
HAL Id: hal-00947480
https://hal.science/hal-00947480v1

Submitted on 16 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Controlling Stress Intensity Factor Histories with Digital
Images

Xavier Fayolle, François Hild

To cite this version:
Xavier Fayolle, François Hild. Controlling Stress Intensity Factor Histories with Digital Images. Ex-
perimental Mechanics, 2014, 54 (2), pp.305-314. �10.1007/s11340-013-9790-x�. �hal-00947480�

https://hal.science/hal-00947480v1
https://hal.archives-ouvertes.fr


Experimental Mechanics manuscript No.

(will be inserted by the editor)

Controlling Stress Intensity Factor Histories with Digital

Images

Xavier Fayolle · François Hild⋆

Received: date / Accepted: date

Abstract It is shown that stress intensity factors (SIF) can be prescribed in mechan-

ical tests by using digital image correlation. A priori resolutions are validated with

a posteriori results. A cascade controller is implemented to prescribe SIF histories. A

proof of concept is shown when testing a cracked elastomer. A tensile experiment is

�nally analyzed with a center cracked sheet made of commercially pure titanium. The

linearity error is shown to be less than one order of magnitude higher for the closed-

loop system when compared to the SIF resolution. However, it is still small compared

to the SIF ranges investigated herein.
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1 Introduction

The study of cracks is part of the theories describing the degradation of materials and

failure of structures [1]. Crack initiation, propagation and arrest are concepts that are

important to master to design and monitor actual structures such as airplanes, cars,

trains, or power plants [2]. In many cases, elastic approaches are still used to assess

the criticality of cracks. One way of mechanically characterizing cracks is to consider

stress intensity factors (SIFs) that describe stress singularities in the vicinity of the

crack tip, or equivalently, displacement discontinuities across crack faces [3]. It is the

latter property that will be used hereafter in conjunction with full-�eld measurements.

Performing experiments on cracked samples or structures is a di�cult task since

crack propagation may become unstable. This is particularly true when load-controlled

experiments are carried out since the SIF is generally increasing with the crack size.

Conversely, when displacement controlled, the tests are usually easier to perform since

crack propagation is likely to be stable. However, propagation may stop. The reason

is that the parameters that control crack propagation are not necessarily the applied

load or displacement, but crack opening displacements (CODs) [4,5], SIFs [6], energy

release rates [7] or J-integral [8�10].

Except for CODs for which displacement transducers (so-called crack gauges) are

used on large structures (e.g., bridges, buildings) or COD (clip) gauges on smaller ones,

the other quantities are only indirectly evaluated when using point data, provided the

crack length is known or monitored. Load shedding techniques whereby the applied

load is gradually decreased as the crack propagates [11] have been proposed to keep

the nonlinearities con�ned in the vicinity of the crack tip. However, the crack tip

position needs to be determined to relate the applied load to the SIF level. Conversely,
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the sample geometry itself can be adapted to partially compensate for the load vs. SIF

increase (e.g., edge-cracked tapered plate [12]). Yet another route consists of a linearly

coupled load and displacement control loop that does not require the exact crack tip

position to be determined [13]. One key parameter to tune is the so-called mixing ratio

between displacement and remote load.

An alternative route is provided by full-�eld measurement techniques, in particular

Digital Image Correlation (DIC [14,15]). Besides the qualitative aspect of detecting

a crack, quantitative estimates of mechanically signi�cant properties have been re-

ported such as opening loads in fatigue experiments [16,17] and/or SIFs [18�22] by

least squares �t using closed-form solutions [3]. However, all these analyses were per-

formed a posteriori and not during the experiment itself. Pictures have already been

used to drive experiments. For instance, by tracking points, average strains are con-

trolled [23]. This is also possible by resorting to DIC [24]. In both cases, experiments

could be performed in the presence of localized strains. The advantage of DIC is that

it is, by construction, a full-�eld measurement technique that was validated to analyze

cracked media. In particular, its resolution may reach small values (typically 1 cpixel

or even lower), which was shown to be compatible with the uncertainty level of strain

gauges [24].

