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A macro-DAG structure based mixture model
BERNARD CHALMOND

University of Cergy-Pontoise, France and CMLA, Ecole Normale Supérieure de Cachan, France∗

Abstract- In the context of unsupervised classification of multidimensional data, we revisit the classical
mixture model in the case where the dependencies among the random variables are described by a DAG
structure. The structure is considered at two levels, the original DAG and its macro-representation. This two-
level representation is the main base of the proposed mixture model. To perform unsupervised classification,
we propose a dedicated algorithm called EM-mDAG, which extends the classical EM algorithm. In the
Gaussian case, we show that this algorithm can be efficiently implemented. The experiments reveal that this
method favors the selection of a small number of classes.

Keywords: Mixture model, DAG structure, Bayesian network, EM algorithm
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1. Introduction

Let X be a random vector with values inRn for which we have aN -sampleX = {x1, ..., xN}
with n < N . Our goal is the clustering ofX . This task is approached through a mixture model
but with a particular constraint that makes the specificity of our contribution.

The dependency structure among then componentsXj of X is subject to a structure repre-
sented by a DAG, in other wordsX is a Bayesian network. This structure induces a partition
of X into M + 1 random vectors calledmacro-variables: X = ⊎M

m=0X
Jm , whereXJm =

(Xj1 , ..., Xjm) whenJm = {j1, ..., jm}. Fig.1 depictes an example withM = 3 andJ0 = {1},
J1 = {2, 3}, J2 = {4, 5}, J3 = {6, 7, 8}.

Each macro-variableXJm is dependent on a hidden class variableCm with values inKm =
{1, 2, ..., νm}. Each occurrence inKm is the number of a class calledelementary class. Therefore
X is dependent on the hidden multi-class variableC = (C1, ..., CM ) whose values are inK =
⊗M

m=0Km. Each(M +1)-tuple ofK refers to a set of elementary classes calledcomposite class.
The(M+1)-tuples can be interpreted as pathways connecting the elementary classes through the
macro-variables as it is illustrated in Table 1. The objective is tofind the most probable pathways.
We considerer the mixture model

pθ̄(x) =
∑

k∈K

αk pθ̄k(x | k) ,

where the probability distributionpθ̄k(x | k) is that of the Bayesian network conditional on the
composite classk andθ̄k denotes the set of parameters defining this distribution.

∗ E-mail : bernard.chalmond@cmla.ens-cachan.fr
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2 B. Chalmond

Table 1. Composite class numbering forM = 3 andν0 = 1, ν1 = ν2 = 2, ν3 = 4. This table gives the exhaustive
list of the16 composite classesK, where each column is an(M + 1)-tuple(1,k) with k ∈ K.

m=0 : 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
m=1 : 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2
m=2 : 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2
m=3 : 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4

In this paper we describe this mixture model and we give a version of the EM algorithm,
called EM-mDAG, for performing unsupervised classification. One of the main role of the EM-
mDAG algorithm is to reveal probabilistic relationships among hidden elementary classes. Its
implementation is done in the Gaussian case. Simulations illustrate the method and reveal a
specific property. The EM-mDAG algorithm can select a small number of significant composite
classes inK.

2. Models and Method

2.1. Basic knowledge

• Conventional mixture model for non supervised classification.
Let a random vectorX = (X1, ..., Xj, ..., Xn) with values inRn. We assume that its proba-

bility distributionpφ(x) is a mixture ofν distributions{pθk(x)} as follows :

pφ(x) =
ν∑

k=1

αk pθk(x) with
ν∑

k=1

αk = 1. (2.1)

pθk(x) is defined by a parametric law of parametersθk, as for instance the Gaussian law. The
parameter set is denotedφ = {α, θ} whereα = {αk} andθ = {θk}. This mixture model can
be interpreted in the context of unsupervised data classification. LetC be the hidden variable,
which is an indicator variable of classes with values in{1, ..., ν}. Then, (2.1) is rewritten as

pφ(x) =
ν∑

k=1

P (C = k) pθk(x | C = k). (2.2)

The classification is to assign a class to every observationx, 1. Whenφ is given, the MAP decision
rule consists to choose the class

k̂(x) = argmax
k

Pφ(C = k | x). (2.3)

Otherwise, things are more complicated becausek(x) andφ have to be simultaneously estimated.
On the basis of maximum likelihood, the EM algorithm allows this estimation from a sample
X = {x1, ..., xN} of X.

