Benoît Darties

Jean-Claude Konig

Scheduling stretched coupled-tasks with compatibilities constraints : model, complexity and approximation results for some class of graphs

Keywords: coupled-tasks, scheduling, complexity, approximation algorithm, compatibility graph tâches couplées, ordonnancement, complexité, algorithmesd'approximation, graphe de compatibilité

We tackle the makespan minimization coupled-tasks problem in presence of compatibility constraints. In particular, we focus on stretched coupled-tasks, i.e.coupledtasks having the same sub-tasks execution time and idle time duration. We study severals problems in frame works of classic complexity and approximation for which the compatibility graph G c is bipartite (star, chain, ...)I ns u c hc o n t e x t ,w ed esign some efficient polynomial-time approximation algorithms according to difference parameters of the scheduling problem. When G c is a k-stage bipartite graph, we propose, among other, a 7 6 -approximation algorithm when k =1 ,a n da 13 9approximation algorithm when k =2.

1I n t r o d u c t i o n

The detection of an object by a radar system generally uses thef o l l o w i n gp r o c e s s : at r a n s m i t t e re m i t sap u l s ei ns o m ed i r e c t i o nw h i c hp r o p a g a t es though the environmental medium. If the pulse encounters an object, it is reflected back to the transmitter. Using the transmit time and the direction of thep u l s e ,t h et r a n s m i tter can compute the position of the object. Formally this process is divided into three parts: (1) a first operation of duration a as e n s o re m i t st h ep u l s e ; [START_REF] Caprara | The Multiple Subset Sum Problem[END_REF]t h e n the system waits for a fixed amount of time L the propagation of the pulse and its potential reflexion; [START_REF] Caprara | A 3/4-Approximation Algorithm for Multiple Subset Sum[END_REF] then in a second operation of duration b the sensor listen to any pulse echo to conclude of the presence or not of an object and compute its position. Due to the nature of the application, the system worksi nan o n -p r e e m p t i v e mode. Varying the values of parameters a, b and L allows, among others, to adapt the detection range. On mono-processor systems, the idle processing time L can be reused to perform other operations, i.e.to schedule another object detection process using another sensor.

Scheduling issues appear when several sensors using different frequencies can work in parallel, while acquisitions using the same frequency have to be delayed in order to avoid interferences. Two acquisition processes i and j are said compatible if they can work in parallel.

We consider in this pap er a mono-pro cessor system using several sensors, some of them using the same frequencies. Given a set of data acquisitions with they duration and the list of compatible acquisitions, finding a optimal schedule which minimizes the makespan is a problem hard to solve in general, even under restricted hypothesis on the values of a, b, L and/or on the list of compatible acquisitions. We study the variation of the complexity when for any acquisition i,t h ed u r a t i o n so f each of its operations and the idle time between them are equal. We propose exact and approximation results according to different hypothesisw em a d eo nt h el i s to f compatible acquisitions.

This article is organized as follows: first we present the general coupled-task model, a natural way to model such a data acquisition process,andtherelatedw ork. In the next section we introduce the stretched coupled-tasksm o d e la n ds u m m a r i z e the contribution of this paper. The computational complexity results are detailed in Section 4, while Section 5 focuses on polynomial-time approximation algorithms with performance guarantee for NP-Hard instances

2P r e s e n t a t i o n o f c o u p l e d -t a s k s a n d r e l a t e d w o r k

An a t u r a lw a yt om od e ld a t aa c q u i s i t i o np r oc e s sp r e s e n t e di nintroduction is to use coupled-tasks,introducedfirstbyShapiro [START_REF] Shapiro | Scheduling coupled tasks[END_REF]: eachacquisitiontaskisacoupled-task A i =(a i ,L i ,b i) composed by two sub-tasks of processing time a i and b i ,respectiv ely dedicated for wave transmission and echo reception. Betweent h e s et w os u b -t a s k s there is a fixed idle time L i which represents the spread of the echo in the medium. We work in a non-preemptive mo de: once started, a sub-task cannot be stopped and then continued later. A valid schedule implies here that for any task started at t,the first sub-task is fully executed between t and t+a i ,andthesecondbetw eent+a i +L i and t + a i + L i + b i .W en o t eA = {A 1 ,...,A n } the collection of coupled-tasks to be scheduled. Two tasks A i and A j are said compatible if they use different wave frequencies; any sub-task of A i may be executed during the idle time of A j or reciprocally. A valid schedule implies here that for any tasks A i and A j ,i fe i t h e rt h efi r s ta n d / o r the second sub-task of A i is scheduled during the idle time of A j ,t h e nA i and A j must be two compatible tasks. For clarity we say that A i and A j are executed in parallel in such a schedule. The parallel execution of A i and A j may exist under to configurations, according to the values of a i , L i , b i , a j , L j , b j .Ag r a p hG =(A,E) is used to model such this compatibility, where edges from E link any pair of compatible coupled-tasks.

Due to the combinatory of the parameters of the problem, we uset h eG r a h a m ' s notation scheme α|β|γ [START_REF] Graham | Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey[END_REF] (respectively the machine environment, job characteristic and objective function) to characterize the problems related to coupled-tasks. The job characteristics summarizes the conditions made on the values of a i , L i , b i (independent between tasks, or equal to a constant), and the shape of the compatibility graph G.T h ec o u p l e d -t a s k ss c h e d u l i n gp r o b l e m su n d e rc o m p a t i b i l i ty constraints has been studied in the framework of classic complexity and approximation (see Table 1 -only main results are retained).

(a i ,L i ,b i) Complexity Approximation Ref. (a i ,a i ,a i) NPC 3/2 [13] (p, L, p) NPC 7/4+ L 4p [15] (a, L, b) NPC if L ≥ a + b else Poly 3a+2b 2a+2b [12] (1, 2, 1) NPC 10 9 if G c is triangle free else 13 12 [14] (p, p, b i) or (a i ,p,p)
Poly [START_REF] Simonin | Theoretical Aspects of Scheduling Coupled-Tasks in the Presence of Compatibility Graph[END_REF] Table 1: Computational complexity and p olynomial-time approximation algorithms for 1|(a i ,L i ,b i),G c |C max according to the triplet (a i ,L i ,b i).

