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A macro-DAG structure based mixture model

BERNARD CHALMOND

University of Cergy-Pontoise, France and CMLA, Ecole Normale Supérieure de Cachan, France

Abstract- In the context of unsupervised cldssation of multidimensional data, we revisit the classical
mixture model in the case where the dependencies among the random variables are described by a DAG
structure. The structure is considered at two levels, the original DAG and it®mgaresentation. This two-

level representation is the main base of the proposed mixture model. To perform unsupervisichatiassi

we propose a dedicated algorithm called EM-mDAG, which extends the classical EM algorithine. In t
Gaussian case, we show that this algorithm canfigeftly implemented. The experiments reveal that this
method favors the selection of a small number of classes.

Keywords: Mixture model, DAG structure, Bayesian network, EM algorithm

1. Introduction

Let X be a random vector with values R™ for which we have av-sampleX = {xi,...,Xx}
with n < N. Our goal is the clustering of'. This task is approached through a mixture model
but with a particular constraint that makes the sfpeity of our contribution.

The dependency structure among theomponentsX’ of X is subject to a structure repre-
sented by a DAG, in other words is a Bayesian network. This structure induces a patrtition
of X into M + 1 random vectors callechacro-variables X = w}_ X 7/= where X/ =
(X7, ..., XIm) whenJ,, = {j1, ..., im }- Fig.1 depictes an example with/ = 3 and.J, = {1},
Jv={2,3}, Jo = {4,5}, J3 = {6,7,8}.

Each macro-variabl& /= is dependent on a hidden class variable with values inkC,, =
{1,2,...,vm }. Each occurrence ik, is the number of a class calletementary clasS herefore
X is dependent on the hidden multi-class variaBle= (C*, ..., C*) whose values are it =
@M_ K. Each(M + 1)-tuple of € refers to a set of elementary classes catieshposite class
The(M +1)-tuples can be interpreted as pathways connecting the elementary classes through the
macro-variables as it is illustrated in Table 1. The objective fshthe most probable pathways.
We considerer the mixture model

Pa(X) = > cncpg, (X | k),

ke

where the probability distributiopy, (x | k) is that of the Bayesian network conditional on the
composite clask andfdy denotes the set of parameter$idimg this distribution.

* E-mall : bernard.chalmond@cmla.ens-cachan.fr
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Table 1. Composite class numbering faf = 3 andvy = 1, v1 = v = 2, v3 = 4. This table gives the exhaustive

list of the 16 composite classes, where each column is g/ + 1)-tuple (1, k) with k € K.
m=0 : 1,1,1,11,112,111111111
m=1 : 1,1,1,1,1,1,1,1,2,2,2,2,2, 2,2, 2
m=2 : 1,1,1,1,2,2,2,2,1,1,1,1, 2, 2,2, 2
m=3 : 1,2,3,4,1,2,3,41,23, 4123 4

In this paper we describe this mixture model and we give a version of the EM algorithm,
called EM-mDAG, for performing unsupervised cldgsition. One of the main role of the EM-
mDAG algorithm is to reveal probabilistic relationships among hidden elementasges. Its
implementation is done in the Gaussian casenutions illustrate the method and reveal a
specfic property. The EM-mDAG algorithm can select a small number of Siarit composite
classes ir.

2. Modelsand Method

2.1. Basic knowledge

e Conventional mixture model for non supervised cliasaion.
Let arandom vectoX = (X1!,..., X7 ..., X™) with values inR™. We assume that its proba-
bility distributionp,(X) is a mixture ofv distributions{py, (x)} as follows :

Ps(X) =D ag po, (x) with > aj =1. (2.1)
k=1 k=1

pe, (X) is ddined by a parametric law of parametéjs as for instance the Gaussian law. The
parameter set is denotéd= {«, 6} wherea = {«ax} andd = {6 }. This mixture model can
be interpreted in the context of unsupervised data dlaation. LetC' be the hidden variable,
which is an indicator variable of classes with value§in..., v}. Then, @.1) is rewritten as

ps(X) =Y P(C=k)po, (x| C=k). (2.2)
k=1

The clasdication is to assign a class to every observatidnWheng is given, the MAP decision
rule consists to choose the class

k(x) = argmgxPMC =k |Xx). (2.3)

Otherwise, things are more complicated becai{g¢and¢ have to be simultaneously estimated.
On the basis of maximum likelihood, the EM algorithm allows this estimation fronmepka
X = {Xq,..,xy} of X.

