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BLOCK DECOMPOSITION OF THE CATEGORY OF (-MODULAR
SMOOTH REPRESENTATIONS OF GL,(F) AND ITS INNER FORMS

by

Vincent Sécherre & Shaun Stevens

Abstract. — Soit F un corps commutatif localement compact non archimédien de caractéristique
résiduelle p, soit D une F-algebre a division centrale de dimension finie et soit R un corps algébri-
quement clos de caractéristique différente de p. A toute représentation lisse irréductible du groupe
G = GL» (D), m = 1 a coefficients dans R correspond une classe d’inertie de paires supercuspidales
de G. Ceci définit une partition de I’ensemble des classes d’isomorphisme de représentations irréduc-
tibles de G. Notons Z(G) la catégorie des représentations lisses de G & coefficients dans R et, pour
toute classe d’inertie Q2 de paires supercuspidales de G, notons Z(2) la sous-catégorie formée des
représentations lisses dont tous les sous-quotients irréductibles appartiennent au sous-ensemble dé-
terminé par cette classe d’inertie. Nous prouvons que Z(G) est le produit des Z(£2), ou 2 décrit les
classes d’inertie de paires supercuspidales de G, et que chaque facteur Z(2) est indécomposable.

Résumé. — Let F be a nonarchimedean locally compact field of residue characteristic p, let D
be a finite dimensional central division F-algebra and let R be an algebraically closed field of cha-
racteristic different from p. To any irreducible smooth representation of G = GL,, (D), m > 1 with
coefficients in R, we can attach a uniquely determined inertial class of supercuspidal pairs of G.
This provides us with a partition of the set of all isomorphism classes of irreducible representations
of G. We write Z(G) for the category of all smooth representations of G with coefficients in R.
To any inertial class Q of supercuspidal pairs of G, we can attach the subcategory Z(Q2) made of
smooth representations all of whose irreducible subquotients are in the subset determined by this
inertial class. We prove that the category Z(G) decomposes into the product of the Z(2)’s, where
Q ranges over all possible inertial class of supercuspidal pairs of G, and that each summand %2(Q)
is indecomposable.

2010 Mathematics Subject Classification: 22E50
Keywords and Phrases: Modular representations of p-adic reductive groups, Semisimple
types, Inertial classes, Supercuspidal support, Blocks

Introduction

When considering a category of representations of some group or algebra, a natural step is to
attempt to decompose the category into blocks; that is, into subcategories which are indecom-
posable summands. Thus any representation can be decomposed uniquely as a direct sum of
pieces, one in each block; any morphism comes as a product of morphisms, one in each block;
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and this decomposition of the category is the finest decomposition for which these properties
are satisfied. Then a full understanding of the category is equivalent to a full understanding of
all of its blocks.

In the case of representations of a finite group G, over an algebraically closed field R, there
is always a block decomposition. In the simplest case, when the characteristic of R is prime
to the order of G, this is particularly straightforward: all representations are semisimple so
each block consists of representations isomorphic to a direct sum of copies of a fixed irreducible
representation. In the general case, there is a well-developed theory, beginning with the work of
Brauer and Nesbitt, and understanding the block structure is a major endeavour.

Now suppose G is the group of rational points of a connected reductive algebraic group over a
nonarchimedean locally compact field F, of residue characteristic p. When R has characteristic
zero, a block decomposition of the category %R (G) of smooth R-representations of G was given
by Bernstein [1], in terms of the classification of representations of G by their cuspidal support.
Any irreducible representations m of G is a quotient of some (normalized) parabolically induced
representation 1,1% 0, with ¢ a cuspidal irreducible representation of a Levi subgroup M of G; the
pair (M, p) is determined up to G-conjugacy by 7 and is called its cuspidal support. Then each
such pair (M, ¢) determines a block, whose objects are those representations of G all of whose
subquotients have cuspidal support (M, gx), for some unramified character y of M.

One important tool in proving this block decomposition is the equivalence of the following
two properties of an irreducible R-representation 7 of G:

e 7 is not a quotient of any properly parabolically induced representation; equivalently, all
proper Jacquet modules of 7 are zero (7 is cuspidal);

e 7 is not a subquotient of any properly parabolically induced representation il\G/Ig with o an
irreducible representation (7 is supercuspidal).

When R is an algebraically closed field of positive characteristic different from p (the modular
case), these properties are no longer equivalent and the methods used in the characteristic zero
case cannot be applied. Instead, one can attempt to define the supercuspidal support of a smooth
irreducible R-representation 7 of G: it is a pair (M, p) consisting of an irreducible supercuspidal
representation g of a Levi subgroup M of G such that 7 is a subquotient of 1,5’4 0. However, for
a general group G, it is not known whether the supercuspidal support of a representation is
well-defined up to conjugacy; indeed, the analogous question for finite reductive groups of Lie
type is also open.

In any case, one can define the notion of an inertial supercuspidal class Q = [M, o|q: it is the
set of pairs (M, ¢'), consisting of a Levi subgroup M’ of G and a supercuspidal representation o
of M/, which are G-conjugate to (M, ox), for some unramified character x of M. Given such a
class 2, we denote by Zr () the full subcategory of #r(G) whose objects are those representa-
tions all of whose subquotients are isomorphic to a subquotient of iﬁ[, o', for some (M', o) € Q.

The main purpose of this paper is then to prove the following result:

Theorem . — Let G be an inner form of GL,(F) and let R be an algebraically closed field of
characteristic different from p. Then there is a block decomposition

#r(G) = [ [#r(9),
Q

where the product is taken over all inertial supercuspidal classes.
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This theorem generalizes the Bernstein decomposition in the case that R has characteris-
tic zero, and also a similar statement, for general R, stated by Vignéras [24] in the split ca-
se G = GL,(F); however, the authors were unable to follow all the steps in [24] so our proof is
independent, even if some of the ideas come from there.

Our proof builds on work of Minguez and the first author [15, 16], in which they give a clas-
sification of the irreducible R-representations of G, in terms of supercuspidal representations,
and of the supercuspidal representations in terms of the theory of types. In particular, they
prove that supercuspidal support is well-defined up to conjugacy, so that the irreducible objects
in #R(Q) are precisely those with supercuspidal support in €.

One question we do not address here is the structure of the blocks %Zr(12). Given the explicit
results on supertypes here, it is not hard to construct a progenerator II for Zr (€2) as a compactly-
induced representation; for G = GL,,(F) this was done (independently) by Guiraud [11] (for level
zero blocks) and Helm [12]. Then %R (12) is equivalent to the category of Endg(IT)-modules. In
the case that R has characteristic zero, the algebra Endg(II) was described as a tensor product
of affine Hecke algebras of type A in [22] (or [7] in the split case); indeed, we use this description
in our proof here. For R an algebraic closure F, of a finite field of characteristic £ # p, and a
block Zr () with Q = [GL,(F), o]ar, (), Dat [9] has described this algebra; it is an algebra of
Laurent polynomials in one variable over the R-group algebra of a cyclic ¢-group. It would be
interesting to obtain a description in the general case.

We now describe the proof of the theorem, which relies substantially on the theory of semisim-
ple types developed in [22] (see [7] for the split case). Given an inner form G of GL,(F), in [22]
the authors constructed a family of pairs (J, A), consisting of a compact open subgroup J of G
and an irreducible complex representation A of J. This family of pairs (J, A), called semisimple
types, satisfies the following condition: for every inertial cuspidal class {2, there is a semisimple
type (J,A) such that the irreducible complex representations of G with cuspidal support in
are exactly those whose restriction to J contains .

In [15], Minguez and the first author extended this construction to the modular case: they
constructed a family of pairs (J, A), consisting of a compact open subgroup J of G and an ir-
reducible complex representation A of J, called semisimple supertypes. However, they did not
give the relation between these semisimple supertypes and inertial supercuspidal classes of G.
In this paper, we prove:

— for each inertial supercuspidal class €2, there is a semisimple supertype (J, A) such that the
irreducible R-representations of G with supercuspidal support in €2 are precisely those which
appear as subquotients of the compactly induced representation ind?(A);

— two semisimple supertypes (J, A) and (J’, \') correspond to the same inertial supercuspidal
class if and only if the compactly induced representations ind§ (A) and ind§,(\’) are isomorphic,
in which case we say the supertypes are equivalent.

Thus we get a bijective correspondence between the inertial supercuspidal classes for G and the
equivalence classes of semisimple supertypes.

To each semisimple supertype, we attach a crucial tool, already used in [16] to obtain the
classification of the irreducible R-representations of G. This is a functor which associates, to
each smooth R-representation of G, a representation of the finite reductive quotient of J. More
precisely, given a semisimple supertype (J, A), there is a normal compact open subgroup J! of J
such that:
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— the quotient J/J! is isomorphic to a group of the form GL,, (£1) x - -+ x GL,,. (&), where g
is a finite extension of the residue field of F and n; is a positive integer, for i € {1,...,7};

— the representation A decomposes (non-canonically) as kK ® o, where k is a particular irre-
ducible representation of J and o is the inflation to J of a supercuspidal irreducible representa-
tion of GLy, (81) x -+ x GL,,.(£.);

— in the particular case where the semisimple supertype is homogeneous (see §6.2), there is a
normal compact open subgroup H' of J! such that the restriction of x to H! is a direct sum of
copies of a certain character 8, called a simple character.

Given a choice of decomposition A = kK ® o, we define a functor
K = Ky : m — Homji (K, )
from Z(G) to Z(J/J'), with J acting on Homy1 (k, 7) via
z- f=n@)o for(x)

for all x € J and f € Homy1 (&, 7). Since J! is a pro-p group, this functor is exact.

An important property of this functor K is its behaviour with respect to parabolic induction
(see Theorem 6.2): for a parabolic subgroup of G compatible with the data involved in the
construction of (J, A), this functor commutes with parabolic induction. This result is related to
a remarkable property of simple characters (see Lemma 4.2) which, to our knowledge, was not
previously known even in the split case.

This allows a somewhat surprising back-and-forth argument between the complex case, where
the compatibility of K with parabolic induction was already known (see [17]), and the modular
case; this is because, in the case of a homogeneous supertype, the condition on the simple char-
acter @ holds for R-representations if and only if it holds for complex representations, since H!
is a pro-p group (see the proof of Proposition 5.6). This is the objective of sections 2 to 8, and
requires the notion of endo-class developed in [21] (see [4] in the split case).

Now we need to define the subcategories of #Zr(G) which will be the blocks we seek, which we
do in section 9. To each semisimple supertype (J, A) we associate a full subcategory Zr(J, A),
whose objects are those smooth representations V which are generated by the maximal sub-
space of K(V) all of whose irreducible subquotients have supercuspidal support in a fixed set
determined by o (see Definition 1.14). This subcategory is independent of the choice of decom-
position A = kK ® o. Note that the existence of a maximal subspace of K(V) with the required
property depends on a decomposition of the category of representations of the finite reductive
group

J/J' ~ GL,, () x --- x GLy,_ (¢
in terms of supercuspidal support (the unicity of which is one of the principal results of [14]).
Moreover, it follows from this decomposition that %R (G) decomposes as a product of the sub-
categories Zr(J, A), where (J, A) runs through the equivalence classes of semisimple supertypes.

It remains only to prove that the #r(J, A) are indecomposable and coincide with the Zr(12),
which is the purpose of section 10. To prove the indecomposability of the Zr(J, X) we use the
endomorphism algebra of the compactly induced representation ind?()\), whose structure was
determined in [22] (and [15] for the modular case). The centre of this algebra is an integral do-
main, which implies that indg’ (A) is indecomposable. Since its irreducible subquotients coincide
with the irreducible objects of Zr(J, A), it follows that this subcategory is indecomposable.

We end the paper, in section 11, by proving a remarkable property of supercuspidality: if
an irreducible representation of G does not appear as a subquotient any properly parabolically



BLOCKS FOR ¢-MODULAR SMOOTH REPRESENTATIONS OF GL,, (D) 5

induced representation il\G/[Q, with p irreducible, then it also does not appear as a subquotient
of any properly parabolically induced representation.

Notation

Throughout the paper, we fix a prime number p and an algebraically closed field R of char-
acteristic different from p.