DIC is appealing when trying to control experiments, in particular when the in-

put signals cannot be given by a strain gauge, an extensometer or a transducer (e.g.,

measuring a displacement or a load). DIC has already been used to control crack-

ing experiments [25,26]. Either post-processed DIC measurements [25] or integrated

DIC [26] have been used to evaluate the SIF history. In the present paper, the former

approach is used to control experiments in which the crack does not propagate. The

goal is to assess the resolution of the closed-loop system and to prove the feasibility
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on two very di�erent materials (i.e., a very soft elastomer and a metallic material). To

design the closed-loop software, the SIF resolution has to be assessed. This procedure

is performed by �rst evaluating the displacement resolution of the implemented DIC

code. Thereafter, it is possible to assess the resolution of SIFs. The performance of

the controller is analyzed when an edge-cracked plate made of a soft material (i.e.,

elastomer) is tested. Last, experimental results are analyzed when an SIF history is

prescribed on a center cracked sheet made of commercially pure titanium. In both

cases, the a priori resolutions are compared with linearity errors for the open-loop and

closed loop con�gurations.

2 SIF Resolution

When designing a closed-loop system, one key quantity is the resolution of the mea-

suring device of the controlled variable (i.e., the SIF in the present case). To evaluate

the SIF resolution, the displacement resolution is needed. It is based upon the analysis

of the noise sensitivity of DIC [27,28]. The SIF resolution is then obtained by propa-

gating the uncertainty induced by the least squares procedure to evaluate the mode I

SIF from the measured displacements.

2.1 Displacement Resolution

In practice, the region of interest (ROI) is selected for the �SIF gauge.� Within the

ROI, smaller correlation windows or zones of interest (ZOIs) are chosen. For each ZOI

in the reference image, its corresponding position is sought in subsequent pictures.

The pattern-matching algorithm is based on cross-correlation. The cross-correlation

is a function giving the maximum likelihood between two ZOIs shifted by a constant
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displacement. Its computation is performed via fast Fourier transforms [29�32]. The

location of this maximum gives the most likely displacement between the ZOI in the

reference and deformed con�gurations. For a sub-pixel estimate, a parabolic interpola-

tion is performed around the maximum pixel value and the displacement corresponds

to the maximum of the interpolated correlation function. Then the ZOI in the deformed

con�guration is shifted by an amount equal to the evaluated displacement using the

shift/modulation property in Fourier space. Since interpolation errors occur, these three

steps need to be iterated until convergence is reached. In the present case, since very

small displacement increments are sought, a constant displacement assumption for each

ZOI is deemed to be su�cient [24].

An estimate of the displacement resolution of the correlation algorithm is needed.

The following procedure is applied to the actual picture of the experiment with the

elastomeric material. The CCD digital camera used herein has a 1280 × 1024-pixel

de�nition and a 12-bit dynamic range. Telecentric lenses are used to minimize the

(spurious) e�ects of out-of-plane motion. To have independent estimates of the dis-

placements in the following analyses, the shift δ between consecutive ZOIs is at least

equal to the ZOI size ℓ. The noise level of the camera is of the order of σ = 20 gray lev-

els. By following the derivations of Ref. [33], the corresponding standard displacement

resolution is expressed as

σu =

√
2σp

Gf ℓ
(1)

where Gf is the root mean square (RMS) value of the picture gradient (i.e., its mean

contrast), p the physical size of one pixel.
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These a priori results are compared with actual (i.e., a posteriori) measurements

for which a set of 10 pictures is acquired for the same con�guration. It was checked

that the mean displacement was very small for all the analyzed cases. Figure 1 shows

the standard displacement resolution σu as a function of the ZOI size ℓ; the larger the

ZOI size, the smaller the resolution σu. However, if the ZOI size increases, the spatial

resolution is degraded, i.e., less independent measurement points are obtained. The

ZOI size also needs to be adapted to the speckle size (here of the order of ≈ 2 pixels

when characterized by an average correlation radius [34], i.e., su�ciently small with

respect to ℓ). Furthermore, as the ZOI size increases, so does the computation time. A

good compromise for the present study is given by a ZOI size of 32 pixels for which a

standard displacement resolution of the order of 2× 10−3 pixel is achieved.

