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Abstract :

We tackle the makespan minimization coupled-tasks problem in presence of compat-
ibility constraints. In particular, we focus on stretched coupled-tasks, i.e.coupled-
tasks having the same sub-tasks execution time and idle time duration. We study
severals problems in frame works of classic complexity and approximation for which
the compatibility graph Gc is bipartite (star, chain, . . .) In such context, we de-
sign some efficient polynomial-time approximation algorithms according to differ-
ence parameters of the scheduling problem. When Gc is a k-stage bipartite graph,
we propose, among other, a 7

6
-approximation algorithm when k = 1, and a 13

9
-

approximation algorithm when k = 2.

keyword: coupled-tasks, scheduling, complexity, approximation algorithm, com-
patibility graph

Résumé :

Nous nous intéressons au problème de minimiser le temps d’ordonnancement d’un en-
semble de tâches couplées en présence de contraintes de compatibilité. En particulier,
nous étudions les tâches couplées étirées et montrons que le problème est difficile
même lorsque le graphe Gc modélisant les contraintes de compatibilité est une étoile.
Nous concentrons notre étude lorsque Gc est un graphe biparti k-étapes, et proposons
plusieurs résultats d’approximation, notamment un algorithme 7

6
-approché lorsque

k = 1, et 13
9
-approché pour k = 2.

mot-clés: tâches couplées, ordonnancement, complexité, algorithmes d’approximation,
graphe de compatibilité
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1 Introduction

The detection of an object by a radar system generally uses the following process:
a transmitter emits a pulse in some direction which propagates though the envi-
ronmental medium. If the pulse encounters an object, it is reflected back to the
transmitter. Using the transmit time and the direction of the pulse, the transmit-
ter can compute the position of the object. Formally this process is divided into
three parts: (1) a first operation of duration a a sensor emits the pulse; (2) then
the system waits for a fixed amount of time L the propagation of the pulse and its
potential reflexion; (3) then in a second operation of duration b the sensor listen to
any pulse echo to conclude of the presence or not of an object and compute its po-
sition. Due to the nature of the application, the system works in a non-preemptive
mode. Varying the values of parameters a, b and L allows, among others, to adapt
the detection range. On mono-processor systems, the idle processing time L can be
reused to perform other operations, i.e.to schedule another object detection process
using another sensor.

Scheduling issues appear when several sensors using different frequencies can work
in parallel, while acquisitions using the same frequency have to be delayed in order
to avoid interferences. Two acquisition processes i and j are said compatible if they
can work in parallel.

We consider in this paper a mono-processor system using several sensors, some
of them using the same frequencies. Given a set of data acquisitions with they
duration and the list of compatible acquisitions, finding a optimal schedule which
minimizes the makespan is a problem hard to solve in general, even under restricted
hypothesis on the values of a, b, L and/or on the list of compatible acquisitions. We
study the variation of the complexity when for any acquisition i, the durations of
each of its operations and the idle time between them are equal. We propose exact
and approximation results according to different hypothesis we made on the list of
compatible acquisitions.

This article is organized as follows: first we present the general coupled-task
model, a natural way to model such a data acquisition process, and the related work.
In the next section we introduce the stretched coupled-tasks model and summarize
the contribution of this paper. The computational complexity results are detailed
in Section 4, while Section 5 focuses on polynomial-time approximation algorithms
with performance guarantee for NP-Hard instances

2 Presentation of coupled-tasks and related work

A natural way to model data acquisition process presented in introduction is to use
coupled-tasks, introduced first by Shapiro [11]: each acquisition task is a coupled-task
Ai = (ai, Li, bi) composed by two sub-tasks of processing time ai and bi, respectively
dedicated for wave transmission and echo reception. Between these two sub-tasks
there is a fixed idle time Li which represents the spread of the echo in the medium.
We work in a non-preemptive mode: once started, a sub-task cannot be stopped and
then continued later. A valid schedule implies here that for any task started at t, the
first sub-task is fully executed between t and t+ai, and the second between t+ai+Li

and t + ai + Li + bi. We note A = {A1, . . . , An} the collection of coupled-tasks to
be scheduled.
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Two tasks Ai and Aj are said compatible if they use different wave frequencies;
any sub-task of Ai may be executed during the idle time of Aj or reciprocally. A
valid schedule implies here that for any tasks Ai and Aj, if either the first and/or
the second sub-task of Ai is scheduled during the idle time of Aj, then Ai and Aj

must be two compatible tasks. For clarity we say that Ai and Aj are executed in
parallel in such a schedule. The parallel execution of Ai and Aj may exist under to
configurations, according to the values of ai, Li, bi, aj , Lj , bj . A graph G = (A, E) is
used to model such this compatibility, where edges from E link any pair of compatible
coupled-tasks.

Due to the combinatory of the parameters of the problem, we use the Graham’s
notation scheme α|β|γ [8] (respectively the machine environment, job characteristic
and objective function) to characterize the problems related to coupled-tasks. The
job characteristics summarizes the conditions made on the values of ai, Li, bi (inde-
pendent between tasks, or equal to a constant), and the shape of the compatibility
graph G. The coupled-tasks scheduling problems under compatibility constraints
has been studied in the framework of classic complexity and approximation (see
Table 1 - only main results are retained).

(ai, Li, bi) Complexity Approximation Ref.
(ai, ai, ai) NPC 3/2 [13]

(p, L, p) NPC 7/4 + L
4p [15]

(a, L, b) NPC if L ≥ a+ b else Poly 3a+2b
2a+2b [12]

(1, 2, 1) NPC 10
9 if Gc is triangle free else 13

12 [14]
(p, p, bi) or (ai, p, p) Poly [15]

Table 1: Computational complexity and polynomial-time approximation algorithms for
1|(ai, Li, bi), Gc|Cmax according to the triplet (ai, Li, bi).

