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Abstract. We prove that among all doubly connected domains
of Rn bounded by two spheres of given radii, Z(t), the trace of
the heat kernel with Dirichlet boundary conditions, achieves its
maximum when the spheres are concentric (i.e., for the spherical
shell). The infimum is attained in the limiting situation where the
interior sphere is in contact with the outer sphere.

This is shown to be a special case of a more general theorem
characterizing the optimal placement of a spherical obstacle inside
a domain so as to maximize or minimize the trace of the Dirichlet
heat kernel. In this case, for each t the maximizing position of
the center of the obstacle belongs to the “heart” of the domain,
while the minimizing situation occurs either in the interior of the
heart or at a point where the obstacle is in contact with the outer
boundary.

Similar statements hold for the optimal positions of the obstacle
for any spectral property that can be obtained as a positivity-
preserving or positivity-reversing transform of Z(t), as well as for
the spectral zeta function and the regularized determinant.

1. Introduction and statement of results

Let Ω ⊂ Rn be a bounded C2 Euclidean domain and let

λ1(Ω) < λ2(Ω) ≤ λ3(Ω) ≤ · · · ≤ λi(Ω) ≤ · · · → ∞,

be the sequence of eigenvalues of the Dirichlet realization of the Lapla-
cian −∆ in Ω, where each eigenvalue is repeated according to its mul-
tiplicity. The corresponding “heat operator” et∆ has finite trace for all
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t > 0 (known in physical literature as the “partition function”), which
we denote

ZΩ(t) =
∑

k≥1

e−λk(Ω)t. (1)

Following Ray and Singer [23] we denote by det(Ω) the regularized
determinant of the Dirichlet Laplacian in Ω defined by

det(Ω) = exp (−ζ ′(0)) ,

where ζ is the meromorphic extension to the entire complex plane of the
spectral zeta function

∑∞

k=1 λk(Ω)
−s, which is known to be convergent

and holomorphic on {Re s > n
2
}.

Eigenvalue optimization problems date from Lord Rayleigh’s “The-
ory of Sound” (1894) where it was suggested that the disk should min-
imize the first eigenvalue λ1 among all the domains of given measure.
Rayleigh’s conjecture was proved in any dimension independently by
Faber [8] and Krahn [19].

Later, Luttinger [21] proved an isoperimetric result analogous to
Faber-Krahn for Z(t), considered as a functional upon the set of bounded
Euclidean domains, that is, for any bounded domain Ω ⊂ R

n and any
t > 0,

ZΩ(t) ≤ ZΩ∗(t),

where Ω∗ is a Euclidean ball whose volume is equal to that of Ω. A
similar property was proved in [22] for the regularized determinant of
the Laplacian in two dimensions (see [20, 24] for other examples of
results in this direction).

The case of multi-connected planar domains, i.e. whose boundary
admits more than one component, was first considered by Hersch. Us-
ing the method of interior parallels, in [16] Hersch proved the following
extremal property of annular membranes:
“A doubly connected fixed membrane, bounded by two circles of given
radii, has maximum λ1 when the circles are concentric”.

Hersch’s result has been extended to a wider class of domains in
any dimension by Harrell, Kröger and Kurata [13] and Kesavan [18],
whereby the authors consider a fixed domain D from which an “obsta-
cle” of fixed shape, usually spherical, has been excised. The position
of the obstacle is allowed to vary, and the problem was to maximize
or minimize λ1. The critical assumption on the domain D in [13] is an
“interior symmetry property,” and with this assumption the authors
further proved that, for the special case of two balls, λ1 decreases when
the center of the small ball (the obstacle) moves away from the center
of the large ball, using a technique of domain reflection. For a wider
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class of domains containing obstacles, it was shown in [13] that the
maximizing position of the obstacle resides in a special subset of D,
which in the case where D is convex corresponds to what has later
come to be called the heart of D in [2, 3] ♥(D) (see the definition be-
low). El Soufi and Kiwan [5, 6] have moreover proved other extensions
of Hersch’s result including one valid for the second eigenvalue λ2.