Last, when interpolating the displacement resolution σu by A/ℓ, a value A = 7.4×

10−2 is found, to be compared to
√
2σ/Gf = 8.0 × 10−2 (according to Equation (1)

when σu and ℓ are expressed in pixels). These two levels being close, the present results

validate the a priori estimate of the standard displacement resolution σu. The low level

of the displacement resolution is obtained thanks to a mean contrast Gf of the order

of 355 gray levels / pixel.

2.2 SIF Resolution: A Priori Estimate

The displacement �eld u in an in�nite solid containing a semi-in�nite crack along the

x-axis (x < 0) is written as a combination of a double semi-in�nite series [3]. In the

following, only the dominant term associated with the mode I SIF is considered under

a plane stress hypothesis (i.e., the considered samples have small thicknesses compared
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with the other dimensions)

ux =
KI

E

√

r

2π
cos

θ

2
[3− ν − (1 + ν) cos θ]

uy =
KI

E

√

r

2π
sin

θ

2
[3− ν − (1 + ν) cos θ] (2)

where r, θ denote the polar coordinates with respect to the crack tip, x, y the cartesian

coordinates with respect to the crack tip, E Young's modulus, and ν Poisson's ratio.

This displacement �eld is rewritten as

u = KI υK (3)

where υK corresponds to the displacement �eld of a unitary mode I SIF.

Let us now assume that the displacement is known at a number of discrete points xn

(i.e., the center of each ZOI) with n = 1, . . . , nxny close to the crack tip, where nx, ny

denote the number of ZOIs in the x and y directions. The measured displacements

are denoted by um. The identi�cation basis consists of �elds associated with rigid

body motions (i.e., translations v1, v2, rotation v3(xn)) and the mode I SIF �eld

v4(xn) = υK(xn). The corresponding amplitudes are determined by minimization of

the quadratic cost function T

T ({a}) =
∑

n

∥um(xn)−
∑

i

ai υi(xn)∥2 (4)

where {a} gathers the unknown translations u0x, u0y, rotation ω, and SIF KI . A linear

system is solved

[T ]{a} = {b} (5)

with

Tij =
∑

n

υi(xn) · υj(xn) , bi =
∑

n

υi(xn) · um(xn) (6)
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It was mentioned that displacements are corrupted by measurement �noise,� ηu, which

is considered as white in the present case since each ZOI is independent of the other

ones [34]. Consequently, the optimal SIF extractor is given by the least squares proce-

dure [35]. Moreover, it was checked that the acquisition noise was a Gaussian distribu-

tion. It is of interest to investigate the e�ect of uncertainties on the resulting evaluation

of {a}. By considering the linear system to be solved for {a}, it is observed that no

systematic error (or bias) will result from the noise, and the covariance matrix [C]

reads

[C] = [T ]−1σ2
u (7)

When the ROI is centered about the crack tip, the only o� diagonal term of [T ]

is associated with υx · υK(xn). A �rst order estimate of the diagonal terms of the

covariance matrix is given by (no index summation)

Cii ≈ σ2
u/Tii (8)

which consists of neglecting any cross correlation between the various amplitudes (i.e.,

Cij ≪ Cii, when i ̸= j). Further, the following approximation is used to assess Cii,

which corresponds to the variance σ2

i of amplitude ai, the other parameters being �xed,

1

nxny

∑

n

∥υi(xn)∥2 ≈ 1

πR2
max

∫ Rmax

0

∫

2π

0

[υ2ix(r, θ) + υ2iy(r, θ)] rdrdθ (9)

where Rmax is determined by assuming a surface equivalence of the ROI

πR2
max = LxLy (10)

where Lx and Ly denote the width and height of the ROI. The centers of the ZOIs

correspond to the collocation points of the approximation of the previous integral. The