3S t r e t c h e d c o u p l e d -t a s k : m o d e l a n d c o n t r i b u t i o n

Model

This paper focuses on stretched coupled-tasks, i.e.coupled-tasks for what the durations of the first sub-task, the second sub-task and the idlet i m ea r ee q u a lt oa stretch-factor applied to an original task

(a i ,L i ,b i)=(1, 1, 1).F o r m a l l y ,as t r e t c h e d coupled-task A i is a task such that a i = L i = b i = α(A i),w h e r eα(A i)
is the stretch factor of the task. In the rest of the paper, coupled-tasks area l w a y ss t r e t c h e d coupled-tasks, and noted A i when we need to refer to the values a i , b i and L i ,o r with a single identifier, i.e. x,o t h e r w i s e . I ns u c hc o n fi g u r a t i o n ,f o rt w oc o m p a t i b l e tasks A j and A j to be scheduled in parallel, one of the following conditions must hold:

1. either α(A i)=α(A j):t h e nt h ei d l et i m eo fo n et a s ki sf u l l ye x p l o i t e dt o schedule a sub-task from the other (i.e. b i is scheduled during L j ,a n da j is scheduled during L i), and the completion of the two tasks is done without idle time.

2. or 3α(A i) ≤ α(A j):t h e nt a s kA i is fully executed during the idle time L j of A j .F o rs a k eo fs i m p l i f y ,w es a yw epack A i into A j .

To p o l o g y

Complexity Approximation uug(G c)=Star graph NP -C (Theorem 2) FPT AS (Theorem 6) uug(G c)=Chain graph O(n 3) (Theorem 3) G c = 1-stage bipartite, ∆(G c)=2 O(n 3) (Theorem 4) G c = 1-stage bipartite, ∆(G c)=3
NP -C (Theorem 5) NP -C (see [START_REF] Simonin | Complexity and approximation for scheduling problem for coupled-tasks in presence of compatibility tasks[END_REF]) PT AS (Theorem 7) G c =c o m p l e t e1-stage bipartite NP -C (see [START_REF] Simonin | Complexity and approximation for scheduling problem for coupled-tasks in presence of compatibility tasks[END_REF]) PT AS (Theorem 7) with constraint α(x)=α(y), ∀x, y ∈ X 1 From this observation, one can deriver from the compatibility graph G =(A,E) ad i r e c t e dc o m p a t i b i l i t yg r a p hG c =(A,E c) by assigning a direction to each edge E from the task with the lowest stretch factor to the task with the highest one. If two compatible tasks x and y have the same stretch factor, then E c contains both the arc (x, y) and the arc inverted (y, x).R e m a r kt h a ti ff o ra n yp a i ro fc o m p a t i b l e tasks x and y we have α(x) ̸ = α(y),t h e nG c is a directed acyclic graph.

Note that when the job characteristics refer to an undirectedt o p o l o g yf o rt h e compatibility graph (i.e. star, chain), we consider in fact ag r a p hG c such that their undirected underlying graph uuc(G c) correspond to the given class.

Given a valid schedule σ and a task A i ,w en o t eσ(A i) the date when A i is being executed, i.e.the first (resp. second) sub-task is executed between σ(A i) and σ(A i)+a i (resp. between σ(A i)+a i + L i and σ(A i)+a i + L i + b i). We also denote by seq(W) the sum of the processing time of the tasks in any set W :

seq(W)=3 x∈W α(x)
Remark that, when W is an independent set for G c ,t h ec o s to fa n yo p t i m a l schedule is at least seq(W).W en o t eN G (v) the neighborhood of v in G.W en o t e d G (v)=|N(x)| the degree of v in G,a n d∆ G the maximum degree of G.

As we focus our work on bipartite graphs, we recall that a k-stage bipartite graph

is a digraph G =(V 0 ∪•••∪V k ,E 1 ∪•••∪E k)
where V 0 ...V k are disjoint vertex sets, and each arc in E i is from a vertex in V i to a vertex in V i+1 .T h ev e r t e xo fV i are said to be at rank i,a n dt h es u b g r a p hG i =(

V i-1 ∪ V i ,E i) is called the i-th stage of G,andw ewriteG = G 1 + •••+ G k .N o t et
h a tG is acyclic, and that vertices from V 0 are always source in G (nodes only incident to outgoing arcs) , while vertices from V k are sink (nodes only incident to ingoing arcs). For clarity, a 1-stage bipartite graphs may be referred as triplet (X, Y, E).

Contribution

We define the main problem of this study as 1|a i = L i = b i = α(A i),G c |C max ,s tu d y the variation of the complexity when G c or uug(G c) varies, and propose approximation results for instances hard to solve. The results proved in this article are summarized in Table 2.

Prerequisites

We use in this pap er known complexity results on four packing-related problems:

1. The subset sum (ss)p r o b l e m i s a k n o w n p r o b l e m i n w h i c h , g i v e n a s e t S of n positive values and v ∈ IN ,o n ea s ki st h e r ee x i s t sas u b s e tS * ⊆S such that i∈S * i = v.T h i sd e c i s i o np r o b l e mi sw e l l -k n o w nt ob eNP-complete (see [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-completeness[END_REF]). The optimization version problem is sometimes view as a knapsack problem, where each item profits and weights coincide to a value in S,t h ek n a p s a c k capacity is v,a n do n et r yt ofi n dt h es e to fp a c k a b l ei t e m sw i t hm a x i m u m profit.