1A class is déined by its number and its parameters. Mor@wftwe confound "class” and “"class number”.
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Figure 1. Two-level structure. (a) DAG structure. (b) Macro-DAG structure with its macrabs X /1 = (X2, X3),
XJ2 = (X% X%)andX 73 = (X6, X7, X8) ; the small circles depict the elementary classes.
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The general formulation of theM algorithm, which is also valid for our particular case, reads
as follows. If¢(¢) is an estimation o, then an updated estimation is :

¢(L+1) = argmax Q(¢[4(0)) ,
Q(9lo(0)) = Ec)x [logpe(X, C) [ ¢(0)]

whereC = {(C4,...,Cy} is a series of i.i.d. variables related €& @ is an expected log-
likelihood with respect tgy ) (C | &). The EM algorithm is an iterative procedure. From
an initial estimates(0), it computes successivedy(0) — ... — ¢(¢) — .... The marginal likeli-
hood seriedpy ) (X), £ = 0,1, ...} is non-decreasing.

(2.4)

e Bayesian network.

The previous classical formalism is the primal version for mixture modeling in the context
of classfication {]. The EM algorithm also applies to more complex situations such as those
where theX; are not i.i.d. variables, but are dependent through hidden vari@blgsverned by
a Markov chain 2] or a Markov randonfield [3]. In this article, we remain in the case where
X is a sample from i.i.d. variables, but we consider a Markov structure for the dependence of
the components(’. This Markovian structure is based on a DAG denatee= (V, E). V =
{1,...,4,...,n} denotes the variable numbers. The edges VV x V are directed (j', j) € E'is
denoted’ — j. The sef = {j’ : j' — j} denotes the parents of the ngdd he DAG structure
has a fundamental property due to its acyclic ratuthere is a numbering of the nodes such that
j C{1,2,...,5—1}. We assume that the nodes have been ordered in this way. With this property
and that of Markov, we get the factorization

P =] p(" 2. (2.5)

The setB = (X, G, {p(27 | #7}) is called Bayesian network. When the distributjg®) is non
homogeneous, a mixture model &2 can be considered in whigh, (x | C = k) denotes a
Bayesian network conditional on the hidden cl@ssThis mixture model has been investigated
in [6] with a particular interest for DAG structure estimation.

2.2. Mixture model, composite class and Bayesian networ k

2.2.1. Composite class model

Let a partition ofl” composed of\/ + 1 macro-nodesV = Jy W J; W ... W Jy,, built from the
DAG structure 3J,,, is a macro-node if all its nodes have the same parents (I1&,Fi§.= 3, and
Jo = {1}, 1 = {2,3}, Jo = {4,5}, J3 = {6,7,8}). Jy is the root of the tree and most often
is a single nodé&. Let J1, ..., Jg7 be the parents ofy, ..., Ju, respectively. Given the di@ition

of macro-nodes, eacls; is composed of a single macro-node (In Eigl; = Jo, J5 = Ji,

Js = Ji). The macro-node¥ = {.J,,} and their connexion§ induced by{ Jz} define a new
directed acyclic graptf = (V, £) called macro-DAG.

2 Jo has only one class and thereforg = 1.
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Given a set of spefitations{p(z/~ | z/=} for B, a Bayesian networ§ = (X, G, {p(z”/~
27} can be déned for the macro- varlable{sX }M_ . The difference withB is essentially
thatB is a vectorial process whose factorization formula is written as

= [Ip@" | 2™ (2.6)

m

The factorization2.6) assumes that the probability distribution is homogeneous, whereas it
is not the case in our context. The distribution is depending on a hidden class vé&rjatéch
implies thatp(x) is a mixture of distributions.

Firstly we assume that each macro-varialilé is characterized by, classes, calleéle-
mentary classesvhose parameters are denott = {07",...,0" }. If we forget for a while
the DAG structure, then each variabl&ga independently of the others isfisheed by a mixture
model for which R.1) is rewritten as

Vm

p(z’m) = P(C™ = k) pop (z
k=1

cm = k). (2.7)

Secondly, we consider the indicator variablecoimposite classe€ = (C*, ..., C™) with
values in the set oM -tupleskC = {k = (k1, ..., ka)} wherek,, € {1,...,v,}, as represented
in Tablel1. The clasdication is to assign a composite class to each observatibhis involves
selecting an elementary clakg, for each macro-variable. Anmimediate solution would be to
performM independent cladstations, based or2(7) but this approach would have the disad-
vantage of not considering the DAG structure. Therefore we must address thBaaéiesi as a
whole.