The main aim of this paper is to establish a Hersch-type extremal
result for the heat trace and the determinant of the Laplacian, as well
as suitable generalizations for more general outer domains. We begin
by stating the special case of domains bounded by balls: Given two
positive numbers R > r and a point x ∈ Rn, |x| < R − r, we denote
by Ω(x) the domain of Rn obtained by removing the ball of radius r
centered at x from within the ball of radius R centered at the origin.

Theorem 1.1. (i) For every t > 0, the heat trace ZΩ(x)(t) increases as
the point x moves from the origin towards the boundary of the larger
ball. In particular, ZΩ(x)(t) is minimal when the balls are concentric
(x = O) and maximal when the small ball touches the boundary of the
largest ball (|x| = R− r).

(ii) The determinant of the Laplacian det(Ω(x)) decreases as the
point x moves from the origin towards the boundary of the largest ball.
In particular, det(Ω(x)) is maximal when the balls are concentric and
minimal when the small ball touches the boundary of the largest ball.

Since e−λ1(Ω)t is the leading term in ZΩ(t) as t goes to infinity, it is
clear that Theorem 1.1 implies the optimization result above for λ1.
In order to state the more general theorem of which these proposi-

tions are special cases, we recall some definitions.

Definition 1.2. In [13], the domain D was said to have the interior
reflection property with respect to a hyperplane P if there is a connected
component Ds of D \ P whose reflection through P is a proper subset
of D. Any such P will be called a hyperplane of interior reflection for
D. The component Ds will be called the small side of D (with respect
to P ) and the other connected component Db will be called the big side.
The heart of D is defined as the set of points x ∈ D so that there

is no hyperplane of interior reflection passing through x. We denote it
♥(D).

In the case where D is convex, the heart ♥(D) can be viewed as
the closure in D of the intersection of all the big sides with respect to
the hyperplanes of interior reflection of D. This definition is equivalent
to that introduced in [2, 3], where several properties of the heart of a
convex domain are investigated.
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The heart of a bounded domain D is a nonempty closed subset of D.
Moreover, for a strictly convex boundedD one has dist(♥(D), ∂D) > 0.
We observe that for the ball and for many other domains with sufficient
symmetry to identify an unambiguous center, the heart is simply the
center.

Theorem 1.3. Let D be a bounded C2 domain of Rn and let r > 0.
For every x ∈ D so that the ball B(x, r) is contained in D, we set
Ω(x) = D \B(x, r).

(i) For every t > 0, let x0(t) and x1(t) be such that the function
x 7→ ZΩ(x)(t) achieves its minimum at x0(t) and its maximum at x1(t).
Then x0(t) belongs to ♥r(D) := ♥(D) ∩ {x : dist(x, ∂D) ≥ r} and
x1(t) is either an interior point of ♥(D) or dist(x1(t), ∂D) = r (i.e.
B(x1(t), r) touches the boundary of D).

(ii) Let x′
0 and x′

1 be such that the regularized determinant of the
Laplacian x 7→ det(Ω(x)) achieves its maximum at x′

0 and its mini-
mum at x′

1. Then x′
0 belongs to ♥r(D) and x′

1 is either an interior
point of ♥(D) or dist(x′

1, ∂D) = r.

We remark that these results imply those of [13], by a straightforward
consideration of the limit t → ∞.

We conjecture that at least for a convex domain D, the maximum
of ZΩ(x)(t) (resp. the minimum of det(Ω(x))) is achieved when B(x, r)
touches the boundary of D. This is the case for example when a convex
domain D admits a hyperplane of symmetry since then, int(♥(D)) = ∅.
On the other hand, we believe that x0 should be independent of t at
least under some convexity conditions.

Remark 1. We shall approach the analysis of the regularized deter-
minant via the spectral zeta function ζ(s), which for large s is related
to Z(t) by an order-preserving integral transform. As in [12], trans-
form theory can similarly be used to obtain corollaries for many further
functions, e.g., Riesz means, with respect to the optimal position of an
obstacle.