2. The multiple subset sum (mss)p r o b l e m i s a v a r i a n t o f w e l l -k n o w n bin packing in which a number of identical bins is given and one would like to maximize the overall weight of the items packed in the bins such that the sum of the item weights in every bin does not exceed the bin capacity.T h ep r o b l e mi s also a special case of the Multiple knapsack problem in which all knapsacks have the same capacities and the item profits and weights coincide. Caprara, and al. [START_REF] Caprara | The Multiple Subset Sum Problem[END_REF] proved that mss admits a PT AS,b u td o e sn o ta d m i taFPT AS even for only two knapsacks. They also proposed a 3 4 -approximation algorithm in [START_REF] Caprara | A 3/4-Approximation Algorithm for Multiple Subset Sum[END_REF].

multiple subset sum with different knapsack capacities (mssdc)

[1] is an extension of mss considering different bin capacities. mssdc also admits a PT AS [START_REF] Caprara | A PTAS for the Multiple Subset Sum Problem with different knapsack capacities[END_REF].

As a generalization of mssdc, multiple knapsack assignment restriction (mkar)p r o b l e m c o n s i s t s t o p a c k s w e i g h t e d i t e m s i n t o n o n -i d e n t i c al

capacity-constrained bins, with the additional constraints that each item can be packed in some bins only. Each item as a profit, the objectiveh e r ei st o maximize the sum of profits of packed items. Considering the profit of each item equals its weight, [START_REF] Dawande | Approximation Algorithms for the Multiple Knapsack Problem with Assignment Restrictions[END_REF] proposed a 1 2 -approximation. We also use a known result concerning a variant of the NP-complete problem 3SAT [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-completeness[END_REF], denoted subsequently by one-in-(2,3)sat(2, 1):t h i sp r o b l e ma i mt oa s k is there exists an assignment of n boolean variables, with n mod 3 ≡ 0,w h i c h satisfies a set of n clauses of cardinality 2 and n/3 clauses of cardinality 3 such that:

• Each clause of cardinality 2 is equal to (x ∨ ȳ) for some x, y ∈V with x ̸ = y.

• Each of the n literals x (resp. of the literals x)f o rx ∈V belongs to one of the n clauses of cardinality 2,t h u st oo n l yo n eo ft h e m .

• Each of the n (positive) literals x belongs to one of the n/3 clauses of cardinality 3,t h u st oo n l yo n eo ft h e m .

• Whenever (x ∨ ȳ) is a clause of cardinality 2 for some x, y ∈V,t h e nx and y belong to different clauses of cardinality 3. Question: Is there a truth assignment I : V→{ 0, 1} whereby each clause in C has exactly one true literal?

Example: The following logic formula is a valid instance of one-in-(2,3)sat(2, 1):

(x 0 ∨ x 1 ∨ x 2) ∧ (x 3 ∨ x 4 ∨ x 5) ∧ (x 0 ∨ x 3) ∧ (x 3 ∨ x 0) ∧ (x 4 ∨ x 2) ∧ (x 1 ∨ x 4) ∧ (x 5 ∨ x 1) ∧ (x 2 ∨ x 5).
The answer to one-in-(2,3)sat(2, 1)is yes.I ti ss u ffi c i e n tt oc h o o s ex 0 =1(1 for true), x 3 =1and x i =0(0 for false) for i = {1, 2, 4, 5}.T h i sy i e l d sat r u t h assignment that satisfies the formula, and there is exactly one true literal for each clause. The proof of the NP-completeness is given in [START_REF] Giroudeau | Complexity and approximation for the precedence constrained scheduling problem with large communication delays[END_REF].

4C o m p u t a t i o n a l c o m p l e x i t y

We present severals NP-complete and polynomial results. We first show the problem is NP-hard even when the compatibility graph is a star (Theorem 2),b u tt h e n show it is solvable with a O(n 3) time complexity algorithm when G is a chain (Theorem 3). Then we focus our analysis when G c is a 1-stage bipartite graph. We prove the problem is solvable with a O(n 3) polynomial algorithm if ∆ G =2(Theorem 4), but becomes NP-hard when ∆ G =3(Theorem 5).

Theorem 1 The problem 1|a

i = L i = b i = α(A i),G = star|C max is polynomial if the central node admits at least one outcoming arc.
Proof If it exists a least one outgoing arc from the central node x,t h e nt h eo p t imal solution consists in executing the central node in one coupled-task y such that (x, y) ∈ G c .T h er e m a i n i n gt a s k sa r ep r o c e s s e ds e q u e n t i a l l ya f t e rt h ec ompletion of the y-task. 1. For each value i ∈S we introduce a coupled-task x with α(x)=i.L e tT be the set of these tasks.

Theorem 2 The problem 1|a i = L i = b i = α(A i),G = star|C max is NP-hard if the central node admits only incoming arc. Proof It is easy to see that 1|α(A i)=a i = L i = b i ,G = star|C max is in NP.
2. We add a task y with α y = a y = L y = b y =3v.

3. We define a compatibility constraint between each task x ∈T and y.

Clearly the compatibility graph G is a star with y as the central node. The transformation is clearly polynomial. It easy to see that 1|α

(A i)=a i = L i = b i ,G = star|C max is NP -hard as following:
• Considering the characteristics of the instance when G c is a star, any (optimal) valid scheduling consists in scheduling sequentially a subset T ′ ⊆T of task during the idle time of y,a n di ns c h e d u l i n ga f t e rt h i st h eo t h e rt a s k sf r o m T sequentially. Then the optimal schedule would consist in maximizing w = 3 t∈T ′ α t under the constraint w ≤ L y ,a n di np r o d u c i n gas c h e d u l ew i t ha total length equal to the time to schedule y (i.e. 3α y)plusthetimetosc hedule tasks not executed during L y the idle time of y (ie. • Conversely, if one can exhibit a subset S * ⊆Sthus that i∈S * i = v,t h e n one can produce an optimal schedule by executing sequentially tasks x with α x = i,w h e r ei ∈S * ,d u r i n gt h ei d l et i m eL y =3v of task y,a n db ye x e c u t i n g sequentially tasks z ∈S/S * immediately after the execution of y.

Theorem 3 The problem 1|a i = L i = b i = α(A i),G = chain|C max admits a polynomial-time algorithm.
Proof When the compatibility graph is a chain, compatibility constraints require tasks to be executed either alone, by pair only, or two consecutively tasks in another big one. The last case occurs only when a vertex x of degree two, called peak, has its two neighbor y and z which can be entirely executed in the inactivity time of x.