3 Stretched coupled-task: model and contribution

3.1 Model

This paper focuses on stretched coupled-tasks, i.e.coupled-tasks for what the du-
rations of the first sub-task, the second sub-task and the idle time are equal to a
stretch-factor applied to an original task (ai, Li, bi) = (1, 1, 1). Formally, a stretched
coupled-task Ai is a task such that ai = Li = bi = α(Ai), where α(Ai) is the stretch
factor of the task. In the rest of the paper, coupled-tasks are always stretched
coupled-tasks, and noted Ai when we need to refer to the values ai, bi and Li, or
with a single identifier, i.e. x, otherwise. In such configuration, for two compatible
tasks Aj and Aj to be scheduled in parallel, one of the following conditions must
hold:

1. either α(Ai) = α(Aj): then the idle time of one task is fully exploited to
schedule a sub-task from the other (i.e. bi is scheduled during Lj , and aj is
scheduled during Li), and the completion of the two tasks is done without idle
time.

2. or 3α(Ai) ≤ α(Aj): then task Ai is fully executed during the idle time Lj of
Aj . For sake of simplify, we say we pack Ai into Aj.
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Topology Complexity Approximation

uug(Gc)=Star graph NP − C (Theorem 2) FPT AS (Theorem 6)
uug(Gc)=Chain graph O(n3) (Theorem 3)

Gc= 1-stage bipartite, ∆(Gc) = 2 O(n3) (Theorem 4)
Gc= 1-stage bipartite, ∆(Gc) = 3 NP − C (Theorem 5) 7

6 -APX (Theorem 7)
Gc= complete 1-stage bipartite NP − C (see [13]) PT AS (Theorem 7)
Gc= complete 1-stage bipartite NP − C (see [13]) PT AS (Theorem 7)

with constraint α(x) = α(y), ∀x, y ∈ X1
13
12 -APX (Theorem 7)

Gc= 2-stage bipartite NP − C (Theorem 5) 13
9 -APX (Theorem 8)

Table 2: Complexity and approximation results.

From this observation, one can deriver from the compatibility graph G = (A, E)
a directed compatibility graph Gc = (A, Ec) by assigning a direction to each edge
E from the task with the lowest stretch factor to the task with the highest one. If
two compatible tasks x and y have the same stretch factor, then Ec contains both
the arc (x, y) and the arc inverted (y, x). Remark that if for any pair of compatible
tasks x and y we have α(x) ̸= α(y), then Gc is a directed acyclic graph.

Note that when the job characteristics refer to an undirected topology for the
compatibility graph (i.e. star, chain), we consider in fact a graph Gc such that their
undirected underlying graph uuc(Gc) correspond to the given class.

Given a valid schedule σ and a task Ai, we note σ(Ai) the date when Ai is
being executed, i.e.the first (resp. second) sub-task is executed between σ(Ai) and
σ(Ai) + ai (resp. between σ(Ai) + ai +Li and σ(Ai) + ai +Li + bi). We also denote
by seq(W ) the sum of the processing time of the tasks in any set W :

seq(W ) = 3
∑

x∈W

α(x)

Remark that, when W is an independent set for Gc, the cost of any optimal
schedule is at least seq(W ). We note NG(v) the neighborhood of v in G. We note
dG(v) = |N(x)| the degree of v in G, and ∆G the maximum degree of G.

As we focus our work on bipartite graphs, we recall that a k-stage bipartite graph
is a digraph G = (V0∪ · · ·∪Vk, E1∪ · · ·∪Ek) where V0 . . . Vk are disjoint vertex sets,
and each arc in Ei is from a vertex in Vi to a vertex in Vi+1. The vertex of Vi are
said to be at rank i, and the subgraph Gi = (Vi−1 ∪ Vi, Ei) is called the i-th stage of
G, and we write G = G1+ · · ·+Gk. Note that G is acyclic, and that vertices from V0

are always source in G (nodes only incident to outgoing arcs) , while vertices from
Vk are sink (nodes only incident to ingoing arcs). For clarity, a 1-stage bipartite
graphs may be referred as triplet (X, Y, E).

3.2 Contribution

We define the main problem of this study as 1|ai = Li = bi = α(Ai), Gc|Cmax, study
the variation of the complexity when Gc or uug(Gc) varies, and propose approx-
imation results for instances hard to solve. The results proved in this article are
summarized in Table 2.

3.3 Prerequisites

We use in this paper known complexity results on four packing-related problems:
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1. The subset sum (ss) problem is a known problem in which, given a set S of
n positive values and v ∈ IN, one ask is there exists a subset S∗ ⊆ S such that
∑

i∈S∗ i = v. This decision problem is well-known to be NP-complete (see [6]).
The optimization version problem is sometimes view as a knapsack problem,
where each item profits and weights coincide to a value in S, the knapsack
capacity is v, and one try to find the set of packable items with maximum
profit.

2. The multiple subset sum (mss) problem is a variant of well-known bin
packing in which a number of identical bins is given and one would like to
maximize the overall weight of the items packed in the bins such that the sum of
the item weights in every bin does not exceed the bin capacity. The problem is
also a special case of the Multiple knapsack problem in which all knapsacks
have the same capacities and the item profits and weights coincide. Caprara,
and al. [2] proved that mss admits a PT AS, but does not admit a FPT AS
even for only two knapsacks. They also proposed a 3

4
−approximation algorithm

in [3].