Considering the DAG structure, a composite cl&sgs not only déined by the parame-
tersek = {07 M_ | of its elementary classes, but also by the dependency pararfigters
{9’” M_, that ddine the spefications of the Bayesian netwoX conditionally toC = k 3.
These parameters are related to the paraméierSor each composite class, the factorlzatlon
formula 2.6) based on the macro-DAG is written as

P, (x| k) = p(z”) Hpam I @ Ko ) (2.8)

wherek;; denotes the class number associated’fo and appearing ik. In the notatiorpe—{:,,
only the classes,, andkz of k are active. Finally the mixture model is written as

= onpg, (x| k). (2.9)

ke

Initially in (2.7) the ddinition of elementary classes has been made independently for each
macro-variables. Now, the Markov dependerig)(introduces dependencies among these classes.
The parameter setting of the mixture modelj differs from the classical mixture modél.().

3In this paper, the notationis reserved to parameters associated to the DAG dependencies.
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Two M -tuples may have common components. For example, all componefitsief ..., kas)
and(2, ko, ..., kys) are identical, except thiérst. Thus, since twd/-tuples may have common
components, two components of the mixture may have common parafnkidast, there is one
parameter setting per class, totaling,, v,, settings, while there argC| = [],, v, composite
classes.

2.2.2. EM-mDAG algorithm

The ultimate objective is to assign a composite class to every obserxation
X — k(x) = Py(C=k|X).
(x) = arg max Py( | X)

Therefore, it is necessary to estimate- (o, §). In an equivalent manner t@ @), the estimation
of ¢ is based on the log-likelihood by maximizing the Lagrangian function

Zlog[Zakpekak Zak—ll,

kel ke

_zlog[zak L pop et

kel m=1

+A

(2.10)

™ km + A

i

Zak—1] ,

ke

where\ denotes the Lagrangian parameter associated to the con$tigint cic = 1. At the
iteration/ of the EM algorithm, the re-estimation formula®is written as in the classical case :

Kl +1) pr) k| ;) (2.11)

where the a posteriori probability of the composite class ddined by

ax(£) pg, o) (Xi | k) _ ax () pg, () (Xi | k)
Poey(Xi) > ker Ok (O)pg, (o) (Xi | k)

As we said above, the peculiarity of this variant of the EM algorithm is the fact that a same

parametef;’ can be presentin several composite classes. In the classicachsthe gradient

of the Lagrangian function with respectétp concerns onlyy, while in (2.10, the gradient with
respect t@;" relates to several componepts .

Poey (K[ %) = (2.12)

Proposition 1. The re-estimation formula @ is given by the solutiofi(/ + 1) of the linear
system

N
0 J, Jer
k| x; lo m " m ;km =0 )
E E p¢(€)( | ) 867” gp9 ( ) ;" Tm ) 9=0(0+1)
i=1 k=(k1,....knm): Tm (213)

km=Tm

Tm=1,..,Um,m=1,...., M.

4In the classical case, several components can also be oeddey a same parameter, for instance the same variance
in the Gaussian case, but it is not a constraint contragutomixture model where many parameters are necessarily
shared.
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Proof. Let’s focus orﬁ;’; wherer,, is a particular class number i, ..., v,, }.

dL(cv, 0) i 1 5 0
om = Ok _—mpé (X’i | k) )
897"” =1 p¢ (Xz) k=(k1,....knm): 897_7” -
L Em=Tm
N
1 pg. (X | k) @ (2.14)
= Z (X)) Z Ok e_k(x,—l k) o9m ——pg. (Xi | k)| ,
i=1 Pyl k=(k1,....knr): Po \Ri Tm
L Em=Tm
Y )
= Z Z po(k [ x;) Wlogpék(xi | k).
1=1 kikpy=7Tm Tm