All representations are supposed to be smooth representations on R-vector spaces. If G is a
topological group, we write Z(G) for the abelian category of all representations of G and Irr(G)
for the set of all isomorphism classes of irreducible representations of G. A character of G is a
homomorphism from G to R* with open kernel.

For G the group of points of a connected reductive group over either a finite field of charac-
teristic p or a nonarchimedean locally compact field of residual characteristic p, and P = MN a
parabolic subgroup of G together with a Levi decomposition, we will write ig for the normal-
ized parabolic induction functor from Z(M) to Z(G), and Ind$ for the unnormalized parabolic
induction functor from Z(M) to Z(G); these coincide in the finite field case.

§1. Extensions and blocks

We begin with some general results which apply to connected reductive groups over both
finite and nonarchimedean locally compact fields. In the finite case, we give some further results
towards a block decomposition, in particular for the group GL,; these will be needed in the
nonarchimedean case later.

1.1.

Let G be the group of points of a connected reductive group over either a finite field of
characteristic p or a nonarchimedean locally compact field of residual characteristic p.

Definition 1.1. — An irreducible representation 7 of G is supercuspidal if it does not appear
as a subquotient of any representation of the form ig’ (1), where P is a proper parabolic subgroup
of G with Levi component M and 7 is an irreducible representation of M.

A supercuspidal pair of G is a pair (M, p) made of a Levi subgroup M € G and an irreducible
supercuspidal representation o of M.

For 7 an irreducible representation of G, the supercuspidal support of 7 is the set:

scusp()

of supercuspidal pairs (M, ) of G such that 7 occurs as a subquotient of ig (0), for some parabolic
subgroup P with Levi component M.

Remark 1.2. — In the finite field case, the word irreducible may be omitted from the definition
of supercuspidal (see Proposition 1.10); we will see that, for G an inner form of GL, over a
nonarchimedean locally compact field, the same is true (see Proposition 11.1).

Similarly, an irreducible representation 7 of G is cuspidal if it does not appear as a quotient
of any representation of the form ig(T), and we have the notion of cuspidal pair and cuspidal
support cusp(m). It is known that the cuspidal support cusp(m) consists of a single G-conjugacy
class of cuspidal pairs ([16, Théoreme 2.1]) but there is no such general result for supercuspidal
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support; indeed, it is not even known that the possible supercuspidal supports form a partition
of the set of supercuspidal pairs.

In this section, we make the following hypotheses:

(H1) for m, 7" irreducible representations of G, if scusp(m) n scusp(n’) # & then scusp(n) =
scusp(7’).

(H2) for supercuspidal pairs (M, o), (M,¢') of G, if the space Exti;(¢',0) is nonzero for
some 7 > 0, then o' ~ p;

Proposition 1.3. — Assume hypotheses (H1) and (H2) are satisfied. Let T and 7' be irreducible
representations of G with unequal supercuspidal supports. Then Extg(n’, ) =0 for all i = 0.

The idea of computing all the Ext’ rather than Ext! only (which allows us to reduce to the
case where 7, " are supercuspidal) comes from Emerton—Helm [10, Theorem 3.2.13].

Proof. — Let 7 and 7’ be irreducible representations of G with unequal supercuspidal supports.
Lemma 1.4. — Assume that @ is cuspidal and 7 is not. Then we have Ethd(ﬂ',,ﬂ') =0 for all
i =0.

Proof. — The proof is by induction on 4, the case where ¢ = 0 being immediate. Let us embed

T in ig (1) with 7 an irreducible cuspidal representation of a proper Levi subgroup M and P a

parabolic subgroup of Levi component M and unipotent radical N. We have an exact sequence
Extg ! (n',€) - Extg (', m) — Extg (7,45 (7)),

where £ is the quotient of ig (1) by . Since 7, " have unequal supercuspidal supports, we have,
by the inductive hypothesis, Extgl(ﬂl ,A) = 0 for all the irreducible subquotients A of £, thus
we have Extgl(wl,ﬁ) = 0. By [23, I.A.2], we have an isomorphism:

ExtiG(ﬂ",ig(T)) ~ Extfv[(ﬂ'{\l,T) =0

(where 74 is the Jacquet module of 7’ with respect to P = MN). This gives us Exty (7', 7) =0
as expected. ]

In the case where 7 is cuspidal and 7’ is not, we reduce to Lemma 1.4 by taking contragredi-
ents. Indeed, we have:
Extg (n!, 7) ~ Extg (nY, 7'Y)
and this is 0 by the previous case. We now treat the case where m and 7’ are both cuspidal.

Lemma 1.5. — Assume that 7 is not supercuspidal. Then Ext’é(w',w) =0 for alli > 0.

Proof. — The proof is by induction on ¢, the case where ¢ = 0 being immediate. By assumption,
T occurs as a subquotient of ig (1), with 7 an irreducible supercuspidal representation of a proper
Levi subgroup M and P a parabolic subgroup of Levi component M and unipotent radical N.
Let V be the minimal subrepresentations of X = 45 (7) such that 7 is a (sub)quotient of V,
and let W € V be a subrepresentation such that V/W =~ 7; thus 7 is not a subquotient of W.
Denote by k = k() the number of irreducible cuspidal subquotients of W. Now we proceed by
induction on k, noting that any irreducible subquotient 7”7 of W must have k(7") < k(7)) — 1.

We have an exact sequence:

Exty '(n', X/V) = Extg (7', V) — Extg(n',45 (1)) = 0.
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We claim that ExtiG_l(w’ ,A) = 0 for all the irreducible subquotients A of X. Indeed, this follows
from Lemma 1.4 if X is not cuspidal and from the inductive hypothesis (on ) if A is a cuspidal
irreducible subquotient of X. This gives us Extgl(ﬂ’, X/V) =0, and it follows from the above
exact sequence that Extl, (7', V) = 0. Now we have an exact sequence:
0 = Extg (7', V) — Extg(n',7) — Ext ' (7', W).

If £ = 0 then all the irreducible subquotients of W are non-cuspidal and Lemma 1.4 implies that
we have Extif ' (7, W) = 0; thus Ext}, (7', 7) = 0, which completes the base step of the induction
on k. For the general case, since every irreducible subquotient 7 of W is either non-cuspidal or

has k(") < k, we again have Extérl(w’ ,W) = 0, by Lemma 1.4 and the inductive hypothesis
(on k). O

We have the same result when 7’ is not supercuspidal, by taking contragredients as above.
Corollary 1.6. — Suppose that , 7 are cuspidal. Then Exth (7', m) =0 for all i > 0.

Proof. — 1If either 7 or 7’ is not supercuspidal then the result follows from Lemma 1.5. If both
are supercuspidal then this is the hypothesis (H2). O

We now treat the general case. The proof is by induction on %, the case i = 0 being trivial.
We have an exact sequence:

0= Extgl(ﬂ', zg(T)) — Ext’é(ﬂ", T) — EXtiG(T(,, zg’(r)) ~ Extllw(ﬂ'f\l, T)

where m embeds in 'ig’(T) with 7 an irreducible cuspidal representation of M. From the cuspidal
case, we have Ext};(o,7) = 0 for all irreducible representations o of M that are nonisomorphic to
7. If we prove that 7 does not appear as a subquotient of 7%, then we will get Ext};(7k,7) =0
and the result will follow.

Assume that 7 appears as a subquotient of 7. Let A" be an irreducible supercuspidal repre-
sentation of a Levi subgroup M’ such that 7’ occurs as a subquotient of i% (\), for some parabolic
subgroup P’ with Levi component M’. By the Geometric Lemma (see for example [16, (1.3)]),
there is a permutation matrix w such that 7 occurs in:

M

IN AP (Alw).
By replacing X' by M, we may assume that w = 1, so that 7 occurs in iy .p/()\). By apply-
ing i%, we deduce that 7 occurs in ig',()\’ ). This contradicts the fact that 7,7’ have unequal
supercuspidal supports. ]

Proposition 1.7. — Assume hypotheses (H1) and (H2) are satisfied. Let V be a representation
of G of finite length. There is a decomposition:

V=Vi@--- @V,

of V as a direct sum of subrepresentations where, for each i € {1,...,r}, all irreducible subquo-
tients of V; have the same supercuspidal support.

Proof. — Write n for the length of V and r for the number of distinct sets scusp(w), for 7 an
irreducible subquotient of V. We may and will assume that » > 1. The proof is by induction on
n.

Since r < n, the minimal case with r > 1 is r = n = 2. Assume we are in this case. Then the
result follows from Proposition 1.3 with ¢ = 1.
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Assume now that n > 2. Let wg be the supercuspidal support of an irreducible subrepresen-
tation of V and Vg be the maximal subrepresentation of V all of whose irreducible subquotients
have supercuspidal support wp. By the inductive hypothesis, V/Vy decomposes as a direct sum:

WI@G‘)WS

of nonzero subrepresentations, with s < r and where, for each i € {1, ..., s}, there is a supercus-
pidal support w; such that all irreducible subquotients of W; have supercuspidal support w;. If
there is ¢ > 1 such that w; = wy, then the preimage of W; in V would contradict the maximality
of Vg. Thus we have wy ¢ {w1,...,ws} and it follows that r = s + 1.

Lemma 1.8. — For each i€ {1,...,s}, there is an injective homomorphism f; : W; — V.

Proof. — Fori € {1,...,s}, write Y; for the preimage of W; in V. If Y; # V, then it follows from
the inductive hypothesis that Y; decomposes into the direct sum of V( and a subrepresentation
isomorphic to W;.

Assume now that Y; = V, thus r = 2 and ¢ = 1. By passing to the contragredient if necessary
(and thus exchanging the roles of Vy and Vi) we may assume that Vy is reducible. Let 7 denote
an irreducible subrepresentation of V. By the inductive hypothesis, V/7 has a direct summand
isomorphic to W;. Its preimage in V is denoted X; and we can apply the inductive hypothesis
to it. Thus W; embeds in V. O

We thus have injective homomorphisms fi, ..., fs, and write fy for the canonical inclusion of
Vo in V. We write V; = f;(W;) for all i € {0, ..., s} and claim that we have:

V=Vo®---dV,.

Indeed, we have a homomorphism:
S
f Vo (EPW;) =X - V.
i=1

Since X and V have the same length, it is enough to prove that f is injective.

Lemma 1.9. — We have:
Ker(f) = (Ker(f) n Vo) ® <€T—)(Ker(f) N Wl)> .
i=1

Proof. — Since f is nonzero, we have Ker(f) < V, thus we can apply the inductive hypothesis
to Ker(f). The decomposition that we obtain is the right hand side of the expected equality. [

Since fi, ..., fs are injective, we get Ker(f) nW; =0 for all i € {1,...,s}. Thus f is injective
and the result is proved. O

1.2.

Now we specialize to the case that G is a connected reductive group over a finite field. We
begin with a general result which is independent of the hypotheses (H1) and (H2).

Proposition 1.10. — Let P be a proper parabolic subgroup of G and o be a representation of
a Levi component M of P. Then i%(a) has no supercuspidal irreducible subquotient.
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Proof. — When o is irreducible, the result follows from the definition of a supercuspidal repre-
sentation. Assume E = ig (o) contains a supercuspidal irreducible subquotient 7, and let us fix
a projective envelope II of 7 in Z(G). By [13, Proposition 2.3], all its irreducible subquotients
are cuspidal (indeed, this is a characterization of supercuspidal representations). Let V be a
subrepresentation of E having a quotient isomorphic to w. As II is projective, we get a nonzero
homomorphism from IT to V, whence it follows that some irreducible subquotient 7’ of II occurs
as a subrepresentation of V, thus of E. By Frobenius reciprocity, we get that the space my of
N-coinvariants, where N is the unipotent radical of P, is nonzero, contradicting the cuspidality
of n'. dJ

Let R[G] be the group algebra of G over R. It decomposes as a direct sum:
R[G]=B1®---®B;
of indecomposable two-sided ideals, called blocks of R[G]. This corresponds to a decomposition:
l=e1+--+e
of the identity of R[G] as a sum of indecomposable central idempotents. This implies a decom-
position:
#(G) = ZB1)®---©%(By)

of the category Z(G) of R-representations of G (that is, of left R[G]-modules) into the direct
sum of the subcategories Z(B;), i € {1,...,t}, where Z(B;) is made of all representations V of
G such that ¢,V = V.

