semisimple
types, satisfies the following condition: for every inertial cuspidal class Ω, there is a semisimple
type pJ,λq such that the irreducible complex representations of G with cuspidal support in Ω
are exactly those whose restriction to J contains λ.

In [15], Mı́nguez and the first author extended this construction to the modular case: they
constructed a family of pairs pJ,λq, consisting of a compact open subgroup J of G and an ir-
reducible complex representation λ of J, called semisimple supertypes. However, they did not
give the relation between these semisimple supertypes and inertial supercuspidal classes of G.
In this paper, we prove:

– for each inertial supercuspidal class Ω, there is a semisimple supertype pJ,λq such that the
irreducible R-representations of G with supercuspidal support in Ω are precisely those which
appear as subquotients of the compactly induced representation indG

J pλq;
– two semisimple supertypes pJ,λq and pJ1,λ1q correspond to the same inertial supercuspidal

class if and only if the compactly induced representations indG
J pλq and indG

J1pλ
1q are isomorphic,

in which case we say the supertypes are equivalent.

Thus we get a bijective correspondence between the inertial supercuspidal classes for G and the
equivalence classes of semisimple supertypes.

To each semisimple supertype, we attach a crucial tool, already used in [16] to obtain the
classification of the irreducible R-representations of G. This is a functor which associates, to
each smooth R-representation of G, a representation of the finite reductive quotient of J. More
precisely, given a semisimple supertype pJ,λq, there is a normal compact open subgroup J1 of J
such that:



4 VINCENT SÉCHERRE & SHAUN STEVENS

– the quotient J{J1 is isomorphic to a group of the form GLn1pk1q � � � � �GLnrpkrq, where ki
is a finite extension of the residue field of F and ni is a positive integer, for i P t1, . . . , ru;

– the representation λ decomposes (non-canonically) as κb σ, where κ is a particular irre-
ducible representation of J and σ is the inflation to J of a supercuspidal irreducible representa-
tion of GLn1pk1q � � � � �GLnrpkrq;

– in the particular case where the semisimple supertype is homogeneous (see §6.2), there is a
normal compact open subgroup H1 of J1 such that the restriction of κ to H1 is a direct sum of
copies of a certain character θ, called a simple character.
Given a choice of decomposition λ � κb σ, we define a functor

K � Kκ : π ÞÑ HomJ1pκ, πq

from RpGq to RpJ{J1q, with J acting on HomJ1pκ, πq via

x � f � πpxq � f � κpxq�1,

for all x P J and f P HomJ1pκ, πq. Since J1 is a pro-p group, this functor is exact.
An important property of this functor K is its behaviour with respect to parabolic induction

(see Theorem 6.2): for a parabolic subgroup of G compatible with the data involved in the
construction of pJ,λq, this functor commutes with parabolic induction. This result is related to
a remarkable property of simple characters (see Lemma 4.2) which, to our knowledge, was not
previously known even in the split case.

This allows a somewhat surprising back-and-forth argument between the complex case, where
the compatibility of K with parabolic induction was already known (see [17]), and the modular
case; this is because, in the case of a homogeneous supertype, the condition on the simple char-
acter θ holds for R-representations if and only if it holds for complex representations, since H1

is a pro-p group (see the proof of Proposition 5.6). This is the objective of sections 2 to 8, and
requires the notion of endo-class developed in [21] (see [4] in the split case).

Now we need to define the subcategories of RRpGq which will be the blocks we seek, which we
do in section 9. To each semisimple supertype pJ,λq we associate a full subcategory RRpJ,λq,
whose objects are those smooth representations V which are generated by the maximal sub-
space of KpVq all of whose irreducible subquotients have supercuspidal support in a fixed set
determined by σ (see Definition 1.14). This subcategory is independent of the choice of decom-
position λ � κb σ. Note that the existence of a maximal subspace of KpVq with the required
property depends on a decomposition of the category of representations of the finite reductive
group

J{J1 � GLn1pk1q � � � � �GLnrpkrq
in terms of supercuspidal support (the unicity of which is one of the principal results of [14]).
Moreover, it follows from this decomposition that RRpGq decomposes as a product of the sub-
categories RRpJ,λq, where pJ,λq runs through the equivalence classes of semisimple supertypes.

It remains only to prove that the RRpJ,λq are indecomposable and coincide with the RRpΩq,
which is the purpose of section 10. To prove the indecomposability of the RRpJ,λq we use the
endomorphism algebra of the compactly induced representation indG

J pλq, whose structure was
determined in [22] (and [15] for the modular case). The centre of this algebra is an integral do-
main, which implies that indG

J pλq is indecomposable. Since its irreducible subquotients coincide
with the irreducible objects of RRpJ,λq, it follows that this subcategory is indecomposable.

We end the paper, in section 11, by proving a remarkable property of supercuspidality: if
an irreducible representation of G does not appear as a subquotient any properly parabolically
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induced representation iGM%, with % irreducible, then it also does not appear as a subquotient
of any properly parabolically induced representation.

Notation

Throughout the paper, we fix a prime number p and an algebraically closed field R of char-
acteristic different from p.

All representations are supposed to be smooth representations on R-vector spaces. If G is a
topological group, we write RpGq for the abelian category of all representations of G and IrrpGq
for the set of all isomorphism classes of irreducible representations of G. A character of G is a
homomorphism from G to R� with open kernel.

For G the group of points of a connected reductive group over either a finite field of charac-
teristic p or a nonarchimedean locally compact field of residual characteristic p, and P � MN a
parabolic subgroup of G together with a Levi decomposition, we will write iGP for the normal-
ized parabolic induction functor from RpMq to RpGq, and IndG

P for the unnormalized parabolic
induction functor from RpMq to RpGq; these coincide in the finite field case.

§1. Extensions and blocks

We begin with some general results which apply to connected reductive groups over both
finite and nonarchimedean locally compact fields. In the finite case, we give some further results
towards a block decomposition, in particular for the group GLn; these will be needed in the
nonarchimedean case later.

1.1.

Let G be the group of points of a connected reductive group over either a finite field of
characteristic p or a nonarchimedean locally compact field of residual characteristic p.

Definition 1.1. — An irreducible representation π of G is supercuspidal if it does not appear
as a subquotient of any representation of the form iGP pτq, where P is a proper parabolic subgroup
of G with Levi component M and τ is an irreducible representation of M.

A supercuspidal pair of G is a pair pM, %q made of a Levi subgroup M � G and an irreducible
supercuspidal representation % of M.

For π an irreducible representation of G, the supercuspidal support of π is the set:

scusppπq

of supercuspidal pairs pM, %q of G such that π occurs as a subquotient of iGP p%q, for some parabolic
subgroup P with Levi component M.

Remark 1.2. — In the finite field case, the word irreducible may be omitted from the definition
of supercuspidal (see Proposition 1.10); we will see that, for G an inner form of GLn over a
nonarchimedean locally compact field, the same is true (see Proposition 11.1).

Similarly, an irreducible representation π of G is cuspidal if it does not appear as a quotient
of any representation of the form iGP pτq, and we have the notion of cuspidal pair and cuspidal
support cusppπq. It is known that the cuspidal support cusppπq consists of a single G-conjugacy
class of cuspidal pairs ([16, Théorème 2.1]) but there is no such general result for supercuspidal
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support; indeed, it is not even known that the possible supercuspidal supports form a partition
of the set of supercuspidal pairs.

In this section, we make the following hypotheses:
(H1) for π, π1 irreducible representations of G, if scusppπq X scusppπ1q � H then scusppπq �

scusppπ1q.
(H2) for supercuspidal pairs pM, %q, pM, %1q of G, if the space ExtiMp%

1, %q is nonzero for
some i ¥ 0, then %1 � %;

Proposition 1.3. — Assume hypotheses (H1) and (H2) are satisfied. Let π and π1 be irreducible
representations of G with unequal supercuspidal supports. Then ExtiGpπ

1, πq � 0 for all i ¥ 0.

The idea of computing all the Exti rather than Ext1 only (which allows us to reduce to the
case where π, π1 are supercuspidal) comes from Emerton–Helm [10, Theorem 3.2.13].

Proof. — Let π and π1 be irreducible representations of G with unequal supercuspidal supports.

Lemma 1.4. — Assume that π1 is cuspidal and π is not. Then we have ExtiGpπ
1, πq � 0 for all

i ¥ 0.

Proof. — The proof is by induction on i, the case where i � 0 being immediate. Let us embed
π in iGP pτq with τ an irreducible cuspidal representation of a proper Levi subgroup M and P a
parabolic subgroup of Levi component M and unipotent radical N. We have an exact sequence

Exti�1
G pπ1, ξq Ñ ExtiGpπ

1, πq Ñ ExtiGpπ
1, iGP pτqq,

where ξ is the quotient of iGP pτq by π. Since π, π1 have unequal supercuspidal supports, we have,
by the inductive hypothesis, Exti�1

G pπ1, λq � 0 for all the irreducible subquotients λ of ξ, thus
we have Exti�1

G pπ1, ξq � 0. By [23, I.A.2], we have an isomorphism:

ExtiGpπ
1, iGP pτqq � ExtiMpπ

1
N, τq � 0

(where π1N is the Jacquet module of π1 with respect to P � MN). This gives us ExtiGpπ
1, πq � 0

as expected.

In the case where π is cuspidal and π1 is not, we reduce to Lemma 1.4 by taking contragredi-
ents. Indeed, we have:

ExtiGpπ
1, πq � ExtiGpπ

_, π1_q

and this is 0 by the previous case. We now treat the case where π and π1 are both cuspidal.

Lemma 1.5. — Assume that π is not supercuspidal. Then ExtiGpπ
1, πq � 0 for all i ¥ 0.

Proof. — The proof is by induction on i, the case where i � 0 being immediate. By assumption,
π occurs as a subquotient of iGP pτq, with τ an irreducible supercuspidal representation of a proper
Levi subgroup M and P a parabolic subgroup of Levi component M and unipotent radical N.

Let V be the minimal subrepresentations of X � iGP pτq such that π is a (sub)quotient of V,
and let W � V be a subrepresentation such that V{W � π; thus π is not a subquotient of W.
Denote by k � kpπq the number of irreducible cuspidal subquotients of W. Now we proceed by
induction on k, noting that any irreducible subquotient π2 of W must have kpπ2q ¤ kpπq � 1.

We have an exact sequence:

Exti�1
G pπ1,X{Vq Ñ ExtiGpπ

1,Vq Ñ ExtiGpπ
1, iGP pτqq � 0.
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We claim that Exti�1
G pπ1, λq � 0 for all the irreducible subquotients λ of X. Indeed, this follows

from Lemma 1.4 if λ is not cuspidal and from the inductive hypothesis (on i) if λ is a cuspidal
irreducible subquotient of X. This gives us Exti�1

G pπ1,X{Vq � 0, and it follows from the above
exact sequence that ExtiGpπ

1,Vq � 0. Now we have an exact sequence:

0 � ExtiGpπ
1,Vq Ñ ExtiGpπ

1, πq Ñ Exti�1
G pπ1,Wq.

If k � 0 then all the irreducible subquotients of W are non-cuspidal and Lemma 1.4 implies that
we have Exti�1

G pπ1,Wq � 0; thus ExtiGpπ
1, πq � 0, which completes the base step of the induction

on k. For the general case, since every irreducible subquotient π2 of W is either non-cuspidal or
has kpπ2q   k, we again have Exti�1

G pπ1,Wq � 0, by Lemma 1.4 and the inductive hypothesis
(on k).

We have the same result when π1 is not supercuspidal, by taking contragredients as above.

Corollary 1.6. — Suppose that π, π1 are cuspidal. Then ExtiGpπ
1, πq � 0 for all i ¥ 0.

Proof. — If either π or π1 is not supercuspidal then the result follows from Lemma 1.5. If both
are supercuspidal then this is the hypothesis (H2).