Recalling the factorization formul&(5), the gradient can be written as

8[:9(3;9 Z Z po(k | X;) T lZlogpga - xz_,ka,ka)],

Tm i=1 kiky=Tm Tm

(2.15)
N P L
= Z Z po(k | X;) =—=— [bgpgm ()™ | ;7 Tm,k?—)} ,
; oo™ Tm
i=1 kikp=7Tm Tm
which leads after a shortcut, to the syste1 . O

2.2.3. Gaussian case, linear dependency model and DAG

e Linear dependency model and DAG.
Under the Gaussian assumption, conditionally on the elementary classes, the law of the macro-
variables are

XImlkm = (X Tm | ] ~ N T ), (2.16)
and with respect to the DAG, the transition laws among these variables are
[XJm\km | me’ km] = [XJm | ‘,L.vakm, k] NN(Mkmlkm PZZ:LT]CW) . (2.17)

We assume the linear regression model

m,X _ m Jmr m
M, e = Al e T T OE s 018
Fm X _ m ( ) )
kb~ kmlksm

Therefore, the respective parameter setting2dfg and @.17) are respectively

gm - {MZ;; m } 9
O, = LAY s DR s TR i} -

m m m
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Note that the linear regression mod@li(a depends on the direction of the DA@;" , __ char-

km, ™m

acterizes the regression &/~ onz’= and not the reverse. Note also that the regression model
is multidimensional in output sinc& /=*= is a random vector ilR|/=!.

e Re-estimation formulas.
Thefirst approach to obtain these formulas would be to @s&3( taking into account the
Gaussian log-density that for any observatigican be written as :

— 1
logpgy (&) | 47 ki, ki) = est — o |log YL |

1 Im i —1(Im i
o 5 (1‘7 Mgin)‘(kﬁ)l (ka |k ) (1‘7 MZiVLTkny )

Establish equation2(13 requires to derivate with respect to all the componenté,jgf. For
instance, the partial derivative with respectdty , s written as

0 J— g -
108D (2" | 27 o) = (U )l —

k Tm m
Tm ke

We could go on, but there is a more direct way to operate.

Proposition 2. Since £.18 is a linear regression model, it is easier to use the classical formu-
las of the maximum likelihood estimation of this model. In our context, these &sIfa]lare
written as

pm kf(£+ 1) _ E(XJM,\TW,) AT k_(g_’_ ]_)]AE'( XJmU"m) ’

Tm Tm

— — —1
AT (+1) = Cov(X Tl | X Tmlkam) \ Vg (X Pk |

where” denotes an empirical estimate.

However, the empirical estimate of the momeetgiectations, covaniee matrix and variance-
covariance matrix) must be weighted by weigttslerived from the DAG :

b (L+1) Z dow

=1 kiky, =T,

N
—A:}m,c_eﬂz S wi ) @™

1=1 kikpm=7m

(2.19)

where the weights at iteratiohare

Pocey(k | X;)
~ .
Zi:l Ek:kmzrm p¢(€) (k | Xi)

wig () =
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Similarly, by denotingi/= ™ = JE(X 7=I™), we have

m

N
Al AN =3 3 wiil) 7 e )

=Tm

L (220
N
Tm J— T T
<D DT el () @ - g @ — )]
1=1 kikpy=7m
Finally, we have also
N
M2 (1) =30 3wl () - (4 )
i=1 kikp=Tm (2.22)

/
(a7 = iz a0+ 1)

Note that the programming of the re-estimation formufag$ 2.2Q 2.21) is relatively difi-
cult because two data structures interfere :dbpendency structure derived from the DAG, and
the list structure of the composite classes (£f f¢r instance).

e Back to the elementary class parameters. R R

For all x;, the estimated composite clalség) = (k1(X;), ..., kar(X;)) has been computed.
The user is also interested by the parametgrsf the elementary classc§§m (x:)}M_, in order
to interpret the leaves of the tree. The la&vl© ignores the DAG, contrary to the lav2.(L7).
However, in the Gaussian case, the paraméigsse related to the parametéisas follows P :

(Fm—)_l (me - :um—) )
o 2R b (2.22)

e (Fm )T g

™m mo

m,X

g e = Py, T

m

m

km

m m m
Dtk = Uh + 105

m

To avoid the dificulty of solving the system with respectj¢’ andT’} , we consider

i m 1
Pk = N Zx T (x1)=km

m Jm Am JIm Am
B, = S i - ) Y

e Initial solution.