Lemma 1.11. — Assume that hypotheses (H1) and (H2) are satisfied. Let V € Z(B;) for some
i€ {l,...,t}. Then all the irreducible subquotients of V. have the same supercuspidal support.

Proof. — If we apply Proposition 1.7 to the regular representation R[G], which has finite length,
we get that all the irreducible subquotients of B; have the same supercuspidal support. Since
all the irreducible subquotients of V are isomorphic to subquotients of B;, we get the result. [

We deduce the following decomposition theorem.

Theorem 1.12. — Assume hypotheses (H1) and (H2) are satisfied. Let V be a representation
of G. For any supercuspidal support w of G, let V(w) denote the maximal subrepresentation of
V all of whose irreducible subquotients have supercuspidal support w. Then we have:

V=P Vw).

1.3.

Finally, we specialize to the case where G is the finite group GL,(q), with n > 1 an integer
and ¢ a power of p. In this case, it is known ([14]) that the supercuspidal support consists of a
single G-conjugacy class of supercuspidal pairs, so (H1) is satisfied. We prove that (H2) is also
satisfied.

Lemma 1.13. — Let m, 7’ be irreducible supercuspidal representations of G such that the space
Extg, (7', ) is nonzero for some i = 0. Then ' ~ .
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Proof. — The proof is by induction on ¢, the case ¢ = 0 being trivial. Let us fix a projective
envelope IT of 7 in Z(G). By [23, I11.2.9], it has finite length, and all its irreducible subquotients
are isomorphic to w. Consider the exact sequence:

0—-II; »IIT->7—>0
where II; is the kernel of II — 7. Then we have an exact sequence:
Exty H(n', 7) = Extl (7, 111) — Extg (o, 0).

By the inductive hypothesis, we have Ext{; (7', 7) = 0. Since II is projective in Z(G), we have
Extg (7', II) = 0. It follows that we have Ext¢ (7, II1) = 0. Since all irreducible subquotients of
II; are isomorphic to w, we can consider an exact sequence:

0—-1II) ->II; > 7m—0
where Il5 is the kernel of II; — 7. By induction, we define a finite decreasing sequence:
=1 21 2 2+ 20, 21,41 =0

of subrepresentations of IT such that IT;/T1;1 ~ 7 and Ext{ (7', 11;) = 0 for all j > 0. For j = r,
we get the expected result. O

In particular, since every Levi subgroup of G is isomorphic to a product of smaller general
linear groups, the hypothesis (H2) is satisfied and the conclusion of Theorem 1.12 holds for G.

As a corollary, we will need a weaker result in Section 9, in which we allow for the action of
a Galois group. Fix I' be a group of automorphisms of the finite field F,.

Definition 1.14. — Let (M, o) be a supercuspidal pair of G, with
M =~ GLy,(q) x -+ x GLy,.(¢), 0~01® Q0.

The equivalence class of (M, o) is the set, denoted [M, g], of all supercuspidal pairs (M’, o) of
G for which there are elements ; € T', for each i = 1,...,r, such that (M, o) is G-conjugate

to (M, ®i_; 0]")-

Corollary 1.15. — Let V be a representation of G and, for any equivalence class of super-
cuspidal pairs [w], write V|w] for the maximal subrepresentation of V all of whose irreducible
subquotients have supercuspidal support contained in [w]. Then V decomposes into the direct
sum of the V[w], where [w] ranges over the set of equivalence classes of supercuspidal pairs of G.

Further notation

Throughout the rest of the paper, we fix a nonarchimedean locally compact field F of residue
characteristic p. All F-algebras are supposed to be finite-dimensional with a unit. By an F-
division algebra we mean a central F-algebra which is a division algebra.

For K a finite extension of F', or more generally a division algebra over a finite extension of F,
we denote by Oy its ring of integers, by px the maximal ideal of Ox and by £k its residue field.

For A a simple central algebra over a finite extension K of F, we denote by Ny x and try x
respectively the reduced norm and trace of A over K.

For u a real number, we denote by |u| the greatest integer which is smaller than or equal to
u, that is its integer part.

A composition of an integer m > 1 is a finite family of positive integers whose sum is m.
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Given H a closed subgroup of a topological group G and ¢ a representation of H, write indg (o)
for the representation of G compactly induced from o.

We fix once and for all an additive character ¢r : F — R* that we assume to be trivial on pg
but not on Or.

§2. Preliminaries

We fix an F-division algebra D, with reduced degree d. For all m > 1, we write A,,, = M,,,(D)
and G, = GL,,(D).

Let m = 1 be a positive integer and write A = A,, and G = G,,. We will recall briefly the
objects associated to the explicit construction of representations of G; we refer to [18, 19, 20,
21, 22] for more details on the notions of simple stratum, character and type.

Recall that, for P = MN a parabolic subgroup of G together with a Levi decomposition, we
write Ind$§ for the unnormalized parabolic induction functor from Z(M) to Z(G).

2.1.

Recall (see [16, Théoreme 8.16]) that, for 7 an irreducible representation of G, the supercus-
pidal support scusp() consists of a single G-conjugacy class of supercuspidal pairs of G.

Definition 2.1. — The inertial class of a supercuspidal pair (M, p) of G is the set, denoted by
[M, ¢]g, of all supercuspidal pairs (M’, ¢’) that are G-conjugate to (M, gx) for some unramified
character x of M.

2.2.

Let A be an Op-lattice sequence of D™. It defines an hereditary Op-order A(A) of A and an
Op-lattice sequence:
ap(A) = {ae A | alA(i) S A1 + k), for all i € Z}
of A. For ¢ > 1, we write U;(A) = 1+ a;(A). This defines a filtration (U;(A));>1 of the compact
open subgroup U(A) = 2A(A)* of G.
Let [A,n,0, 3] be a simple stratum in A (see for instance [21, §1.6]). The element (3 € A gene-

rates a field extension F[3] of F, denoted E, and we write B for its centralizer in A. Attached
to this stratum, there are two compact open subgroups:

J=J(B,A), H=H(BA)
of G. For all i > 1, we set:
Ji=JYB,A) =T nU(A), H =H(5,A) =HnU;(A).

Together with the choice of ¥p, the simple stratum defines a finite set C(A, 0, 3) of characters of
H!', called simple characters. We do not recall here the definition of these characters, only the
following basic property. Write ¢ = p o try p and, for b € A, set:

Yy 2 - Ya(bz — 1))
for all x € A. If b € a_g(A) for some k > 1, then ¢, defines a character on U /p41(A). Then
any simple character 0 € C(A, 0, §) satisfies 0|Uln/2J+I(A) = 1g.
Given 0 a simple character attached to [A,n,0, 3], there is, up to isomorphism, a unique irre-
ducible representation 1 of J' whose restriction to H' contains . Moreover, the representation
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n extends to an irreducible representation of the group J that is intertwined by the whole of B*.
Such extensions of 7 to J are called [-extensions.

As B is a central simple E-algebra, there are a positive integer m’ > 1, an E-division algebra
D’ and an isomorphism of E-algebras ® from B to M,,/(D’). Moreover, we can choose ® so that
®(2A(A) N B) is a standard order, that is, it is contained in M,,/(Op/) and its reduction mod ppy
is upper block triangular. Since J = (U(A) n B*)J!, we thus have group isomorphisms:

3/3" = (U(A) A BX)/(UL(A) A BX) = GLyy; (k) x -+ x Gy ()

1 T
for suitable positive integers m/, ..., m.. It allows us to identify these groups and we denote by
4 the latter group.

A simple type attached to [A,n,0, 3] is an irreducible representation A of J of the form kK ®o,
where k is a f-extension and ¢ is an irreducible representation of J trivial on J! which identifies
with a cuspidal representation of ¢ of the form 7®- - -®7 where 7 is a cuspidal representation of
GLyy/p(Epr) (this implies my = -+ = m; = m'/r). When the representation 7 is supercuspidal,
A is called a simple supertype.

We introduce the following useful definition.

Definition 2.2. — A simple character (or a -extension, or a simple type) is said to be mazimal
if U(A) n B* is a maximal compact open subgroup in B*.

§3. An abstract K-functor

A main tool for us will be a family of functors from Z(G) to the category of representations
of some finite reductive group. Such functors were first introduced in the split case for complex
representations in [17], where they were used just for simple types; in [15] these were generalized
to apply to any G in the modular case. Since we will need several variants of these functors, it
is convenient to give a general setup which applies to all situations.

Let P = MN be a parabolic subgroup of G, together with a Levi decomposition. Given g € G,
K a compact open subgroup of G and 7 a representation of M, write:

Indllng(W) ={fe Indg(ﬂ) | fis supported in PgK}.

This defines a functor from Z(M) to Z(K) denoted IndggK.
We have the following easy but useful lemma.

Lemma 3.1. — Let K be a compact open subgroup of G. For all representation m of M and all
g € G, there is an isomorphism:

IndggK(ﬂ) ~ IndR, pg (79)
of representations of K, where P9, 9 denote the conjugates of P, w by g.

Proof. — The isomorphism is given by f +— f,, where fy(k) = f(gk) for all k € K. O

Now we are given a compact open subgroup J of G, together with a normal pro-p subgroup J*,
and an irreducible representation k of J. We define a functor:

Ky : m— Hom i (k, )
from Z(G) to #2(J/3), by making J act on K () by the formula:
- f=m(z)ofor(x)
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for all 2 € J and f € K. (7). Note that J! acts trivially. Since J! is a pro-p-group, this functor is
exact, and it sends admissible representations of G to finite dimensional representations of J/ Jh.
Proposition 3.2. — Let g e G. The following are equivalent:

(i) the functor Ky o IndllzgJ is nonzero on Z(M);
(ii) the functor Ky o IndggJ is nonzero on Irr(M);
(iii) Hom,1, o (k,1) # 0 (or, equivalently, k has a non-zero 3* n N9-fized vector).

Proof. — Given 7w € Z(M), by Lemma 3.1 we have an isomorphism:
IndggJ (7) ~ Ind], py (79)

of representations of J. Applying Mackey’s formula and Frobenius reciprocity, and writing n for
the restriction of k to J!, we get:

KK,(Indqu (7()) = @ HomJlmPgr (7% ng)'
ze(JnP9)\J/I!

As n is normalized by J, this implies that:

Kie(Indp™ (1)) #0 <  Homj, p,(n,79) # 0.
As 7 is trivial on N, we have:

Hom 1 . ps(n,77) € Hom 1 no(1, 1)

Therefore, if K, o ImdggJ is nonzero on Z (M), then Hom 1 ,(n,1) # 0. Thus (i) implies (iii),
and it is clear that (ii) implies (i).

Now we assume that Hom i \s(7,1) # 0 and write P’ = P9, N’ = N9, M’ = MY. Define the
compactly induced representation

V= indflmp,(n).
For any m € Z(M), as 79 is trivial on N’, we have
Hom i p/(n, 7?) ~ Homp/(V, 79) ~ Homwy (Vr, 79),
where Vy denotes the space of N'-coinvariants of V. But
VN’ = @ (indglm(Jl)l(nl))N, = @ (nl)N’m(Jl)la
le(JtAM M/ le(Jt AMNH\M/

by Shapiro’s lemma, and the term corresponding to [ = 1 is nonzero. Thus Vv is nonzero and,
moreover, it is of finite type since V is of finite type and Jacquet functors preserve finite type.
Thus (V)¢ has an irreducible quotient 7 € Irr(M) and K, o IndEgJ (7) is nonzero. Hence (iii)
implies (ii). O

In some situations, we know more about the representation « and can conveniently rephrase
the final condition of Proposition 3.2.

Corollary 3.3. — Write 1 for the restriction of k to J', and suppose that we have a normal
pro-p subgroup H' of J* and a character @ of H' such that the restriction of n to H is 0-isotypic
and that 1 is the unique irreducible representation of J* which contains 6. Then the conditions
of Proposition 3.2 are also equivalent to:

(iv) the character 0 is trivial on H' A N9,
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Proof. — (iii) is equivalent to (iv) since indf_:l (0) is a finite sum of copies of i) and the restriction
of 1 to H' is @-isotypic. O

The usefulness of conditions (iii) and (iv) is that they do not depend on characteristic of the

ground field R; that is, if kK is a Z,-representation then Hom 1 y,(k,1) # 0 if and only if the
same is true for the reduction modulo ¢ of k (see [15, Lemme 5.7]).