1A class is defined by its number and its parameters. More often, we confound ”class” and ”class number”.
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Figure 1. Two-level structure. (a) DAG structure. (b) Macro-DAG structure with its macro-variablesXJ1 = (X2,X3),
XJ2 = (X4,X5) andXJ3 = (X6,X7,X8) ; the small circles depict the elementary classes.
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The general formulation of theEM algorithm, which is also valid for our particular case, reads
as follows. Ifφ(ℓ) is an estimation ofφ, then an updated estimation is :

φ(ℓ + 1) = argmax
φ

Q(φ|φ(ℓ)) ,

Q(φ|φ(ℓ)) = IEC|X [log pφ(X ,C) | φ(ℓ)] ,
(2.4)

whereC = {C1, ..., CN} is a series of i.i.d. variables related toC. Q is an expected log-
likelihood with respect topφ(ℓ)(C | X ). The EM algorithm is an iterative procedure. From
an initial estimateφ(0), it computes successivelyφ(0) → ... → φ(ℓ) → .... The marginal likeli-
hood series{pφ(ℓ)(X ), ℓ = 0, 1, ...} is non-decreasing.

• Bayesian network.
The previous classical formalism is the primal version for mixture modeling in the context

of classification [4]. The EM algorithm also applies to more complex situations such as those
where theXi are not i.i.d. variables, but are dependent through hidden variablesCi governed by
a Markov chain [2] or a Markov randomfield [3]. In this article, we remain in the case where
X is a sample from i.i.d. variables, but we consider a Markov structure for the dependence of
the componentsXj. This Markovian structure is based on a DAG denotedG = (V,E). V =
{1, ..., j, ..., n} denotes the variable numbers. The edgesE ⊂ V ×V are directed :(j′, j) ∈ E is
denotedj′ → j. The set̄j = {j′ : j′ → j} denotes the parents of the nodej. The DAG structure
has a fundamental property due to its acyclic nature : there is a numbering of the nodes such that
j̄ ⊂ {1, 2, ..., j− 1}. We assume that the nodes have been ordered in this way. With this property
and that of Markov, we get the factorization

p(x) =
∏

j

p(xj | xj̄). (2.5)

The setB = (X, G, {p(xj | xj̄}) is called Bayesian network. When the distributionp(x) is non
homogeneous, a mixture model as (2.2) can be considered in whichpθk(x | C = k) denotes a
Bayesian network conditional on the hidden classC. This mixture model has been investigated
in [6] with a particular interest for DAG structure estimation.

2.2. Mixture model, composite class and Bayesian network

2.2.1. Composite class model

Let a partition ofV composed ofM + 1 macro-nodes :V = J0 ⊎ J1 ⊎ ... ⊎ JM , built from the
DAG structure :Jm is a macro-node if all its nodes have the same parents (In Fig.1, M = 3, and
J0 = {1}, J1 = {2, 3}, J2 = {4, 5}, J3 = {6, 7, 8}). J0 is the root of the tree and most often
is a single node2. Let J1, ..., JM be the parents ofJ1, ..., JM , respectively. Given the definition
of macro-nodes, eachJm is composed of a single macro-node (In Fig.1, J1̄ = J0, J2̄ = J1,
J3̄ = J1). The macro-nodesV = {Jm} and their connexionsE induced by{Jm} define a new
directed acyclic graphG = (V , E) called macro-DAG.

2 J0 has only one class and thereforeν0 = 1.
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Given a set of specifications{p(xJm | xJ̄m} for B, a Bayesian networkB = (X,G, {p(xJm |
xJ̄m}) can be defined for the macro-variables{XJ

m}Mm=0. The difference withB is essentially
thatB is a vectorial process whose factorization formula is written as

p(x) =
∏

m

p(xJm | xJ̄m). (2.6)

The factorization (2.6) assumes that the probability distribution is homogeneous, whereas it
is not the case in our context. The distribution is depending on a hidden class variableC, which
implies thatp(x) is a mixture of distributions.