Thus if 3α y +3α z ≤ α x ,th e non ec ane x e c u tey and z during the idle time of x;T h e schedule length for this block is exactly 3α x .W ec a no b s e r v et h a tt h ep e a k sc a nn o t be executed in another tasks. Therefore, w.l.o.g. we can assume that there exists an optimal solution where the peak tasks and their neighbors aree x e c u t e dt o g e t h e r .

From this result, we can in p olynomial time mo dify G in G m where all peak vertices, their neighbors and the associated edges are removed. Thus G m is a collection of chains and the best scheduling associated to this graph requires tasks to be executed either alone or by pair.

Given x and y two compatibles tasks, only the two following configurationsallo w them to be scheduled pairwise (by blocks):

1. if α x = α y ,t h e no n ec a ne x e c u t ea y during the idle time of x and b x during the idle time of y.T h em a k e s p a nf o rt h i sb l o c ki se x a c t l y4α x .

2. if α x ≤ αy 3 ,t h e no n ec a ne x e c u t ee n t i r e l yx during the idle time of y,t h e makespan for this block is exactly 3α y ,includinganinactivityperiodofα y -2α x .

By weighting each edge of the graph G m with the sequential time of the overlap of the two tasks which form the edge, our problem has a solution ifw efindamatc hing that minimizes the weight of the matching edges and the isolated vertices.

This problem can be solved in a polynomial-time by reducing the problem to the search for a minimum weighted perfect matching. This problemcanbepolynomially solved in O(n 2 m) time complexity [START_REF] Edmonds | Maximum matching and a polyhedron with 0, 1 vertices[END_REF]. In order to obtain a graph with even number of vertices and such that finding a perfect matching is possible, we construct a graph H c =(V H ,E H ,w) and define a weighted function w : E → IN as follows:

1. Let I 1 be an instance of our problem with a compatibility graph G m =(V m ,E m), and I 2 an instance of the minimum weight perfect matching problem ing r a p h constructed from I 1 .W ec o n s i d e rag r a p hH c ,consistingoftwocopiesofG m denoted

G ′ m =(V ′ m ,E ′ m) and G ′′ m =(V ′′ m ,E ′′ m).T h ev e r t e xc o r r e s p o n d i n gt ox ∈ V m is denoted x ′ in G ′ m and x ′′ in G ′′ m .
M o r e o v e r ,∀i =1,...,n,a ne d g e{x ′ ,x ′′ } in E H is added and we state w({x ′ ,x ′′ })=3α ′

x .T h i sw e i g h tr e p r e s e n t st h es e q u e ntial time of the task alone 2 . In order to provide a polynomial-time algorithm solving our problem, we will prove firstly the following proposition.

x ′ .W eh a v eH c = G ′ m ∪ G ′′ m =(V ′ m ∪ V ′′ m ,E ′ m ∪ E ′′ m), with |V ′ m ∪ V ′′ m |
Proposition 1 For a minimum weight perfect matching C,w ec a na s s o c i a t ea schedule of minimum processing times C and vice versa.

A2 A1 A3 x ′ 1 x ′ 2 x ′ 3 x ′′ 1 x ′′ 2 x ′′ 3 3 × 2 3 × 8 3 × 8 Gm G ′ m G m ′′ Hc α1 =2 α3 =8 α2 =8 3×8 2 3×8 2 4×8 2 4×8 2

Proof

By construction H c contains an even number of vertices, and the fact that each vertex of G ′ c is connected to an equivalent vertex in G ′′ c ,findingaperfectmatchingon the graph H c is possible. This means that there exists a schedule such thateachtask is executed only once time. Note that the matching in G ′ c is not necessarily identical to the one in G ′′ c ,b u tt h e ys t i l lh a v et h es a m ew e i g h t . T h em a k e s p a no b t a i n e d is equal to the sum of the processing times of the obtained blocks and those of isolated tasks. And since each block has an execution time equal to the weight of the equivalent edge in the perfect matching, we have the sum ofe d g e sw e i g h t so f the matching which is equal to the blocks sum of the schedulingo b t a i n e d .

Thus, for a minimum weight perfect matching C,w ec a na s s oc i a t eas c h e d u l eo f minimum length C and vice versa. This ends the proof of the Proposition 1.

Proof continuation of Theorem 3

The proposition 1 shows the relationship between a solution to our problem with G m and a solution of a minimum weight perfect matching in H c .H o w e v e r , t h e Edmonds algorithm can find a minimum weight perfect matching in O(n 2 m) [START_REF] Edmonds | Maximum matching and a polyhedron with 0, 1 vertices[END_REF]. So the optimization problem with G m is polynomial, and if one adds the execution of the blocks created by removed vertices, this leads to the problem

1|a i = L i = b i = α(A i),G = chain|C max is polynomial.
In following, we study the variation of the complexity in the case of the compatibility graph is oriented in presence of a 1-stage bipartite graph according to the different values.

Theorem 4 The problem of deciding whether an instance of 1|a

i = L i = b i = α(A i),G c =1-stage bipartite, ∆ Gc =2|C max is polynomial.
Proof Let G c =(X, Y, E) be a 1-stage bipartite compatibility graph. Y -tasks will always be scheduled sequentially. The aim is to fill their idlet i m ew i t ham a x i m u m of tasks of X,w h i l et h er e m a i n e dt a s k sw i l lbee x e c u t e da f t e rt h eY -tasks. We just have to minimize the length of the remained tasks. Note that d Gc (y) ≤ 2.T h e algorithm use three steps :

1. for each task y ∈ Y such that 3α(x 1)+3α(x 2) ≤ α(y) where x 1 and x 2 are the only two neighbors of Y ,w ea d dy to the schedule and execute x1 and x 2 sequentially during the idle time of y.T h e nw er e m o v ey, x 1 and x 2 from the instance.