2. Proof of results

Let Ω ⊂ Rn be a domain of the form Ω = D\B, where D is a simply
connected bounded domain and B is a convex domain such that the
closure of B is contained in D.

Assume that the domain D has the interior reflection property with
respect to a hyperplane P about which the setB is reflection-symmetric.
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Our strategy is to consider a displacement of the obstacle by ε in a cer-
tain direction and to show that Zε(t) is monotonically increasing in
that direction.
Thus let V be the unit vector perpendicular to P and pointing in

the direction of the small side Ds. For small ε > 0, we translate B by a
distance ε in the direction of V and set Bε := B+εV and Ωε := D\Bε.
The results of this paper rely on the following Proposition.

Proposition 1. Assume that the domain D has the interior reflec-
tion property with respect to a hyperplane P about which the set B
is reflection-symmetric and consider displacements as described above.
Then, except possibly for a finite set of values of t > 0,

∂

∂ε
ZΩε

(t)
∣

∣

ε=0
> 0 (2)

and
d

dε
det(Ωε)

∣

∣

ε=0
< 0. (3)

Proof. The heat kernel K on Ω under the Dirichlet boundary condition
is defined as the fundamental solution of the heat equation, that is























( ∂
∂t
−∆y)K(t,x,y) = 0 in Ω

K(0+,x,y) = δx(y)

K(t,x,y) = 0 ∀y ∈ ∂Ω.

The relationship between the heat kernel and the spectral decomposi-
tion of the Dirichlet Laplacian in Ω is given by

K(t,x,y) =
∑

k≥1

e−λk(Ω)tuk(x)uk(y), (4)

where (uk)k≥1 is an L2(Ω)-orthonormal family of eigenfunctions satis-
fying







−∆uk = λk(Ω)uk in Ω

uk = 0 on ∂Ω.

The heat trace is then given by

ZΩ(t) =

∫

Ω

K(t,x,x)dx =
∑

k≥1

e−λk(Ω)t.

We recall the following Hadamard-type formula for ε 7→ ZΩε
(t):
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∂

∂ε
ZΩε

(t)
∣

∣

ε=0
= − t

2

∫

∂Ω

v∆K(t,x,x)dx,

where v = X · ν is the component of the deformation vectorfield X in
the direction of the inward unit normal ν and ∆K(t,x,x) stands for
the Laplacian of the function x 7→ K(t,x,x) (cf. [4, Theorem 4.1]. For
more information about Hadamard deformations we refer to [9, 10, 15].)
Since the outer boundary ∂D of Ωε is fixed and the inner boundary ∂Bε

is translated in the direction of V , the function v vanishes on ∂D and
coincides with V · ν on ∂B. Thus,

∂

∂ε
ZΩε

(t)
∣

∣

ε=0
= − t

2

∫

∂B

∆K(t,x,x) V · ν(x)dx.

Let Bs be the half of B contained in the small side Ds of D and
(∂B)s = ∂B ∩Ds. Using the symmetry assumption on B with respect
to P we obtain

∂

∂ε
ZΩε

(t)
∣

∣

ε=0
= − t

2

∫

(∂B)s

(∆K(t,x,x)−∆K(t,x∗,x∗)) V · ν(x)dx
(5)

where x∗ stands for the reflection of x through P .
Define the function φ(t,x,y) = K(t,x,y)−K(t,x∗,y∗) on (0,∞)×

Ωs × Ωs with Ωs = Ds \Bs.

Claim : For all (t,x,y) ∈ (0,∞)× Ωs × Ωs, φ(t,x,y) ≤ 0.
Indeed, for all x ∈ Ω̄s, the function (t,y) 7→ φ(t,x,y) is a solution of
the following parabolic problem :

(∗)







( ∂
∂t
−∆y)φ(t,x,y) = 0 in Ωs

φ(0+,x,y) = 0.