§4. A lemma on simple characters

Let 6 be a simple character with respect to a simple stratum [A,n,0, 3] in A. Let P = MN
be a parabolic subgroup of G together with a Levi decomposition. The purpose of this section
is to show that, under certain conditions, the criterion of Corollary 3.3 is satisfied.

Given a subset X of A, write X* for the set of a € A such that 5 (az) = 1 for all z € X.

Definition 4.1. — The pair (M, P) is subordinate to the simple stratum [A, n, 0, 3] if the idem-
potents in A that correspond to M are in B and if there is an isomorphism ® : B — M,,/(D’) of
E-algebras such that ®(A(A) n B) is a standard order and ®(P n B*) is a standard parabolic
subgroup corresponding to a composition of m’ finer than or equal to that of ®(A(A) n B).

Assume this is the case. For k > 1 and i € Z, write H* = H*(3,A) and a; = a;(A), and:
(B, A) = {z e A(A) | Bxr — 20 € ai}.

Write ¢ for the greatest integer ¢ < n such that n;_;(3,A) S A(A) "B+ a; and s = [(¢ +1)/2].
For k > 1, set:

QF = Q%(8,A) = 1+ a, N (B, A) +5°(8, ),
where j* = (3, A) is defined by J* = 1 +j%(3,A). Write N~ for the unipotent radical opposite
to N with respect to M.

Lemma 4.2. — Let g€ Ui (A)nN~ and 0 < m < q. Assume that 0 is trivial on the intersection
(U1 (A) n BX)H™ L AN9. Then g € (Uy(A) n BX)Q2 ™.

Proof. — First note that it is enough to prove the result when m > |¢/2]. Indeed, if m < |q/2],
then the result for |¢/2| implies that:
g€ (U(A) nB¥)Q® = JYB,A) = (U (A) n B¥)QI™™,

The proof is by induction on both ¢ and m with |¢/2] < m < q. Write n, p for the Lie algebras
of N, P in A, and also n™ for that of N™.

Assume first that ¢ = n. Then g normalizes H™*! = U, 1(A). Since we have U,;,;1(A)nN9 =
(Um+1(A) nN)9, and since 6 is trivial on Up,41(A) N N, the condition on # implies that

09" 1+y]) =1,

for all y € a;,,+1 N n. Recall that, for b,z € A, we have ¢(z) = ¥a(b(x — 1)).

Lemma 4.3. — We have ¢yp,1_g(1 +y) =1 for all y € a1 N
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Proof. — Since |q/2| < m, the restriction of 6 to H™"! is given by 15. Now:

Uslg (L +y)g) = valBg 'yg)
= ¥al9Bg'y)
Ygpg-1 (1 +y)
for all y € a,,.1 N n, which gives us the desired result. O

If we write g = 1 + u, with u € a; n n™, this gives us:

989~ = B = —ag(u)g" € (ami1 A n)* = a_p + 0¥,

where ag is the map z — Bz — 3 from A to A. Note that, since n is an F-vector space, we have
for all a € A:

tra/p(an) € Ker(yr) < tryp(an) = {0}
It follows that n* = p. Together with the fact that ag(u)g~' € n~ and g € Uy (A), we get:
ag(u) € a_p,.
This gives us:
uen_p(B,A)na =(AA)nB+ap_m) Nna,
where the last equality follows from [21, Proposition 2.29]. But:
Q™ =14 ap—m (B, A+ (B,A) =1+ ap—m+as =1+ ap_p.

We thus get the expected result.
We now assume that ¢ < n, and we fix a simple stratum [A, n, g, | that is equivalent to the
pure stratum [A, n, ¢, ]. First assume that m = ¢ — 1 and write:

OlHoANg = ey = 1,
where ¢ = f —vy€ea_, and 0, € C(A,q — 1,7). Now write g =1 4 u.
Lemma 4.4. — The character 1. is trivial on H? n N9,
Proof. — Let z = g~ 'yg € h? A n?, where h¥ is defined for k > 1 by H* = 1 + h*. Then:
Ye(l + )

vr(trasr(geg™y))
P (tra/p(cy)) v (trap(—ac(uw)g ' y))
Yp(tra/p(—ac(u)zg™))

since cy € n has trace 0. Now c € a_, and u € a; and zg~! € a,. Since ¢ is trivial on pp, we
get the expected result. O

Thus 6, is trivial on H? nN9. Note that H? = H?(v, A). By the inductive hypothesis, we get:
g€ (Ui(A) nBX)QY D (y,A) = (U (A) n BX) (1 + ag_(g-1) N mi—g(7, A) +°(7, A))

where ¢’ = —ko(vy,A) and B, is the centralizer of F[v] in A.
The following lemma generalizes [5, (8.1.12)].

Lemma 4.5. — Let [A,n,m, 3] be a simple stratum in A and 6 € C(A,m, 3) be a simple char-
acter. Let z € ag_m N n_p(B,A) and ¥ be a character of H™ whose restriction to H™ ! is 0.
Then 1 4 z normalizes H™ and 917 = ¢ - Vag(z)-
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Proof. — We follow the proof of [5, (8.1.12)], replacing the results from [5] used there by their
analogues in [18, 21]. O

If we apply Lemma 4.5 to the stratum [A,n,q — 1,7], the simple character 6., the element
g~! =1+ and the character §, then g normalizes HI~!(y, A) = H?~! and H9(y, A) = H?, and
we have:

gt — g . waw(ul)

on HY. Since ¢ € a4 and u’ € a;, we have Vay () = Vag(w) on HL. We thus get:

0([g~" 1+ y]) = Yayu) (1 +v) = Yalagu)y) =1

for all y € h? nn. We need the following lemma.
Lemma 4.6. — We have (h?)* = ag(i®) + ai1—q.

Proof. — Tt is straightforward to check that we have the containment 2, so suppose z € (h?)*.
We denote by s a tame corestriction on A relative to E/F (see for example [21, Définition 2.25]).
By [21, Proposition 2.27], s(x) € a;_4 n B so, by [21, Proposition 2.29], there exists y € a;_4
such that s(z) = s(y). Thus =z —y € (h?)* n ker(s) and, again by [21, Proposition 2.27], there
is z € a1 nny_g(B,A) +j° such that x —y = ag(z). Since ag(a; Nnni_4(3,A)) S a1y, the result
follows. O

Therefore we have:
ag(u') € (h°)" +p = ag(i") + a1-¢ +p.
As it is also in n™, we get:
ag(u') € ag(i®) + a1-q.

This implies v’ € a1 " ny_g(3, A) +j*, thus g € QL.

Assume now that the result is true for some m < g—1, and that 6 is trivial on H™ nNY9. Then
it is trivial on H™*! A N9, From the inductive hypothesis, we thus get g € (Uj(A) n B*)Q4—™,
By Lemma 4.5, this implies that g normalizes H™ and that:

oY —p. waﬁ(u,)
on H™, with g~ = 1 + +/. This implies:

0([g " 1+y]) =1
for all y € h™ n n. Therefore:

ag(u) € (6™)" +p) nn™ = (ag(i*) + a1-m +p) N0~ < ag(%) + a1-m.
Thus there is j € j* such that:
u +jen pm(B,A) N a.
From [21, Proposition 2.29] we have:
nl_m(ﬁ, A) = Q((A) nB+ Ag—m+1 N T\l_m(ﬁ, A)

This implies the expected result, that is g € (U (A) n BX)Q4—m+L, O
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Continuing with the same notation, we will also need the following variant of Lemma 4.2. We
put H113 = H!'(J! A N), which is a normal subgroup of J!, and define the character fp of H%, by

OP(h]) = e(h)v

for h € H' and j € J' nN. By [21, Proposition 5.4], if we write J;, = H!(J! n P), the intertwining
of the character 0p is J%,BXJIID.

Corollary 4.7. — Let g € U1 (A)nN" and assume that Op is trivial on the intersection HbANY.
Then g € Jllj.

Proof. — Suppose that g € Uj(A) n N~ and 6p is trivial on HllD N NY. In particular, intersecting
with H', we see that @ is trivial on H' n N9 so, by Lemma 4.2, we find g € J' A N~. Since g
then normalizes 0, we see that it also normalizes 0p, so lies in J%)BXJ%) NnJ = J%,. O

85. Parabolic induction and the functor K in the simple case

The main result of this section is Theorem 5.6, which says that, in the simple case, the func-
tor K commutes with parabolic induction; in the next section we will extend this result to the
semisimple case. This fact has been claimed in [15] for representations of finite length (see [15],
Proposition 5.9) but it appears that the proof of ibid., Lemme 5.10 requires more details.

We give a different proof here, based on our Lemma 4.2, which works for all smooth repre-
sentations and not only for representations of finite length.

5.1.

Let [Amax, 1, 0, 5] be a simple stratum in M,, (D) and assume that U(Apax) "B is a maximal
compact open subgroup in B*. Let O, be a simple character in C(Apax, 0, 3) and kmax be a
B-extension of Orax. We write J .. = J(8, Amax) and JL.. = J'(3, Amax). Let K be the functor:

max

7+ Homy  (Kmax, 7)

from Z(G) to B (Jax/Ihas) and set 4 = J . /JL - this is the functor denoted Ky, . in §3.
Let M be a standard Levi subgroup of G, associated with a composition o = (my, ..., m,) of
m. We assume that it is S-admissible, that is, the F-algebra F[3], denoted E, can be embedded
in A,,, for all i. Equivalently, m;d is a multiple of the degree of E over F for all <. Let P be the
corresponding standard parabolic subgroups of G, and write N for its unipotent radical.
We fix an isomorphism of E-algebras ® between B and M,,/(D’) that identifies A(Amax) N B
with the maximal standard order made of matrices with integer entries. We choose an E-pure

lattice sequence A such that:
(5.1) U(A) nB* = (Ui (Apax) 0 B*)(P n U(Apax) N B™).

The image ®(U(A) nB*) is the standard parahoric subgroup of GL,,, (D) whose reduction mod
ppr is made of upper block triangular matrices of sizes (m},...,m.), with:

P mid
mid = R

where d' is the reduced degree of D’ over E. Moreover, A can be chosen such that it satisfies the
conditions of the following lemma.

ie{l,...,r},
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Lemma 5.1. — There is an E-pure lattice sequence A on D™ satisfying (5.1) and such that:
U(A) < U(Amax)§
Ul(A) NN~ = Ul(AmaX) NN,

Proof. — We fix a simple left E ®r D-module Vg, and form the simple left B-module
Vg = Homgg.p(Vo, D™).

The E-algebra opposite to Endg(Vp) is isomorphic to D’. Write Ay = Endp(Vy) and 2 for the
unique hereditary order in Ay normalized by E*, and 3¢ for its Jacobson radical. If we identify
A with M,y (Ag), then 2A(Apax) identifies with M,,,/(2o). Then choose A such that:

Ao - Ag Ay - A

AN = = -~ e 0 = AAmax)

Bo - Ao Ay -+ Ao
(see [20]). We have:
Po - Ao Bo -+ Po
a(h)=| - . - .

I

. . . : .. : = a1 (Amax)-
Po -+ Po Po -+ Po
Therefore both a;(A) nn~ and a;(Apax) N n~ are made of blocks with values in . O

Write 6 for the transfer of ,.x to C(A, 0, 3) in the sense of [21], and x for the unique [(-ex-
tension of @ such that:

AMnBX*)U (A A)nB* A
(5.2) Ind§" BT ) > T ORI ()

where J = J(3, A). We also write Jp = H!(JnP) and xp for the unique irreducible representation
of Jp that is trivial on Jp n N and Jp n N~ and such that, if we restrict kp to J n M, we get:
JmM:JIX"'XJT’a K‘P|JQM:/€1®"'®’€T7

where J; = J(08, A;) and k; is a (-extension with respect to some simple stratum [A;, n;, 0, 3] in
A,,,. We have an isomorphism of representations of J:

(5.3) Indj  (kp) =~ k.