2. Each remaining task y ∈ Y admits at most two incoming arcs (x 1 ,y) and / or (x 2 ,y).W ea d d aw e i g h tα(x) to the arc (x, y) for each x ∈ N(y),t h e n perform a maximum weight matching on G c in order to minimize the length of the remained tasks of X.T h u s ,t h em a t c h e dc o u p l e d -t a s k sa r ee x e c u t e d ,a n d these tasks are removed from G c .

3. Then, remaining tasks from X are allotted sequentially after the other tasks.

The complexity of an algorithm is O(n 3).

Theorem 5 The problem of deciding whether an instance of

1|a i = L i = b i = α(A i),G c =1-stage bipartite, ∆ Gc =3
|C max has a schedule of length at most 54n is NP-complete with n the number of tasks.

Proof It is easy to see that 1. For all x ∈V,weintroducefourv ariable-tasks: x, x ′ , x and x′ with (a i ,L i ,b i)= (1, 1, 1), ∀i ∈{x, x ′ , x, x′ }.T h i sv a r i a b l e -t a s k ss e ti sn o t e dVT .

1|a i = L i = b i = α(A i),G c =1-stage bipartite, ∆ Gc = 3|C max =54n ∈NP.O u rp
2. For all x ∈V ,w ei n t r o d u c et h r e el i t e r a l -t a s k sL x ,C x and Cx with L x = (2, 2, 2); C x = Cx =(6, 6, 6).T h es e to fl i t e r a l -t a s k si sd e n o t e dLT .

3. For all clauses with a length of three, we introduce two clause-tasks C i and Ci with C i =(3, 3, 3) and Ci =(6, 6, 6).

4. For all clauses with a length of two, we introduce one clause-task C i with C i =(3, 3, 3).T h es e to fc l a u s e -t a s k si sd e n o t e dCT .

The following arcs model the compatibility constraints:

(a) For all boolean variables x ∈V,w ea d dt h ea r c s(L x ,C x) and (L x , Cx) (b) For all clauses with a length of three denoted C i =(y ∨ z ∨ t),w ea d dt h e arcs (y, C i), (z, C i), (t, C i) and (ȳ ′ , Ci), (z ′ , Ci), (t′ , Ci). (c) For all clauses with a length of two denoted C i =(x ∨ ȳ),w ea d dt h ea r c s (x ′ ,C i) and (ȳ, C i). (d) Finally, we add the arcs (x, C x), (x ′ ,C x) and (x, Cx) and (x ′ , Cx). x x′ ȳ′ z′ In follows, we say that a task x is merged to a task y,i fi te x i s t sac o m p a t i b i l i t y constraint from x to y; i.e.the coupled-task x may be executed during the idle of coupled-task y.

L x C x Cx (x, y, z) (x, y, z) C C ′ C ̸ = C ′ two clause-tasks of lenght two (a i ,L i ,b i), =(1, 1, 1), ∀i ∈{x, x ′ , x, x′ }, ∀x ∈V L x =(2, 2, 2); C x = Cx =(6, 6, 6),x∈V C (x,y,z) =(3, 3, 3) C (x,y,z) =(6, 6, 6) C C = C C ′ =(3, 3, 3)
• Let us first assume that there is a schedule with length of 54n at most. We prove that there is a truth assignment I : V→{ 0, 1} such that each clause in C has exactly one true literal (i.e. one literal equal to 1). We make some essentials remarks:

1. The length of the schedule is given by an execution time of the coupledtasks admitting only incoming arcs, and the value is

54n =3 α CT |CT | + α LT (|LT | -|{L x ,x ∈V} |)=9 |{C i ∈CT of length 2 and 3}| +18|{ Ci ∈ CT }| +18|{C
x and Cx ∈LT}|=9× 4n 3 +18× n 3 +18× 2n. Thus, all tasks from VT ∪ {L x ,x ∈V}must be merged with tasks from CT ∪ (LT -{L x ,x ∈V}).

2. By the construction, at most three tasks can be merged together.

3. L x is merged with C x or Cx . 4. The allocation of coupled-tasks from CT ∪ (LT -{L x ,x ∈V }) leads to 18n idle time. The length of the variable-tasks VT and L x equals 18n (in these coupled-tasks there are 6n idle times). 5. If the variable-tasks x and x ′ are not merged simultaneously with C x , i.e.only one of these tasks is merged with C x ,s o ,b yw i t ht h ep r e v i o u sd i scussion, it is necessary to merge a literal-task L y ,w i t hx ̸ = y one variabletask (ȳ or ȳ′)w i t hC y or Cy .I ti si m p o s s i b l eb ys i z eo fc o u p l e d -t a s k s .I n the same ways, the variable-tasks x et x′ are merged simultaneously with Cx .

6. Hence, first x and x ′ are merged with C x or with clause-task where the variable x occurs. Second, x and x′ are merged with Cx or a clause-task.

So, we affect the value "true" to the variable l iff the variable-task l is merged with clause-task(s) corresponding to the clause where the variable l occurs. It is obvious to see that in the clause of length three and two we have one and only one literal equal to "true".

• Conversely, we suppose that there is a truth assignment I : V→{ 0, 1},s u c h that each clause in C has exactly one true literal.

-If the variable x = true then we merged the vertices L x with C x ; x with the clause-task C i corresponding to the clause of length three which x occurs;

x ′ with the clause-task C i corresponding to the clause of length two which x occurs; and x, x′ with Cx .

-If the variable x = false then we merged the vertices L x with Cx ; x with the clause-task corresponding to the clause of length two which x occurs; x′ with the clause-task Ci corresponding to the clause (C)o fl e n g t ht h r e e which x occurs; and x, x ′ with C x .

For a feasible schedule, it is sufficient to merge vertices which are in the same partition. Thus, the length of the schedule is at most 54n.

5P o l y n o m i a l -t i m e a p p r o x i m a t i o n a l g o r i t h m s

Star graph Theorem 6

The problem

1|a i = L i = b i = α(A i),G = star|C max admits a FPT AS.
Proof The central node admits only incoming arcs (the case of the central node admits at least one outcoming arc is given by Corollary 1). Therefore, we may use the solution given by the subset sum (ss)(s e e [START_REF] Ibarra | Fast approximation algorithms for the Knapsack and Sum of Subset problems[END_REF]a n d[1 0])) . I n d e e d ,t h es c h e d u l e is follows: the central node is executed first with the coupled-tasks chosen by an FPT AS algorithm, the remaining tasks are processed after the completion of the central node.