standard SIF resolution σK is normalized to become

σK
√

nxnyRmax

Eσu
≈

√

6π

19− 10ν + 3ν2
(11)
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When the Poisson's ratio ν varies from −1 to 0.5, the approximation to the dimen-

sionless standard SIF resolution ranges from ≈ 0.77 to ≈ 1.13 (see Figure 2), i.e., of

the order of unity (since
√

6π/19 ≈ 1). Figure 2 shows that for small numbers of ZOIs

(ranging from nx = ny = 2 to 6), the proposed approximation is a good �rst order es-

timate. It can be shown that when the number of ZOIs becomes very large, the present

approximations lead to an underestimation of the order of 20% of the standard SIF

resolution.

Equation (11) also shows that the higher the Young's modulus E, the larger σK .

Further, the larger Rmax, the lower σK . However, some care should be exercised since

increasing Rmax may induce a ROI that no longer belongs to the K-dominant region so

that the chosen kinematic basis is no longer relevant. This can be checked by assessing

the identi�cation error

η =

√

T ({a})
nxny

(12)

The closer η to σu, the better the identi�cation. It is also possible to decrease σK by

increasing nxny, which is accompanied by an increase in computation time. A �nal way

is to decrease the displacement resolution σu. This is achieved by considering larger

ZOIs, again inducing a higher computation cost.

This last discussion shows that the SIF resolution σK is the result of a trade-o�

between the resolution level and the computation time. This is particularly important

for a closed-loop system in which the reference signal is obtained by the analysis of

digital images. By using the results of the previous section, the SIF resolution becomes

σK
√

nxnyRmax

E
∝

√
2σp

Gf ℓ
(13)

Equation (13) summarizes the di�erent compromises that have to be considered when

designing a controller with a DIC-based evaluation of SIFs. The left hand side term
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σK
√

nxnyRmax/E is related to the sought quantity itself, which is associated with

analysis of nxny points in a ROI of characteristic radius Rmax of a material with

Young's modulus E. The second parameter,
√
2σp/Gf ℓ, is the displacement resolu-

tion, which is related to the analyzed texture (i.e., its mean contrast Gf ) by a given

camera (of acquisition noise σ) with a chosen magni�cation (i.e., p), and to the spatial

resolution ℓ. It is worth noting that the SIF resolution is valid when the crack tip is

centered in the ROI. If this hypothesis is not satis�ed, there are additional correla-

tions that need to be accounted for. However, for the sake of simplicity, they are not

considered in the following analyses.

Last, the fact that only the very �rst mode I displacement �eld associated with

the presence of a crack is chosen is related to the limited number of measurement

points, themselves linked to speed of the controller. This choice implicitly assumes

that the ROI belongs to the K-dominant area and that a pure mode I loading is

achieved. These hypotheses may be checked a posteriori with a more complete analysis

considering more terms of Williams' series [21,17,36] and more measurement points.

Furthermore, the estimate of the stress intensity value may be biased as additional

terms of Williams' series are needed to describe the measured displacement �eld. The

level of the identi�cation error is one means of checking whether the considered basis

is su�cient when compared to the displacement resolution.

3 Controlling SIF Histories via DIC

The general setting of the controller is identical to the one that was used to prescribe

strain histories to a sample [24], namely, a two-loop system is implemented to allow

a slow outer loop to compute the current value of the SIF to be compared to the
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prescribed level. One cycle consists of an image acquisition, image saving (on the hard

disk) and the evaluation time of the SIF through DIC calculations. It requires a total

time of 2.4 s. This is not a limitation per se as the use of GPUs may signi�cantly

reduce this time [37]. The aim here is to show the feasibility of SIF control, more

than `real time' issues. The inner loop consists of a displacement prescribed signal with

a frequency of 20 Hz compatible with electromechanical (and servohydraulic) testing

machines.

In the present application, the input signal is an SIF. In the following, the load-

ing history is given by linear ramps loading and unloading the crack. To cancel out

the steady state error between the input signal (i.e., a ramp) and the measured SIF

(feedback), a double integral controller is implemented in a cascade system (Figure 3).