We write J =JnM,J! =J'~M and Kmax,a = kp|j~M. We have a functor:

max, max,x

Km @ 7 Homyp a(mmax,a, )

from Z(M) t0 Z(J a0/ Immax.c)-

max,o

The groups J n M/J! A M, (U(A) n B*)JL.. /(U1 (A) n BX)Jl

max

identified, and all of them will be denoted .#. For simplicity, we will write:

and J 0, o/ Thaxa Will all be

max,

U = (U(A) n BY)UL(A),

Ul = Ui(A)nU=U(A),

S = (U(A) n B axs

S! = Ui(A)nS= (U (A)nB*)JL .
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5.2.
We write Kg for the functor:
7 — Homgi (Kmax|s, 7)
from Z(S) to Z(.#). Note that this fits in the framework of §3, with:
J=38, J=8' H'=UA)nB)YHL,. k= Kmals,
since, by the construction of -extensions in [19]:
(i) the restriction of kyay to S! is the unique (irreducible) representation 7 which extends 7max

and such that Indgll (1) is equivalent to Ind}{l (n);
(ii) the restriction of 7 to (U1(A) n BX)HL . is a multiple of the character 6 given by:

max

H(Uh) = Q(U)Hmax(h)a

for u € Uj(A) nB* and h e HL .. (Note that this is well-defined, by [21, Théoréme 2.13].)

max-
Proposition 5.2. — For any smooth representation ™ of M, we have
Ku(m) =~ Kg (Indp® (7))
as representations of M .
Proof. — Let m be a smooth representation of M. Then, by inflation, we have

Ku(m) = Homyi  (Kmax,a, ™) ~ Homji p(kp, 7).

max,o

By Frobenius reciprocity and the Mackey formula, this is isomorphic to
J
Homjy (kp, Ind}E p(m)).

Again we are in the situation of §3, with J = Jp, J! = J%;, K = kp, and @ = 0p, the character of
Corollary 4.7. Thus, using the notation of §3 and Lemma 3.1, we get

(5.4) K () ~ Ky o Indp”? (7).
We decompose PU as a disjoint union of double cosets PuJp, where the double coset represen-
tatives u may, and will, be chosen in U A N~ = U;(A) n N7; then IndpY (1) = @, Indﬁ“JP (7).
By Corollary 3.3, we have that K, oInd§UJP is non-zero if and only if p is trivial on H%, NNY,
which, by Corollary 4.7, implies u € J5. Thus (5.4) implies
Kni(m) ~ Ky o Indpm =~ Homys (kp, Indp, ().

Write p for the irreducible induced representation IndgjP (kp) which, by (5.2) and (5.3), is isomor-
phic to Indg(mmax|5). Then, again by Frobenius and Mackey, we get

Ky () ~ Homyn (p,IndIPJmU(W)) ~ Homs1(nmax|sjlndgmU(7r)) ~ Kgo Inng(Tr),

applying Lemma 3.1 again.

As before, we decompose PU as a disjoint union of double cosets PuS, where the double coset
representatives v lie in UnN~ which, by Lemma 5.1, is U; (A) n\N~; then IndbYr = @D, Il’ldgusﬂ'.
Now Corollary 3.3 shows that the functor Kg o IndbS is nonzero on Z(M) if and only if 6 is
trivial on (Up(A) n B*)HL ..~ N% in particular, restricting to H. .. and applying Lemma 4.2,
we see that u € PS so

Ky () =~ Kg o IndbV(7) = Kg o Indb5(n).
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This ends the proof of Proposition 5.2. O

The following lemma relates the functor Kg back to our functor K. We put & = S/JL _ which

max’
is a parabolic subgroup of 4 = J, .. /JL  with Levi component .#. We regard representations

of ./ as representations of &2 by inflation.

Lemma 5.3. — For any smooth representation ™ of M, we have
Ks (Indp®(m)) ~ K (Indp3(7))

as representations of .
Proof. — We clearly have an inclusion of spaces Homg1 (Kmax, Indb57) € Hom g1 (Kmax, IndbS7)
and, if we check that we have equality here, it is then straightforward that the actions of &2 are
the same. Write V for the space of Kmax. 3

The action of Uj(A) nB* on 'V is a multiple of 0y, (p)~px, which factors through the reduced
norm. Thus, for u € Uj(A) n B* n N, we have kpax(u) = idy. Now let:

f € Homy (Kmax, Indb57)
and v € V, and put ¢ = f(v). For j € JL_ and u € Uj(A) n BX n N, we have nyax(u"!ju) =
Nmax(j) and 7(u) acts trivially on the space of 7 so
(u-9)(5) = p(iu) = p(u " ju) = f(max(u” ju)o) (1) = f(max()0)(1) = @(5)-

Since PS = PJ}

max?

this implies that u - ¢ = . Thus

f(Emax(u)v) = f(v) = u- f(v)
and f € Homg: (Kmax, Indb57) since S! = (U1 (A) n BX A N)JL

max*

5.3.
Then next step is to relate parabolic induction in the finite reductive group ¢ to induction

inside J o

Lemma 5.4. — For any smooth representation T of S, we have:
K (Indgmax (T)) ~ Ind?%, (K(7))
as representations of 4.

Note that K(7) = Homj1 (Kmax, T) is viewed here as a representation of & by restriction.

Proof. — As above, write V for the space of kpax. Given f € K(Ind%max (7)), we define a function
[ by:
f@):ve fl@™hv)(2)
for all z € J,, and v € V, where 7 is the class of z in ¥.
We first need to check that f is well defined. Let z € J.

max*

f e o) (x2) = [ f@Th0)](a2)

= f(af1 “v)(xz - zil)

= @ o).

For veV and z € J,,,, we have:
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We now check that f takes its values in Indﬁz(HomJ}nax(/ﬁmax,T)). Given v € V, x € J, and

jeJk

max’

max
we first have:

f(@)(j-v) = fl= v)(z)
= f(=x v)(j-j )
= ()0 )]

1

_1]..
1. 1

which is equal to 7(j)[f(2)(v)] since j~'z and = have the same image in 4. Now given s € S,

x € Ja and v eV, we have:

fs2)(v) = f(a's™!v)(s2)

On the other hand, we have:

[$- F@)w) = [r(s

and this coincides with f(52)(v).

We now check that f — f is a ¥-homomorphism. Given z,y € J and v € V, we have:

§-f@)(w) = [Mmd% (1)) o f o rmax(y) 1z - v)(x)
= fly et v)(zy)

which is equal to f(iy)(v) and gives us ¢ - f(#) = f(47), thus the expected relation - f = 5 - f.
The map f — f is clearly injective. Now let ¢ be some function in Indzz(Homsl(HmaX|S, 7).
We define a function f from V to Indémax (1) by:

f)(@) = ¢(@)(z - v).

Checking that f € K(Indgmax (7)) and that f = ¢ is similar to the calculations above, and this
completes the proof of the lemma. O

Putting this together with the results of the previous subsection, we get:
Corollary 5.5. — For any smooth representation m of M, we have
K (maﬁ‘]mx (7r)> ~ Ind?%, (Ky ()
as representations of 4.
Proof. — Putting together Proposition 5.2 with Lemmas 5.3, 5.4, we get

nd?, (Ky(r)) ~ K (Indgmax (Indgs(w))) ,

while Indgmax (Indgs(w)) o~ IndgJmax (m), from Lemma 3.1 and the fact that PnS =PnJ .. O

Proposition 5.6. — For any smooth representation m of M, we have an isomorphism
(5.5) K (Ind§ () ~ Ind?, (Kn(r))

as representations of 4.
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Proof. — Assume first that R is the field of complex numbers. In that case, we may assume
that 7 belongs to a single Bernstein block of M. If m does not contain the simple character 6 yax,
then both sides of (5.5) are zero. Otherwise, the method used by Schneider and Zink in [17],
based on equivalences of categories given by the theory of types for complex representations,
applies mutatis mutandis, replacing the reference to [6, (11.4)] by [8, Theorem 1.5]. Therefore,
for any irreducible complex representation m of M, the canonical inclusion:

K(Indp ™ (7)) € K(Ind§ (r))

is an equality by Corollary 5.5, since the right hand side is finite-dimensional. Thus the functor
K oIndEng" is zero on Irr(M), for any g ¢ PJ, ... By Corollary 3.3, this implies that, for g € G,
(5.6) 0. is trivialon HL . ANY < gePJ

max max

for any complex maximal simple character O.. As HL__ is a pro-p-group, (5.6) holds also for

any modular maximal simple character. Thus, by Corollary 3.3 again, the equality
K (Indg(ﬂ')) =K (Indf;‘]ma" (71'))
holds for all smooth R-representations m of M. The result follows from Corollary 5.5. O

Remark 5.7. — We have proved that the functors KoInd$§ and Ind%, 0Ky from 2(M) to 2(G)
behave in the same way on objects. It seems likely that similar proofs would show that they
behave in the same way on morphisms so that the two functors are in fact isomorphic.

86. Semisimple supertypes

In this section, we first recall briefly the basic properties of, and data attached to, semisimple
supertypes, for which we refer to [22, 15] for more details, and we explain the functor K in this
situation. The main result is Theorem 6.2, which extends to the semisimple case the main result
of the previous section: the functor K commutes with parabolic induction.

6.1.

Let a = (my,...,m;) be a composition of m. For all i € {1,...,r}, let (J;, \;) be a maximal
simple type attached to a simple stratum [A;, n;,0, 5] in A,,,. We write M for the standard
Levi subgroup Gy, x -+ x Gy, in G and:

Jo=J1x--xJr, A=M® QA

A pair of the form (Ju, Ay) is called a maximal simple type of M. Associated to it, there is a
pair (J, A) called a semisimple type of G (see [22, 15]). For any parabolic subgroup P of G with
Levi component M, the pair (J, ) satisfies the following properties:

(i) the kernel of A contains J AN and J n N, where N and N~ denote the unipotent radicals
of P and P~, the parabolic subgroup opposite to P with respect to M;
(ii) one has J n M = J, and A|g~m = Ao

(these two conditions say that (J, X) is decomposed above the pair (Jo, Ao) with respect to (M, P)
in the sense of [6, Definition 6.1]), plus another technical condition saying that the pair (J, A) is
a cover of (Ju, Aq) in the sense of [6, Definition 8.1]. Note that there is considerable flexibility
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in the construction of semisimple types; in particular, there is a (not entirely arbitrary) choice
of lattice sequence A on D" such that:

U(A) nM =TU(Ay) x -+ x U(A;)

(see [22, §7.1] and [15, §2.8-9] for the precise condition). In particular, we may and will assume
that the lattice sequences Aq,..., A, and A all have the same period.

Given 7; a representation of G, for all i € {1,...,7}, we write m X - -+ x m, for the represen-
tation Indg (M ®---®m,), where P is the parabolic subgroup of G with Levi component M made
of upper triangular matrices.

An important relationship between (J, A) and (J1, A1), ..., (J-, \r) is that there is an isomor-
phism of representations of G:

ind§(A) ~ ind™ (A1) x - x ind§™ (A,)

(see [2]). Note, in particular, that this is independent of any choices made in the construction
of (J,A).

Definition 6.1. — (i) When (J1,A1),..., (Jr, A\r) are maximal simple supertypes, (J, A) is
called a semisimple supertype of G.

(ii) The equivalence class of a semisimple type (J, A) is the set [J, A] of all semisimple super-
types (3, X') of G such that ind§,(\) is isomorphic to ind§ (X).

Together with J, we also have a normal open subgroup J' and an irreducible representation
n of J! (see [15, §2.10]). When restricting X to J!, we get a direct sum of copies of 1. There is
a decomposition of the form:

(6.1) A~KRo,

where k is an irreducible representation of J extending 17 and o is an irreducible representation
of J trivial on J'. The representation x has the property that its intertwining is the same as
that of i, but is not uniquely determined by this condition; thus there is a choice of K to be
made in the decomposition (6.1).

For each i € {1,...,7}, we have a maximal simple character #; attached to the simple stra-
tum [A;,n;,0, 3], an isomorphism of F[;]-algebras B; ~ M,,, (D)) for a suitable F[;]-division
algebra D/, and isomorphisms of groups:

J/IE 3 /3% x 3 /3 Gy (80;) % -+ % Gl (bn,);

we denote by .# this latter group. The representation & is trivial on J n N and J n N7, and its
restriction to J n M = J, is of the form ko, = kK1 ® - - - ® K, where k; is a maximal (;-extension
of 9@

For each i, there is a decomposition A; = x; ® 0;, where o; is an irreducible representation of
J; trivial on J} that identifies with a cuspidal representation of GL,,; (¢ ), and o identifies with
the irreducible cuspidal representation o1 ® --- ® o of A . o

6.2.