We now treat the general case. The proof is by induction on i, the case i � 0 being trivial.
We have an exact sequence:

0 � Exti�1
G pπ1, iGP pτqq Ñ ExtiGpπ

1, πq Ñ ExtiGpπ
1, iGP pτqq � Ext1

Mpπ
1
N, τq

where π embeds in iGP pτq with τ an irreducible cuspidal representation of M. From the cuspidal
case, we have ExtiMpσ, τq � 0 for all irreducible representations σ of M that are nonisomorphic to
τ . If we prove that τ does not appear as a subquotient of π1N, then we will get ExtiMpπ

1
N, τq � 0

and the result will follow.
Assume that τ appears as a subquotient of π1N. Let λ1 be an irreducible supercuspidal repre-

sentation of a Levi subgroup M1 such that π1 occurs as a subquotient of iGP1pλ
1q, for some parabolic

subgroup P1 with Levi component M1. By the Geometric Lemma (see for example [16, (1.3)]),
there is a permutation matrix w such that τ occurs in:

iMMXP1wpλ
1wq.

By replacing λ1 by λ1w, we may assume that w � 1, so that τ occurs in iMMXP1pλ
1q. By apply-

ing iGP , we deduce that π occurs in iGP1pλ
1q. This contradicts the fact that π, π1 have unequal

supercuspidal supports.

Proposition 1.7. — Assume hypotheses (H1) and (H2) are satisfied. Let V be a representation
of G of finite length. There is a decomposition:

V � V1 ` � � � `Vr

of V as a direct sum of subrepresentations where, for each i P t1, . . . , ru, all irreducible subquo-
tients of Vi have the same supercuspidal support.

Proof. — Write n for the length of V and r for the number of distinct sets scusppπq, for π an
irreducible subquotient of V. We may and will assume that r ¡ 1. The proof is by induction on
n.

Since r ¤ n, the minimal case with r ¡ 1 is r � n � 2. Assume we are in this case. Then the
result follows from Proposition 1.3 with i � 1.
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Assume now that n ¡ 2. Let ω0 be the supercuspidal support of an irreducible subrepresen-
tation of V and V0 be the maximal subrepresentation of V all of whose irreducible subquotients
have supercuspidal support ω0. By the inductive hypothesis, V{V0 decomposes as a direct sum:

W1 ` � � � `Ws

of nonzero subrepresentations, with s ¤ r and where, for each i P t1, . . . , su, there is a supercus-
pidal support ωi such that all irreducible subquotients of Wi have supercuspidal support ωi. If
there is i ¥ 1 such that ωi � ω0, then the preimage of Wi in V would contradict the maximality
of V0. Thus we have ω0 R tω1, . . . , ωsu and it follows that r � s� 1.

Lemma 1.8. — For each i P t1, . . . , su, there is an injective homomorphism fi : Wi Ñ V.

Proof. — For i P t1, . . . , su, write Yi for the preimage of Wi in V. If Yi � V, then it follows from
the inductive hypothesis that Yi decomposes into the direct sum of V0 and a subrepresentation
isomorphic to Wi.

Assume now that Yi � V, thus r � 2 and i � 1. By passing to the contragredient if necessary
(and thus exchanging the roles of V0 and V1) we may assume that V0 is reducible. Let π denote
an irreducible subrepresentation of V0. By the inductive hypothesis, V{π has a direct summand
isomorphic to W1. Its preimage in V is denoted X1 and we can apply the inductive hypothesis
to it. Thus W1 embeds in V.

We thus have injective homomorphisms f1, . . . , fs, and write f0 for the canonical inclusion of
V0 in V. We write Vi � fipWiq for all i P t0, . . . , su and claim that we have:

V � V0 ` � � � `Vs.

Indeed, we have a homomorphism:

f : V0 `
� sà
i�1

Wi

�
� X Ñ V.

Since X and V have the same length, it is enough to prove that f is injective.

Lemma 1.9. — We have:

Kerpfq � pKerpfq XV0q `

�
sà
i�1

pKerpfq XWiq

�
.

Proof. — Since f is nonzero, we have Kerpfq � V, thus we can apply the inductive hypothesis
to Kerpfq. The decomposition that we obtain is the right hand side of the expected equality.

Since f1, . . . , fs are injective, we get KerpfqXWi � 0 for all i P t1, . . . , su. Thus f is injective
and the result is proved.

1.2.

Now we specialize to the case that G is a connected reductive group over a finite field. We
begin with a general result which is independent of the hypotheses (H1) and (H2).

Proposition 1.10. — Let P be a proper parabolic subgroup of G and σ be a representation of
a Levi component M of P. Then iGP pσq has no supercuspidal irreducible subquotient.
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Proof. — When σ is irreducible, the result follows from the definition of a supercuspidal repre-
sentation. Assume E � iGP pσq contains a supercuspidal irreducible subquotient π, and let us fix
a projective envelope Π of π in RpGq. By [13, Proposition 2.3], all its irreducible subquotients
are cuspidal (indeed, this is a characterization of supercuspidal representations). Let V be a
subrepresentation of E having a quotient isomorphic to π. As Π is projective, we get a nonzero
homomorphism from Π to V, whence it follows that some irreducible subquotient π1 of Π occurs
as a subrepresentation of V, thus of E. By Frobenius reciprocity, we get that the space π1N of
N-coinvariants, where N is the unipotent radical of P, is nonzero, contradicting the cuspidality
of π1.

Let RrGs be the group algebra of G over R. It decomposes as a direct sum:

RrGs � B1 ` � � � ` Bt

of indecomposable two-sided ideals, called blocks of RrGs. This corresponds to a decomposition:

1 � e1 � � � � � et

of the identity of RrGs as a sum of indecomposable central idempotents. This implies a decom-
position:

RpGq � RpB1q ` � � � `RpBtq

of the category RpGq of R-representations of G (that is, of left RrGs-modules) into the direct
sum of the subcategories RpBiq, i P t1, . . . , tu, where RpBiq is made of all representations V of
G such that eiV � V.

Lemma 1.11. — Assume that hypotheses (H1) and (H2) are satisfied. Let V P RpBiq for some
i P t1, . . . , tu. Then all the irreducible subquotients of V have the same supercuspidal support.

Proof. — If we apply Proposition 1.7 to the regular representation RrGs, which has finite length,
we get that all the irreducible subquotients of Bi have the same supercuspidal support. Since
all the irreducible subquotients of V are isomorphic to subquotients of Bi, we get the result.

We deduce the following decomposition theorem.

Theorem 1.12. — Assume hypotheses (H1) and (H2) are satisfied. Let V be a representation
of G. For any supercuspidal support ω of G, let Vpωq denote the maximal subrepresentation of
V all of whose irreducible subquotients have supercuspidal support ω. Then we have:

V �
à
ω

Vpωq.

1.3.

Finally, we specialize to the case where G is the finite group GLnpqq, with n ¥ 1 an integer
and q a power of p. In this case, it is known ([14]) that the supercuspidal support consists of a
single G-conjugacy class of supercuspidal pairs, so (H1) is satisfied. We prove that (H2) is also
satisfied.

Lemma 1.13. — Let π, π1 be irreducible supercuspidal representations of G such that the space
ExtiGpπ

1, πq is nonzero for some i ¥ 0. Then π1 � π.
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Proof. — The proof is by induction on i, the case i � 0 being trivial. Let us fix a projective
envelope Π of π in RpGq. By [23, III.2.9], it has finite length, and all its irreducible subquotients
are isomorphic to π. Consider the exact sequence:

0 Ñ Π1 Ñ Π Ñ π Ñ 0

where Π1 is the kernel of Π Ñ π. Then we have an exact sequence:

Exti�1
G pπ1, πq Ñ ExtiGpπ

1,Π1q Ñ ExtiGpπ
1,Πq.

By the inductive hypothesis, we have Exti�1
G pπ1, πq � 0. Since Π is projective in RpGq, we have

ExtiGpπ
1,Πq � 0. It follows that we have ExtiGpπ

1,Π1q � 0. Since all irreducible subquotients of
Π1 are isomorphic to π, we can consider an exact sequence:

0 Ñ Π2 Ñ Π1 Ñ π Ñ 0

where Π2 is the kernel of Π1 Ñ π. By induction, we define a finite decreasing sequence:

Π � Π0 � Π1 � Π2 � � � � � Πr � Πr�1 � 0

of subrepresentations of Π such that Πj{Πj�1 � π and ExtiGpπ
1,Πjq � 0 for all j ¥ 0. For j � r,

we get the expected result.

In particular, since every Levi subgroup of G is isomorphic to a product of smaller general
linear groups, the hypothesis (H2) is satisfied and the conclusion of Theorem 1.12 holds for G.

As a corollary, we will need a weaker result in Section 9, in which we allow for the action of
a Galois group. Fix Γ be a group of automorphisms of the finite field Fq.

Definition 1.14. — Let pM, %q be a supercuspidal pair of G, with

M � GLn1pqq � � � � �GLnrpqq, % � %1 b � � � b %r.

The equivalence class of pM, %q is the set, denoted rM, %s, of all supercuspidal pairs pM1, %1q of
G for which there are elements γi P Γ, for each i � 1, . . . , r, such that pM1, %1q is G-conjugate
to pM,

Âr
i�1 %

γi
i q.

Corollary 1.15. — Let V be a representation of G and, for any equivalence class of super-
cuspidal pairs rωs, write Vrωs for the maximal subrepresentation of V all of whose irreducible
subquotients have supercuspidal support contained in rωs. Then V decomposes into the direct
sum of the Vrωs, where rωs ranges over the set of equivalence classes of supercuspidal pairs of G.

Further notation

Throughout the rest of the paper, we fix a nonarchimedean locally compact field F of residue
characteristic p. All F-algebras are supposed to be finite-dimensional with a unit. By an F-
division algebra we mean a central F-algebra which is a division algebra.

For K a finite extension of F, or more generally a division algebra over a finite extension of F,
we denote by OK its ring of integers, by pK the maximal ideal of OK and by kK its residue field.

For A a simple central algebra over a finite extension K of F, we denote by NA{K and trA{K

respectively the reduced norm and trace of A over K.
For u a real number, we denote by tuu the greatest integer which is smaller than or equal to

u, that is its integer part.
A composition of an integer m ¥ 1 is a finite family of positive integers whose sum is m.



BLOCKS FOR `-MODULAR SMOOTH REPRESENTATIONS OF GLmpDq 11

Given H a closed subgroup of a topological group G and σ a representation of H, write indG
Hpσq

for the representation of G compactly induced from σ.
We fix once and for all an additive character ψF : F Ñ R� that we assume to be trivial on pF

but not on OF.

§2. Preliminaries

We fix an F-division algebra D, with reduced degree d. For all m ¥ 1, we write Am � MmpDq
and Gm � GLmpDq.

Let m ¥ 1 be a positive integer and write A � Am and G � Gm. We will recall briefly the
objects associated to the explicit construction of representations of G; we refer to [18, 19, 20,
21, 22] for more details on the notions of simple stratum, character and type.

Recall that, for P � MN a parabolic subgroup of G together with a Levi decomposition, we
write IndG

P for the unnormalized parabolic induction functor from RpMq to RpGq.

2.1.

Recall (see [16, Théorème 8.16]) that, for π an irreducible representation of G, the supercus-
pidal support scusppπq consists of a single G-conjugacy class of supercuspidal pairs of G.

Definition 2.1. — The inertial class of a supercuspidal pair pM, %q of G is the set, denoted by
rM, %sG, of all supercuspidal pairs pM1, %1q that are G-conjugate to pM, %χq for some unramified
character χ of M.

2.2.

Let Λ be an OD-lattice sequence of Dm. It defines an hereditary OF-order ApΛq of A and an
OF-lattice sequence:

akpΛq � ta P A | aΛpiq � Λpi� kq, for all i P Zu

of A. For i ¥ 1, we write UipΛq � 1� aipΛq. This defines a filtration pUipΛqqi¥1 of the compact
open subgroup UpΛq � ApΛq� of G.

Let rΛ, n, 0, βs be a simple stratum in A (see for instance [21, §1.6]). The element β P A gene-
rates a field extension Frβs of F, denoted E, and we write B for its centralizer in A. Attached
to this stratum, there are two compact open subgroups:

J � Jpβ,Λq, H � Hpβ,Λq

of G. For all i ¥ 1, we set:

Ji � Jipβ,Λq � JXUipΛq, Hi � Hipβ,Λq � HXUipΛq.