However, a double integral controller, by itself, is unstable. A zero is added in the low

frequency range to raise the phase by up to 45◦, thereby yielding a su�cient phase

margin (from the 180◦ limit). Last, a unitary open loop gain is sought so that SIF

signals are directly controlled.

Contrary to what was performed previously (i.e., using a servohydraulic testing

machine [24]), an electromechanical testing machine is chosen. The machine manufac-

turer gives a rise time of 50 ms for 10 µm displacement increments. To avoid accounting

for the frequency response of the testing machine itself the computer process is delayed

by 300-ms hold time (i.e., only the steady state response is needed). The consequence

is that the total cycle time of the outer loop is 2.7 s (rather than 2.4 s). The testing

machine is modeled as a sti� equation (i.e., no Laplace function). To check various

aspects of the controller depicted in Figure 3 and to estimate the zero value of the con-

troller Simulinkr [38] is used. Figure 4 shows the error (E) and reference (R) signals.

Apart from the changes of slope that induce high (unavoidable) errors, the system has
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a behavior that is consistent with what was expected (e.g., zero steady state error for

ramps).

One important aspect of the controller is related to gainG0 that links the prescribed

SIF (outer loop) with the displacement of the testing machine crosshead (inner loop).

To compute G0, the total displacement associated with a sample of initial length L0,

cracked at its mid-height is needed. The edge crack size is denoted by a and the width of

the sample by b. The relative displacement ∆up of the two L0-apart sections reads [39]

∆up = L0

Σ

E

(

1 +
4av2
L0

)

(14)

where Σ is the remote stress, and v2 a dimensionless parameter dependent upon a/b.

The applied stress Σ is related to the SIF KI by

KI = Y Σ
√
πa (15)

where Y is a dimensionless parameter dependent upon a/b [39]. By combining these

two expressions, gain G0 becomes

G0 =
∆up
KI

=
L0

Y E
√
πa

(

1 +
4av2
L0

)

(16)

All the parameters de�ning the SIF controller have now been introduced. The fol-

lowing section is a proof of concept of the implemented controller in a LabVIEWTM

environment [40].

4 Proof of Concept

4.1 Studied Material

Being a feasibility study, the implemented controller is used to perform a test on a

cracked elastomer. The displacement range was kept su�ciently low to avoid various
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non linear aspects associated with elastomers [41]. To evaluate the elastic parameters

of the studied material, a tensile test on a dogbone sample has been carried out. Digital

images were acquired during the test and the same DIC code was used to evaluate the

mean longitudinal and transverse strains. The strain resolution σϵ is determined by

following the same type of derivation as for the SIF resolution. The only di�erence is

given by the interpolating displacement �eld, which is linear (i.e., three unknowns per

direction)

σϵxx
=

σu
Lx

√
nxny

√

12(nx − 1)

nx + 1
, σϵyy

=
σu

Ly
√
nxny

√

12(ny − 1)

ny + 1
(17)

with Lx = δ(nx−1) and Ly = δ(ny−1). With the chosen parameters (i.e., Ly > Lx =

350 pixels, ℓ = 32 pixels, and nx = ny = 4) the strain resolution is less than 5× 10−6.

Figure 5 shows the stress/strain response of the material. As explained above, the

stress and strain levels remain very low. By using a least squares �t of the measured

data, a Young's modulus E = 7.6 MPa and Poisson's ratio ν = 0.4 are obtained.

Further, most of the �uctuations observed in Figure 5 are due to the load cell (whose

resolution is of the order of 1 N or 0.02 MPa) and not the DIC code since the strain

range is ten thousand times the corresponding resolution.