We will need to recall some more detail of the structure of semisimple supertypes (J, A), which
we begin in this section.

We write ©; for the endo-class of 6; (see [3] for the definition of endo-class) and assume first
that the endo-classes ©; all coincide, the so-called homogeneous case. In this case, we may and
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will assume that the elements (31, ..., 3, are all equal to (the image of) a single element 5 and
that the characters 6; are related by the transfer maps (in other words, they are realizations of
the same ps-character — see [3]). We put E = F[§] and denote by B the centralizer of E in A, so
that B > M, (D’), where D is a suitable E-division algebra. Similarly, we write B; >~ M, (D’)
for the centralizer of E in A,,,.

We choose a simple stratum [Amax, 7max, 0, 3] in A and an isomorphism of E-algebras ® from
B to M,,»(D’) with the following properties:

(i) U(Amax) n B* is a maximal compact subgroup of B* that contains U(A) n B*;

(ii) ®(U(Amax) nB*) and ®(U(A) nB*) are both standard parahoric subgroups of GL,,/(D’);
By passing to an equivalent type if necessary, we will assume that U(A) € U(Apax) as in Lem-
ma 5.1.

We are now in the situation of §5.1, with 6 the transfer of 6; to C(A, 0, 3) (which is independent
of i), and we take the notation from there. We have J = Jp and k = kp for some choice of g-
extension Kmax Of Omax; it is thus this choice of Ky ax Which imposes the choice of k in §6.1. The
group . is a Levi subgroup of:

G = GLm’ (ED’) = Jmax/JrlllaX

so we get a supercuspidal pair (A#,0) of 4, where o0 = 01 ® - - - ® 0, is as above. Taking T" to
be the group Gal(tp /tg), we also get an equivalence class [.#Z, o] of supercuspidal pairs, in the
sense of Definition 1.14.

The group ¢ and the conjugacy class of # < ¢ are uniquely determined by the semisimple
type (J, A), independently of the decomposition A = k®o. The representation & is not uniquely
determined but, once it is fixed (or, equivalently, the representation kpax is fixed), it determines
the equivalence class [.#, o], as well as the functor:

K=K R (G) > Z(9).
Moreover, every equivalence class [.#’, o'] arises from some homogeneous semisimple supertype:
A" determines a composition o/ of m’ and hence a Levi subgroup M’ of G with standard parabo-

lic subgroup P’; then we may make the constructions of §5.1 to get a pair (J',X’), with J’ = Jps
and X' = kpr ® o', which is a homogeneous semisimple supertype with the required property.

Kmax

6.3.

Now we consider the general case, when the endo-classes ©®; may differ. Let ® = ©(J, A) be

the formal sum: i

2

in the semigroup of finitely supported maps {endo-classes over F} — N (with N the semigroup
of nonnegative integers). The fibers of the map i — ©; define a partition:

{1,...;r}=Lu---u]

for some s > 1. Renumbering, we may assume that the I; (for j € {1,...,l}) are of the form:
Ij = {ie{l,...,r} | aj—1 <i<aj}
for some integers 0 = ag < a; < ---<a; =r. Forall j e {1,...,l}, we write:

anEmi, Mj:HGmia

i€l 1€l
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and P; the standard parabolic subgroup of G, with Levi subgroup M;. Let L be the standard
Levi subgroup Gy, x --- x Gy, in G; thus we have PN L = Py x --- x P;. From the construction
of semisimple types, and by passing to an equivalent semisimple type as before if necessary, we
have:

JAL=J1 x -+ xJ, AJAL=A1Q® - QA

where each (J;, A;) is a homogeneous semisimple supertype, as described in the previous section.
In particular, for each j € {1,...,1}, we choose a pair (Jmax,j, Kmax,j) and have the group ¢; and
the supercuspidal equivalence class [.Z}, 0 ;]. The choice of the representations kmax,; imposes
the choice of k in §6.1 (and vice versa).

Now write u = (n1,...,n;) and:

Jmax,y = Jmax,l X X Jmax,l, Kmax,uy = Fmax,1 ®-® Kmax,l5
so that:
1 - )
‘]max,,u/Jmax,,u ~ G X XY

we denote the latter group by ¢4. We also get an isomorphism of groups .4 ~ .4 x --- X M
which identifies & with 61 ® --- ® 6. Then (#, o) is a supercuspidal pair of ¢ and we define
the equivalence class [.#, o] to be the product of the equivalence classes [.#}, o ;| (see Defini-
tion 1.14).

The formal sum O, the group ¢ and the conjugacy class of .# € & are uniquely determined
by (J,A) (independently of the decomposition A = k ® o). In fact, the group ¢ depends only
on O, since ¥; ~ GL% (ED;_), where:

n]’d mid

n'; - [ED} D] = [E, : F] B =y [F[3:]: FI’

which is the coefficient of ®; in @, for i € I;.

As in the previous case, the representation  is not uniquely determined by X, but once it is
fixed (or, equivalently, once Kmax,y is fixed), it determines the equivalence class [.#, o |. Further,
there is a decomposed pair (Jmax, Kmax) above (Jmax i, Fmax,u) (see [15]) and we let J L . denote

the pro-p radical of Jy,ax; we are now in the situation of §3, with J = J.x and K = Kpax S0 we
have the functor:

K =Ky, : Z(G) > Z(9),

Kmax

which is also determined by the choice of k. As in the homogeneous case, every equivalence
class [.#',o'] arises from some semisimple supertype (J’, X’), by taking a cover.

We will see below that K induces a bijection between the set of equivalence classes [J, A] of
semisimple supertypes for G such that @(J, A) = © and the set of equivalence classes [.#, o] of
supercuspidal pairs in ¢4 (see Proposition 10.7); it might be possible to prove this directly but
in fact we deduce it as a consequence of our block decomposition of Z(G).

6.4.

We continue with a semisimple supertype (J, A) and all the notation of the previous section,
making a choice of decomposition A = Kk ®o. In particular we have Levi subgroups M € L € G;
a decomposed pair (Jmax, Kmax) in G of (Jmax,us Kmax,u) in L a pair (Jo, ka) in M; and a Levi
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subgroup .# of ¢. This gives us functors:
K=Kg,..  Z(G)—> %9,
Ki, = Kppor, : Z(L) > B(9),
Kt = K, : Z(M) = Z(A),

using the notation of §3. Denote by Q = LU the standard parabolic subgroup of G with Levi
component L, and by & the standard parabolic subgroup of ¢4 with Levi component ..

Theorem 6.2. — For any smooth representation @ of M, one has:
K(Ind§ (7)) ~ Ind% (K (7)).

Proof. — First note that it is enough to prove the result when M = L. Indeed, assuming that
the theorem is true for M = L, we set mp = Ind5_ | (7) and get:

K(Indg (7)) ~ K(Indg(mo)) ~ Kr(Indp (7))

and the latter representation of & is isomorphic to Ind%(Ky (7)) thanks to Proposition 5.6.
Assume now that M = L. Given 7 € Z(L), by Lemma 3.1, we have an isomorphism:
J Jone
Indg ma(r) = Indy™ o ()

max

of representations of J ... Since J, .. = JL. . (J . 0 Q), we get:

J
(6.2) K(Indg mex(r)) >~ Homy:  ~q(Kl3, .. ~Q ™) =~ Homjy (Kmax,pus )

max

which is Ky,(m). Therefore it is enough to prove that:
(6.3) K(Ind§(r)) = K(Indd» ()

for all smooth representations 7 of L.
First assume R is the field of complex numbers and 7 is irreducible. Define a representation
V of ¢4 by the following exact sequence:

(6.4) 0 — K(Indg = (7)) —> K(Ind§(m)) > V — 0

of representations of ¢, where ¢ is the inclusion map, and assume that V is nonzero. Then it has
an irreducible subquotient, with some supercuspidal support (#’,o’). Let &' be the standard
parabolic subgroup of ¢ with Levi component .#" and write 4" for its unipotent radical. There
is a standard parabolic subgroup P’ = M’N’ of G contained in Q, having the following property:
the intersection P’ n L = M’/(N’ n L) is a parabolic subgroup of L such that:

(U(Amax) 0 B* AN A L) (U (Amax) n B*)/ (U (Amax) n BX) = 4.
Let [A’,n,0, 3] be a simple stratum such that:

(i) the image of UY(A') nB* n L in & is A;

(ii) UA) "L € U(Amax) "L and U(A') n N' AL = U(Apax) "N A L as in Lemma 5.1.
(Note that this makes sense because it is happening in L, where we just have a direct sum of
simple strata so we can do it separately in each block of L and then take the sum.)

By using (5.2) and (5.3) in L, there is an irreducible representation kps~y, of a group Jp/~p,
which is compatible with Kpax ., that is, we have an isomorphism:

AYnB*n LAY
B

max, (4

(U(A")AB* AL)(U(A)AL)
JP’r\L

Ind
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and these induced representations are irreducible. In particular, by the Mackey formula, there
is an element g € (U(A’) n B* n L)(U'(A’) n L) that intertwines kp, ; With Kmax . Moreover,
the representation kp/y, is decomposed above the restriction of Kmayx,, to Jprar, N L, denoted
KL, which is a maximal (-extension of J, in L.

By [15, Proposition 2.33], we get a representation ' of a compact open subgroup J’ which is
decomposed above kp/~1, in G, so also above (Jr,, Kr,).

Lemma 6.3 (cf. [6, Proposition 6.3]). — Fori = 1,2, let K; be a subgroup of G with an Iwa-
hori decomposition with respect to (L, Q), and let p; be an irreducible representation of K; which
1s trivial on U and U~. Then, for g € L, we have:

Homg, ~(k,)o (01, (2)7) = Hom g, A1y~ (KonL)s (01, (02)7).

Proof. — One inclusion is obvious and the other follows from the fact that K; n (K2)9 has an
Iwahori decomposition with respect to (L, Q). O

Applying this lemma with &’ and the restriction of Kpax to (U(A) n B*)J Ilna& s We see that

g intertwines these two representations. Thus, by Mackey, there is a non-zero morphism:
U(A)B* AL)(UL(A)AL U(A)nB* AL)(UL(A)AL
(R I S CAW}

Moreover, the intertwining formula given by [15, Proposition 2.31] (together with an analogue
of [15, Lemme 2.2]) implies that both of these representations are irreducible. Thus they are
isomorphic, and we have a compatibility property analogous to (5.2).

We now go back to (6.4). By taking the .#”-fixed vectors and then the o’-isotypic component,
and thanks to (6.2), we get an exact sequence

0 — Homy  (Kmaxy, )" — Homys (Kumax, Ind§ (1)) - V""" — 0

max,

of complex vector spaces, which are finite-dimensional since 7 is admissible. Now

| (Kmax, Ind$ (7))

~ Homyay <31 (Kmax ® 0, Indg (7))
Homy (k' @ o/, Ind$ (1)),

where k/ is compatible with Kp.x as above. Similarly, we have

)1/1/’,0"

Homyy (Kmax; Indlg; (71')){4/,70./ =~ Hom(u1(a)nBx)J

12

’
HomJ}nax’u (’Qmax,ua ™ = Home/nL (’iP’mL ®o, 7'[')

Now, by [22], the semisimple type X' = k' ® 6’ is a cover of kps, ® o', which is itself a cover
of k, ® o’. Thus the algebra 5 = Endg(ind§, (k' ® ') is a free module of rank 1 over:

Hy, = Endg(indy, (kprar ® o))
(see [15, Corollaire 2.32]) and there is an isomorphism of H-modules
Homy (k' ® o', Indg(ﬂ)) ~ Homgg (H, Homy,,  (Kp/aL ® o', m)).
Since these are finite-dimensional, we deduce that V" Lol = 0, a contradiction.
We deduce from Proposition 3.2 that, for g € G, we have:
(6.5) Homji ~us(Kmax, 1) #0 < gePJ ..

As JL . is a pro-p-group, (6.5) also holds when R has positive characteristic. Thus, by Propo-

sition 3.2 again, the equality (6.3) holds for all smooth R-representations 7 of L. O
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87. A semisimple computation

As in Section 6, the notation of which we use, (J, A) is a semisimple supertype of G. We fix a
decomposition A = kK @ o and write K = K, . and [.#, o] for the functor and the equivalence
class of supercuspidal pairs associated with it.