Together with the choice of ψF, the simple stratum defines a finite set CpΛ, 0, βq of characters of
H1, called simple characters. We do not recall here the definition of these characters, only the
following basic property. Write ψA � ψF � trA{F and, for b P A, set:

ψb : x ÞÑ ψApbpx� 1qq

for all x P A. If b P a�kpΛq for some k ¥ 1, then ψb defines a character on Utk{2u�1pΛq. Then
any simple character θ P CpΛ, 0, βq satisfies θ|Utn{2u�1pΛq � ψβ.

Given θ a simple character attached to rΛ, n, 0, βs, there is, up to isomorphism, a unique irre-
ducible representation η of J1 whose restriction to H1 contains θ. Moreover, the representation
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η extends to an irreducible representation of the group J that is intertwined by the whole of B�.
Such extensions of η to J are called β-extensions.

As B is a central simple E-algebra, there are a positive integer m1 ¥ 1, an E-division algebra
D1 and an isomorphism of E-algebras Φ from B to Mm1pD1q. Moreover, we can choose Φ so that
ΦpApΛq XBq is a standard order, that is, it is contained in Mm1pOD1q and its reduction mod pD1

is upper block triangular. Since J � pUpΛq X B�qJ1, we thus have group isomorphisms:

J{J1 � pUpΛq X B�q{pU1pΛq X B�q � GLm1
1
pkD1q � � � � �GLm1

r
pkD1q

for suitable positive integers m1
1, . . . ,m

1
r. It allows us to identify these groups and we denote by

G the latter group.
A simple type attached to rΛ, n, 0, βs is an irreducible representation λ of J of the form κbσ,

where κ is a β-extension and σ is an irreducible representation of J trivial on J1 which identifies
with a cuspidal representation of G of the form τb� � �bτ where τ is a cuspidal representation of
GLm1{rpkD1q (this implies m1

1 � � � � � m1
r � m1{r). When the representation τ is supercuspidal,

λ is called a simple supertype.
We introduce the following useful definition.

Definition 2.2. — A simple character (or a β-extension, or a simple type) is said to be maximal
if UpΛq X B� is a maximal compact open subgroup in B�.

§3. An abstract K-functor

A main tool for us will be a family of functors from RpGq to the category of representations
of some finite reductive group. Such functors were first introduced in the split case for complex
representations in [17], where they were used just for simple types; in [15] these were generalized
to apply to any G in the modular case. Since we will need several variants of these functors, it
is convenient to give a general setup which applies to all situations.

Let P � MN be a parabolic subgroup of G, together with a Levi decomposition. Given g P G,
K a compact open subgroup of G and π a representation of M, write:

IndPgK
P pπq � tf P IndG

P pπq | f is supported in PgKu.

This defines a functor from RpMq to RpKq denoted IndPgK
P .

We have the following easy but useful lemma.

Lemma 3.1. — Let K be a compact open subgroup of G. For all representation π of M and all
g P G, there is an isomorphism:

IndPgK
P pπq � IndK

KXPgpπ
gq

of representations of K, where Pg, πg denote the conjugates of P, π by g.

Proof. — The isomorphism is given by f ÞÑ fg, where fgpkq � fpgkq for all k P K.

Now we are given a compact open subgroup J of G, together with a normal pro-p subgroup J1,
and an irreducible representation κ of J. We define a functor:

Kκ : π ÞÑ HomJ1pκ, πq

from RpGq to RpJ{J1q, by making J act on Kκpπq by the formula:

x � f � πpxq � f � κpxq�1
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for all x P J and f P Kκpπq. Note that J1 acts trivially. Since J1 is a pro-p-group, this functor is
exact, and it sends admissible representations of G to finite dimensional representations of J{J1.

Proposition 3.2. — Let g P G. The following are equivalent:
(i) the functor Kκ � IndPgJ

P is nonzero on RpMq;
(ii) the functor Kκ � IndPgJ

P is nonzero on IrrpMq;
(iii) HomJ1XNgpκ, 1q � 0 (or, equivalently, κ has a non-zero J1 XNg-fixed vector).

Proof. — Given π P RpMq, by Lemma 3.1 we have an isomorphism:

IndPgJ
P pπq � IndJ

JXPgpπ
gq

of representations of J. Applying Mackey’s formula and Frobenius reciprocity, and writing η for
the restriction of κ to J1, we get:

KκpIndPgJ
P pπqq �

à
xPpJXPgqzJ{J1

HomJ1XPgxpη, π
gxq.

As η is normalized by J, this implies that:

KκpIndPgJ
P pπqq � 0 ô HomJ1XPgpη, π

gq � 0.

As π is trivial on N, we have:

HomJ1XPgpη, π
gq � HomJ1XNgpη, 1q

Therefore, if Kκ � IndPgJ
P is nonzero on RpMq, then HomJ1XNgpη, 1q � 0. Thus (i) implies (iii),

and it is clear that (ii) implies (i).
Now we assume that HomJ1XNgpη, 1q � 0 and write P1 � Pg, N1 � Ng, M1 � Mg. Define the

compactly induced representation
V � indP1

J1XP1
pηq.

For any π P RpMq, as πg is trivial on N1, we have

HomJ1XP1pη, π
gq � HomP1pV, πgq � HomM1pVN1 , πgq,

where VN1 denotes the space of N1-coinvariants of V. But

VN1 �
à

lPpJ1XM1qzM1

�
indN1

N1XpJ1ql
pηlq
	

N1
�

à
lPpJ1XM1qzM1

pηlqN1XpJ1ql ,

by Shapiro’s lemma, and the term corresponding to l � 1 is nonzero. Thus VN1 is nonzero and,
moreover, it is of finite type since V is of finite type and Jacquet functors preserve finite type.
Thus pVN1qg

�1
has an irreducible quotient π P IrrpMq and Kκ � IndPgJ

P pπq is nonzero. Hence (iii)
implies (ii).

In some situations, we know more about the representation κ and can conveniently rephrase
the final condition of Proposition 3.2.

Corollary 3.3. — Write η for the restriction of κ to J1, and suppose that we have a normal
pro-p subgroup H1 of J1 and a character θ of H1 such that the restriction of η to H1 is θ-isotypic
and that η is the unique irreducible representation of J1 which contains θ. Then the conditions
of Proposition 3.2 are also equivalent to:

(iv) the character θ is trivial on H1 XNg.
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Proof. — (iii) is equivalent to (iv) since indJ1

H1pθq is a finite sum of copies of η and the restriction
of η to H1 is θ-isotypic.

The usefulness of conditions (iii) and (iv) is that they do not depend on characteristic of the
ground field R; that is, if κ is a Z`-representation then HomJ1XNgpκ, 1q � 0 if and only if the
same is true for the reduction modulo ` of κ (see [15, Lemme 5.7]).

§4. A lemma on simple characters

Let θ be a simple character with respect to a simple stratum rΛ, n, 0, βs in A. Let P � MN
be a parabolic subgroup of G together with a Levi decomposition. The purpose of this section
is to show that, under certain conditions, the criterion of Corollary 3.3 is satisfied.

Given a subset X of A, write X� for the set of a P A such that ψApaxq � 1 for all x P X.

Definition 4.1. — The pair pM,Pq is subordinate to the simple stratum rΛ, n, 0, βs if the idem-
potents in A that correspond to M are in B and if there is an isomorphism Φ : B Ñ Mm1pD1q of
E-algebras such that ΦpApΛq X Bq is a standard order and ΦpP X B�q is a standard parabolic
subgroup corresponding to a composition of m1 finer than or equal to that of ΦpApΛq X Bq.

Assume this is the case. For k ¥ 1 and i P Z, write Hk � Hkpβ,Λq and ai � aipΛq, and:

nkpβ,Λq � tx P ApΛq | βx� xβ P aku.

Write q for the greatest integer i ¤ n such that n1�ipβ,Λq � ApΛq XB� a1 and s � tpq� 1q{2u.
For k ¥ 1, set:

Ωk � Ωkpβ,Λq � 1� ak X nk�qpβ,Λq � jspβ,Λq,

where js � jspβ,Λq is defined by Js � 1� jspβ,Λq. Write N� for the unipotent radical opposite
to N with respect to M.

Lemma 4.2. — Let g P U1pΛqXN� and 0 ¤ m   q. Assume that θ is trivial on the intersection
pU1pΛq X B�qHm�1 XNg. Then g P pU1pΛq X B�qΩq�m.

Proof. — First note that it is enough to prove the result when m ¥ tq{2u. Indeed, if m   tq{2u,
then the result for tq{2u implies that:

g P pU1pΛq X B�qΩs � J1pβ,Λq � pU1pΛq X B�qΩq�m.

The proof is by induction on both q and m with tq{2u ¤ m   q. Write n, p for the Lie algebras
of N, P in A, and also n� for that of N�.

Assume first that q � n. Then g normalizes Hm�1 � Um�1pΛq. Since we have Um�1pΛqXNg �
pUm�1pΛq XNqg, and since θ is trivial on Um�1pΛq XN, the condition on θ implies that

θprg�1, 1� ysq � 1,

for all y P am�1 X n. Recall that, for b, x P A, we have ψbpxq � ψApbpx� 1qq.

Lemma 4.3. — We have ψgβg�1�βp1� yq � 1 for all y P am�1 X n.
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Proof. — Since tq{2u ¤ m, the restriction of θ to Hm�1 is given by ψβ. Now:

ψβpg
�1p1� yqgq � ψApβg

�1ygq

� ψApgβg
�1yq

� ψgβg�1p1� yq

for all y P am�1 X n, which gives us the desired result.

If we write g � 1� u, with u P a1 X n�, this gives us:

gβg�1 � β � �aβpuqg
�1 P pam�1 X nq� � a�m � n�,

where aβ is the map x ÞÑ βx�xβ from A to A. Note that, since n is an F-vector space, we have
for all a P A:

trA{Fpanq � KerpψFq ô trA{Fpanq � t0u.

It follows that n� � p. Together with the fact that aβpuqg�1 P n� and g P U1pΛq, we get:

aβpuq P a�m.

This gives us:
u P n�mpβ,Λq X a1 � pApΛq X B� an�mq X a1,

where the last equality follows from [21, Proposition 2.29]. But:

Ωn�m � 1� an�m X n�mpβ,Λq � jspβ,Λq � 1� an�m � as � 1� an�m.

We thus get the expected result.
We now assume that q   n, and we fix a simple stratum rΛ, n, q, γs that is equivalent to the

pure stratum rΛ, n, q, βs. First assume that m � q � 1 and write:

θ|HqXNg � ψcθγ � 1,

where c � β � γ P a�q and θγ P CpΛ, q � 1, γq. Now write g � 1� u.

Lemma 4.4. — The character ψc is trivial on Hq XNg.

Proof. — Let x � g�1yg P hq X ng, where hk is defined for k ¥ 1 by Hk � 1� hk. Then:

ψcp1� xq � ψFptrA{Fpgcg
�1yqq

� ψFptrA{FpcyqqψFptrA{Fp�acpuqg
�1yqq

� ψFptrA{Fp�acpuqxg
�1qq

since cy P n has trace 0. Now c P a�q and u P a1 and xg�1 P aq. Since ψF is trivial on pF, we
get the expected result.

Thus θγ is trivial on Hq XNg. Note that Hq � Hqpγ,Λq. By the inductive hypothesis, we get:

g P pU1pΛq X B�
γ qΩ

q1�pq�1qpγ,Λq � pU1pΛq X B�
γ q
�
1� aq1�pq�1q X n1�qpγ,Λq � jspγ,Λq

�
where q1 � �k0pγ,Λq and Bγ is the centralizer of Frγs in A.

The following lemma generalizes [5, (8.1.12)].

Lemma 4.5. — Let rΛ, n,m, βs be a simple stratum in A and θ P CpΛ,m, βq be a simple char-
acter. Let z P aq�m X n�mpβ,Λq and ϑ be a character of Hm whose restriction to Hm�1 is θ.
Then 1� z normalizes Hm and ϑ1�z � ϑ � ψaβpzq.
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Proof. — We follow the proof of [5, (8.1.12)], replacing the results from [5] used there by their
analogues in [18, 21].