4.2 A Posteriori Validation of Strain and SIF Resolutions

With the experimental con�guration, the strain resolution is less than 5 × 10−6 and

the SIF resolution is evaluated as σK = 2 × 10−6 MPa
√
m, since the physical size of

one pixel is p = 53 µm, Rmax = 275 pixels, and ℓ = 32 pixels. When performing the

strain and SIF analyses on the same set of pictures as those used in the displacement

resolution analysis, it is found that the strain resolution is of the order of 4×10−6 and

the SIF resolution σK = 2.1× 10−6 MPa
√
m. These two values are very close to the a
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priori estimates proposed herein. Consequently, the a priori displacement, strain and

SIF resolutions are validated a posteriori.

4.3 Open-Loop Response

The response of the open-loop controller is shown in Figure 6. 137 pictures were ac-

quired. Except for the changes of slope, the RMS di�erence with a piecewise linear

response is of the order of 1.4× 10−5 MPa
√
m. This value can be compared to the SIF

resolution given above. There is a factor 7 between the two results.

To explain this di�erence, there are three types of cause to be listed. First, the

resolution analysis performed herein does not account for sub-pixel interpolation er-

rors [34]. In the present case, it is expected that they are non negligible since the

displacement resolution is found to be very small. Second, the linearity error is also

due to the crosshead displacement, which itself has its own resolution and errors. Last,

the choice of only 4 displacement �elds induces identi�cation and model errors of the

SIF level. It is expected that the model error be very small because of the low level of

SIF. Conversely, the identi�cation error is expected to increase with the SIF level. This

trend was experimentally observed when the change of η against the SIF was analyzed.

These results show that the resolution analysis provides a lower bound to the actual

resolution of the open-loop system. The controller itself induces its own error, which

will be assessed in the next section.

4.4 Closed-Loop Response

Figure 7 shows the input, output and error signals of the implemented feedback system.

From these results it is concluded that such a system is able to drive an SIF history with
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a very small error (Figure 7(b)) for SIF amplitudes ranging from 0.008 to 0.04 MPa
√
m

(Figure 7(a)). The errors are the highest at slope changes, as expected from the simu-

lated system (Figure 4). Their absolute level is less than 5 × 10−4 MPa
√
m, i.e., one

hundred times less the maximum SIF level, the SIF history was indeed controlled in a

very satisfactory manner. 1437 pictures were acquired during this experiment.

On a more quantitative basis, the RMS error is equal to 8×10−5 MPa
√
m when the

whole history is analyzed. The latter includes the 11 slope changes of the SIF history

(Figure 7(a)). When these changes are not considered, the RMS error decreases by a

factor of 3 to reach 2.7× 10−5 MPa
√
m. This last value includes the resolution of the

DIC measurements, the SIF extraction and the performance of the controller itself.

When compared with the a priori SIF resolution (σK = 2× 10−6 MPa
√
m), and that

obtained with an open-loop con�guration (σK = 10−5 MPa
√
m)), it is concluded that

the controller contributes to about 60 % of the total error. This level is to be expected

from a standard closed-loop system.

5 Test on Commercially Pure Titanium

Having shown that the designed controller is able to accurately prescribe SIF histories

on a soft material, the �nal step of the present study is to perform the same type of

experiment on a sti�er material (i.e., with a Young's modulus in the 100-GPa range).

In the present case, commercially pure titanium (i.e., T35) is chosen. This type of

material has already been studied to estimate crack propagation parameters [36,42].

The sample has a CCT geometry with a width of 30 mm, a height of 150 mm, and

thickness of 0.3 mm. The initial crack size is equal to 6 mm. In the present case, it is

believed that the plane stress solution is a good approximation.
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Figure 8(a) shows the input and output signals for the four applied cycles when

the SIF range varies between 6 and 9 MPa
√
m. In the present case, 563 pictures are

acquired. The overall response of the controller is deemed satisfactory as no particular

deviations are observed. Contrary to the previous case, the change of slope is not

accompanied by a higher error (Figure 8(b)). This is due to the fact that the overall

level of the latter is signi�cantly higher. The RMS error with respect to linearity is

found to be equal to 9.2 × 10−2 MPa
√
m. Being more than 60 times lower than the

minimum prescribed amplitude, the implemented system can be used to control cyclic

tests with prescribed SIF histories

For the chosen (T35) grade, the Young's modulus is equal to 100 GPa and Poisson's

ratio ν = 0.33 [36]. With these elastic parameters, the a priori SIF resolution becomes

σK = 1.4× 10−2 MPa
√
m (18)

since the physical size of one pixel is p = 13.4 µm, Rmax = 400 pixels, and ℓ = 32 pixels.