3. multiple subset sum with different knapsack capacities (mssdc)
[1] is an extension of mss considering different bin capacities. mssdc also
admits a PT AS [1].

4. As a generalization of mssdc, multiple knapsack assignment restric-
tion (mkar) problem consists to packs weighted items into non-identical
capacity-constrained bins, with the additional constraints that each item can
be packed in some bins only. Each item as a profit, the objective here is to
maximize the sum of profits of packed items. Considering the profit of each
item equals its weight, [4] proposed a 1

2
-approximation.

We also use a known result concerning a variant of the NP-complete problem
3SAT [6], denoted subsequently by one-in-(2,3)sat(2,1̄): this problem aim to ask
is there exists an assignment of n boolean variables, with n mod 3 ≡ 0, which
satisfies a set of n clauses of cardinality 2 and n/3 clauses of cardinality 3 such that:

• Each clause of cardinality 2 is equal to (x ∨ ȳ) for some x, y ∈ V with x ̸= y.

• Each of the n literals x (resp. of the literals x̄) for x ∈ V belongs to one of the
n clauses of cardinality 2, thus to only one of them.

• Each of the n (positive) literals x belongs to one of the n/3 clauses of cardinality
3, thus to only one of them.

• Whenever (x ∨ ȳ) is a clause of cardinality 2 for some x, y ∈ V, then x and y
belong to different clauses of cardinality 3.

Question: Is there a truth assignment I : V → {0, 1} whereby each clause in C
has exactly one true literal?

Example: The following logic formula is a valid instance of one-in-(2,3)sat(2,1̄):
(x0 ∨ x1 ∨ x2)∧ (x3 ∨ x4 ∨ x5)∧ (x̄0 ∨ x3)∧ (x̄3 ∨ x0)∧ (x̄4 ∨ x2)∧ (x̄1 ∨ x4)∧ (x̄5 ∨

x1) ∧ (x̄2 ∨ x5).
The answer to one-in-(2,3)sat(2,1̄)is yes. It is sufficient to choose x0 = 1 (1

for true), x3 = 1 and xi = 0 (0 for false) for i = {1, 2, 4, 5}. This yields a truth
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assignment that satisfies the formula, and there is exactly one true literal for each
clause. The proof of the NP-completeness is given in [7].

4 Computational complexity

We present severals NP−complete and polynomial results. We first show the prob-
lem is NP-hard even when the compatibility graph is a star (Theorem 2), but then
show it is solvable with a O(n3) time complexity algorithm when G is a chain (The-
orem 3). Then we focus our analysis when Gc is a 1-stage bipartite graph. We prove
the problem is solvable with a O(n3) polynomial algorithm if ∆G = 2 (Theorem 4),
but becomes NP-hard when ∆G = 3 (Theorem 5).

Theorem 1 The problem 1|ai = Li = bi = α(Ai), G = star|Cmax is polynomial if
the central node admits at least one outcoming arc.

Proof If it exists a least one outgoing arc from the central node x, then the opti-
mal solution consists in executing the central node in one coupled-task y such that
(x, y) ∈ Gc. The remaining tasks are processed sequentially after the completion of
the y-task. !

Theorem 2 The problem 1|ai = Li = bi = α(Ai), G = star|Cmax is NP-hard if the
central node admits only incoming arc.

Proof It is easy to see that 1|α(Ai) = ai = Li = bi, G = star|Cmax is in NP. We
propose a reduction to ss problem. From an instance of ss composed by a set S
of n positive values and v ∈ IN (with v ≥ x, ∀x ∈ S), we construct an instance of
1|star,αi = ai = Li = bi|Cmax in the following way:

1. For each value i ∈ S we introduce a coupled-task x with α(x) = i. Let T be
the set of these tasks.

2. We add a task y with αy = ay = Ly = by = 3v.

3. We define a compatibility constraint between each task x ∈ T and y.

Clearly the compatibility graph G is a star with y as the central node. The trans-
formation is clearly polynomial. It easy to see that 1|α(Ai) = ai = Li = bi, G =
star|Cmax is NP − hard as following:

• Considering the characteristics of the instance when Gc is a star, any (optimal)
valid scheduling consists in scheduling sequentially a subset T ′ ⊆ T of task
during the idle time of y, and in scheduling after this the other tasks from
T sequentially. Then the optimal schedule would consist in maximizing w =
3
∑

t∈T ′ αt under the constraint w ≤ Ly, and in producing a schedule with a
total length equal to the time to schedule y (i.e. 3αy) plus the time to schedule
tasks not executed during Ly the idle time of y (ie. 3

∑

t/∈T ′ αt); in other words
a schedule of time 3αy + 3

∑

t∈T αt − 3
∑

t∈T ′ αt.

If one can find an optimal schedule of length 3
∑

t∈T αt + 2αy, then one can
exhibit a subset T ∗ ⊆ T with 3

∑

t∈T ∗ αt = Ly = 3v and by construction one

can deduce a solution to ssby taking S∗ =
{

∪ αx|x ∈ T ∗
}

.
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• Conversely, if one can exhibit a subset S∗ ⊆ S thus that
∑

i∈S∗ i = v, then
one can produce an optimal schedule by executing sequentially tasks x with
αx = i, where i ∈ S∗, during the idle time Ly = 3v of task y, and by executing
sequentially tasks z ∈ S/S∗ immediately after the execution of y.

!

Theorem 3 The problem 1|ai = Li = bi = α(Ai), G = chain|Cmax admits a
polynomial-time algorithm.

