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Abstract

Optical aberrations are one of the biases affecting images. Their correction can

be performed as a transformation of the image. In this paper, it is proposed

to use digital image correlation to calculate the distortion fields. A correlation

calculation is performed between a known numerical pattern and a picture of

the same pattern printed or etched on a plate. This new procedure is applied to

determine the distortion fields of a camera lens. First, a parametric description

of the distortion field is used to reduce the degrees of freedom required to de-

scribe optical distortions. Second, a non-parametric model based upon splines is

used. The distortion fields found by both methods are compared. A resolution

analysis is performed for two different procedures (removing the lens between

pictures or not). The standard displacement resolution is found to be of the

order of 10−2 pixel in the first case, and 2.5× 10−3 pixel in the second case.

Keywords: DIC; Integrated approach; Optical distortions; Resolution.

∗Corresponding author. Phone: +33 1 47 40 21 92, Fax: +33 1 47 40 22 40.
Email addresses: john-eric.dufour@lmt.ens-cachan.fr (John-Eric Dufour),

francois.hild@lmt.ens-cachan.fr (François Hild), stephane.roux@lmt.ens-cachan.fr
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1. Introduction

Digital image correlation consists of the registration of pictures taken by

cameras. The mechanism of taking a picture with a digital camera induces

some differences between the ideal geometrical projection of the real scene and

the acquired picture. As the definition of the camera sensors increases, the

main source of errors is now due to lenses generating geometrical aberrations

resulting in a distortion field representing the displacement field between the

real scene and the shot one. Digital image correlation uses pictures to measure

displacements, therefore these systematic errors bias the measurements [1, 2, 3,

4, 5, 6, 7]. That is the reason why a correction of these distortions has to be

performed so that measurements become quantitative and bias-free.

Several procedures have already been proposed to measure and correct dis-

tortions so as to restore the geometrical fidelity of images. Many of these meth-

ods use geometrical calibration targets (e.g., grids, checkered surfaces) to per-

form the correction. The latter consists of linear coordinate transformations for

non-parametric1 descriptions with no relationship to the physics of distortion

phenomena. Other techniques use similar methods to obtain stereocorrelation

calibration matrices and distortion correction procedures [8, 9, 11, 4, 5]. This

allows a single calibration step to achieve both objectives. Another strategy

consists of using a parametric description of the distortion field. The latter is

extracted and then fitted to obtain a set of parameters [2, 1, 12]. This method

generally uses grids to obtain the distortion field but implies a modification of

1The terminology “parametric” refers to a model-based representation of the measurement

so that the parameters can be directly interpreted as the characteristics of a physical model. In

contrast a discretization based on a mathematically convenient basis without direct physical

interpretation will be called “non-parametric” to comply with a common convention [8, 9, 10,

11, 5].
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the image, which is a non-linear transformation (addition of a new field to the

image). Some approaches use both nonparametric model and nonlinear trans-

formation. For instance, a spline-based description [12] can be used to correct

for distortions. With these methods, only a few reference points are extracted

from the whole pictures of the calibration target. The most used registration

techniques are based on geometrical elements (for example circles or intersect-

ing lines) to determine remarkable points on a target using e.g. Harris’ corner

detector [13]. Correlation-based approaches are another alternative [12, 5] used

herein. In contrast with the previous method, a dense measurement of an appar-

ent displacement field is performed herein with a uniform measurement over a

region of interest, and it does not rely on interpolation or regression procedures

in between remarkable points.

It is proposed to use an integrated approach to DIC directly considering a

parametric description of the distortion field. Although most methods are based

upon regular geometrical targets, the present analysis is based on a printed or

etched random pattern to extract the distortions from the whole picture. The

integrated approach allows us to directly extract the parameters from the DIC

analysis without any additional interpolation. It can be used in addition to a

spline basis to calculate the parameters of a spline-based correction of distortion.

The outline of the paper is as follows. First, the concept of optical distortion

is introduced by defining the underlying physical biases. Then the method to

evaluate distortions is presented. It is based on an integrated DIC approach. A

resolution analysis is also performed by both analytical and experimental ap-

proaches. Last, a spline-based method and its resolution analysis are compared

for two different basis orders.
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2. Optical Distortions

In the sequel, the main optical distortions and the mathematical model to

account for these biases are introduced.

2.1. Physics of Distortions

Optical distortions are mainly caused by imperfections of cameras and their

optics. Different kinds of defaults generate optical distortions. Thickness of the

lenses and alignments in the optical system are generally approximations of a

camera model and are not perfect. Several types of optical biases are generally

identified [2, 8, 5] and only three of them are listed and studied:

• Radial distortions are due to the paraxial approximation. When light

comes into the system with a large angle from the optical axis, the Gaus-

sian approximation of its path does not represent the reality. These rays

do not hit the CCD (or CMOS) sensor at the location predicted by the

model, thereby causing a distortion [1].