Firstly we assume that each macro-variableXJ
m is characterized byνm classes, calledele-

mentary classes, whose parameters are denotedθm = {θm1 , ..., θmνm}. If we forget for a while
the DAG structure, then each variable taken independently of the others, is defined by a mixture
model for which (2.1) is rewritten as

p(xJm) =

νm∑

k=1

P (Cm = k) pθm

k
(xJm | Cm = k). (2.7)

Secondly, we consider the indicator variable ofcomposite classesC = (C1, ..., CM ) with
values in the set ofM -tuplesK = {k = (k1, ..., kM )} wherekm ∈ {1, ..., νm}, as represented
in Table1. The classification is to assign a composite class to each observationx. This involves
selecting an elementary classkm for each macro-variable. An immediate solution would be to
performM independent classifications, based on (2.7) but this approach would have the disad-
vantage of not considering the DAG structure. Therefore we must address the classification as a
whole.

Considering the DAG structure, a composite classk is not only defined by the parame-
tersθk = {θmkm

}Mm=1 of its elementary classes, but also by the dependency parametersθ̄k =

{θ̄mkm
}Mm=1 that define the specifications of the Bayesian networkX conditionally toC = k

3.
These parameters are related to the parametersθk. For each composite class, the factorization
formula (2.6) based on the macro-DAG is written as

pθ̄k(x | k) = p(xJ0)
M∏

m=1

pθ̄m

k

(xJm | xJ
m , km, km) , (2.8)

wherekm denotes the class number associated toxJ
m and appearing ink. In the notationpθ̄m

k

,
only the classeskm andkm of k are active. Finally the mixture model is written as

pθ̄(x) =
∑

k∈K

αk pθ̄k(x | k) . (2.9)

Initially in (2.7) the definition of elementary classes has been made independently for each
macro-variables. Now, the Markov dependence (2.8) introduces dependencies among these classes.
The parameter setting of the mixture model (2.9) differs from the classical mixture model (2.1).

3In this paper, the notation̄. is reserved to parameters associated to the DAG dependencies.
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Two M -tuples may have common components. For example, all components of(1, k2, ..., kM )
and(2, k2, ..., kM ) are identical, except thefirst. Thus, since twoM -tuples may have common
components, two components of the mixture may have common parameters4. In fact, there is one
parameter setting per class, totaling

∑
m νm settings, while there are|K| =

∏
m νm composite

classes.

2.2.2. EM-mDAG algorithm

The ultimate objective is to assign a composite class to every observationx :

x → k̂(x) = argmax
k∈K

Pφ(C = k | x) .

Therefore, it is necessary to estimateφ = (α, θ̄). In an equivalent manner to (2.4), the estimation
of φ is based on the log-likelihood by maximizing the Lagrangian function

L(α, θ̄) =
N∑

i=1

log

[ ∑

k∈K

αk pθ̄k(xi | k)

]
+ λ

[∑

k∈K

αk − 1

]
,

=

N∑

i=1

log

[ ∑

k∈K

αk

M∏

m=1

pθ̄m

k

(xJm

i | x
J
m

i , km, km)

]
+ λ

[∑

k∈K

αk − 1

]
,

(2.10)

whereλ denotes the Lagrangian parameter associated to the constraint
∑

k∈K αk = 1. At the
iterationℓ of the EM algorithm, the re-estimation formula ofα is written as in the classical case :

αk(ℓ+ 1) =
1

N

∑

i

pφ(ℓ)(k | xi) , (2.11)

where the a posteriori probability of the composite classk is defined by

pφ(ℓ)(k | xi) =
αk(ℓ) pθ̄k(ℓ)(xi | k)

pφ(ℓ)(xi)
=

αk(ℓ) pθ̄k(ℓ)(xi | k)∑
k∈K αk(ℓ)pθ̄k(ℓ)(xi | k)

. (2.12)

As we said above, the peculiarity of this variant of the EM algorithm is the fact that a same
parameter̄θmkm

can be present in several composite classes. In the classical case (2.1), the gradient
of the Lagrangian function with respect toθk concerns onlypθk while in (2.10), the gradient with
respect tōθmkm

relates to several componentspθ̄k.