Proof When the compatibility graph is a chain, compatibility constraints require
tasks to be executed either alone, by pair only, or two consecutively tasks in another
big one. The last case occurs only when a vertex x of degree two, called peak, has
its two neighbor y and z which can be entirely executed in the inactivity time of x.
Thus if 3αy +3αz ≤ αx, then one can execute y and z during the idle time of x; The
schedule length for this block is exactly 3αx. We can observe that the peaks can not
be executed in another tasks. Therefore, w.l.o.g. we can assume that there exists an
optimal solution where the peak tasks and their neighbors are executed together.

From this result, we can in polynomial time modify G in Gm where all peak
vertices, their neighbors and the associated edges are removed. Thus Gm is a col-
lection of chains and the best scheduling associated to this graph requires tasks to
be executed either alone or by pair.

Given x and y two compatibles tasks, only the two following configurations allow
them to be scheduled pairwise (by blocks):

1. if αx = αy, then one can execute ay during the idle time of x and bx during the
idle time of y. The makespan for this block is exactly 4αx.

2. if αx ≤
αy

3
, then one can execute entirely x during the idle time of y, the

makespan for this block is exactly 3αy, including an inactivity period of αy−2αx.

By weighting each edge of the graph Gm with the sequential time of the overlap of
the two tasks which form the edge, our problem has a solution if we find a matching
that minimizes the weight of the matching edges and the isolated vertices.

This problem can be solved in a polynomial-time by reducing the problem to the
search for a minimum weighted perfect matching. This problem can be polynomially
solved in O(n2m) time complexity [5]. In order to obtain a graph with even number
of vertices and such that finding a perfect matching is possible, we construct a graph
Hc = (VH , EH , w) and define a weighted function w : E → IN as follows:

1. Let I1 be an instance of our problem with a compatibility graph Gm = (Vm, Em),
and I2 an instance of the minimum weight perfect matching problem in graph
constructed from I1. We consider a graph Hc, consisting of two copies of Gm de-
noted G′

m = (V ′

m, E
′

m) and G′′

m = (V ′′

m, E
′′

m). The vertex corresponding to x ∈ Vm

is denoted x′ in G′

m and x′′ in G′′

m. Moreover, ∀i = 1, . . . , n, an edge {x′, x′′} in
EH is added and we state w({x′, x′′}) = 3α′

x. This weight represents the sequen-
tial time of the task alone x′. We have Hc = G′

m ∪G′′

m = (V ′

m ∪ V ′′

m, E
′

m ∪ E ′′

m),
with |V ′

m ∪ V ′′

m| of even size.

2. For two compatibles tasks x′ and y′ with 3αx′ ≤ αy′ or 3αy′ ≤ αx′, we add
the edges {x′, y′} and {x′′, y′′} in E and we state w({x′, y′}) = w({x′′, y′′}) =
3×max{α

x′ ,αy′}

2
.
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3. For two compatibles tasks x′ and y′ with αx′ = αy′ , we add the edges {x′, y′}

and {x′′, y′′} in E, and we state w({x′, y′}) = w({x′′, y′′}) = 4×α
x′

2
.

In order to provide a polynomial-time algorithm solving our problem, we will
prove firstly the following proposition.

Proposition 1 For a minimum weight perfect matching C, we can associate a
schedule of minimum processing times C and vice versa.

A2

A1

A3

x′

1

x′

2

x′

3

x′′

1

x′′

2

x′′

3

3 × 2

3 × 8

3 × 8

Gm

G′

m

G
m

′′

Hc

α1 = 2

α3 = 8

α2 = 8

3×8

2

3×8

2

4×8

2

4×8

2

Figure 1: Example of the transformation

Proof

By construction Hc contains an even number of vertices, and the fact that each
vertex of G′

c is connected to an equivalent vertex in G′′

c , finding a perfect matching on
the graph Hc is possible. This means that there exists a schedule such that each task
is executed only once time. Note that the matching in G′

c is not necessarily identical
to the one in G′′

c , but they still have the same weight. The makespan obtained
is equal to the sum of the processing times of the obtained blocks and those of
isolated tasks. And since each block has an execution time equal to the weight of
the equivalent edge in the perfect matching, we have the sum of edges weights of
the matching which is equal to the blocks sum of the scheduling obtained.

Thus, for a minimum weight perfect matching C, we can associate a schedule of
minimum length C and vice versa. This ends the proof of the Proposition 1.

!

Proof continuation of Theorem 3

The proposition 1 shows the relationship between a solution to our problem with
Gm and a solution of a minimum weight perfect matching in Hc. However, the
Edmonds algorithm can find a minimum weight perfect matching in O(n2m) [5]. So
the optimization problem with Gm is polynomial, and if one adds the execution of
the blocks created by removed vertices, this leads to the problem 1|ai = Li = bi =
α(Ai), G = chain|Cmax is polynomial.

!

In following, we study the variation of the complexity in the case of the com-
patibility graph is oriented in presence of a 1-stage bipartite graph according to the
different values.

Theorem 4 The problem of deciding whether an instance of 1|ai = Li = bi =
α(Ai), Gc =1−stage bipartite,∆Gc

= 2|Cmax is polynomial.

Proof Let Gc = (X, Y, E) be a 1-stage bipartite compatibility graph. Y -tasks will
always be scheduled sequentially. The aim is to fill their idle time with a maximum
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of tasks of X, while the remained tasks will be executed after the Y -tasks. We just
have to minimize the length of the remained tasks. Note that dGc

(y) ≤ 2. The
algorithm use three steps :

1. for each task y ∈ Y such that 3α(x1) + 3α(x2) ≤ α(y) where x1 and x2 are
the only two neighbors of Y , we add y to the schedule and execute x1 and x2

sequentially during the idle time of y. Then we remove y, x1 and x2 from the
instance.