If we apply Lemma 4.5 to the stratum rΛ, n, q � 1, γs, the simple character θγ , the element
g�1 � 1� u1 and the character θ, then g normalizes Hq�1pγ,Λq � Hq�1 and Hqpγ,Λq � Hq, and
we have:

θ1�u1 � θ � ψaγpu1q

on Hq. Since c P a�q and u1 P a1, we have ψaγpu1q � ψaβpu1q on Hq. We thus get:

θprg�1, 1� ysq � ψaβpu1qp1� yq � ψApaβpu
1qyq � 1

for all y P hq X n. We need the following lemma.

Lemma 4.6. — We have phqq� � aβpj
sq � a1�q.

Proof. — It is straightforward to check that we have the containment �, so suppose x P phqq�.
We denote by s a tame corestriction on A relative to E{F (see for example [21, Définition 2.25]).
By [21, Proposition 2.27], spxq P a1�q X B so, by [21, Proposition 2.29], there exists y P a1�q

such that spxq � spyq. Thus x � y P phqq� X kerpsq and, again by [21, Proposition 2.27], there
is z P a1 X n1�qpβ,Λq � js such that x� y � aβpzq. Since aβpa1 X n1�qpβ,Λqq � a1�q, the result
follows.

Therefore we have:
aβpu

1q P phqq� � p � aβpj
sq � a1�q � p.

As it is also in n�, we get:
aβpu

1q P aβpj
sq � a1�q.

This implies u1 P a1 X n1�qpβ,Λq � js, thus g P Ω1.
Assume now that the result is true for some m ¤ q�1, and that θ is trivial on HmXNg. Then

it is trivial on Hm�1 XNg. From the inductive hypothesis, we thus get g P pU1pΛq X B�qΩq�m.
By Lemma 4.5, this implies that g normalizes Hm and that:

θ1�u1 � θ � ψaβpu1q

on Hm, with g�1 � 1� u1. This implies:

θprg�1, 1� ysq � 1

for all y P hm X n. Therefore:

aβpu
1q P pphmq� � pq X n� � paβpj

sq � a1�m � pq X n� � aβpj
sq � a1�m.

Thus there is j P js such that:
u1 � j P n1�mpβ,Λq X a1.

From [21, Proposition 2.29] we have:

n1�mpβ,Λq � ApΛq X B� aq�m�1 X n1�mpβ,Λq.

This implies the expected result, that is g P pU1pΛq X B�qΩq�m�1.
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Continuing with the same notation, we will also need the following variant of Lemma 4.2. We
put H1

P � H1pJ1 XNq, which is a normal subgroup of J1, and define the character θP of H1
P by

θPphjq � θphq,

for h P H1 and j P J1XN. By [21, Proposition 5.4], if we write J1
P � H1pJ1XPq, the intertwining

of the character θP is J1
PB�J1

P.

Corollary 4.7. — Let g P U1pΛqXN� and assume that θP is trivial on the intersection H1
PXNg.

Then g P J1
P.

Proof. — Suppose that g P U1pΛqXN� and θP is trivial on H1
PXNg. In particular, intersecting

with H1, we see that θ is trivial on H1 X Ng so, by Lemma 4.2, we find g P J1 X N�. Since g
then normalizes θ, we see that it also normalizes θP, so lies in J1

PB�J1
P X J1 � J1

P.

§5. Parabolic induction and the functor K in the simple case

The main result of this section is Theorem 5.6, which says that, in the simple case, the func-
tor K commutes with parabolic induction; in the next section we will extend this result to the
semisimple case. This fact has been claimed in [15] for representations of finite length (see [15],
Proposition 5.9) but it appears that the proof of ibid., Lemme 5.10 requires more details.

We give a different proof here, based on our Lemma 4.2, which works for all smooth repre-
sentations and not only for representations of finite length.

5.1.

Let rΛmax, n, 0, βs be a simple stratum in MmpDq and assume that UpΛmaxqXB� is a maximal
compact open subgroup in B�. Let θmax be a simple character in CpΛmax, 0, βq and κmax be a
β-extension of θmax. We write Jmax � Jpβ,Λmaxq and J1

max � J1pβ,Λmaxq. Let K be the functor:

π ÞÑ HomJ1
max
pκmax, πq

from RpGq to RpJmax{J
1
maxq and set G � Jmax{J

1
max; this is the functor denoted Kκmax in §3.

Let M be a standard Levi subgroup of G, associated with a composition α � pm1, . . . ,mrq of
m. We assume that it is β-admissible, that is, the F-algebra Frβs, denoted E, can be embedded
in Ami for all i. Equivalently, mid is a multiple of the degree of E over F for all i. Let P be the
corresponding standard parabolic subgroups of G, and write N for its unipotent radical.

We fix an isomorphism of E-algebras Φ between B and Mm1pD1q that identifies ApΛmaxq X B
with the maximal standard order made of matrices with integer entries. We choose an E-pure
lattice sequence Λ such that:

(5.1) UpΛq X B� � pU1pΛmaxq X B�qpPXUpΛmaxq X B�q.

The image ΦpUpΛqXB�q is the standard parahoric subgroup of GLm1pD1q whose reduction mod
pD1 is made of upper block triangular matrices of sizes pm1

1, . . . ,m
1
rq, with:

m1
id
1 �

mid

rE : Fs
, i P t1, . . . , ru,

where d1 is the reduced degree of D1 over E. Moreover, Λ can be chosen such that it satisfies the
conditions of the following lemma.
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Lemma 5.1. — There is an E-pure lattice sequence Λ on Dm satisfying (5.1) and such that:

UpΛq � UpΛmaxq;
U1pΛq XN� � U1pΛmaxq XN�.

Proof. — We fix a simple left EbF D-module V0, and form the simple left B-module

VB � HomEbFDpV0,Dmq.

The E-algebra opposite to EndBpVBq is isomorphic to D1. Write A0 � EndDpV0q and A0 for the
unique hereditary order in A0 normalized by E�, and P0 for its Jacobson radical. If we identify
A with Mm1pA0q, then ApΛmaxq identifies with Mm1pA0q. Then choose Λ such that:

ApΛq �

�
��

A0 � � � A0
...

. . .
...

P0 � � � A0

�
��

�
��

A0 � � � A0
...

. . .
...

A0 � � � A0

�
�� ApΛmaxq

(see [20]). We have:

a1pΛq �

�
��

P0 � � � A0
...

. . .
...

P0 � � � P0

�
��

�
��

P0 � � � P0
...

. . .
...

P0 � � � P0

�
�� a1pΛmaxq.

Therefore both a1pΛq X n� and a1pΛmaxq X n� are made of blocks with values in P0.

Write θ for the transfer of θmax to CpΛ, 0, βq in the sense of [21], and κ for the unique β-ex-
tension of θ such that:

(5.2) IndpUpΛqXB�qU1pΛq
J pκq � IndpUpΛqXB�qU1pΛq

pUpΛqXB�qJ1
max

pκmaxq

where J � Jpβ,Λq. We also write JP � H1pJXPq and κP for the unique irreducible representation
of JP that is trivial on JP XN and JP XN� and such that, if we restrict κP to JXM, we get:

JXM � J1 � � � � � Jr, κP|JXM � κ1 b � � � b κr,

where Ji � Jpβ,Λiq and κi is a β-extension with respect to some simple stratum rΛi, ni, 0, βs in
Ami . We have an isomorphism of representations of J:

(5.3) IndJ
JP
pκPq � κ.

We write Jmax,α � JXM, J1
max,α � J1 XM and κmax,α � κP|JXM. We have a functor:

KM : π ÞÑ HomJ1
max,α

pκmax,α, πq

from RpMq to RpJmax,α{J
1
max,αq.

The groups JXM{J1 XM, pUpΛq XB�qJ1
max{pU1pΛq XB�qJ1

max and Jmax,α{J
1
max,α will all be

identified, and all of them will be denoted M . For simplicity, we will write:

U � pUpΛq X B�qU1pΛq,
U1 � U1pΛq XU � U1pΛq,

S � pUpΛq X B�qJ1
max,

S1 � U1pΛq X S � pU1pΛq X B�qJ1
max.
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5.2.

We write KS for the functor:
π ÞÑ HomS1pκmax|S, πq

from RpSq to RpM q. Note that this fits in the framework of §3, with:

J � S, J1 � S1, H1 � pU1pΛq X B�qH1
max κ � κmax|S,

since, by the construction of β-extensions in [19]:
(i) the restriction of κmax to S1 is the unique (irreducible) representation η̃ which extends ηmax

and such that IndU1

S1 pη̃q is equivalent to IndU1

J1 pηq;
(ii) the restriction of η̃ to pU1pΛq X B�qH1

max is a multiple of the character θ̃ given by:

θ̃puhq � θpuqθmaxphq,

for u P U1pΛq X B� and h P H1
max. (Note that this is well-defined, by [21, Théorème 2.13].)

Proposition 5.2. — For any smooth representation π of M, we have

KMpπq � KS

�
IndPS

P pπq
�

as representations of M .

Proof. — Let π be a smooth representation of M. Then, by inflation, we have

KMpπq � HomJ1
max,α

pκmax,α, πq � HomJ1XPpκP, πq.

By Frobenius reciprocity and the Mackey formula, this is isomorphic to

HomJ1
P
pκP, IndJP

JXPpπqq.

Again we are in the situation of §3, with J � JP, J1 � J1
P, κ � κP, and θ � θP, the character of

Corollary 4.7. Thus, using the notation of §3 and Lemma 3.1, we get

(5.4) KMpπq � KκP � IndPJP
P pπq.

We decompose PU as a disjoint union of double cosets PuJP, where the double coset represen-
tatives u may, and will, be chosen in UXN� � U1pΛq XN�; then IndPU

P pπq �
À

u IndPuJP
P pπq.

By Corollary 3.3, we have that KκP �IndPuJP
P is non-zero if and only if θP is trivial on H1

PXNu,
which, by Corollary 4.7, implies u P J1

P. Thus (5.4) implies

KMpπq � KκP � IndPU
P π � HomJ1

P
pκP, IndU

PXUpπqq.

Write ρ for the irreducible induced representation IndU
JP
pκPq which, by (5.2) and (5.3), is isomor-

phic to IndU
S pκmax|Sq. Then, again by Frobenius and Mackey, we get

KMpπq � HomU1pρ, IndU
PXUpπqq � HomS1pκmax|S, IndU

PXUpπqq � KS � IndPU
P pπq,

applying Lemma 3.1 again.
As before, we decompose PU as a disjoint union of double cosets PuS, where the double coset

representatives u lie in UXN� which, by Lemma 5.1, is U1pΛqXN�; then IndPU
P π �

À
u IndPuS

P π.
Now Corollary 3.3 shows that the functor KS � IndPuS

P is nonzero on RpMq if and only if θ̃ is
trivial on pU1pΛq X B�qH1

max X Nu; in particular, restricting to H1
max and applying Lemma 4.2,

we see that u P PS so
KMpπq � KS � IndPU

P pπq � KS � IndPS
P pπq.
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This ends the proof of Proposition 5.2.

The following lemma relates the functor KS back to our functor K. We put P � S{J1
max, which

is a parabolic subgroup of G � Jmax{J
1
max with Levi component M . We regard representations

of M as representations of P by inflation.

Lemma 5.3. — For any smooth representation π of M, we have

KS

�
IndPS

P pπq
�
� K

�
IndPS

P pπq
�

as representations of P.

Proof. — We clearly have an inclusion of spaces HomS1pκmax, IndPS
P πq � HomJ1

max
pκmax, IndPS

P πq
and, if we check that we have equality here, it is then straightforward that the actions of P are
the same. Write V for the space of κmax.

The action of U1pΛqXB� on V is a multiple of θ̃|U1pΛqXB� , which factors through the reduced
norm. Thus, for u P U1pΛq X B� XN, we have κmaxpuq � idV. Now let:

f P HomJ1
max
pκmax, IndPS

P πq

and v P V, and put ϕ � fpvq. For j P J1
max and u P U1pΛq X B� X N, we have ηmaxpu

�1juq �
ηmaxpjq and πpuq acts trivially on the space of π so

pu � ϕqpjq � ϕpjuq � ϕpu�1juq � fpηmaxpu
�1juqvqp1q � fpηmaxpjqvqp1q � ϕpjq.