Proposition 1. The re-estimation formula of̄θ is given by the solution̄θ(ℓ + 1) of the linear
system

N∑

i=1

∑

k=(k1,...,kM):
km=τm

pφ(ℓ)(k | xi)
∂

∂θ̄mτm
log pθ̄m

τm

(xJm

i | x
J
m

i , τm, km)
∣∣∣
θ̄=θ̄(ℓ+1)

= 0 ,

τm = 1, ..., νm , m = 1, ...,M.

(2.13)

4In the classical case, several components can also be concerned by a same parameter, for instance the same variance
in the Gaussian case, but it is not a constraint contrary toour mixture model where many parameters are necessarily
shared.
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Proof. Let’s focus onθ̄mτm whereτm is a particular class number in{1, ..., νm}.

∂L(α, θ̄)

∂θ̄mτm
=

N∑

i=1

1

pφ(xi)

⎡
⎢⎢⎣

∑

k=(k1,...,kM):
km=τm

αk

∂

∂θ̄mτm
pθ̄k(xi | k)

⎤
⎥⎥⎦ ,

=

N∑

i=1

1

pφ(xi)

⎡
⎢⎢⎣

∑

k=(k1,...,kM):
km=τm

αk

pθ̄k(xi | k)

pθ̄k(xi | k)

∂

∂θ̄mτm
pθ̄k(xi | k)

⎤
⎥⎥⎦ ,

=

N∑

i=1

∑

k:km=τm

pφ(k | xi)
∂

∂θ̄mτm
log pθ̄k(xi | k) .

(2.14)

Recalling the factorization formula (2.5), the gradient can be written as

∂L(α, θ̄)

∂θ̄mτm
=

N∑

i=1

∑

k:km=τm

pφ(k | xi)
∂

∂θ̄mτm

[
M∑

a=1

log pθ̄a

k

(xJa

i | x
J
a

i , ka, ka)

]
,

=

N∑

i=1

∑

k:km=τm

pφ(k | xi)
∂

∂θ̄mτm

[
log pθ̄m

τm

(xJm

i | x
Jm

i , τm, km)
]
,

(2.15)

which leads after a shortcut, to the system (2.13).

2.2.3. Gaussian case, linear dependency model and DAG

• Linear dependency model and DAG.
Under the Gaussian assumption, conditionally on the elementary classes, the law of the macro-

variables are

XJm|km =̇ [XJm | km] ∼ N (µm
km

,Γm
km

) , (2.16)

and with respect to the DAG, the transition laws among these variables are

[XJm|km | xJ
m , km] = [XJm | xJ

m , km, km] ∼ N (µm,x

km|km

,Γm,x

km|km

) . (2.17)

We assume the linear regression model

µ
m,x

km|k
m

= Am
km,k

m
xJm + bmkm,k

m
,

Γm,x

km|km

= Γm
km|k

m

.
(2.18)

Therefore, the respective parameter settings of (2.16) and (2.17) are respectively

θmkm
= {µm

km
,Γm

km
} ,

θ̄mkm
= {Am

km,k
m
, bmkm,k

m
, Γm

km|k
m

} .
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Note that the linear regression model (2.18) depends on the direction of the DAG.Am
km,km

char-

acterizes the regression ofXJm onxJ
m and not the reverse. Note also that the regression model

is multidimensional in output sinceXJm|km is a random vector inR|Jm|.

• Re-estimation formulas.
The first approach to obtain these formulas would be to use (2.13) taking into account the

Gaussian log-density that for any observationxi can be written as :

log pθ̄m

km

(xJm

i | x
J
m

i , km, km) = cst−
1

2
| log Γm

km|k
m

|

−
1

2
(xJm

i − µ
m,xi

km|km

)′(Γm
km|km

)−1(xJm

i − µ
m,xi

km|km

) .