2. Each remaining task y ∈ Y admits at most two incoming arcs (x1, y) and /
or (x2, y). We add a weight α(x) to the arc (x, y) for each x ∈ N(y), then
perform a maximum weight matching on Gc in order to minimize the length of
the remained tasks of X. Thus, the matched coupled-tasks are executed, and
these tasks are removed from Gc.

3. Then, remaining tasks from X are allotted sequentially after the other tasks.

The complexity of an algorithm is O(n3). !

Theorem 5 The problem of deciding whether an instance of 1|ai = Li = bi =
α(Ai), Gc =1−stage bipartite,∆Gc

= 3|Cmax has a schedule of length at most 54n
is NP-complete with n the number of tasks.

Proof It is easy to see that 1|ai = Li = bi = α(Ai), Gc =1−stage bipartite,∆Gc
=

3|Cmax = 54n ∈ NP. Our proof is based on a reduction from one-in-(2,3)sat(2,1̄):
given a set V of n boolean variables with n mod 3 ≡ 0, a set of n clauses of
cardinality two and n/3 clauses of cardinality three, we construct an instance π of
the problem 1|ai = Li = bi = α(Ai), Gc =1−stage bipartite,∆Gc

= 3|Cmax = 54n in
following way (Figure 2 illustrates the construction):

1. For all x ∈ V, we introduce four variable-tasks: x, x′, x̄ and x̄′ with (ai, Li, bi) =
(1, 1, 1), ∀i ∈ {x, x′, x̄, x̄′}. This variable-tasks set is noted VT .

2. For all x ∈ V, we introduce three literal-tasks Lx, C
x and C̄x with Lx =

(2, 2, 2);Cx = C̄x = (6, 6, 6). The set of literal-tasks is denoted LT .

3. For all clauses with a length of three, we introduce two clause-tasks C i and C̄ i

with C i = (3, 3, 3) and C̄ i = (6, 6, 6).

4. For all clauses with a length of two, we introduce one clause-task C i with
C i = (3, 3, 3). The set of clause-tasks is denoted CT .

5. The following arcs model the compatibility constraints:

(a) For all boolean variables x ∈ V, we add the arcs (Lx, C
x) and (Lx, C̄

x)

(b) For all clauses with a length of three denoted Ci = (y ∨ z ∨ t), we add the
arcs (y, C i), (z, C i), (t, C i) and (ȳ′, C̄ i), (z̄′, C̄ i), (t̄′, C̄ i).

(c) For all clauses with a length of two denoted Ci = (x ∨ ȳ), we add the arcs
(x′, C i) and (ȳ, C i).

(d) Finally, we add the arcs (x, Cx), (x′, Cx) and (x̄, C̄x) and (x̄′, C̄x).
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x

y z

x′ x̄x̄′

ȳ′ z̄′

Lx

Cx C̄x

(x, y, z)

(x, y, z)

C C′

C ̸= C′ two clause-tasks of lenght two

(a
i
,L

i
,b

i
),
=

(1
,1
,1
),
∀
i
∈
{x

,x
′
,x̄

,x̄
′
},
∀
x
∈
V Lx = (2, 2, 2);Cx = C̄x = (6, 6, 6), x ∈ V

C(x,y,z) = (3, 3, 3)

C(x,y,z) = (6, 6, 6)

CC = CC′

= (3, 3, 3)

Figure 2: A partial compatibility graph for the NP-completeness of the scheduling problem
1|bipartite of depth one, d(Gc) ≤ 3,αi = ai = Li = bi|Cmax

This transformation can be computed clearly in polynomial time. The proposed
compatibility graph is 1-stage bipartite and dGc

(x) ≤ 3, ∀x ∈ VT ∪ LT ∪ CT .
In follows, we say that a task x is merged to a task y, if it exists a compatibility

constraint from x to y; i.e.the coupled-task x may be executed during the idle of
coupled-task y.

• Let us first assume that there is a schedule with length of 54n at most. We
prove that there is a truth assignment I : V → {0, 1} such that each clause
in C has exactly one true literal (i.e. one literal equal to 1). We make some
essentials remarks:

1. The length of the schedule is given by an execution time of the coupled-
tasks admitting only incoming arcs, and the value is 54n = 3αCT |CT | +
αLT (|LT | − |{Lx, x ∈ V}|) = 9|{C i ∈ CT of length 2 and 3}| + 18|{C̄ i ∈
CT }|+ 18|{Cx and C̄x ∈ LT }| = 9× 4n

3
+ 18× n

3
+ 18× 2n.

Thus, all tasks from VT ∪ {Lx, x ∈ V} must be merged with tasks from
CT ∪ (LT − {Lx, x ∈ V}).

2. By the construction, at most three tasks can be merged together.

3. Lx is merged with Cx or C̄x.

4. The allocation of coupled-tasks from CT ∪ (LT − {Lx, x ∈ V}) leads to
18n idle time. The length of the variable-tasks VT and Lx equals 18n (in
these coupled-tasks there are 6n idle times).

5. If the variable-tasks x and x′ are not merged simultaneously with Cx,
i.e.only one of these tasks is merged with Cx, so, by with the previous dis-
cussion, it is necessary to merge a literal-task Ly, with x ̸= y one variable-
task (ȳ or ȳ′) with Cy or C̄y. It is impossible by size of coupled-tasks. In
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the same ways, the variable-tasks x̄ et x̄′ are merged simultaneously with
C̄x.