For the open-loop system, an RMS error with respect to linearity is found to be equal to

4.1×10−2 MPa
√
m (to be compared to 9.2×10−2 MPa

√
m for the closed-loop system).

In the present case, there is a factor 3 di�erence between the a priori SIF resolution and

the RMS linearity error of the open-loop response, and a factor 7 di�erence between

the SIF resolution and the RMS error of the SIF controller. With the chosen SIF

amplitudes whose level is close to SIF threshold in high cycle fatigue [36], it can be

concluded that the controller can be used to monitor crack opening during fatigue

cycles with SIF amplitudes greater than a few MPa
√
m.

Figure 9 shows the change of the measured load with respect to the prescribed

SIF. There is a linear relationship between these two quantities, thereby validating the

small scale yielding hypothesis. When measuring the RMS error to linearity, it is equal
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to 9.5× 10−2 MPa
√
m when expressed in terms of SIF, or 1.7 N in terms of load. The

former is very close to the RMS error observed for the controller itself. The latter is of

the order of what is expected from the used load cell (see Figure 5). This last result

validates the whole procedure developed herein.

6 Summary

It was shown that it is possible to control in a mechanical test a stress intensity factor

(SIF) history by resorting to digital images. In the present case, a local approach to

digital image correlation is considered to measure the displacement �eld. The latter is

then post-processed to evaluate the rigid body motions of the crack tip and the mode I

stress intensity factor (SIF). Since this procedure requires almost 3 seconds per control

cycle, a two-loop system is implemented. The inner loop is displacement-controlled and

the outer loop is SIF-controlled.

Resolution analyses were performed to design the controller. A priori estimates of

displacement, strain and SIF resolutions were validated a posteriori by analyzing a

series of ten pictures for which no displacements were prescribed. The SIF resolution

was then compared with the linearity error of the open-loop and closed-loop system.

There is almost an order of magnitude di�erence when the former is compared with

the latter ones. This result is to be expected as it includes not only measurement

uncertainties but also other aspects of the controller. With the two studied cases,

it was shown that the SIF range is signi�cantly larger (i.e., almost two orders of

magnitude) compared with the linearity error of the controller. It is concluded that

the SIF histories prescribed herein are su�ciently accurate to monitor gradual crack

openings and closures in cyclic tests.
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Having validated the implemented controller, the next step is to consider crack

propagation. This step requires an accurate estimation of the crack tip position, which

was not discussed herein. The same procedure as that proposed by Hamam et al. [17],

which is based on canceling out the amplitude of the �rst supersingular displacement

�eld, will be considered. As already mentioned, additional displacement �elds account-

ing for, say the T-stress or other subsingular contributions [43,36], may also be added.

They will yield a more robust estimate of the stress intensity factor. These issues being

solved, gradual propagation (e.g., in high cycle fatigue) will enable the controller to

be used in a `real time' con�guration since the crack tip motion per cycle is expected

to be very small so that the determination of its position will be needed only at large

time increments.
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Fig. 4 Simulated response of the controller (see Figure 3). (a) Reference (R) SIF history, (b)

error signal (E = O − R)
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tions are due to the standard resolution of the load cell (i.e., of the order of 1 N or 0.02 MPa)
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Fig. 6 Analysis of the controller as an open-loop system. Change of the SIF as a function of

the picture number when two loading/unloading cycles are prescribed
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Fig. 7 Analysis of the controller as a closed-loop system. (a) Comparison of the input and

output SIF signals of the controller when a single edge cracked sample made of elastomer is

tested. (b) Error signal in the controller
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Fig. 8 (a) Comparison of the input and output SIF signals of the controller when a CCT

sample made of T35 is tested. (b) Corresponding error signal in the controller
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