The solution at théirst step of the EM-mDAG algorithm is obtained by performitiginde-
pendent clasfications using the conventional EM algonithTherefore, for each macro-variable,
we havev,, clusters inR!’/~! whose labels ar@Em(mf’”), i =1,...,n}. From there, the initial
solutioné,’c’jmkm(o) at iteration? = 0 is computed using ordinary linear regression for every pair

of clusters(k,,, k7 ) for which there are observationgz‘:: (2]™) = K, Em(xfm) =km} #
(). Starting from this initial solution, the role of the EM-mDAG algorithm is to rgamize the
clusters in order to extract froid a set of composite classes of high likelihood.
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Table 2. Expectationguy of the 5 composite classés, for data simulation withV/ = 3,9 = 1, v1 = 2,v9 = 3,
v3 = 4. Herec = 1.5.

Hx -
Xy 0, 0,0, 0,0
Xo -c, -C, *C, +c, +C
X3 +c, +C, -C, -C, -C
Xy -Cc, -C, *C, *+C, +C
X5 -C, -C, -C, *C, +C
Xg : -c, *+C, -C, tC, +C
X7 . -c, *c, tc, -C, -C
Xg -C, +C, -C, +C, +C

3. Experiments on simulated data

The random vectoK of dimensionn = 8 consists ofA/ = 3 macro-variables with/;, = 2,
vo = 3, v3 = 4. Among the|K| = 24 potential composite classes, omlsignificant composite
classesCy were considered. It implies that farZ Ky no data has been generated, or in another
words

ax =0, Vk € K. (3.2)

Table 2 gives the expectation of these 5 composite classes and therefore the expectation of the
elementary classes within tBemacro-variables.

Fig.4 shows the observations of the macro-variables with their labels. This simulation was
inspired by the cytometry data analysis domain (see Appendix) but with much more overlapping
of the elementary classes. Tfest macro-variableX”t = (X2, X3) shows two groups that
it is possible to manually split, giving rise to two elementary classes derdvted and X3+
Each group is a mixture that the other two macro-variables help to identify. The matablea
X7 = (X* X°®) highlights the components of the group®+, while the macro-variable
X7 = (X6, X7, X®) highlights the components of the gronp’+. However the overlapping
of the mixture components in the groufig+ and X3+ does not allow a partitionning of these
groups as easy as fof /1. Therefore we must address the clfisstion as a whole.

e Data processing.

Fig.5 shows the initial solution of the EM-mDAG algorithm at steg: 0. This solution results
from M = 3 independent cladstations by applying the classical EM algorithm on each macro-
variable. The class Iabeis{a:;.]’”) defined in @.3) are gathered for making composite class labels
by using a table similar to Table 1. This initial solution is unsatisfactory. The macro-iesiab
X 72 andX '3 are strongly blurred by several small composite classes that are artefactimalhe
solution of the EM-mDAG algorithm is shown in F&.The representation in terms of mixture
components is close to the original in FigThe macro-variableX /> and X /2 respectively
highlight the components of the grouf’+ and X 3+, despite thédifth class that is divided into
two neighbour classes.
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Fig.7 and Fig8 show respectively the clagsiations obtained with the usual EM algorithm
successively performed on the basidfclasses and classes. Witl24 classes, the number of
non-empty classes is large and therefore the dlaaion is greatly erroneous. Withclasses,
the clasdication provided by the EM algorithm does not meet the d$jmityi of the data. The
macro-variableX /2 = (X*, X®) does not highlight the mixture components in the graifp:-.
This is a major problem that hinders sifjoantly the interpretation of composite classes in terms
of macro-variables.

e Property of the EM-mDAG algorithm.

The experiments show that the EM-mDAG algorithm has the property to keep a small number
of oy, different from zero when there is a limited number of sfigr@int composite classés, C
KC. This selection ability is not so surprising. FirstKis not observable alonk whenk ¢ /C,
which means that its conditional distribution is nofided for thesé. There exists at least one
couple(k,, k) in k whose observability ofX /= | X /& k,,, k=] is unddined. At every step
of the algorithm, there are several couples, k) such that no observation is simultaneously
present in the clusters,, andk : {i : Em(m;}’”) =k, Em(x;’W) = km} = 0. Secondly, the
Markovian dependency introduced by the sfieationsp ()™ a:;.]W, km, k) has for effect to
reorganize the initial clustering while maintaining a well-contrasted partitioning. This is a well-
known property of the Markovian approach. These two remarks should be useful for establishing
an analytical proof of the selection property.