6. Hence, first x and x′ are merged with Cx or with clause-task where the
variable x occurs. Second, x̄ and x̄′ are merged with C̄x or a clause-task.

So, we affect the value "true" to the variable l iff the variable-task l is merged
with clause-task(s) corresponding to the clause where the variable l occurs. It
is obvious to see that in the clause of length three and two we have one and
only one literal equal to "true”.

• Conversely, we suppose that there is a truth assignment I : V → {0, 1}, such
that each clause in C has exactly one true literal.

– If the variable x = true then we merged the vertices Lx with Cx; x with the
clause-task C i corresponding to the clause of length three which x occurs;
x′ with the clause-task C i corresponding to the clause of length two which
x occurs; and x̄, x̄′ with C̄x.

– If the variable x = false then we merged the vertices Lx with C̄x; x̄ with
the clause-task corresponding to the clause of length two which x̄ occurs;
x̄′ with the clause-task C̄ i corresponding to the clause (C) of length three
which x occurs; and x, x′ with Cx.

For a feasible schedule, it is sufficient to merge vertices which are in the same
partition. Thus, the length of the schedule is at most 54n.

!

5 Polynomial-time approximation algorithms

5.1 Star graph

Theorem 6 The problem 1|ai = Li = bi = α(Ai), G = star|Cmax admits a FPT AS.

Proof The central node admits only incoming arcs (the case of the central node
admits at least one outcoming arc is given by Corollary 1). Therefore, we may use
the solution given by the subset sum (ss) (see [9] and [10])). Indeed, the schedule
is follows: the central node is executed first with the coupled-tasks chosen by an
FPT AS algorithm, the remaining tasks are processed after the completion of the
central node.

!

5.2 1−stage bipartite graph

Scheduling coupled-tasks during the idle time of others can be related to packing
problems, especially when the constraint graph Gc is a bipartite graph. In the
following, we propose several approximation when Gc is a 1−stage bipartite graph.

Lemma 1 Let P be a problem with P ∈ {mkarmssdc,mss} such that P admits a
ρ-approximable then the following problems

12



1. 1|ai = Li = bi = α(Ai), Gc = 1-stage bipartite|Cmax,

2. 1|αi = ai = Li = bi, complete bipartite|Cmax

3. 1|αi = ai = Li = bi, complete bipartite|Cmax where the constraint graph is a
complete bipartite G=(X,Y), and all the tasks from Y have the same α(y).

is approximable to a factor 1 + (1−ρ)
3

.

Proof

1. Let consider an instance of 1|αi = ai = Li = bi, Gc =1−stage bipartite|Cmax

such that Gc = (X, Y, E), where X∪Y are coupled-tasks, and by a stretch factor
function α : X∪Y → IN, and arcs from E model the constraints between tasks.

In such instance, any valid schedule consists to find for each task y ∈ Y a subset
of compatible tasks Xy ⊆ X to pack into y ∈ Y , each task of x being packed
at most once. Let Xp = ∪y∈YXy be the union of tasks of X packed into a task
from Y . Let Xp̄ the set of remaining tasks, with Xp̄ = X/Xp. Obviously, we
have:

seq(Xp) + seq(Xp̄) = seq(X) (1)

As Y is an independent set in G, tasks from Y have to be scheduled sequentially
in any (optimal) solution. The length of any schedule S is then the time to
execute entirely tasks from Y plus the length to schedule sequentially the tasks
from Xp̄. Formally:

Cmax(S) = seq(Y ) + seq(Xp̄) (2)

From Eq. (1) and (2) we have:

Cmax(S) = seq(Y ) + seq(X)− seq(Xp). (3)

We use here a reduction to mkar: each task x from X is an item having a
weight 3.α(x), each task from Y is a bin with capacity α(y), and each item x
can be packed on y if and only if the edge {x, y} belong to the bipartite graph.

Using algorithms and results from the literature, one can obtain an assignment
of some items into bins, and note Xp the set of packed items. The cost of the
solution for the mkarproblem is seq(Xp). If mkar is approximable to a factor
ρ, then we have :

seq(Xp) ≥ ρ× seq(X∗

p ), (4)

where X∗

p is the set of packable items with the maximum profit. Combining
Eq. (3) and (4) , we obtain a solution for 1|αi = ai = Li = bi, bipartite|Cmax

with a length:

Cmax(S) ≤ seq(Y ) + seq(X)− ρ× seq(X∗

p ) (5)

As X and Y are two fixed sets, a optimal solution S∗ with minimal length
Cmax(S

∗) is obtained when seq(Xp) is maximum, i.e.when Xp = X∗

p . The
length of any optimal solution is here:

Cmax(S
∗) = seq(Y ) + seq(X)− seq(X∗

p ) (6)
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Using Eq. (5) and (6), the ratio obtained between our solution S and the
optimal one S∗ is :

Cmax(S)

Cmax(S∗)
≤

seq(Y ) + seq(X)− ρ× seq(X∗

p )

seq(Y ) + seq(X)− seq(X∗

p )
≤ 1+

(1− ρ)× seq(X∗

p )

seq(Y ) + seq(X)− seq(X∗

p )
(7)

By definition, X∗

p ⊆ X. Moreover, as the processing time of X∗

p cannot excess
the idle time of tasks from Y , we obtain:

seq(X∗

p ) ≤
1

3
seq(Y ) (8)

Combined to Eq. (7) , we obtain the following upper bound:

Cmax(S)

Cmax(S∗)
≤ 1 +

(1− ρ)

3
. (9)

We obtain the desired result.