1-stage bipartite graph

Scheduling coupled-tasks during the idle time of others can be related to packing problems, especially when the constraint graph G c is a bipartite graph. In the following, we propose several approximation when G c is a 1-stage bipartite graph.

Lemma 1 Let P be a problem with mkar mssdc, mss} such that P admits a ρ-approximable then the following problems

1. 1|a i = L i = b i = α(A i),G c =1-stage bipartite|C max , 2. 1|α i = a i = L i = b i ,complete bipartite|C max 3. 1|α i = a i = L i = b i ,complete bipartite|C max
where the constraint graph is a complete bipartite G=(X,Y), and al l the tasks from Y have the same α(y).

is approximable to a factor In such instance, any valid schedule consists to find for each task y ∈ Y asubset of compatible tasks X y ⊆ X to pack into y ∈ Y ,e a c ht a s ko fx being packed at most once. Let X p = ∪ y∈Y X y be the union of tasks of X packed into a task from Y .L e tX p the set of remaining tasks, with X p = X/X p .O b v i o u s l y ,w e have: seq(X p)+seq(X p)=seq(X)

1+ (1-ρ) 3 . Proof 1. Let consider an instance of 1|α i = a i = L i = b i ,G c =1-stage bipartite|C max such that G c =(X, Y, E),
As Y is an independent set in G,tasksfromY have to be scheduled sequentially in any (optimal) solution. The length of any schedule S is then the time to execute entirely tasks from Y plus the length to schedule sequentially the tasks from X p.F o r m a l l y :

C max (S)=seq(Y)+seq(X p) (2)
From Eq. (1) and (2) we have:

C max (S)=seq(Y)+seq(X) -seq(X p). (3)
We use here a reduction to mkar:e a c ht a s kx from X is an item having a weight 3.α(x),e a c ht a s kf r o mY is a bin with capacity α(y),a n de a c hi t e mx can be packed on y if and only if the edge {x, y} belong to the bipartite graph. Using algorithms and results from the literature, one can obtain an assignment of some items into bins, and note X p the set of packed items. The cost of the solution for the mkarproblem is seq(X p).I fmkar is approximable to a factor ρ,t h e nw eh a v e:

seq(X p) ≥ ρ × seq(X * p), (4)
where X * p is the set of packable items with the maximum profit. Combining Eq. (3) and (4) , we obtain a solution for 1|α i = a i = L i = b i ,bipartite|C max with a length:

C max (S) ≤ seq(Y)+seq(X) -ρ × seq(X * p) (5)
As X and Y are two fixed sets, a optimal solution S * with minimal length C max (S *) is obtained when seq(X p) is maximum, i.e.when X p = X * p .T h e length of any optimal solution is here:

C max (S *)=seq(Y)+seq(X) -seq(X * p) (6)
Using Eq. (5) and (6), the ratio obtained between our solution S and the optimal one S * is :

C max (S) C max (S *) ≤ seq(Y)+seq(X) -ρ × seq(X * p) seq(Y)+seq(X) -seq(X * p) ≤ 1+ (1 -ρ) × seq(X * p) seq(Y)+seq(X) -seq(X * p) (7
seq(X * p) ≤ 1 3 seq(Y) (8)
Combined to Eq. (7) , we obtain the following upper bound:

C max (S) C max (S *) ≤ 1+ (1 -ρ) 3 . (9)
We obtain the desired result.

2. For the problem 1|α i = a i = L i = b i ,complete bipartite|C max ,t h ep r o o fi s identical keeping in mind that mssdc is a special case of mkar where each item can be packed in any bin.

3. For the problem 1|α i = a i = L i = b i ,complete bipartite|C max where the constraint graph is a complete bipartite G =(X, Y),andallthetasksfromY have the same α(y),theproofisiden ticalaspreviouslysincemssdc is a generalization of mss.

Theorem 7

The following problems admits a polynomial-time approximation algorithms:

1. The problem 1|a i = L i = b i = α(A i),G c =1 -stage bipartite|C max is approximable to a factor 7 6 .

The problem 1|a

i = L i = b i = α(A i),G c = complete 1-stage bipartite|C max
admits a PT AS.

The problem 1|a

i = L i = b i = α(A i),G c = complete 1-stage bipartite|C max ,
where all the tasks from Y have the same stretch factor α(y):

(a) is approximable to a factor 13 12 . (b) admits a PT AS. Proof 1. Authors from [START_REF] Dawande | Approximation Algorithms for the Multiple Knapsack Problem with Assignment Restrictions[END_REF] proposed a ρ = 1 2 -approximation algorithm for mkar.R e u s i n g this result with Lemma 1, we obtain a 7 6 -approximation for

1|a i = L i = b i = α(A i),G c =1-stage bipartite|C max .
2. We know that mssdc admits a PT AS [START_REF] Caprara | A PTAS for the Multiple Subset Sum Problem with different knapsack capacities[END_REF], i.e.ρ =1-.U s i n gt h i sa l g o r i t h m to compute such a PT AS and Lemma 1, we obtain an approximation ratio of 1+ 3 for this problem.

The problem 1|a

i = L i = b i = α(A i),G c = complete 1-stage bipartite|C max ,
where all the tasks from Y have the same stretch factor α(y):

(a) Authors from [START_REF] Caprara | A 3/4-Approximation Algorithm for Multiple Subset Sum[END_REF] proposed a ρ = 3 4 -approximation algorithm for mss. Reusing this result with Lemma 1, we obtain a 13 12 -approximation for 1|α i = a i = L i = b i ,complete bipartite|C max . (b) They also proved that mss admits a PT AS [START_REF] Caprara | The Multiple Subset Sum Problem[END_REF] , i.e.ρ =1-.U s i n g the algorithm to compute such a PT AS and Lemma 1, we obtain an approximation ratio of

1+ 3 for 1|a i = L i = b i = α(A i),G c = complete 1-
stage bipartite|C max when nodes from Y have the same stretch factor.