Since PS � PJ1
max, this implies that u � ϕ � ϕ. Thus

fpκmaxpuqvq � fpvq � u � fpvq

and f P HomS1pκmax, IndPS
P πq since S1 � pU1pΛq X B� XNqJ1

max.

5.3.

Then next step is to relate parabolic induction in the finite reductive group G to induction
inside Jmax.

Lemma 5.4. — For any smooth representation τ of S, we have:

K
�

IndJmax
S pτq

	
� IndG

P pKpτqq

as representations of G .

Note that Kpτq � HomJ1
max
pκmax, τq is viewed here as a representation of P by restriction.

Proof. — As above, write V for the space of κmax. Given f P KpIndJmax
S pτqq, we define a function

f̄ by:
f̄p 9xq : v ÞÑ fpx�1 � vqpxq

for all x P Jmax and v P V, where 9x is the class of x in G .
We first need to check that f̄ is well defined. Let z P J1

max. For v P V and x P Jmax, we have:

fpz�1x�1 � vqpxzq � rz�1 � fpx�1 � vqspxzq

� fpx�1 � vqpxz � z�1q

� fpx�1 � vqpxq.
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We now check that f̄ takes its values in IndG
PpHomJ1

max
pκmax, τqq. Given v P V, x P Jmax and

j P J1
max, we first have:

f̄p 9xqpj � vq � fpx�1j � vqpxq

� fpx�1j � vqpj � j�1xq

� τpjqrfpx�1j � vqpj�1xqs

which is equal to τpjqrf̄p 9xqpvqs since j�1x and x have the same image in G . Now given s P S,
x P Jmax and v P V, we have:

f̄p 9s 9xqpvq � fpx�1s�1 � vqpsxq

� τpsqrfpx�1s�1 � vqpxqs.

On the other hand, we have:

r 9s � f̄p 9xqspvq � rτpsq � f̄p 9xq � κmaxpsq
�1spvq

� τpsqrf̄p 9xqps�1 � vqs

and this coincides with f̄p 9s 9xqpvq.
We now check that f ÞÑ f̄ is a G -homomorphism. Given x, y P Jmax and v P V, we have:

9y � fp 9xqpvq � rIndG
Ppτqpyq � f � κmaxpyq

�1spx�1 � vqpxq

� fpy�1x�1 � vqpxyq

which is equal to f̄p 9x 9yqpvq and gives us 9y � fp 9xq � f̄p 9x 9yq, thus the expected relation 9y � f � 9y � f̄ .
The map f ÞÑ f̄ is clearly injective. Now let φ be some function in IndG

PpHomS1pκmax|S, τqq.
We define a function f from V to IndJmax

S pτq by:

fpvqpxq � φp 9xqpx � vq.

Checking that f P KpIndJmax
S pτqq and that f̄ � φ is similar to the calculations above, and this

completes the proof of the lemma.

Putting this together with the results of the previous subsection, we get:

Corollary 5.5. — For any smooth representation π of M, we have

K
�

IndPJmax
P pπq

	
� IndG

P pKMpπqq

as representations of G .

Proof. — Putting together Proposition 5.2 with Lemmas 5.3, 5.4, we get

IndG
P pKMpπqq � K

�
IndJmax

S

�
IndPS

P pπq
�	
,

while IndJmax
S

�
IndPS

P pπq
�
� IndPJmax

P pπq, from Lemma 3.1 and the fact that PXS � PXJmax.

Proposition 5.6. — For any smooth representation π of M, we have an isomorphism

(5.5) K
�
IndG

P pπq
�
� IndG

P pKMpπqq

as representations of G .
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Proof. — Assume first that R is the field of complex numbers. In that case, we may assume
that π belongs to a single Bernstein block of M. If π does not contain the simple character θmax,
then both sides of (5.5) are zero. Otherwise, the method used by Schneider and Zink in [17],
based on equivalences of categories given by the theory of types for complex representations,
applies mutatis mutandis, replacing the reference to [6, (11.4)] by [8, Theorem 1.5]. Therefore,
for any irreducible complex representation π of M, the canonical inclusion:

KpIndPJmax
P pπqq � KpIndG

P pπqq

is an equality by Corollary 5.5, since the right hand side is finite-dimensional. Thus the functor
K� IndPgJmax

P is zero on IrrpMq, for any g R PJmax. By Corollary 3.3, this implies that, for g P G,

(5.6) θmax is trivial on H1
max XNg ô g P PJmax

for any complex maximal simple character θmax. As H1
max is a pro-p-group, (5.6) holds also for

any modular maximal simple character. Thus, by Corollary 3.3 again, the equality

K
�
IndG

P pπq
�
� K

�
IndPJmax

P pπq
	

holds for all smooth R-representations π of M. The result follows from Corollary 5.5.

Remark 5.7. — We have proved that the functors K�IndG
P and IndG

P �KM from RpMq to RpGq
behave in the same way on objects. It seems likely that similar proofs would show that they
behave in the same way on morphisms so that the two functors are in fact isomorphic.

§6. Semisimple supertypes

In this section, we first recall briefly the basic properties of, and data attached to, semisimple
supertypes, for which we refer to [22, 15] for more details, and we explain the functor K in this
situation. The main result is Theorem 6.2, which extends to the semisimple case the main result
of the previous section: the functor K commutes with parabolic induction.

6.1.

Let α � pm1, . . . ,mrq be a composition of m. For all i P t1, . . . , ru, let pJi, λiq be a maximal
simple type attached to a simple stratum rΛi, ni, 0, βis in Ami . We write M for the standard
Levi subgroup Gm1 � � � � �Gmr in G and:

Jα � J1 � � � � � Jr, λα � λ1 b � � � b λr.

A pair of the form pJα, λαq is called a maximal simple type of M. Associated to it, there is a
pair pJ,λq called a semisimple type of G (see [22, 15]). For any parabolic subgroup P of G with
Levi component M, the pair pJ,λq satisfies the following properties:

(i) the kernel of λ contains JXN and JXN�, where N and N� denote the unipotent radicals
of P and P�, the parabolic subgroup opposite to P with respect to M;

(ii) one has JXM � Jα and λ|JXM � λα;
(these two conditions say that pJ,λq is decomposed above the pair pJα, λαq with respect to pM,Pq
in the sense of [6, Definition 6.1]), plus another technical condition saying that the pair pJ,λq is
a cover of pJα, λαq in the sense of [6, Definition 8.1]. Note that there is considerable flexibility
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in the construction of semisimple types; in particular, there is a (not entirely arbitrary) choice
of lattice sequence Λ on Dm such that:

UpΛq XM � UpΛ1q � � � � �UpΛrq

(see [22, §7.1] and [15, §2.8-9] for the precise condition). In particular, we may and will assume
that the lattice sequences Λ1, . . . ,Λr and Λ all have the same period.

Given πi a representation of Gmi for all i P t1, . . . , ru, we write π1 � � � � � πr for the represen-
tation IndG

P pπ1b� � �bπrq, where P is the parabolic subgroup of G with Levi component M made
of upper triangular matrices.

An important relationship between pJ,λq and pJ1, λ1q, . . . , pJr, λrq is that there is an isomor-
phism of representations of G:

indG
J pλq � indGm1

J1
pλ1q � � � � � indGmr

J1
pλrq

(see [2]). Note, in particular, that this is independent of any choices made in the construction
of pJ,λq.

Definition 6.1. — (i) When pJ1, λ1q, . . . , pJr, λrq are maximal simple supertypes, pJ,λq is
called a semisimple supertype of G.

(ii) The equivalence class of a semisimple type pJ,λq is the set rJ,λs of all semisimple super-
types pJ1,λ1q of G such that indG

J1pλ
1q is isomorphic to indG

J pλq.

Together with J, we also have a normal open subgroup J1 and an irreducible representation
η of J1 (see [15, §2.10]). When restricting λ to J1, we get a direct sum of copies of η. There is
a decomposition of the form:

(6.1) λ � κb σ,

where κ is an irreducible representation of J extending η and σ is an irreducible representation
of J trivial on J1. The representation κ has the property that its intertwining is the same as
that of η, but is not uniquely determined by this condition; thus there is a choice of κ to be
made in the decomposition (6.1).

For each i P t1, . . . , ru, we have a maximal simple character θi attached to the simple stra-
tum rΛi, ni, 0, βis, an isomorphism of Frβis-algebras Bi � Mm1

i
pD1

iq for a suitable Frβis-division
algebra D1

i, and isomorphisms of groups:

J{J1 � J1{J
1
1 � � � � � Jr{J

1
r � GLm1

1
pkD1

1
q � � � � �GLm1

r
pkD1

r
q;

we denote by M this latter group. The representation κ is trivial on JXN and JXN�, and its
restriction to JXM � Jα is of the form κα � κ1 b � � � b κr, where κi is a maximal βi-extension
of θi.

For each i, there is a decomposition λi � κi b σi, where σi is an irreducible representation of
Ji trivial on J1

i that identifies with a cuspidal representation of GLm1
i
pkD1

i
q, and σ identifies with

the irreducible cuspidal representation σ1 b � � � b σr of M .

6.2.

We will need to recall some more detail of the structure of semisimple supertypes pJ,λq, which
we begin in this section.

We write Θi for the endo-class of θi (see [3] for the definition of endo-class) and assume first
that the endo-classes Θi all coincide, the so-called homogeneous case. In this case, we may and
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will assume that the elements β1, . . . , βr are all equal to (the image of) a single element β and
that the characters θi are related by the transfer maps (in other words, they are realizations of
the same ps-character – see [3]). We put E � Frβs and denote by B the centralizer of E in A, so
that B � Mm1pD1q, where D1 is a suitable E-division algebra. Similarly, we write Bi � Mm1

i
pD1q

for the centralizer of E in Ami .
We choose a simple stratum rΛmax, nmax, 0, βs in A and an isomorphism of E-algebras Φ from

B to Mm1pD1q with the following properties:
(i) UpΛmaxq X B� is a maximal compact subgroup of B� that contains UpΛq X B�;
(ii) ΦpUpΛmaxqXB�q and ΦpUpΛqXB�q are both standard parahoric subgroups of GLm1pD1q;

By passing to an equivalent type if necessary, we will assume that UpΛq � UpΛmaxq as in Lem-
ma 5.1.

We are now in the situation of §5.1, with θ the transfer of θi to CpΛ, 0, βq (which is independent
of i), and we take the notation from there. We have J � JP and κ � κP for some choice of β-
extension κmax of θmax; it is thus this choice of κmax which imposes the choice of κ in §6.1. The
group M is a Levi subgroup of:

G � GLm1pkD1q � Jmax{J
1
max

so we get a supercuspidal pair pM ,σq of G , where σ � σ1 b � � � b σr is as above. Taking Γ to
be the group GalpkD1{kEq, we also get an equivalence class rM ,σs of supercuspidal pairs, in the
sense of Definition 1.14.

The group G and the conjugacy class of M � G are uniquely determined by the semisimple
type pJ,λq, independently of the decomposition λ � κbσ. The representation κ is not uniquely
determined but, once it is fixed (or, equivalently, the representation κmax is fixed), it determines
the equivalence class rM ,σs, as well as the functor:

K � Kκmax : RpGq Ñ RpG q.

Moreover, every equivalence class rM 1,σ1s arises from some homogeneous semisimple supertype:
M 1 determines a composition α1 of m1 and hence a Levi subgroup M1 of G with standard parabo-
lic subgroup P1; then we may make the constructions of §5.1 to get a pair pJ1,λ1q, with J1 � JP1

and λ1 � κP1 b σ
1, which is a homogeneous semisimple supertype with the required property.

6.3.