2. For the problem 1|αi = ai = Li = bi, complete bipartite|Cmax, the proof is
identical keeping in mind that mssdc is a special case of mkar where each
item can be packed in any bin.

3. For the problem 1|αi = ai = Li = bi, complete bipartite|Cmax where the con-
straint graph is a complete bipartite G = (X, Y ), and all the tasks from Y have
the same α(y), the proof is identical as previously since mssdc is a generaliza-
tion of mss.

!

Theorem 7 The following problems admits a polynomial-time approximation algo-
rithms:

1. The problem 1|ai = Li = bi = α(Ai), Gc = 1-stage bipartite|Cmax is approx-
imable to a factor 7

6
.

2. The problem 1|ai = Li = bi = α(Ai), Gc = complete 1-stage bipartite|Cmax

admits a PT AS.

3. The problem 1|ai = Li = bi = α(Ai), Gc = complete 1-stage bipartite|Cmax,
where all the tasks from Y have the same stretch factor α(y):

(a) is approximable to a factor 13
12

.

(b) admits a PT AS.

Proof

1. Authors from [4] proposed a ρ = 1
2
−approximation algorithm for mkar. Reusing

this result with Lemma 1, we obtain a 7
6
−approximation for 1|ai = Li = bi =

α(Ai), Gc = 1-stage bipartite|Cmax.

2. We know that mssdc admits a PT AS [1], i.e.ρ = 1− ε. Using this algorithm
to compute such a PT AS and Lemma 1, we obtain an approximation ratio of
1 + ε

3
for this problem.
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3. The problem 1|ai = Li = bi = α(Ai), Gc = complete 1-stage bipartite|Cmax,
where all the tasks from Y have the same stretch factor α(y):

(a) Authors from [3] proposed a ρ = 3
4
−approximation algorithm for mss.

Reusing this result with Lemma 1, we obtain a 13
12
−approximation for

1|αi = ai = Li = bi, complete bipartite|Cmax.

(b) They also proved that mss admits a PT AS [2] , i.e.ρ = 1 − ε. Using
the algorithm to compute such a PT AS and Lemma 1, we obtain an
approximation ratio of 1 + ε

3
for 1|ai = Li = bi = α(Ai), Gc = complete 1-

stage bipartite|Cmax when nodes from Y have the same stretch factor.

!

5.3 2−stage bipartite graph

Theorem 8 The problem 1|ai = Li = bi = α(Ai), Gc = 2-stage bipartite|Cmax is
approximable to a factor 13

9
.

Proof Reusing the notation introduced for k-stage bipartite graph (see Section 5.3),
we consider an instance of 1|ai = Li = bi = α(Ai), Gc = 2-stage bipartite|Cmax

where Gc = (V0 ∪ V1 ∪ V2, E1 ∪E2) , where each arc in Ei is from a vertex in Vi to a
vertex in Vi+1, for i ∈ 1, 2.

Definition 1 We note Vip (p=packed), (resp. Via (a=alone) ) i = 0, 1 the set of
tasks merged (resp. remaining) in any task from y ∈ Vi+1 in a solution S. Moreover,
Vib (b=box), i = 1, 2 the set of tasks scheduled with some tasks from Vi−1 merged
into it.This notation is extended to a optimal solution S∗ by adding a star in the
involved variables.

Considering the specificities of the instance, in any (optimal) solution we make
some essential remarks:

1. Tasks from V0 are source nodes for Gc, and can be either scheduled alone, or
merged into some tasks from V1 only. Given any solution S to the problem on
Gc, {V0p, V0a} is a partition of V0.

2. Tasks from V1 can be either scheduled alone, merged into some tasks from V2,
or scheduled with some tasks from V0 merged into it. Given any solution S to
the problem on Gc, {V1p, V1a, V1b} is a partition of V1.

3. Tasks from V2 form an independent set for Gc, and have to be scheduled se-
quentially in any schedule, either alone, or with some tasks from V1 merged
into it. Given any solution S to the problem on Gc, {V2a, V2b} is a partition of
V2.

Any solution would consist to schedule first each task with at least one task merged
into it, then to schedule the remaining tasks (alone). Given an optimal solution S∗,
the length of S∗ is given by the following equation:

S∗ = seq(V1
∗

b) + seq(V2b) + seq(V0
∗

a) + seq(V1
∗

a) + seq(V2
∗

a) (10)
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or, more simply

S∗ = seq(V2) + seq(V1
∗

b) + seq(V0
∗

a) + seq(V1
∗

a) (11)

Note that V0
∗

p and V1
∗

p are not part of the equation, as they are scheduled during
the idle time of V1

∗

b and V2
∗

b .
The main idea of the algorithm is divided into three parts:

1. First we compute a part of the solution with a 7
6
-approximation on G0 thanks

to Theorem 7, where G0 = Gc[V0 ∪ V1] is the 1-th stage of Gc.

2. Then we compute a second part of the solution with a 7
6
-approximation on G1

thanks to Theorem 7, where G1 = Gc[V1 ∪ V2] is the 2-th stage of Gc.

3. To finish we merge these two parts and resolve potential conflicts between them.

Let consider an instance restricted to the graph G0. Note that G0 is a 1-stage
bipartite graph. Let S∗[G0] be an optimal solution on G0. Let us note V0

∗

p[G0] the
set of tasks from V0 packed into tasks from V1 in S∗[G0], and V0

∗

a[G0] the set of
remaining tasks.