Establish equation (2.13) requires to derivate with respect to all the components ofθ̄mkm
. For

instance, the partial derivative with respect toAm
τm,km

is written as

∂

Am
τm,k

m

log pθ̄m
τm

(xJm

i | x
J
m

i , τm, km) = (Γm
τm,km

)−1x
J
m

i (xJm

i − µ
m,xi

τm,k
m

)′ .

We could go on, but there is a more direct way to operate.

Proposition 2. Since (2.18) is a linear regression model, it is easier to use the classical formu-
las of the maximum likelihood estimation of this model. In our context, these formulas [5] are
written as

bmτm,k
m
(ℓ+ 1) = ÎE(XJm|τm)−Am

τm,k
m
(ℓ+ 1)ÎE( XJ

m
|k

m) ,

Am
τm,km

(ℓ+ 1) = Ĉov(XJm|τm , XJ
m
|k

m)
[
V̂ ar(XJ

m
|k

m)
]−1

,

where .̂ denotes an empirical estimate.

However, the empirical estimate of the moments (expectations, covariance matrix and variance-
covariance matrix) must be weighted by weightsw derived from the DAG :

bmτm,km
(ℓ+ 1) =

N∑

i=1

∑

k:km=τm

wτm
i,k(ℓ) x

Jm

i

−Am
τm,k

m
(ℓ+ 1)

N∑

i=1

∑

k:km=τm

wτm
i,k(ℓ) x

Jm

i ,

(2.19)

where the weights at iterationℓ are

wτm
i,k(ℓ) =

pφ(ℓ)(k | xi)∑N

i=1

∑
k:km=τm

pφ(ℓ)(k | xi)
.
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Similarly, by denotinĝµJm|τm = ÎE(XJm|τm), we have

Am
τm,km

(ℓ + 1) =

N∑

i=1

∑

k:km=τm

wτm
i,k (ℓ) (x

J
m

i − µ̂Jm|τm)(xJm

i − µ̂Jm|τm)′

×

[
N∑

i=1

∑

k:km=τm

wτm
i,k(ℓ) (x

J
m

i − µ̂J
m
|τ

m)(x
J
m

i − µ̂J
m
|τ

m)′

]−1

.

(2.20)

Finally, we have also

Γm
τm,k

m
(ℓ+ 1) =

N∑

i=1

∑

k:km=τm

wτm
i,k(ℓ)

(
xJm

i − µm
τm,k

m
(ℓ+ 1)

)

(
xJm

i − µm
τm,k

m
(ℓ+ 1)

)′

.

(2.21)

Note that the programming of the re-estimation formulas (2.19, 2.20, 2.21) is relatively diffi-
cult because two data structures interfere : thedependency structure derived from the DAG, and
the list structure of the composite classes (cf. (1) for instance).

• Back to the elementary class parameters.
For all xi, the estimated composite classk̂(xi) = (k̂1(xi), ..., k̂M (xi)) has been computed.

The user is also interested by the parametersθ
k̂

of the elementary classes{k̂m(xi)}Mm=1 in order
to interpret the leaves of the tree. The law (2.16) ignores the DAG, contrary to the law (2.17).
However, in the Gaussian case, the parametersθk are related to the parametersθ̄k as follows [5] :

µ
m,x

km|k
m

= µm
km

+ Γm
km,km

(Γm
km

)−1 (xJm − µm
km

) ,

Γm
km|km

= Γm
km

+ Γm
km,km

(Γm
km

)−1 Γm
km,km

.
(2.22)

To avoid the difficulty of solving the system with respect toµm
km

andΓm
km

, we consider

µ̂m
km

=
1

N

∑

i

xJm

i 1
k̂m(xi)=km

,

Γ̂m
km

=
1

N

∑

i

(xJm

i − µ̂m
km

)(xJm

i − µ̂m
km

)′ 1
k̂m(xi)=km

.