Let us check the sign of φ(t,x,y) on (0,∞) × ∂Ωs × ∂Ωs. Notice
that ∂Ωs is the union of three components : (∂D)s, (∂B)s and Ω ∩ P .
First, from the boundary conditions, if x ∈ (∂B)s or y ∈ (∂B)s, then
φ(t,x,y) = 0. On the other hand, K(t,x,y) vanishes as soon as x ∈
(∂D)s or y ∈ (∂D)s, which implies φ(t,x,y) = −K(t,x∗,y∗) ≤ 0. It
remains to consider the case where both x and y belong to Ω ∩ P . In
this case we have x∗ = x, y∗ = y and φ(t,x,y) = 0.
In conclusion, for any x on ∂Ωs, the function (t,y) 7→ φ(t,x,y) is

everywhere nonpositive on the boundary of the cylinder (0,∞) × Ωs

which implies, thanks to (∗) and the parabolic maximum principle (see
e.g., [7]), that φ(t,x,y) ≤ 0 for all t > 0 and all y ∈ Ω̄s.
Now, from the symmetry of φ with respect to x and y, the function

(t,x) 7→ φ(t,x,y) satisfies the same parabolic system as (∗). Since we
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now know that ∀y ∈ Ω̄s, the function (t,x) 7→ φ(t,x,y) is everywhere
nonpositive on the boundary of the cylinder (0,∞)×Ωs, the parabolic
maximum principle then implies the non positivity of φ(t,x,y) in the
whole cylinder (0,∞)× Ωs × Ωs.

Claim : ∆φ(t,x,x) ≤ 0 for all (t,x) ∈ (0,∞)× (∂B)s.
As we have seen, the function x ∈ Ωs 7→ φ(t,x,x) achieves its maxi-

mum at the boundary. Moreover, sinceK(t,x,x) =
∑

k≥1 e
−λk(Ω)tuk(x)

2,
the function φ(t,x,x) vanishes quadratically on (∂B)s. Thus, for any
x0 ∈ (∂B)s

∇φ(t,x0,x0) = 0.

Taking polar coordinates (ρ, σ) centered at the center of B and writing
x0 = (ρ0, σ0) we see that, since all the first derivatives of x ∈ Ωs 7→
φ(t,x,x) vanish at x0,

∆φ(t,x0,x0) =
∂2

∂ρ2
φ(t, ρ0, σ0, ρ0, σ0).

This is nonpositive, since ρ 7→ φ(t, ρ, σ0, ρ, σ0) achieves its maximum
at ρ = ρ0.

Claim : Except possibly for a finite set of values of t > 0,

∂

∂ε
ZΩε

(t)
∣

∣

ε=0
> 0.

It is clear that the product V.ν(x) is positive at every point x of the
hemisphere (∂B)s. From equation (5) and the previous claim we then
deduce that, ∀t > 0,

∂

∂ε
ZΩε

(t)
∣

∣

ε=0
≥ 0.

To show that this quantity cannot vanish at more than a finite set
of values of t, we shall show that it is analytic as a function of t in the
open right half plane, and strictly positive for real values of t sufficiently
large. By the unique continuation theorem an analytic function that
vanishes on a set with a point of accumulation is identically zero, which
would pose a contradiction.
To establish analyticity of (1), we argue as follows. Because each

eigenvalue of the Laplacian is at most finitely degenerate, according
to [17] there is a numbering of the eigenvalues {λk(ǫ)} → {Λk(ǫ)} for
which each Λk(ǫ) is analytic in ǫ in a neighborhood of ǫ = 0. (Using this
numbering, which is important only in a neighborhood of a degenerate
eigenvalue, does not alter Z(t) as defined in (1).) In consequence of the
Hadamard formula for the derivative of an eigenvalue, ∂Λk

∂ǫ
|ε=0 is dom-

inated in norm by the integral of the square of the normal derivative
of an associated L2 normalized eigenfunction uk over the boundary of
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the obstacle. For C2 domains, both ‖uk‖∞ and ‖∇uk‖∞ are bounded

by constants times finite powers of λk [11, 14], which in turn ∼ k
2
n by

the Weyl law. It follows that both the series (4) and its term-by-term
derivative with respect to ǫ converge uniformly on each set of the form
{Re t ≥ C > 0}.
To finish the argument, we observe that by differentiating (1),

∂

∂ε
ZΩε

(t)

∣

∣

∣

∣

ε=0

= e−λ1t

(

− ∂λ1

∂ε

∣

∣

∣

∣

ε=0

+ 0(e−(λ2−λ1)t)

)

.

this is strictly positive for large t because λ1 is nondegenerate and
∂λ1

∂ε

∣

∣

ε=0
< 0 by [13].