Obviously, we have:

S∗[G0] = seq(V1) + seq(V0
∗

a[G0]) (12)

Given any solution S[G0], let us note V1b[G0] the set of tasks from V1 with at least
one task from V0 merged into them, and V1a[G0] the remaining tasks. Let us note
V0p[G0] the set of tasks from V0 merged into V1, and V0a[G0] the set of remaining
tasks. We use Theorem 7, Lemma 1, and the demonstration presented in their proof
from [4], to compute a solution S[G0] such that:

seq(V0p[G0]) ≥
1

2
seq(V0

∗

p[G0]) (13)

Note that we have

seq(V0p[G0]) + seq(V0a[G0]) = seq(V0
∗

p[G0]) + seq(V0
∗

a[G0]) = seq(V0) (14)

As V0
∗

a[G0] represents the set of tasks not packed into V1 in an optimal S∗[G0]
such that seq(V0

∗

a[G0]) is minimal, we know that seq(V0
∗

a[G0]) ≤ seq(V0
∗

a) .Combining
Equation (13) and Equation (14), one obtain:

seq(V0a[G0]) ≤ seq(V0
∗

a[G0]) +
1

2
seq(V0

∗

p[G0]) ≤ seq(V0
∗

a) +
1

2
seq(V0

∗

p[G0]) (15)

We use an analog reasoning on an instance restricted to the graph G1. Let S∗[G1]
be an optimal solution on G1. Let us note V1

∗

p[G1] the set of tasks from V1 packed
into tasks from V2 in S∗[G1], and V1

∗

a[G1] the set of remaining tasks. Given any
solution S[G1], let us note V2b[G1] the set of tasks from V2 with at least one task
from V1 merged into them, and V1a[G1] the remaining tasks. One can compute a
solution S[G1] based on a set of tasks V1p[G1] packed in V2 such that:

seq(V1p[G1]) ≥
1

2
seq(V1

∗

p[G1]) (16)
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and

seq(V1a[G1]) ≤ seq(V1
∗

a[G1]) + 1/2seq(V1
∗

p[G1]) ≤ seq(V1
∗

a) + 1/2seq(V1
∗

p[G1]) (17)

as we know that seq(V1
∗

a[G1]) ≤ seq(V1
∗

a).
We design the feasible solution S for Gc as follows:

• We compute a solution S[G1] on G1, then we add to S each task from V2 and
the tasks from V1 merged into them (i.e. V1p[G1]) in S[G1].

• Then we compute a solution S[G0] on G0, then we add to S each task v from
V1b[G0]/V1p[G1] and the tasks from V0 merged into them.

• The tasks V1a[G1]/V1b[G0] and V0a[G0] are added to S and scheduled sequen-
tially.

• We note Vconflict the set of remaining tasks, i.e. the set of tasks from V0 which
are merged into a task v ∈ V1 in S[G0], thus that v is merged into a task from
V2 in S[G1].

Remark that:

seq(V1b[G0]/V1p[G1]) + seq(V1a[G1]/V1b[G0]) = V1a[G1]) (18)

Thus the cost of our solution S is

S = seq(V2) + seq(V1a[G1]) + seq(V0a[G0]) + seq(Vconflict) (19)

It is also clear that:

seq(Vconflict) ≤
1

3
seq(V1p[G1]) ≤

1

3
seq(V1

∗

p[G1]) (20)

Using Equations (15), (17) and (20) in Equation (19), we obtain

S ≤ seq(V2) + seq(V1
∗

a) +
5

6
seq(V1

∗

p[G1]) + seq(V0
∗

a) +
1

2
seq(V0

∗

p[G0]) (21)

Using Equations ( 11) and (21), we obtain

S ≤ S∗ +
5

6
seq(V1

∗

p[G1]) +
1

2
seq(V0

∗

p[G0]) (22)

We know that S∗ ≥ seq(V2). We also know that tasks from (V1
∗

p[G1]) must be
merged into tasks from V2 and cannot exceed the idle time of V2, implying that
seq(V1

∗

p[G1])) ≤
1
3
seq(V2). One can write the following :

5
6
seq(V1

∗

p[G1])

S∗
≤

5
6
× 1

3
seq(V2)

seq(V2)
≤

5

18
(23)

We know that tasks from (V0
∗

p[G0]) must be merged into tasks from V1 and cannot

exceed the idle time of V1, implying that seq(V0
∗

p[G0])) ≤
1
3
seq(V1). We also know

that S∗ ≥ seq(V1), as V1 is an independent set of Gc. One can write the following :

1
2
seq(V0

∗

p[G0])

S∗
≤

1
2
.1
3
seq(V1)

seq(V1)
≤

1

6
(24)
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Finally, with Equations (22), (23) and (24) the proof is finished:

S

S∗
≤

13

9
(25)

!

6 Conclusion

The results proposed in this paper are summarized in Table 2. New presented re-
sults suggest the main problem of coupled tasks scheduling remains difficult even
for restrictive instances, here stretched coupled-tasks when the constraint graph is
a bipartite graph. When we consider stretched coupled-tasks, the maximum degree
∆G seems to play an important role on the problem complexity, as the problem
is already NP-Hard to solve when the constraint graph is a star. Approximation
results presented in this paper show the problem can be approximated with inter-
esting constant ratio on k−stage bipartite graphs for k = 1 or 2. The presented
approach suggests a generalization is possible for k ≥ 3. This part constitutes one
perspective of this work. Other perspective would consists to study coupled-tasks
on other significant topologies, including degree-bounded trees, or regular topologies
like the grid.
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