4. Discussion

In this paper, we have presented a mixture model dedicated to the case where the dependencies
among the components of the multidimensional random vector are governed by a DAG structure.
The mixture model takes advantage of a two-level structure, which is composed by the DAG
itself and its macro-representatighdedicated EM algorithm has beerfiefently implemented

for the Gaussian case. The experiments show that this algorithm is able to select a small number
of composite classes. This selection abilityingportant because it allows to circumvent the
difficulty of choosing the exact number of elementary classes for each macro-variable. In fact,
one of the main role of the EM-mDAG algorithm is to reveal sfgrant relationships among the
hidden elementary classes, some of them becoming empty during the procedure.

Appendix : a case study

This section presents a domain in which our method should be useful, as it is currently being
undertaken by Xiaoyi Chen at Instituagteur (Systems Biology team). X-sampleX’ of tens

and even hundreds of thousands of cells is observéidtwcytometry. Foreachcell=1, ..., N,

the instrument provides a measurement vegiasf dimensionn. This sample is a mixture of
several cell populations. The goal is to groupgh measurements so that each class corresponds
to a well-identfied cell type ].
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Figure 2. A partial decision tree with biological classes on leaves, (thanks to Xiaoyi Chen, Institut Pasteur).

The analysis, which is based on a dependency tree as illustrated 1raf-ig.usually accom-
plished by sequential manual partitioning (called "Gating”) of the sampfeom the top to the
bottom of the tree. Rather than watching simultaneously.ttienensions, that is to say the cloud
X in the spac®", the biologist works in subspaces of smaller dimensidn®,or 3, according
to associations of variable$’, here called macro-variables, as shown in Fig.

At the top of the tree, only one coordinate of the clotids analyzed. This is the variable
X' corresponding to high valuesD45+ of the biological variable®' D45. In this example,
to simplify, the tree height was reduced by starting the tree With= C D45+ instead of
(CD45—,CD45+). To determine the two groupSD45— et C D45+, a thresholdra pas is
manually selected for separating the small and large valuégef5. Conditionally on the ele-
mentary class{! = C'D45+ , the procedure continues along the tree structure, as follows.

Three elementary classes are extracted from the 2-D distribution of the sample?)} Y,
and denoted X2+), (X2—, X3-), (X3+) as illustrated in Fi® and Fig3-a, On each group,
this operation is repeated on the following macro-variables in dimension(ZftrX®) condi-
tionally on (X?+) as illustrated in Fig-b, and in dimension 3 fofX% X7, X®) conditionally
on(X?%—, X3-).

This conditional and sequential procedure can be represented by a DAG and then modeled by
a Bayesian network. The main advantage of using the EM-mDAG is its ability to globalfelassi
cation while keeping the biological dependency structure, which is necessary for identifying the
cell types.
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Figure 4. True labeling. There are only 5 composite classes. Simulation was performerhwith2, vy = 3, v3 = 4
for a sample of sizéV = 1000. The graphic "macro-variable X3)” depicts the coordinate{:(x?, x?) f;l, the
"macro-variable (X4,X5)" depict{(z},z2)} |, and the "macro-variable (X6,X7,X8)" depict(z?,z], z5)} ..

The histogram gives the empirical distribution of the composite classes.
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Figure 5. Initial solution of the EM-mDAG at step = 0. M = 3 independent cladétations was achieved by apply-
ing the classical EM algorithm on each macroiable. Compared with the ground true in Higthis representation is
strongly blurred.
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Figure 6. EM-mDAG based clustering at stép= 20. As in Fig4, the macro-variableéX 4, X°) and (X%, X7, Xx8)
respectively highlight the components of the groXig+ and X3+ of the macro-variablé X 2, X3), despite thdifth
class that is divided into two neighbour classes, numbkred4 andk = 5 in the histogram.
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Figure7. Standard EM algorithm fd4 classes. The number of non-empty classes is large and therefore thiéoelisni
is greatly erroneous.
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Figure8. Standard EM algorithm fa¥ classes. The macro-variall&*, X ®) does not highlight the mixture components
of the groupX 2+ of (X2, X3).
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