Proposition 7.1. — FEvery irreducible subquotient of K(ind?(A)) has its supercuspidal support
in | A, o).

Proof. — Assume first that (J, A) is a maximal simple type. Then r = [ = 1 and we have:

K(ind§(A) ~ P K(indJz0(A9)).
ING/J

By reciprocity, one see that the g € G that contribute to this sum intertwine 1. Therefore one
may assume that they are in B*. Since J n B* is a maximal compact open subgroup in B>, by
the Cartan decomposition one may assume that the g that contribute are diagonal matrices in
B*. As o is cuspidal, only those ¢ which normalize J n B* contribute to this sum. Fix w e B*
such that the B*-normalizer of J n B> is generated by J n B* and w. We get:

Kind§(A) ~ D KA") =P (c@c’ @ do® ) EDED

nez Z —

where ¢ is a generator of Gal(tp//fg) and b is the cardinality of the Gal(tp/ /¢g)-orbit of o (see
[15, Lemme 5.3])

We treat the general case. Recall that we have the standard parabolic subgroup P of G, with
standard Levi component M. We have an isomorphism:

ind§ (A\) =~ Ind§ (ind}L \ (Aa)).
As K commutes with parabolic induction (see Theorem 6.2), we get:

K(ind§(A) =~ Ind%(Ku(ind)y(Aa)))
~ Ind? (K (ind; ™ (M) ® - - - ® K, (ind$ ™" (,))

where we have K; = K. For each i € {1,...,r} we have:
G bl g
Ki(indy? (\i)) =~ PP o,

Z j=0

where ¢; is a generator of T'; = Gal({?Dg /tr(g,]) and b; is the cardinality of the orbit of o; under
I';. Thus:

K(ind§ (X 6—)6—) x---xafg‘r)

where j ranges over the r-tuples (j1,...,j,) with j; € {0,...,b; — 1} for all ¢ € {1,...,7}, and
where x stands for parabolic induction. The result follows by unicity of supercuspidal support
in 4. O
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§8. Supercuspidal inertial classes and supertypes

Given (J, A) a semisimple supertype of G, write Irr(J, A) for the set of all classes of irreducible
subquotients of ind§ (X).

Given 2 an inertial class of supercuspidal pairs of G, write Irr(€2) for the set of all classes of
irreducible representations of G having their supercuspidal support in €.

Proposition 8.1. — Let (M, o) be a supercuspidal pair of G and (J, X) be a semisimple super-
type of G associated with a mazimal simple type (Jo, Aa) of M contained in 9. Write Q for the
inertial class of (M, 0). Then we have Irr(Q2) = Irr(J, A).

Proof. — We begin by proving the containment Irr(2) € Irr(J, A). Assume M is standard and
write 0 = p1 ®- - - ® p,, Where p; is a supercuspidal irreducible representation of Gy, for m; > 1.

Forie {1,...,r}, fix an unramified character x; of G,,,. Then p;x; is a quotient of the compact
induction of A\; to G,y,. It follows that pix1 x -+ x p,x, is a quotient of:
(8.1) ind}" (A1) x -+ x ind$7 (A,) ~ ind§ ().

Thus any irreducible subquotient of py1x1 X - -+ X p.x, appears in Irr(J, ).
For the opposite containment, we need the following lemma.

Lemma 8.2. — Let Q and (J,\) be as in Proposition 8.1, and assume that Irr(J, A) contains
a cuspidal representation w. Then we have m € Irr(§2).

Proof. — Let (Jo, \p) be a maximal simple type of G contained in 7. It is attached to a simple
stratum [Ag, no, 0, Bp| and we write 6y for the simple character occurring in the restriction of Ag
to Hé = H'(Bo, Ag). This character occurs as a subquotient (hence a subrepresentation since Hé
is a pro-p group) of the restriction of ind§ (A) to Hj. Recall that we have an isomorphism (8.1)
and that the compact induction of \; to G,,, is isomorphic to

pi @ R[X, X7,

with G,,, acting on R[X,X~!] by g-X¥ = Xk+v(9) for all k € Z, where v(g) is the valuation of
the reduced norm of g € G,,,;. Therefore, when restricting (8.1) to H, we deduce that 6y occurs
as a subrepresentation of

D (o1 %+ % pr).

Z?"
Thus 6y occurs as a subrepresentation of p; X -+ x p,, and it follows from [15, Proposition 5.6]
that the sum ©® = ©(J, A) is equal to
md
O(Jo, Ao) = =25 = - ©os
Vo 20) = (e - 1)

where @ is the endo-class of m. We thus are in the homogeneous situation of Section 6.2 so that
a decomposition A = k®o is determined by a pair (Jpax, £max). Then the simple character 6.«
contained in Kmax is the transfer of the simple character 8y in Ag.

We fix a decomposition Ao = ko ® 0g and write Ky = K,,,. By [3], the characters 0y and Op,ax
are in fact conjugate and, replacing the pair (J, A) by a suitable G-conjugate, we may assume
that the pairs (Jmax, Fmax) and (Jo, ko) coincide. Thus the functor K = K, . of section 6.2
coincides with Ky. This also induces a decomposition A\; = k; ® o; for all i € {1,...,r}.

We now apply this functor to the subquotient 7 of indg’ (A). By [15, Lemme 5.3], the represen-
tation K(7) is a sum of cuspidal irreducible representations of ¢4 = GL,(¢p/). By Proposition
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7.1, these cuspidal representations have their supercuspidal support in [.#Z,o]. By the classifi-
cation of cuspidal irreducible representations of ¢ in terms of supercuspidal representations (see
for instance [16, Proposition 3.7]), there is a supercuspidal representation o of GL,,, . (p/) such
that
0 ZO%, %EG&I(ED//EF[@)]), iE{l,...,T},

and an integer u = 0 such that we have r = e(0)¢", where e(o) is a positive integer attached to
o (see [16, Remarque 3.6]). Since k; ® o can be obtained from \; by conjugacy in G, we may
assume without changing ind§ () that we have:

®’i:"':®T‘:®O7 0'1:...:07,:0'_

By [15, Corollaire 5.5], it follows that p1, ..., p, are inertially equivalent to a given supercuspidal
representation p. It also follows from [16, §6] that  is inertially equivalent to St(p, r), the unique
cuspidal irreducible subquotient of the product p x pv, x -+ x py;_l (where v, is the unramified
character associated with p in [15, §4.5]). It follows that the supercuspidal pair (M, p) is inertially

equivalent to (M, p® - -- ® p) and that = appears in Irr(2). O

We return to the proof of Proposition 8.1. Let m be an irreducible subquotient of indg’()\),
and let (L, 7) be its cuspidal support. Write:

ind§ (A) ~ Ind§ (ind}, (Aa)) = indy™ (A1) x - - x ind§™ (A,).

For i € {1,...,r}, note that II; = indim" (\;) is made of supercuspidal irreducible subquotients
all of whose are unramified twists of a given supercuspidal irreducible representation p; of G, .
Let Q = LU be a parabolic subgroup of G with Levi component L. We compute the Jacquet
module (ind§(A))y. Since it contains 7y, it contains an irreducible cuspidal subquotient which

is G-conjugate to 7. By the geometric lemma, there are a permutation w of {1,...,r} and
integers 0 = ap < a1 < --- < a; = r such that, if we write 7 = 7 ® --- ® v with 7; cuspidal,
then 7; appears, for each j € {1,...,t}, as a subquotient of:

2j = Wup(a;_y+1) % -+ X uy(ay)-
It follows from Lemma 8.2 that 7; has its supercuspidal support in €2;, the inertial class of the
supercuspidal pair:

(Gw(ajfl-‘rl) Koeee X Gw(aj)>pw(aj,1+1) Q- pw(aj))'

It follows that 7 has its supercuspidal support in 2, as required. ]

Proposition 8.3. — Let (J,\) and (J', X') be semisimple supertypes of G. The representations
ind§ (X)), ind§ (X) have an irreducible subquotient in common if and only if [J,A] = [J', X'].

Proof. — Since the Irr(Q2) form a partition of the set of all isomorphism classes of irreducible
representations of G, it follows from Proposition 8.1 that ind$ ('), ind§ (M) have an irreducible
subquotient in common if and only if Irr(J, A) = Irr(J’', X).

Suppose that Irr(J, A) = Irr(J', X)) = Irr(Q), with Q = [M, g]g. If M = G then, by following
the proof of Lemma 8.2, we find that (J,A) and (J’, \’) are both equivalent to maximal simple
supertypes; by unicity (up to conjugacy) of maximal simple supertypes in a supercuspidal repre-
sentation (see [15, Théoréme 3.11] and [16, Proposition 6.10]), we deduce that [J, A] = [J/, X].
In the general case, we have

ind§ () ~ Indg(ind}}i()\a)) ~ Indg(indﬂvi (A1) =~ ind§ (N,
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where the middle isomorphism follows from the previous case. ]
It also follows that there is a bijection:
(8.2) Qe [J,A]

between inertial classes of supercuspidal pairs of G and equivalence classes of semisimple super-
types of G, characterized by the equality Irr(€Q2) = Irr(J, A).

§9. Splitting of the category

Let (J,A) be a semisimple supertype of G, together with a decomposition A = kK ® o. Asso-
ciated with it, there are a formal sum © of endo-classes, a functor K = K and the group ¥ =

JmaX/J}naX'
9.1.

We now fix ® and K, and make [.#Z, o] vary among the equivalence classes of supercuspidal
pairs of ¢4. By Corollary 1.15, we have, for all V € Z(G), a decomposition:

(9.1) KV)= P V(©,0),
[ o]

Kmax

where V(©, o) is the maximal subspace of K(V) all of whose composition factors have super-
cuspidal support in [.Z, o].

Definition 9.1. — Given V € Z(G) a smooth representation, we write:
(i) V|®, o] for the G-subspace of V generated by V(©, o);
(ii) V[®] for the G-subspace of V generated by K(V).

Thus V[@] is the sum of all the V[®, o], as [.#, o] ranges over the set of equivalence classes
of supercuspidal pairs of 4. We claim that V[®] is in fact the direct sum of the V[®, o].

Lemma 9.2. — Given | M o), [#', '] equivalence classes of supercuspidal pairs of &, we
have:
V(®,o) if| A o=, 0l

0 otherwise.

ve.o1®.0") - |

Proof. — We have the containment V[®, o](®,0) € V(0O, o). Since V[®, o] contains V(0, o),
this containment is an equality. Write T for the functor £ — K(ind§ (Kmax ® €)). We have a
surjective map: e

ind§  (Kmax ® V(O,0)) - V[O,0]
thus a surjective map:

T(V(©,0)) - K(V[O,0]).

To prove the remaining part of the lemma, it is enough to prove that any irreducible subquotient
of the left hand side has supercuspidal support in [.#,o]. As T is exact, it is enough to prove
that, for all irreducible representation ¢ with supercuspidal support in [.#, o], any irreducible
subquotients of T(&) has supercuspidal support in [.Z,o]. By the same exactness argument, it
is enough to prove the following lemma.

Lemma 9.3. — Let (M',0") € [#,0] and X = Ind?,(6"). Then all irreducible subquotients
of T(X) have supercuspidal support in [ , o).
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Proof. — We may and will assume that .#Z’' = .#. We see o’ as a representation of J trivial on
J! and write X’ for the semisimple supertype £ ® o’. Then we have:

indg}max(nmax ®X) ~ ind§ (k @ o’) = ind§ ().
Then the lemma follows from Proposition 7.1.
This ends the proof of Lemma 9.2.

As a corollary, we have the following result.

Corollary 9.4. — For all smooth representations V of G, we have:
V[®e] = (—B V|[®,o].
[# o]

Remark 9.5. — Note that, given V € Z(G), the subrepresentation V[®] does not depend on
the choice of the functor K; a different choice of k simply permutes the equivalence classes of
supercuspidal pairs [.Z, o] so permutes the terms V[®, o] in V[O].

9.2.

We now make ® vary among all possible formal sums of endo-classes arising from a semisimple
supertype of G.

Theorem 9.6. — For all smooth representation V of G, there is an isomorphism:
V ~ (—DV[@]
e
of representations of G.