Now we consider the general case, when the endo-classes Θi may differ. Let Θ � ΘpJ,λq be
the formal sum:

ŗ

i�1

mid

rFrβis : Fs
�Θi

in the semigroup of finitely supported maps tendo-classes over Fu Ñ N (with N the semigroup
of nonnegative integers). The fibers of the map i ÞÑ Θi define a partition:

t1, . . . , ru � I1 Y � � � Y Il
for some s ¥ 1. Renumbering, we may assume that the Ij (for j P t1, . . . , lu) are of the form:

Ij � ti P t1, . . . , ru | aj�1   i ¤ aju

for some integers 0 � a0   a1   � � �   al � r. For all j P t1, . . . , lu, we write:

nj �
¸
iPIj

mi, Mj �
¹
iPIj

Gmi ,
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and Pj the standard parabolic subgroup of Gnj with Levi subgroup Mj . Let L be the standard
Levi subgroup Gn1 � � � � �Gnl in G; thus we have PXL � P1� � � � �Pl. From the construction
of semisimple types, and by passing to an equivalent semisimple type as before if necessary, we
have:

JX L � J1 � � � � � Jl, λJXL � λ1 b � � � b λl,

where each pJj ,λjq is a homogeneous semisimple supertype, as described in the previous section.
In particular, for each j P t1, . . . , lu, we choose a pair pJmax,j , κmax,jq and have the group Gj and
the supercuspidal equivalence class rLj ,σjs. The choice of the representations κmax,j imposes
the choice of κ in §6.1 (and vice versa).

Now write µ � pn1, . . . , nlq and:

Jmax,µ � Jmax,1 � � � � � Jmax,l, κmax,µ � κmax,1 b � � � b κmax,l,

so that:

Jmax,µ{J
1
max,µ � G1 � � � � � Gl;

we denote the latter group by G . We also get an isomorphism of groups M � M1 � � � � �Ml

which identifies σ with σ1 b � � � b σl. Then pM ,σq is a supercuspidal pair of G and we define
the equivalence class rM ,σs to be the product of the equivalence classes rMj ,σjs (see Defini-
tion 1.14).

The formal sum Θ, the group G and the conjugacy class of M � G are uniquely determined
by pJ,λq (independently of the decomposition λ � κ b σ). In fact, the group G depends only
on Θ, since Gj � GLn1j pkD1

j
q, where:

n1j � rkD1
j

: kEj s �
njd

rEj : Fs
�
¸
iPIj

mid

rFrβis : Fs
,

which is the coefficient of Θi in Θ, for i P Ij .
As in the previous case, the representation κ is not uniquely determined by λ, but once it is

fixed (or, equivalently, once κmax,µ is fixed), it determines the equivalence class rM ,σs. Further,
there is a decomposed pair pJmax,κmaxq above pJmax,µ, κmax,µq (see [15]) and we let J1

max denote
the pro-p radical of Jmax; we are now in the situation of §3, with J � Jmax and κ � κmax so we
have the functor:

K � Kκmax : RpGq Ñ RpG q,

which is also determined by the choice of κ. As in the homogeneous case, every equivalence
class rM 1,σ1s arises from some semisimple supertype pJ1,λ1q, by taking a cover.

We will see below that K induces a bijection between the set of equivalence classes rJ,λs of
semisimple supertypes for G such that ΘpJ,λq � Θ and the set of equivalence classes rM ,σs of
supercuspidal pairs in G (see Proposition 10.7); it might be possible to prove this directly but
in fact we deduce it as a consequence of our block decomposition of RpGq.

6.4.

We continue with a semisimple supertype pJ,λq and all the notation of the previous section,
making a choice of decomposition λ � κbσ. In particular we have Levi subgroups M � L � G;
a decomposed pair pJmax,κmaxq in G of pJmax,µ, κmax,µq in L; a pair pJα, καq in M; and a Levi



26 VINCENT SÉCHERRE & SHAUN STEVENS

subgroup M of G . This gives us functors:
K � Kκmax : RpGq Ñ RpG q,

KL � Kκmax,µ : RpLq Ñ RpG q,

KM � Kκα : RpMq Ñ RpM q,

using the notation of §3. Denote by Q � LU the standard parabolic subgroup of G with Levi
component L, and by P the standard parabolic subgroup of G with Levi component M .

Theorem 6.2. — For any smooth representation π of M, one has:

KpIndG
P pπqq � IndG

PpKMpπqq.

Proof. — First note that it is enough to prove the result when M � L. Indeed, assuming that
the theorem is true for M � L, we set π0 � IndL

PXLpπq and get:

KpIndG
P pπqq � KpIndG

Qpπ0qq � KLpIndL
PXLpπqq

and the latter representation of G is isomorphic to IndG
PpKMpπqq thanks to Proposition 5.6.

Assume now that M � L. Given π P RpLq, by Lemma 3.1, we have an isomorphism:

IndQJmax
Q pπq � IndJmax

JmaxXQpπq

of representations of Jmax. Since Jmax � J1
maxpJmax XQq, we get:

(6.2) KpIndQJmax
Q pπqq � HomJ1

maxXQpκ|JmaxXQ, πq � HomJ1
max,µ

pκmax,µ, πq

which is KLpπq. Therefore it is enough to prove that:

(6.3) KpIndG
Qpπqq � KpIndQJmax

Q pπqq

for all smooth representations π of L.
First assume R is the field of complex numbers and π is irreducible. Define a representation

V of G by the following exact sequence:

(6.4) 0 Ñ KpIndQJmax
Q pπqq

ι
ÝÑ KpIndG

Qpπqq Ñ V Ñ 0

of representations of G , where ι is the inclusion map, and assume that V is nonzero. Then it has
an irreducible subquotient, with some supercuspidal support pM 1,σ1q. Let P 1 be the standard
parabolic subgroup of G with Levi component M 1 and write N 1 for its unipotent radical. There
is a standard parabolic subgroup P1 � M1N1 of G contained in Q, having the following property:
the intersection P1 X L � M1pN1 X Lq is a parabolic subgroup of L such that:

pUpΛmaxq X B� XN1 X LqpU1pΛmaxq X B�q{pU1pΛmaxq X B�q � N 1.

Let rΛ1, n1, 0, βs be a simple stratum such that:
(i) the image of U1pΛ1q X B� X L in G is N 1;
(ii) UpΛ1q X L � UpΛmaxq X L and UpΛ1q XN1 X L � UpΛmaxq XN1 X L as in Lemma 5.1.

(Note that this makes sense because it is happening in L, where we just have a direct sum of
simple strata so we can do it separately in each block of L and then take the sum.)

By using (5.2) and (5.3) in L, there is an irreducible representation κP1XL of a group JP1XL

which is compatible with κmax,µ, that is, we have an isomorphism:

IndpUpΛ
1qXB�XLqpU1pΛ1qXLq

JP1XL
pκP1XLq � IndpUpΛ

1qXB�XLqpU1pΛ1qXLq
pUpΛ1qXB�XLqJ1

max,µ
pκmax,µq,
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and these induced representations are irreducible. In particular, by the Mackey formula, there
is an element g P pUpΛ1q X B� X LqpU1pΛ1q X Lq that intertwines κP1XL with κmax,µ. Moreover,
the representation κP1XL is decomposed above the restriction of κmax,µ to JP1XL X L, denoted
κL, which is a maximal β-extension of JL in L.

By [15, Proposition 2.33], we get a representation κ1 of a compact open subgroup J1 which is
decomposed above κP1XL in G, so also above pJL, κLq.

Lemma 6.3 (cf. [6, Proposition 6.3]). — For i � 1, 2, let Ki be a subgroup of G with an Iwa-
hori decomposition with respect to pL,Qq, and let ρi be an irreducible representation of Ki which
is trivial on U and U�. Then, for g P L, we have:

HomK1XpK2qgpρ1, pρ2q
gq � HompK1XLqXpK2XLqgpρ1, pρ2q

gq.

Proof. — One inclusion is obvious and the other follows from the fact that K1 X pK2q
g has an

Iwahori decomposition with respect to pL,Qq.

Applying this lemma with κ1 and the restriction of κmax to pUpΛ1q X B�qJ1
max,µ, we see that

g intertwines these two representations. Thus, by Mackey, there is a non-zero morphism:

IndpUpΛ
1qXB�XLqpU1pΛ1qXLq

J1 pκ1q Ñ IndpUpΛ
1qXB�XLqpU1pΛ1qXLq

pUpΛ1qXB�qJ1
max

pκmaxq.

Moreover, the intertwining formula given by [15, Proposition 2.31] (together with an analogue
of [15, Lemme 2.2]) implies that both of these representations are irreducible. Thus they are
isomorphic, and we have a compatibility property analogous to (5.2).

We now go back to (6.4). By taking the N 1-fixed vectors and then the σ1-isotypic component,
and thanks to (6.2), we get an exact sequence

0 Ñ HomJ1
max,µ

pκmax,µ, πq
N 1,σ1 Ñ HomJ1

max
pκmax, IndG

P pπqq
N 1,σ1 Ñ VN 1,σ1 Ñ 0

of complex vector spaces, which are finite-dimensional since π is admissible. Now

HomJ1
max
pκmax, IndG

P pπqq
N 1,σ1 � HompU1pΛ1qXB�qJ1

max
pκmax, IndG

P pπqq
σ1

� HompUpΛ1qXB�qJ1
max
pκmax b σ

1, IndG
P pπqq

� HomJ1pκ
1 b σ1, IndG

P pπqq,

where κ1 is compatible with κmax as above. Similarly, we have

HomJ1
max,µ

pκmax,µ, πq
N 1,σ1 � HomJP1XL

pκP1XL b σ
1, πq

Now, by [22], the semisimple type λ1 � κ1 b σ1 is a cover of κP1XL b σ
1, which is itself a cover

of κL b σ
1. Thus the algebra H � EndGpindG

J1pκ
1 b σ1q is a free module of rank 1 over:

HL � EndLpindL
JP1XL

pκP1XL b σ
1qq

(see [15, Corollaire 2.32]) and there is an isomorphism of H-modules

HomJ1pκ
1 b σ1, IndG

P pπqq � HomHL
pH,HomJP1XL

pκP1XL b σ
1, πqq.

Since these are finite-dimensional, we deduce that VN 1,σ1 � 0, a contradiction.
We deduce from Proposition 3.2 that, for g P G, we have:

(6.5) HomJ1
maxXUgpκmax, 1q � 0 ô g P PJmax.

As J1
max is a pro-p-group, (6.5) also holds when R has positive characteristic. Thus, by Propo-

sition 3.2 again, the equality (6.3) holds for all smooth R-representations π of L.
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§7. A semisimple computation

As in Section 6, the notation of which we use, pJ,λq is a semisimple supertype of G. We fix a
decomposition λ � κbσ and write K � Kκmax and rM ,σs for the functor and the equivalence
class of supercuspidal pairs associated with it.

Proposition 7.1. — Every irreducible subquotient of KpindG
J pλqq has its supercuspidal support

in rM ,σs.

Proof. — Assume first that pJ,λq is a maximal simple type. Then r � l � 1 and we have:

KpindG
J pλqq �

à
JzG{J

KpindJ
JXJgpλ

gqq.

By reciprocity, one see that the g P G that contribute to this sum intertwine η. Therefore one
may assume that they are in B�. Since JXB� is a maximal compact open subgroup in B�, by
the Cartan decomposition one may assume that the g that contribute are diagonal matrices in
B�. As σ is cuspidal, only those g which normalize JXB� contribute to this sum. Fix $ P B�

such that the B�-normalizer of JX B� is generated by JX B� and $. We get:

KpindG
J pλqq �

à
nPZ

Kpλ$
n
q �

à
Z

pσ ` σφ ` � � � ` σφ
b�1
q �

à
Z

b�1à
j�0

σφ
j
,

where φ is a generator of GalpkD1{kEq and b is the cardinality of the GalpkD1{kEq-orbit of σ (see
[15, Lemme 5.3])

We treat the general case. Recall that we have the standard parabolic subgroup P of G, with
standard Levi component M. We have an isomorphism:

indG
J pλq � IndG

P pindM
JXMpλαqq.