• Initial solution.
The solution at thefirst step of the EM-mDAG algorithm is obtained by performingM inde-

pendent classifications using the conventional EM algorithm. Therefore, for each macro-variable,
we haveνm clusters inR|Jm| whose labels are{k̂m(xJm

i ), i = 1, ..., n}. From there, the initial
solutionθ̄mkm,km

(0) at iterationℓ = 0 is computed using ordinary linear regression for every pair

of clusters(km, km) for which there are observations :{i : k̂m(xJm

i ) = km, k̂m(x
J
m

i ) = km} �=
∅. Starting from this initial solution, the role of the EM-mDAG algorithm is to re-organize the
clusters in order to extract fromK a set of composite classes of high likelihood.



10 B. Chalmond

Table 2. Expectationsµk of the 5 composite classesK0 for data simulation withM = 3, ν0 = 1, ν1 = 2, ν2 = 3,
ν3 = 4. Herec = 1.5.

µk :

X1 : 0, 0, 0, 0, 0

X2 : -c, -c, +c, +c, +c
X3 : +c, +c, -c, -c, -c

X4 : -c, -c, +c, +c, +c
X5 : -c, -c, -c, +c, +c

X6 : -c, +c, -c, +c, +c
X7 : -c, +c, +c, -c, -c
X8 : -c, +c, -c, +c, +c

3. Experiments on simulated data

The random vectorX of dimensionn = 8 consists ofM = 3 macro-variables withν1 = 2,
ν2 = 3, ν3 = 4. Among the|K| = 24 potential composite classes, only5 significant composite
classesK0 were considered. It implies that fork �∈ K0 no data has been generated, or in another
words

αk = 0, ∀ k �∈ K0. (3.1)

Table 2 gives the expectation of these 5 composite classes and therefore the expectation of the
elementary classes within the3 macro-variables.

Fig.4 shows the observations of the macro-variables with their labels. This simulation was
inspired by the cytometry data analysis domain (see Appendix) but with much more overlapping
of the elementary classes. Thefirst macro-variableXJ1 = (X2, X3) shows two groups that
it is possible to manually split, giving rise to two elementary classes denotedX2+ andX3+.
Each group is a mixture that the other two macro-variables help to identify. The macro-variable
XJ2 = (X4, X5) highlights the components of the groupX2+, while the macro-variable
XJ3 = (X6, X7, X8) highlights the components of the groupX3+. However the overlapping
of the mixture components in the groupsX2+ andX3+ does not allow a partitionning of these
groups as easy as forXJ1 . Therefore we must address the classification as a whole.

• Data processing.
Fig.5 shows the initial solution of the EM-mDAG algorithm at stepℓ = 0. This solution results

fromM = 3 independent classifications by applying the classical EM algorithm on each macro-
variable. The class labelŝk(xJm

i ) defined in (2.3) are gathered for making composite class labels
by using a table similar to Table 1. This initial solution is unsatisfactory. The macro-variables
XJ2 andXJ3 are strongly blurred by several small composite classes that are artefacts. Thefinal
solution of the EM-mDAG algorithm is shown in Fig.6. The representation in terms of mixture
components is close to the original in Fig.4. The macro-variablesXJ2 andXJ2 respectively
highlight the components of the groupX2+ andX3+, despite thefifth class that is divided into
two neighbour classes.
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Fig.7 and Fig.8 show respectively the classifications obtained with the usual EM algorithm
successively performed on the basis of24 classes and5 classes. With24 classes, the number of
non-empty classes is large and therefore the classification is greatly erroneous. With5 classes,
the classification provided by the EM algorithm does not meet the specificity of the data. The
macro-variableXJ2 = (X4, X5) does not highlight the mixture components in the groupX2+.
This is a major problem that hinders significantly the interpretation of composite classes in terms
of macro-variables.

• Property of the EM-mDAG algorithm.
The experiments show that the EM-mDAG algorithm has the property to keep a small number

of αk different from zero when there is a limited number of significant composite classesK0 ⊂
K. This selection ability is not so surprising. Firstly,X is not observable alongk whenk �∈ K0,
which means that its conditional distribution is not defined for thesek. There exists at least one
couple(km, km) in k whose observability of[XJm |XJ

m , km, km] is undefined. At every stepℓ
of the algorithm, there are several couples(km, km) such that no observationxi is simultaneously
present in the clusterskm andkm : {i : k̂m(xJm

i ) = km, k̂m(x
Jm

i ) = km} = ∅. Secondly, the
Markovian dependency introduced by the specificationsp(xJm

i |x
J
m

i , km, km) has for effect to
reorganize the initial clustering while maintaining a well-contrasted partitioning. This is a well-
known property of the Markovian approach. These two remarks should be useful for establishing
an analytical proof of the selection property.