2-stage bipartite graph

Theorem 8 The problem

1|a i = L i = b i = α(A i),G c =2
-stage bipartite|C max is approximable to a factor 13 9 . Proof Reusing the notation introduced for k-stage bipartite graph(seeSection5.3), we consider an instance of

1|a i = L i = b i = α(A i),G c =2 -stage bipartite|C max where G c =(V 0 ∪ V 1 ∪ V 2 ,E 1 ∪ E 2) ,w h e r ee a c ha r ci nE i is from a vertex in V i to a vertex in V i+1 ,f o ri ∈ 1, 2.
Definition 1 We note V ip (p=packed), (resp. V ia (a=alone)) i =0 , 1 the set of tasks merged (resp. remaining) in any task from y ∈ V i+1 in a solution S.M o r e o v e r , V ib (b=box), i =1 , 2 the set of tasks scheduled with some tasks from V i-1 merged into it.This notation is extended to a optimal solution S * by adding a star in the involved variables.

Considering the specificities of the instance, in any (optimal) solution we make some essential remarks:

1. Tasks from V 0 are source nodes for G c ,a n dc a nb ee i t h e rs c h e d u l e da l o n e ,o r merged into some tasks from V 1 only. Given any solution S to the problem on G c , {V 0p ,V 0a } is a partition of V 0 .

2. Tasks from V 1 can be either scheduled alone, merged into some tasks from V 2 , or scheduled with some tasks from V 0 merged into it. Given any solution S to the problem on

G c , {V 1p ,V 1a ,V 1b } is a partition of V 1 .
3. Tasks from V 2 form an independent set for G c ,a n dh a v et ob es c h e d u l e ds equentially in any schedule, either alone, or with some tasks from V 1 merged into it. Given any solution S to the problem on G

c , {V 2a ,V 2b } is a partition of V 2 .
Any solution would consist to schedule first each task with at least one task merged into it, then to schedule the remaining tasks (alone). Given an optimal solution S * , the length of S * is given by the following equation:

S * = seq(V 1 * b)+seq(V 2 b)+seq(V 0 * a)+seq(V 1 * a)+seq(V 2 * a) (10)
or, more simply

S * = seq(V 2)+seq(V 1 * b)+seq(V 0 * a)+seq(V 1 * a) (11)
Note that V 0 * p and V 1 * p are not part of the equation, as they are scheduled during the idle time of

V 1 * b and V 2 * b .
The main idea of the algorithm is divided into three parts:

1. First we compute a part of the solution with a 7 6 -approximation on G 0 thanks to Theorem 7, where

G 0 = G c [V 0 ∪ V 1] is the 1-th stage of G c .
2. Then we compute a second part of the solution with a 7 6 -approximation on G 1 thanks to Theorem 7, where

G 1 = G c [V 1 ∪ V 2] is the 2-th stage of G c .
3. To finish we merge these two parts and resolve potential conflicts between them.

Let consider an instance restricted to the graph G 0 .N o t et h a tG 0 is a 1-stage bipartite graph. Let S * [G 0] be an optimal solution on G 0 .L e tu sn o t eV 0 *

p [G 0] the set of tasks from V 0 packed into tasks from V 1 in S * [G 0],a n dV 0 * a [G 0] the set of remaining tasks.
Obviously, we have:

S * [G 0]=seq(V 1)+seq(V 0 * a [G 0]) (12)
Given any solution S[G 0],l e tu sn o t eV 1b [G 0] the set of tasks from V 1 with at least one task from V 0 merged into them, and V 1a [G 0] the remaining tasks. Let us note V 0p [G 0] the set of tasks from V 0 merged into V 1 ,a n dV 0a [G 0] the set of remaining tasks. We use Theorem 7, Lemma 1, and the demonstration presented in their proof from [START_REF] Dawande | Approximation Algorithms for the Multiple Knapsack Problem with Assignment Restrictions[END_REF], to compute a solution S[G 0] such that:

seq(V 0p [G 0]) ≥ 1 2 seq(V 0 * p [G 0]) (13)
Note that we have

seq(V 0p [G 0]) + seq(V 0a [G 0]) = seq(V 0 * p [G 0]) + seq(V 0 * a [G 0]) = seq(V 0) (14)
As

V 0 * a [G 0] represents the set of tasks not packed into V 1 in an optimal S * [G 0] such that seq(V 0 * a [G 0]) is minimal, we know that seq(V 0 * a [G 0]) ≤ seq(V 0 * a)
.Combining Equation [START_REF] Simonin | Complexity and approximation for scheduling problem for coupled-tasks in presence of compatibility tasks[END_REF] and Equation (14), one obtain:

seq(V 0a [G 0]) ≤ seq(V 0 * a [G 0]) + 1 2 seq(V 0 * p [G 0]) ≤ seq(V 0 * a)+ 1 2 seq(V 0 * p [G 0]) (15)
We use an analog reasoning on an instance restricted to the graph G 1 .L e tS * [G 1] be an optimal solution on G 1 .L e tu sn o t eV

1 * p [G 1] the set of tasks from V 1 packed into tasks from V 2 in S * [G 1],a n dV 1 * a [G 1]
the set of remaining tasks. Given any solution S[G 1],l e tu sn o t eV 2b [G 1] the set of tasks from V 2 with at least one task from V 1 merged into them, and V 1a [G 1] the remaining tasks. One can compute a solution S[G 1] based on a set of tasks V 1p [G 1] packed in V 2 such that:

seq(V 1p [G 1]) ≥ 1 2 seq(V 1 * p [G 1]) (16)
and

seq(V 1a [G 1]) ≤ seq(V 1 * a [G 1]) + 1/2seq(V 1 * p [G 1]) ≤ seq(V 1 * a)+1/2seq(V 1 * p [G 1]) (17) as we know that seq(V 1 * a [G 1]) ≤ seq(V 1 * a).
We design the feasible solution S for G c as follows:

• We compute a solution S[G 1] on G 1 ,t h e nw ea d dt oS each task from V 2 and the tasks from V 1 merged into them (i.e. V 1p [G 1])i nS[G 1].