Proof. — Let V be a smooth representation of G. We have a morphism:

f:EPV[Oe]=Y > V.
(€]
Write W for its kernel.

Lemma 9.7. — We have:

W = g@a(w A V[O)).

Proof. — Let Z denote the quotient of W by the right hand side, and assume that it is nonzero.
Let 7 be an irreducible subquotient of Z. For all sums of endo-classes ®, the representation 7
is an irreducible subquotient of W/(W n V[®]), thus of:

viv[e]l= @ Vo],
CEAC)

which implies that 7[®] = 0. Since 7 contains some semisimple supertype (J, A) by [22, 15], for
any decomposition A = kK ® o with associated functor K and formal sum ©, we have K(7) # 0
so that m[®] # 0, a contradiction. O
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Since f is injective on each V[®], we have W nV[®] = 0 for all ® and it follows that we have
W = 0. Assume that f is not surjective, and let 7w be an irreducible subquotient in its cokernel.
Write €2 for the inertial class of its supercuspidal support. Its corresponds to some semisimple
supertype (J,A). Write ® = ©(J, A) and fix a decomposition A = kK ® o. By applying K, we
get that K(m) is a subquotient of:

K(V)/K(Y) = K(V)/K(V[®]) = K(V)/ D K(V[O,0]) =K(V)/ D V(O,0)
[ o] [ o]

by Corollary 9.4 and Lemma 9.2. But the right hand side is zero by (9.1): contradiction. O

§10. Blocks of the category

Recall that an abelian category .27 is the direct sum of two full subcategories o7, o if every
object V of &/ decomposes uniquely as V = V1 @ Vo, with V; an object of <7 for i = 1,2, and
Hom,/(V1,Vy) = 0. In this case, we say that @4, o% are direct summands of o/. We say that
& is indecomposable if it cannot be expressed as the direct sum of two proper subcategories.

Definition 10.1. — A block in Z(G) is a direct summand of Z(G) which is indecomposable.

10.1.

Given Q an inertial class of a supercuspidal pair of G, we write Z(2) for the full subcategory
of representations all of whose irreducible subquotients have their supercuspidal support in 2.

Given (J, ) a semisimple supertype of G, we fix a decomposition A = kK ® o and associate to
it the sum O, the functor K = K. and the equivalence class [.#,o]. We write Z(J, ) for
the full subcategory of representations V € Z(€2) such that V = V[®, o]. This does not depend
on the choice of the decomposition of A.

Assume that Q = [L, o]g and [J, A] correspond to each other (see Section 8).

Proposition 10.2. — One has Z(Q2) = Z(J, A).
Proof. — Given V € Z(2), we apply Theorem 9.6 and thus get a decomposition:
(10.1) V=P V[e].

@/

Assume V[@'] is nonzero for some sum @', and let W be an irreducible subquotient of it. Note
that W has supercuspidal support in . We first prove that ®' = @. For this, it is enough to
prove the following lemma.

Lemma 10.3. — We have K(W) # 0.

Proof. — If Q) is homogeneous, that is, if {2 is the inertial class of a tensor product of copies of
a given supercuspidal representation, the result is given by [15, Proposition 5.8]. In general, we
use [16, Théoreme 8.19] together with Theorem 6.2 to reduce to the homogeneous case. O

We thus have ©' = ©, and K(W) is a subquotient of:

K(V[®]) = EI—) V(©,d’).
[#'0']
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But there is also an unramified character x of L such that K(W) is a subquotient of:

K(Indg(ex)) ~ Ind?, (Kv(0x)),

which is a finite direct sum of representations of the form Ind?,, (o) for (.#', o') € [.# ,o]. Thus
all irreducible subquotients of K(W) have supercuspidal support in [.#’, '], and the decompo-
sition (10.1) reduces to V = V[®, o|. Conversely, let V € Z(J,A) and let W be an irreducible
subquotient of V. All irreducible subquotients of K(W) have supercuspidal support in [.Z, o].
Write ¢ for the canonical surjective map:

indg}max (Kmax ®@ K(W)) > W.

Choose a composition series 0 = Zog S Z1 S - -+ S Z,, = K(W) and write W; = inJGmax(fimaxC@Zi)-
There is a minimal ¢ such that ¢ is nonzero on W; 1. Thus W is isomorphic to a quotient of:

Wit1/W; ~ inJGmX(Hmax ® (Zi+1/Z:))

and Z;41/Z; has supercuspidal support in [.#,o]. Thus W is a subquotient of indg}()\). Now
the result follows from Proposition 8.1. O

10.2.

Theorem 9.6 and Corollary 9.4 can now be restated as follows.

Theorem 10.4. — The category Z(G) decomposes into the product of the subcategories Z(52),
where ) ranges over all possible inertial classes of supercuspidal pairs of G.

The following result says that the decomposition given by Theorem 10.4 is the best possible.
Proposition 10.5. — Each subcategory Z(SY) is indecomposable.

Proof. — Assume this is not the case. There are two subcategories ./ and &/’ such that:
) =d DA

Let [J, A] be the equivalence class of semisimple supertypes which corresponds to 2 and consider
V= indg’()\). By Proposition 10.2, we have V € Z(Q), and there is a decomposition V.= W@W’
with W € & and W’ € &/, and with no nonzero intertwining between W and W’. We get:

Endg (V) = Endg (W) @ Endg(W').

This implies that Endg (V) possesses a nontrivial central idempotent. By [22, 15], this algebra
is isomorphic to a finite tensor product of affine Hecke algebras H(n;, qfi)7 with 1 <7 < r. Thus
its centre is isomorphic to the finite tensor product of the centres of the algebras H(n;, q’ i), with
1 < i < 7. The centre of H(n,q’) is isomorphic to R[Xi—rl, ., XE8n where &, is the nth
symmetric group acting on Xy, ..., X,. This is an integral domain. Thus the centre of Endg (V)
does not contain any nontrivial idempotent. Therefore W', say, is zero. Now let X be a simple
object in /', There is a G-subspace Y of V such that X is a quotient of Y. As V € &/, we get
Y € /. But Hom(Y, X) is nonzero: contradiction. O

Remark 10.6. — We remark that the representation V = indg’ (A) used in the proof of Propo-
sition 10.5 is not, in general, a progenerator for the subcategory Z(£2): in general this represen-
tation is not projective, nor is every irreducible subquotient isomorphic to a quotient. However,
given the explicit results on supertypes here, it is not hard to construct a progenerator as a
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compactly-induced representation; for G = GL,(F) this was done (independently) by Guiraud
[11] (for level zero blocks) and Helm [12].

10.3.

Let m be a supercuspidal irreducible representation of G. The endo-class of a simple character
in 7 is well-defined (see [3, §9.2]) and we denote it ®,. Moreover, if (J, A) is a maximal simple
supertype of G occurring in 7 and attached to a simple stratum [A, n, 0, §], then we have:

md
[F[5] : F]
It does not depend on the choice of the simple type (J, A) nor of the simple stratum [A, n, 0, 3],
and we denote it ©(m). In fact, it depends only on the inertial class [G, 7]q.

Now let €2 be the inertial class of a supercuspidal pair (M, g) of G. We may (and will) assume
that M = Gy, X -+ x Gy, and p = p1 @ -+ @ p, with mq +--- +m, = m and p; an irreducible
supercuspidal representation of G,,,, for each i € {1,...,r}. Then the formal sum:

O, \) = .0,

o) =Y ()
=1

is well-defined. Moreover, if (J,A) is a semisimple supertype of G such that [J, A] corresponds
to Q in the sense of (8.2), then we have @(J, A) = O(Q).

Proposition 10.7. — Let (Jog, Ag) be a semisimple supertype, put @ = O(Jg, Ag) and write 4
for the finite reductive group associated with it. Then the following finite sets have the same
cardinality:
(i) the set of supercuspidal inertial classes Q2 of G with O(Q) = O;
(ii) the set of equivalence classes [J, A] of semisimple supertypes of G with @(J,\) = ©;
(iii) the set of equivalence classes [ , o] of supercuspidal pairs in 4.
Moreover any choice of functor K associated with (Jo, Xo) induces a bijection between the sets
in (i) and (iii).

Proof. — We have already seen the bijection between the first two sets. We make a choice of a
functor K associated with (Jg, Ag). We have already seen that K induces a surjective map from
the set in (ii) to that in (iii). Thus it is enough to check that the sets in (i) and (iii) have the
same cardinality. Moreover, it is enough to treat the case where ® is homogeneous, thus

md

[E: F]

e = -@1=m'd'-(~)1
as in §6.2.

By the unicity (up to conjugacy) of maximal simple supertypes in a supercuspidal representa-
tion (see [22, Theorem 7.2] and also [15, Corollaire 5.5]), the number of inertial classes [G, 7|q of
supercuspidal representations with a given endo-class @ is precisely the number of Gal(tp//tg)-
conjugacy classes of supercuspidal representations of GL,, (¢p/), where the notation is as in §5.1.

We think of an inertial class of supercuspidal pairs of G as a finitely supported map:

o : U {inertial classes [Gg, 7]q, of supercuspidal irreducible representations of G} — N
k=1
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such that

Sk S 6([Grrla,) = m.

k=1 [Gg,m]
We deduce that the number of inertial classes of supercuspidal pairs €2 with a given homogeneous
O is precisely the number of finitely supported maps:

P U {Gal(tp//tg)-conjugacy classes [o] of supercuspidal representations of GLf(¢p/)} — N

f=1
such that
DY (o)) = m,
=1 [o]
where we are again using the notation of §5.1. But this is also the number of equivalence classes
of supercuspidal pairs in 4 = GL,, (bp/). O

§11. A remarkable property of supercuspidal representations

We end this article by the following result. When G is split, that is when G = GL,(F), n > 1,
it is proven by Dat [9, Corollaire B.1.3] in a different manner.

Proposition 11.1. — Let P be a proper parabolic subgroup of G and o be a representation of
a Levi component M of P. Then Indg(a) has no supercuspidal irreducible subquotient.

Proof. — When o is irreducible, the result follows from the definition of a supercuspidal repre-
sentation (Definition 1.1). Assume Ind$ (o) contains a supercuspidal irreducible subquotient 7.
There is a simple stratum [Amax, Pmax, 0, ] in A = M,,, (D) such that the restriction of 7 to the

pro-p-subgroup HL . = H'(3, Aymax) contains a simple character Opax € C(Amax, 0, 3).

Lemma 11.2. — There is an irreducible subquotient T of o such that Onax occurs in the re-
striction of IndS () to H)

max*

Proof. — Since any representation of H}

max 18 semisimple, O,y is a direct summand of the res-
triction of Ind$ (o) to HL . . We fix an embedding ¢ of fiay in Ind$ (o) and write W for the (one-
dimensional) image of yax by ¢. Write V for the representation of finite type indgl (Omax)- If we

write N for the unipotent radical of P, Frobenius reciprocity gives us a nonzero homomorphism:
ly : VN — O.
Write o1 for the image of this homomorphism. It has the following properties:
(i) if ¢’ is a proper subrepresentation of oy then Ind$ (c') n W = 0;
(ii) it is of finite type, since V is of finite type and Jacquet functors preserve finite type.
This implies that o1 has a maximal proper subrepresentation oy and that the image of V in the

representation Indg(al /o2) is non-zero. In particular 6y, occurs in Indg (01/02) and o1/09 is
an irreducible subquotient of o. ]

We may assume that M is a standard Levi subgroup, attached to a composition (my,...,m;)
of m. Thus 7 can be written on the form 71 ® - -+ ® 7., with 7; an irreducible representation of
G, for each i e {1,...,r}. Let (J;, A;) be a semisimple supertype of G,,, occurring in 7;. Then
Omax OcCcCUurs in:

ind ™ (A indS™ (A,) ~ ind§ (A
indy’ (A1) x -+ x in 3 (Ar) =~ indj(N)
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where (J, ) is a suitable semisimple supertype of G. We fix a decomposition A = k ® o and
thus get a functor K. As in the first part of the proof of Lemma 8.2, it follows that K(x) is
nonzero. By [15, Lemme 5.3], it is a finite direct sum of supercuspidal irreducible representations
of 4 = J/J!. By Theorem 6.2, it is a subquotient of:

K(Ind$ (0)) ~ Ind%(Kyi(0)).

Thus Proposition 1.10 gives us a contradiction. O
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