This completes the proof of (2). The proof of (3) relies on the follow-
ing formula which is valid for every complex number s with Re s > n

2

ζε(s) :=
∑

k≥1

1

λs
k(Ωε)

=
1

Γ(s)

∫ ∞

0

ZΩε
(t)ts−1dt.

It is well known that the function ZΩε
satisfies

ZΩε
(t) ∼

∑

k≥0

ak t
(k−n)

2 as t → 0, (6)

where ak is a sequence of real numbers that only depend on the geom-
etry of the boundary of Ωε (see e.g. [1]). Hence, it is clear that the
coefficients ak in (6) are independent of ε.
We set

Z̃Ωε
(t) = ZΩε

(t)−
n

∑

k=0

ak t
(k−n)

2 ,

so that Z̃Ωε
(t)/

√
t is a bounded function in a neighborhood of t = 0.

We also introduce the meromorphic function

R(s) =
1

Γ(s)

n
∑

k=0

ak

∫ 1

0

ts−1+(k−n)/2dt =
1

Γ(s)

n
∑

k=0

ak
s− (n− k)/2

,

which has poles at 1/2, 1, 3/2, 2, · · · , n/2. (Note that s = 0 is not a
pole since 1

sΓ(s)
a holomorphic function on C.)

Consequently,

ζε(s) =
1

Γ(s)

∫ 1

0

ZΩε
(t)ts−1dt+

1

Γ(s)

∫ ∞

1

ZΩε
(t)ts−1dt,
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where the last term is an entire function of s, since ZΩε
(t) behaves as

e−λ1(Ωε) when t → +∞. Thus,

ζε(s) = R(s) +
1

Γ(s)

∫ 1

0

Z̃Ωε
(t)ts−1dt+

1

Γ(s)

∫ ∞

1

ZΩε
(t)ts−1dt,

where the equality holds, by unique continuation, in the neighborhood
of s = 0. The reciprocal gamma function f(s) := 1

Γ(s)
vanishes at s = 0

and satisfies f ′(0) = 1. Therefore,

ζ ′ε(0) = R′(0) +

∫ 1

0

Z̃Ωε
(t)t−1dt+

∫ ∞

1

ZΩε
(t)t−1dt. (7)

Since det(Ωε) = e−ζ′ε(0), we derive (3) from (7) and (2). �

Proof of Theorem1.3. Let D be a domain of Rn and let r > 0 be less
than the inradius of D. Let x be a point of {x : dist(x, ∂D) > r} ⊂
D. If x /∈ ♥(D), by definition there exists a hyperplane of interior
reflection P of D passing through x. Applying Proposition 1, we see
that the function is monotonically nonincreasing as the obstacle moves
towards ♥(D). The minimum is therefore achieved in ♥(D). At this
stage we have not eliminated the possibility of a value of t = t0 and a
line segment exiting from ♥(D) along which ZΩ(x)(t0) is constant and
equal to its minimum with respect to x. This possibility is, however,
excluded by the analyticity of ZΩ(x)(t) and the fact that for values of
t arbitrarily close to t0, ZΩ(x)(t) is strictly monotonic on the segment.
As ♥(D) is closed in D the minimizing point x0(t) can never belong to
the complement of ♥(D).

The same arguments show that if x 7→ ZΩ(x)(t) achieves its maximum
at a point x1(t), then either dist(x1(t), ∂D) = r or x1(t) belongs to the
interior of ♥(D). �
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