• Then we compute a solution S[G 0] on G 0 ,t h e nw ea d dt oS each task v from V 1b [G 0]/V 1p [G 1] and the tasks from V 0 merged into them.

• The tasks V 1a [G 1]/V 1b [G 0] and V 0a [G 0] are added to S and scheduled sequentially.

• We note V conf lict the set of remaining tasks, i.e. the set of tasks from V 0 which are merged into a task v ∈ V 1 in S[G 0],t h u st h a tv is merged into a task from

V 2 in S[G 1].
Remark that:

seq(V 1b [G 0]/V 1p [G 1]) + seq(V 1a [G 1]/V 1b [G 0]) = V 1a [G 1]) (18)
Thus the cost of our solution S is

S = seq(V 2)+seq(V 1a [G 1]) + seq(V 0a [G 0]) + seq(V conf lict) (19)
It is also clear that:

seq(V conf lict) ≤ 1 3 seq(V 1p [G 1]) ≤ 1 3 seq(V 1 * p [G 1]) (20)
Using Equations (15), (17) and (20) in Equation (19), we obtain

S ≤ seq(V 2)+seq(V 1 * a)+ 5 6 seq(V 1 * p [G 1]) + seq(V 0 * a)+ 1 2 seq(V 0 * p [G 0]) (21)
Using Equations (11) and (21), we obtain

S ≤ S * + 5 6 seq(V 1 * p [G 1]) + 1 2 seq(V 0 * p [G 0]) (22)
We know that S * ≥ seq(V 2).W ea l s ok n o wt h a tt a s k sf r o m(V 1 * p [G 1]) must be merged into tasks from V 2 and cannot exceed the idle time of V 2 ,i m p l y i n gt h a t seq(

V 1 * p [G 1])) ≤ 1
3 seq(V 2).O n ec a nw r i t et h ef o l l o w i n g:

5 6 seq(V 1 * p [G 1]) S * ≤ 5 6 × 1 3 seq(V 2) seq(V 2) ≤ 5 18 (23)
We know that tasks from (V 0 * p [G 0]) must be merged into tasks from V 1 and cannot exceed the idle time of V 1 ,i m p l y i n gt h a tseq(V 0 * p [G 0])) ≤ 1 3 seq(V 1).W ea l s ok n o w that S * ≥ seq(V 1),a sV 1 is an independent set of G c .O n ec a nw r i t et h ef o l l o w i n g:

1 2 seq(V 0 * p [G 0]) S * ≤ 1 2 . 1 3 seq(V 1) seq(V 1) ≤ 1 6 (24)
Finally, with Equations (22), (23) and (24) the proof is finished:

S S * ≤ 13 9 (25)
6C o n c l u s i o n

The results proposed in this paper are summarized in Table 2. New presented results suggest the main problem of coupled tasks scheduling remains difficult even for restrictive instances, here stretched coupled-tasks when the constraint graph is ab i p a r t i t eg r a p h . W h e nw ec o n s i d e rs t r e t c h e dc o u p l e d -t a s k s, the maximum degree ∆ G seems to play an important role on the problem complexity, as the problem is already NP-Hard to solve when the constraint graph is a star. Approximation results presented in this paper show the problem can be approximated with interesting constant ratio on k-stage bipartite graphs for k =1or 2.T h ep r e s e n t e d approach suggests a generalization is possible for k ≥ 3.T h i sp a r tc o n s t i t u t e so n e perspective of this work. Other perspective would consists to study coupled-tasks on other significant topologies, including degree-bounded trees, or regular topologies like the grid.

7 6 -

 6 APX (Theorem 7) G c =c o m p l e t e1-stage bipartite

13 12 -

 12 APX (Theorem 7) G c = 2-stage bipartite NP -C (Theorem 5) 13 9 -APX (Theorem 8)

 W e propose a reduction to ss problem. From an instance of ss composed by a set S of n positive values and v ∈ IN (with v ≥ x, ∀x ∈ S), we construct an instance of 1|star, α i = a i = L i = b i |C max in the following way:

Figure 1 :

 1 Figure 1: Example of the transformation

 r o o fi sb a s e do nar e d u c t i o nf r o mone-in-(2,3)sat(2, 1): given a set V of n boolean variables with n mod 3 ≡ 0,as e to fn clauses of cardinality two and n/3 clauses of cardinality three, we construct an instance π of the problem 1|a i = L i = b i = α(A i),G c =1-stage bipartite, ∆ Gc =3|C max =54n in following way (Figure 2 illustrates the construction):

Figure 2 :

 2 Figure 2: A partial compatibility graph for the NP-completeness of the scheduling problem 1|bipartite of depth one, d(G c) ≤ 3,α i = a i = L i = b i |C max

 whereX ∪Y are coupled-tasks, and by a stretch factor function α : X ∪ Y → IN ,andarcsfromE model the constraints between tasks.

) By definition, X * p ⊆ X.M o r e o v e r ,a st h ep r o c e s s i n gt i m eo fX * p cannot excess the idle time of tasks from Y ,w eo b t a i n :

Table 2 :

 2 Complexity and approximation results.

 of even size. 2. For two compatibles tasks x ′ and y ′ with 3α x ′ ≤ α y ′ or 3α y ′ ≤ α x ′ ,w ea d d the edges {x For two compatibles tasks x ′ and y ′ with α x ′ = α y ′ ,w ea d dt h ee d g e s{x ′ ,y ′ } and {x ′′ ,y ′′ } in E,a n dw es t a t ew({x ′ ,y ′ })=w({x ′′ ,y ′′ })=

	4×α x ′

′ ,y ′ } and {x ′′ ,y ′′ } in E and we state w({x ′ ,y ′ })=w({x ′′ ,y ′′ })=

3×max{α x ′ ,α y ′ } 2 .

3.

Acknowledgment

This work has been funded by the regional council of Burgundy.