As K commutes with parabolic induction (see Theorem 6.2), we get:

KpindG
J pλqq � IndG

P

�
KMpindM

JXMpλαqq
�

� IndG
P

�
K1pindGm1

J1
pλ1qq b � � � bKrpindGmr

Jr
pλrqq

�
where we have Ki � Kκi . For each i P t1, . . . , ru we have:

KipindGi
Ji
pλiqq �

à
Z

bi�1à
j�0

σ
φji
i ,

where φi is a generator of Γi � GalpkD1
i
{kFrβisq and bi is the cardinality of the orbit of σi under

Γi. Thus:

KpindG
J pλqq �

à
Zr

à
j

pσ
φ
j1
1

1 � � � � � σφ
jr
r
r q

where j ranges over the r-tuples pj1, . . . , jrq with ji P t0, . . . , bi � 1u for all i P t1, . . . , ru, and
where � stands for parabolic induction. The result follows by unicity of supercuspidal support
in G .
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§8. Supercuspidal inertial classes and supertypes

Given pJ,λq a semisimple supertype of G, write IrrpJ,λq for the set of all classes of irreducible
subquotients of indG

J pλq.
Given Ω an inertial class of supercuspidal pairs of G, write IrrpΩq for the set of all classes of

irreducible representations of G having their supercuspidal support in Ω.

Proposition 8.1. — Let pM, %q be a supercuspidal pair of G and pJ,λq be a semisimple super-
type of G associated with a maximal simple type pJα, λαq of M contained in %. Write Ω for the
inertial class of pM, %q. Then we have IrrpΩq � IrrpJ,λq.

Proof. — We begin by proving the containment IrrpΩq � IrrpJ,λq. Assume M is standard and
write % � ρ1b� � �bρr, where ρi is a supercuspidal irreducible representation of Gmi for mi ¥ 1.
For i P t1, . . . , ru, fix an unramified character χi of Gmi . Then ρiχi is a quotient of the compact
induction of λi to Gmi . It follows that ρ1χ1 � � � � � ρrχr is a quotient of:

(8.1) indGm1
J1

pλ1q � � � � � indGmr
J1

pλrq � indG
J pλq.

Thus any irreducible subquotient of ρ1χ1 � � � � � ρrχr appears in IrrpJ,λq.
For the opposite containment, we need the following lemma.

Lemma 8.2. — Let Ω and pJ,λq be as in Proposition 8.1, and assume that IrrpJ,λq contains
a cuspidal representation π. Then we have π P IrrpΩq.

Proof. — Let pJ0, λ0q be a maximal simple type of G contained in π. It is attached to a simple
stratum rΛ0, n0, 0, β0s and we write θ0 for the simple character occurring in the restriction of λ0

to H1
0 � H1pβ0,Λ0q. This character occurs as a subquotient (hence a subrepresentation since H1

0

is a pro-p group) of the restriction of indG
J pλq to H1

0. Recall that we have an isomorphism (8.1)
and that the compact induction of λi to Gmi is isomorphic to

ρi b RrX,X�1s,

with Gmi acting on RrX,X�1s by g � Xk � Xk�vpgq, for all k P Z, where vpgq is the valuation of
the reduced norm of g P Gmi . Therefore, when restricting (8.1) to H1

0, we deduce that θ0 occurs
as a subrepresentation of à

Zr
pρ1 � � � � � ρrq.

Thus θ0 occurs as a subrepresentation of ρ1 � � � � � ρr, and it follows from [15, Proposition 5.6]
that the sum Θ � ΘpJ,λq is equal to

ΘpJ0, λ0q �
md

rFrβ0s : Fs
�Θ0,

where Θ0 is the endo-class of π. We thus are in the homogeneous situation of Section 6.2 so that
a decomposition λ � κbσ is determined by a pair pJmax, κmaxq. Then the simple character θmax

contained in κmax is the transfer of the simple character θ0 in λ0.
We fix a decomposition λ0 � κ0 b σ0 and write K0 � Kκ0 . By [3], the characters θ0 and θmax

are in fact conjugate and, replacing the pair pJ,λq by a suitable G-conjugate, we may assume
that the pairs pJmax, κmaxq and pJ0, κ0q coincide. Thus the functor K � Kκmax of section 6.2
coincides with K0. This also induces a decomposition λi � κi b σi for all i P t1, . . . , ru.

We now apply this functor to the subquotient π of indG
J pλq. By [15, Lemme 5.3], the represen-

tation Kpπq is a sum of cuspidal irreducible representations of G � GLm1pkD1q. By Proposition
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7.1, these cuspidal representations have their supercuspidal support in rM ,σs. By the classifi-
cation of cuspidal irreducible representations of G in terms of supercuspidal representations (see
for instance [16, Proposition 3.7]), there is a supercuspidal representation σ of GLm1{rpkD1q such
that

σi � σγi , γi P GalpkD1{kFrβ0sq, i P t1, . . . , ru,
and an integer u ¥ 0 such that we have r � epσq`u, where epσq is a positive integer attached to
σ (see [16, Remarque 3.6]). Since κib σ can be obtained from λi by conjugacy in Gmi , we may
assume without changing indG

J pλq that we have:

Θi � � � � � Θr � Θ0, σ1 � � � � � σr � σ.

By [15, Corollaire 5.5], it follows that ρ1, . . . , ρr are inertially equivalent to a given supercuspidal
representation ρ. It also follows from [16, §6] that π is inertially equivalent to Stpρ, rq, the unique
cuspidal irreducible subquotient of the product ρ�ρνρ�� � ��ρν

r�1
ρ (where νρ is the unramified

character associated with ρ in [15, §4.5]). It follows that the supercuspidal pair pM, %q is inertially
equivalent to pM, ρb � � � b ρq and that π appears in IrrpΩq.

We return to the proof of Proposition 8.1. Let π be an irreducible subquotient of indG
J pλq,

and let pL, τq be its cuspidal support. Write:

indG
J pλq � IndG

P pindL
Jαpλαqq � indGm1

J1
pλ1q � � � � � indGmr

Jr
pλrq.

For i P t1, . . . , ru, note that Πi � ind
Gmi
Ji

pλiq is made of supercuspidal irreducible subquotients
all of whose are unramified twists of a given supercuspidal irreducible representation ρi of Gmi .
Let Q � LU be a parabolic subgroup of G with Levi component L. We compute the Jacquet
module pindG

J pλqqU. Since it contains πU, it contains an irreducible cuspidal subquotient which
is G-conjugate to τ . By the geometric lemma, there are a permutation w of t1, . . . , ru and
integers 0 � a0   a1   � � �   at � r such that, if we write τ � τ1 b � � � b τt with τj cuspidal,
then τj appears, for each j P t1, . . . , tu, as a subquotient of:

Σj � Πwpaj�1�1q � � � � �Πwpajq.

It follows from Lemma 8.2 that τj has its supercuspidal support in Ωj , the inertial class of the
supercuspidal pair:

pGwpaj�1�1q � � � � �Gwpajq, ρwpaj�1�1q b � � � b ρwpajqq.

It follows that π has its supercuspidal support in Ω, as required.

Proposition 8.3. — Let pJ,λq and pJ1,λ1q be semisimple supertypes of G. The representations
indG

J1pλ
1q, indG

J pλq have an irreducible subquotient in common if and only if rJ,λs � rJ1,λ1s.

Proof. — Since the IrrpΩq form a partition of the set of all isomorphism classes of irreducible
representations of G, it follows from Proposition 8.1 that indG

J1pλ
1q, indG

J pλq have an irreducible
subquotient in common if and only if IrrpJ,λq � IrrpJ1,λ1q.

Suppose that IrrpJ,λq � IrrpJ1,λ1q � IrrpΩq, with Ω � rM, %sG. If M � G then, by following
the proof of Lemma 8.2, we find that pJ,λq and pJ1,λ1q are both equivalent to maximal simple
supertypes; by unicity (up to conjugacy) of maximal simple supertypes in a supercuspidal repre-
sentation (see [15, Théorème 3.11] and [16, Proposition 6.10]), we deduce that rJ,λs � rJ1,λ1s.
In the general case, we have

indG
J pλq � IndG

QpindM
Jαpλαqq � IndG

QpindM
J1α
pλ1αqq � indG

J1pλ
1q,
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where the middle isomorphism follows from the previous case.

It also follows that there is a bijection:

(8.2) Ω Ø rJ,λs

between inertial classes of supercuspidal pairs of G and equivalence classes of semisimple super-
types of G, characterized by the equality IrrpΩq � IrrpJ,λq.

§9. Splitting of the category

Let pJ,λq be a semisimple supertype of G, together with a decomposition λ � κb σ. Asso-
ciated with it, there are a formal sum Θ of endo-classes, a functor K � Kκmax and the group G �
Jmax{J

1
max.

9.1.

We now fix Θ and K, and make rM ,σs vary among the equivalence classes of supercuspidal
pairs of G . By Corollary 1.15, we have, for all V P RpGq, a decomposition:

(9.1) KpVq �
à
rM ,σs

VpΘ,σq,

where VpΘ,σq is the maximal subspace of KpVq all of whose composition factors have super-
cuspidal support in rM ,σs.

Definition 9.1. — Given V P RpGq a smooth representation, we write:
(i) VrΘ,σs for the G-subspace of V generated by VpΘ,σq;
(ii) VrΘs for the G-subspace of V generated by KpVq.

Thus VrΘs is the sum of all the VrΘ,σs, as rM ,σs ranges over the set of equivalence classes
of supercuspidal pairs of G . We claim that VrΘs is in fact the direct sum of the VrΘ,σs.

Lemma 9.2. — Given rM ,σs, rM 1,σ1s equivalence classes of supercuspidal pairs of G , we
have:

VrΘ,σspΘ,σ1q �

"
VpΘ,σq if rM 1,σ1s � rM ,σs;
0 otherwise.

Proof. — We have the containment VrΘ,σspΘ,σq � VpΘ,σq. Since VrΘ,σs contains VpΘ,σq,
this containment is an equality. Write T for the functor ξ ÞÑ KpindG

Jmax
pκmax b ξqq. We have a

surjective map:
indG

Jmax
pκmax bVpΘ,σqq Ñ VrΘ,σs

thus a surjective map:
TpVpΘ,σqq Ñ KpVrΘ,σsq.

To prove the remaining part of the lemma, it is enough to prove that any irreducible subquotient
of the left hand side has supercuspidal support in rM ,σs. As T is exact, it is enough to prove
that, for all irreducible representation ξ with supercuspidal support in rM ,σs, any irreducible
subquotients of Tpξq has supercuspidal support in rM ,σs. By the same exactness argument, it
is enough to prove the following lemma.

Lemma 9.3. — Let pM 1,σ1q P rM ,σs and X � IndG
M 1pσ1q. Then all irreducible subquotients

of TpXq have supercuspidal support in rM ,σs.
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Proof. — We may and will assume that M 1 � M . We see σ1 as a representation of J trivial on
J1 and write λ1 for the semisimple supertype κb σ1. Then we have:

indG
Jmax

pκmax bXq � indG
J pκb σ

1q � indG
J pλ

1q.

Then the lemma follows from Proposition 7.1.

This ends the proof of Lemma 9.2.

As a corollary, we have the following result.

Corollary 9.4. — For all smooth representations V of G, we have:

VrΘs �
à
rM ,σs

VrΘ,σs.

Remark 9.5. — Note that, given V P RpGq, the subrepresentation VrΘs does not depend on
the choice of the functor K; a different choice of κ simply permutes the equivalence classes of
supercuspidal pairs rM ,σs so permutes the terms VrΘ,σs in VrΘs.

9.2.

We now make Θ vary among all possible formal sums of endo-classes arising from a semisimple
supertype of G.

Theorem 9.6. — For all smooth representation V of G, there is an isomorphism:

V �
à
Θ

VrΘs

of representations of G.

Proof. — Let V be a smooth representation of G. We have a morphism:

f :
à
Θ

VrΘs � Y Ñ V.

Write W for its kernel.

Lemma 9.7. — We have:
W �

à
Θ

pW XVrΘsq.