4. Discussion

In this paper, we have presented a mixture model dedicated to the case where the dependencies
among the components of the multidimensional random vector are governed by a DAG structure.
The mixture model takes advantage of a two-level structure, which is composed by the DAG
itself and its macro-representation.A dedicated EM algorithm has been efficiently implemented
for the Gaussian case. The experiments show that this algorithm is able to select a small number
of composite classes. This selection ability isimportant because it allows to circumvent the
difficulty of choosing the exact number of elementary classes for each macro-variable. In fact,
one of the main role of the EM-mDAG algorithm is to reveal significant relationships among the
hidden elementary classes, some of them becoming empty during the procedure.

Appendix : a case study

This section presents a domain in which our method should be useful, as it is currently being
undertaken by Xiaoyi Chen at Institut Pasteur (Systems Biology team). AN -sampleX of tens
and even hundreds of thousands of cells is observed byflow cytometry. For each celli = 1, ..., N ,
the instrument provides a measurement vectorxi of dimensionn. This sample is a mixture of
several cell populations. The goal is to group these measurements so that each class corresponds
to a well-identified cell type [1].
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Figure 2. A partial decision tree with biological classes on leaves, (thanks to Xiaoyi Chen, Institut Pasteur).

The analysis, which is based on a dependency tree as illustrated in Fig.1-a, is usually accom-
plished by sequential manual partitioning (called ”Gating”) of the sampleX from the top to the
bottom of the tree. Rather than watching simultaneously then dimensions, that is to say the cloud
X in the spaceRn, the biologist works in subspaces of smaller dimensions,1, 2 or 3, according
to associations of variablesXj , here called macro-variables, as shown in Fig.1-b.

At the top of the tree, only one coordinate of the cloudX is analyzed. This is the variable
X1 corresponding to high valuesCD45+ of the biological variableCD45. In this example,
to simplify, the tree height was reduced by starting the tree withX1 = CD45+ instead of
(CD45−, CD45+). To determine the two groupsCD45− et CD45+, a thresholdτCD45 is
manually selected for separating the small and large values ofCD45. Conditionally on the ele-
mentary classX1 = CD45+ , the procedure continues along the tree structure, as follows.

Three elementary classes are extracted from the 2-D distribution of the sample{(x2
i , x

3
i )}

N
i=1

and denoted(X2+), (X2−, X3−), (X3+) as illustrated in Fig.2 and Fig.3-a, On each group,
this operation is repeated on the following macro-variables in dimension 2 for(X4, X5) condi-
tionally on(X2+) as illustrated in Fig.3-b, and in dimension 3 for(X6, X7, X8) conditionally
on (X2−, X3−).

This conditional and sequential procedure can be represented by a DAG and then modeled by
a Bayesian network. The main advantage of using the EM-mDAG is its ability to global classifi-
cation while keeping the biological dependency structure, which is necessary for identifying the
cell types.
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The histogram gives the empirical distribution of the composite classes.
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Figure 5. Initial solution of the EM-mDAG at stepℓ = 0. M = 3 independent classifications was achieved by apply-
ing the classical EM algorithm on each macro-variable. Compared with the ground true in Fig.4, this representation is
strongly blurred.
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Figure 6. EM-mDAG based clustering at stepℓ = 20. As in Fig.4, the macro-variables(X4, X5) and(X6,X7,X8)
respectively highlight the components of the groupX2+ andX3+ of the macro-variable(X2,X3), despite thefifth
class that is divided into two neighbour classes, numberedk = 4 andk = 5 in the histogram.
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Figure 7. Standard EM algorithm for24 classes. The number of non-empty classes is large and therefore the classification
is greatly erroneous.
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Figure 8. Standard EM algorithm for5 classes. The macro-variable(X4,X5) does not highlight the mixture components
of the groupX2+ of (X2, X3).
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