Proof. — Let Z denote the quotient of W by the right hand side, and assume that it is nonzero.
Let π be an irreducible subquotient of Z. For all sums of endo-classes Θ, the representation π
is an irreducible subquotient of W{pW XVrΘsq, thus of:

V{VrΘs �
à

Θ1�Θ

VrΘ1s,

which implies that πrΘs � 0. Since π contains some semisimple supertype pJ,λq by [22, 15], for
any decomposition λ � κb σ with associated functor K and formal sum Θ, we have Kpπq � 0
so that πrΘs � 0, a contradiction.
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Since f is injective on each VrΘs, we have WXVrΘs � 0 for all Θ and it follows that we have
W � 0. Assume that f is not surjective, and let π be an irreducible subquotient in its cokernel.
Write Ω for the inertial class of its supercuspidal support. Its corresponds to some semisimple
supertype pJ,λq. Write Θ � ΘpJ,λq and fix a decomposition λ � κ b σ. By applying K, we
get that Kpπq is a subquotient of:

KpVq{KpYq � KpVq{KpVrΘsq � KpVq{
à
rM ,σs

KpVrΘ,σsq � KpVq{
à
rM ,σs

VpΘ,σq

by Corollary 9.4 and Lemma 9.2. But the right hand side is zero by (9.1): contradiction.

§10. Blocks of the category

Recall that an abelian category A is the direct sum of two full subcategories A1,A2 if every
object V of A decomposes uniquely as V � V1 ` V2, with Vi an object of Ai for i � 1, 2, and
HomA pV1,V2q � 0. In this case, we say that A1,A2 are direct summands of A . We say that
A is indecomposable if it cannot be expressed as the direct sum of two proper subcategories.

Definition 10.1. — A block in RpGq is a direct summand of RpGq which is indecomposable.

10.1.

Given Ω an inertial class of a supercuspidal pair of G, we write RpΩq for the full subcategory
of representations all of whose irreducible subquotients have their supercuspidal support in Ω.

Given pJ,λq a semisimple supertype of G, we fix a decomposition λ � κbσ and associate to
it the sum Θ, the functor K � Kκmax and the equivalence class rM ,σs. We write RpJ,λq for
the full subcategory of representations V P RpΩq such that V � VrΘ,σs. This does not depend
on the choice of the decomposition of λ.

Assume that Ω � rL, %sG and rJ,λs correspond to each other (see Section 8).

Proposition 10.2. — One has RpΩq � RpJ,λq.

Proof. — Given V P RpΩq, we apply Theorem 9.6 and thus get a decomposition:

(10.1) V �
à
Θ1

VrΘ1s.

Assume VrΘ1s is nonzero for some sum Θ1, and let W be an irreducible subquotient of it. Note
that W has supercuspidal support in Ω. We first prove that Θ1 � Θ. For this, it is enough to
prove the following lemma.

Lemma 10.3. — We have KpWq � 0.

Proof. — If Ω is homogeneous, that is, if Ω is the inertial class of a tensor product of copies of
a given supercuspidal representation, the result is given by [15, Proposition 5.8]. In general, we
use [16, Théorème 8.19] together with Theorem 6.2 to reduce to the homogeneous case.

We thus have Θ1 � Θ, and KpWq is a subquotient of:

KpVrΘsq �
à

rM 1,σ1s

VpΘ,σ1q.
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But there is also an unramified character χ of L such that KpWq is a subquotient of:

KpIndG
Qp%χqq � IndG

M pKLp%χqq,

which is a finite direct sum of representations of the form IndG
M 1pσ1q for pM 1,σ1q P rM ,σs. Thus

all irreducible subquotients of KpWq have supercuspidal support in rM 1,σ1s, and the decompo-
sition (10.1) reduces to V � VrΘ,σs. Conversely, let V P RpJ,λq and let W be an irreducible
subquotient of V. All irreducible subquotients of KpWq have supercuspidal support in rM ,σs.
Write ϕ for the canonical surjective map:

indG
Jmax

pκmax bKpWqq Ñ W.

Choose a composition series 0 � Z0 � Z1 � � � � � Zn � KpWq and write Wi � indG
Jmax

pκmaxbZiq.
There is a minimal i such that ϕ is nonzero on Wi�1. Thus W is isomorphic to a quotient of:

Wi�1{Wi � indG
Jmax

pκmax b pZi�1{Ziqq

and Zi�1{Zi has supercuspidal support in rM ,σs. Thus W is a subquotient of indG
J pλq. Now

the result follows from Proposition 8.1.

10.2.

Theorem 9.6 and Corollary 9.4 can now be restated as follows.

Theorem 10.4. — The category RpGq decomposes into the product of the subcategories RpΩq,
where Ω ranges over all possible inertial classes of supercuspidal pairs of G.

The following result says that the decomposition given by Theorem 10.4 is the best possible.

Proposition 10.5. — Each subcategory RpΩq is indecomposable.

Proof. — Assume this is not the case. There are two subcategories A and A 1 such that:

RpΩq � A `A 1.

Let rJ,λs be the equivalence class of semisimple supertypes which corresponds to Ω and consider
V � indG

J pλq. By Proposition 10.2, we have V P RpΩq, and there is a decomposition V � W`W1

with W P A and W1 P A 1, and with no nonzero intertwining between W and W1. We get:

EndGpVq � EndGpWq ` EndGpW1q.

This implies that EndGpVq possesses a nontrivial central idempotent. By [22, 15], this algebra
is isomorphic to a finite tensor product of affine Hecke algebras Hpni, q

fiq, with 1 ¤ i ¤ r. Thus
its centre is isomorphic to the finite tensor product of the centres of the algebras Hpni, q

fiq, with
1 ¤ i ¤ r. The centre of Hpn, qf q is isomorphic to RrX�1

1 , . . . ,X�1
n sSn , where Sn is the nth

symmetric group acting on X1, . . . ,Xn. This is an integral domain. Thus the centre of EndGpVq
does not contain any nontrivial idempotent. Therefore W1, say, is zero. Now let X be a simple
object in A 1. There is a G-subspace Y of V such that X is a quotient of Y. As V P A , we get
Y P A . But HompY,Xq is nonzero: contradiction.

Remark 10.6. — We remark that the representation V � indG
J pλq used in the proof of Propo-

sition 10.5 is not, in general, a progenerator for the subcategory RpΩq: in general this represen-
tation is not projective, nor is every irreducible subquotient isomorphic to a quotient. However,
given the explicit results on supertypes here, it is not hard to construct a progenerator as a



BLOCKS FOR `-MODULAR SMOOTH REPRESENTATIONS OF GLmpDq 35

compactly-induced representation; for G � GLnpFq this was done (independently) by Guiraud
[11] (for level zero blocks) and Helm [12].

10.3.

Let π be a supercuspidal irreducible representation of G. The endo-class of a simple character
in π is well-defined (see [3, §9.2]) and we denote it Θπ. Moreover, if pJ,λq is a maximal simple
supertype of G occurring in π and attached to a simple stratum rΛ, n, 0, βs, then we have:

ΘpJ,λq �
md

rFrβs : Fs
�Θπ.

It does not depend on the choice of the simple type pJ,λq nor of the simple stratum rΛ, n, 0, βs,
and we denote it Θpπq. In fact, it depends only on the inertial class rG, πsG.

Now let Ω be the inertial class of a supercuspidal pair pM, %q of G. We may (and will) assume
that M � Gm1 � � � � �Gmr and % � ρ1 b � � � b ρr with m1 � � � � �mr � m and ρi an irreducible
supercuspidal representation of Gmi , for each i P t1, . . . , ru. Then the formal sum:

ΘpΩq �
ŗ

i�1

Θpρiq

is well-defined. Moreover, if pJ,λq is a semisimple supertype of G such that rJ,λs corresponds
to Ω in the sense of (8.2), then we have ΘpJ,λq � ΘpΩq.

Proposition 10.7. — Let pJ0,λ0q be a semisimple supertype, put Θ � ΘpJ0,λ0q and write G
for the finite reductive group associated with it. Then the following finite sets have the same
cardinality:

(i) the set of supercuspidal inertial classes Ω of G with ΘpΩq � Θ;
(ii) the set of equivalence classes rJ,λs of semisimple supertypes of G with ΘpJ,λq � Θ;
(iii) the set of equivalence classes rM ,σs of supercuspidal pairs in G .

Moreover any choice of functor K associated with pJ0,λ0q induces a bijection between the sets
in (ii) and (iii).

Proof. — We have already seen the bijection between the first two sets. We make a choice of a
functor K associated with pJ0,λ0q. We have already seen that K induces a surjective map from
the set in (ii) to that in (iii). Thus it is enough to check that the sets in (i) and (iii) have the
same cardinality. Moreover, it is enough to treat the case where Θ is homogeneous, thus

Θ �
md

rE : Fs
�Θ1 � m1d1 �Θ1

as in §6.2.
By the unicity (up to conjugacy) of maximal simple supertypes in a supercuspidal representa-

tion (see [22, Theorem 7.2] and also [15, Corollaire 5.5]), the number of inertial classes rG, πsG of
supercuspidal representations with a given endo-class Θ1 is precisely the number of GalpkD1{kEq-
conjugacy classes of supercuspidal representations of GLm1pkD1q, where the notation is as in §5.1.

We think of an inertial class of supercuspidal pairs of G as a finitely supported map:

φ :
¤
k¥1

tinertial classes rGk, πsGk of supercuspidal irreducible representations of Gku Ñ N
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such that ¸
k¥1

k
¸

rGk,πs

φprGk, πsGkq � m.

We deduce that the number of inertial classes of supercuspidal pairs Ω with a given homogeneous
Θ is precisely the number of finitely supported maps:

ψ :
¤
f¥1

tGalpkD1{kEq-conjugacy classes rσs of supercuspidal representations of GLf pkD1qu Ñ N

such that ¸
f¥1

f
¸
rσs

ψprσsq � m1,

where we are again using the notation of §5.1. But this is also the number of equivalence classes
of supercuspidal pairs in G � GLm1pkD1q.

§11. A remarkable property of supercuspidal representations

We end this article by the following result. When G is split, that is when G � GLnpFq, n ¥ 1,
it is proven by Dat [9, Corollaire B.1.3] in a different manner.

Proposition 11.1. — Let P be a proper parabolic subgroup of G and σ be a representation of
a Levi component M of P. Then IndG

P pσq has no supercuspidal irreducible subquotient.

Proof. — When σ is irreducible, the result follows from the definition of a supercuspidal repre-
sentation (Definition 1.1). Assume IndG

P pσq contains a supercuspidal irreducible subquotient π.
There is a simple stratum rΛmax, nmax, 0, βs in A � MmpDq such that the restriction of π to the
pro-p-subgroup H1

max � H1pβ,Λmaxq contains a simple character θmax P CpΛmax, 0, βq.

Lemma 11.2. — There is an irreducible subquotient τ of σ such that θmax occurs in the re-
striction of IndG

P pτq to H1
max.

Proof. — Since any representation of H1
max is semisimple, θmax is a direct summand of the res-

triction of IndG
P pσq to H1

max. We fix an embedding ι of θmax in IndG
P pσq and write W for the (one-

dimensional) image of θmax by ι. Write V for the representation of finite type indG
H1

max
pθmaxq. If we

write N for the unipotent radical of P, Frobenius reciprocity gives us a nonzero homomorphism:

ι� : VN Ñ σ.

Write σ1 for the image of this homomorphism. It has the following properties:
(i) if σ1 is a proper subrepresentation of σ1 then IndG

P pσ
1q XW � 0;

(ii) it is of finite type, since V is of finite type and Jacquet functors preserve finite type.
This implies that σ1 has a maximal proper subrepresentation σ2 and that the image of V in the
representation IndG

P pσ1{σ2q is non-zero. In particular θmax occurs in IndG
P pσ1{σ2q and σ1{σ2 is

an irreducible subquotient of σ.

We may assume that M is a standard Levi subgroup, attached to a composition pm1, . . . ,mrq
of m. Thus τ can be written on the form τ1 b � � � b τr, with τi an irreducible representation of
Gmi , for each i P t1, . . . , ru. Let pJi,λiq be a semisimple supertype of Gmi occurring in τi. Then
θmax occurs in:

indGm1
J1

pλ1q � � � � � indGmr
Jr

pλrq � indG
J pλq
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where pJ,λq is a suitable semisimple supertype of G. We fix a decomposition λ � κ b σ and
thus get a functor K. As in the first part of the proof of Lemma 8.2, it follows that Kpπq is
nonzero. By [15, Lemme 5.3], it is a finite direct sum of supercuspidal irreducible representations
of G � J{J1. By Theorem 6.2, it is a subquotient of:

KpIndG
P pσqq � IndG

PpKMpσqq.

Thus Proposition 1.10 gives us a contradiction.
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