• Decentering distortions are caused by the lack of coaxiality of the center

of the lenses composing the optics. In an aligned optical system, rays

traveling along the center of the lenses are not deviated. If the different

centers are not coaxial, all rays deviate. Although an ‘apparent’ optical

axis can be defined to take into account the whole system, it does not

coincide with the optical center predicted by the perfect camera model [1].

• Thin prism distortions are due to the fact that the parallelism of the lens

between each other and with the CCD or CMOS sensor is not completely

satisfied. This last distortion is also known as tilt distortion [1].

Optical biases can be described as an apparent displacement field between

an image taken with a real camera and a perfect image of the same scene.
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2.2. Apparent Motions

For each distortion described above, a mathematical model exists. It ac-

counts for the fact that the true pixel location (xr, yr) is biased and therefore

has ‘moved’ by an apparent displacement (δx, δy) so that its position in the pic-

ture is (xr + δx, yr + δy). Correcting optical distortions consists of determining

the apparent motions (δx, δy) [1, 2]. To correct for distortions, the distorted

image has to be corrected to bring it back to the reference (i.e., undistorted)

configuration. This is precisely what is performed in the registration opera-

tion in any DIC code (see below). The only difference is that the displacement

field (δx(xr, yr), δy(xr, yr)) is known since the distortion components have been

determined, as shown in the sequel. Consequently, correcting for distortions

consists of calculating g̃(xr, yr) = g(xr + δx(xr, yr), yr + δy(xr, yr)) for any con-

sidered pixel location (xr, yr). Since g is known at the pixel locations (xr, yr),

g(xr+δx(xr, yr), yr+δy(xr, yr)) will require evaluations at non integer positions.

Thus, gray level interpolations are needed, which are identical to those used in

the DIC procedure.

Radial Distortions. The radial distortions are related to the series of odd powers

of the radial coordinate of a pixel. They are described as an infinite series [1, 2]

δRx (xr, yr) = x
∞
∑

k=1

rk(x
2
r + y2r)

k

δRy (xr, yr) = y
∞
∑

k=1

rk(x
2
r + y2r)

k

(1)

where δRx , δ
R
y denote the apparent displacements due to radial distortions, and

rk are the corresponding (unknown) amplitudes.

Decentering Distortions. This model represents the influence of having an ap-

parent optical center, which is different from the assumed one. It is also ex-
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pressed as an infinite series [1, 2]

δDx (xr, yr) = (2xryr cosϕ0 − (3x2
r + y2r) sinϕ0)

∞
∑

k=1

sk(x
2
r + y2r)

k−1

δDy (xr, yr) = (2xryr sinϕ0 − (x2
r + 3y2r) cosϕ0)

∞
∑

k=1

sk(x
2
r + y2r)

k−1

(2)

where δDx , δDy denote the apparent displacements due to decentering distortions,

sk the corresponding (unknown) amplitudes, and ϕ0 the angular position of the

apparent center in the picture.

Thin Prism Distortions. This bias is related to the series of even powers of the

radial coordinate. An infinite series [2, 1] is also utilized

δPx (xr, yr) = − sinϕ0

∞
∑

k=1

tk(x
2
r + y2r)

k

δPy (xr, yr) = cosϕ0

∞
∑

k=1

tk(x
2
r + y2r)

k

(3)

where δPx , δ
P
y are the apparent displacements due to prismatic distortions, tk

the corresponding (unknown) amplitudes.

In this study, we will use a first order expansion (k = 1) of the previous

expressions

δRx (xr, yr) = r1xr(x
2
r + y2r)

δRy (xr, yr) = r1yr(x
2
r + y2r)

δSx (xr, yr) = 2d2xryr − d1(3x
2
r + y2r)

δSy (xr, yr) = 2d1xryr − d2(3x
2
r + y2r)

δPx (xr, yr) = p1(x
2
r + y2r)

δPy (xr, yr) = p2(x
2
r + y2r)

(4)

This restriction to the first orders allows us to keep a few unknowns for the

system (i.e., 5 coefficients) while modeling the most salient features. This is the

standard hypothesis made to model distortions [1, 2, 8, 5]
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3. Distortion Evaluation via Integrated-DIC

In this section, Digital Image Correlation [3, 5, 14] will be used. Contrary to

the common practice of DIC, which is local (i.e., subset-based), the whole ROI

will be analyzed as a single interrogation window. Two different approaches

will be considered. First, when a non-parametric distortion model is assumed,

a spline-based displacement basis is chosen. This type of approach was already

used to analyze beam bending [15] and wood sample compression [16]. An

alternative is to resort to so-called integrated-DIC [17, 18] in which the sought

displacement field is directly given by, say, Equation (4). There is therefore no

need to re-project the measured displacement field.

To perform DIC analyses, several images are required. Let us first consider

an image generated numerically as a random pattern of black dots on a white

field. This picture is considered as the reference configuration f(x). It cor-

responds to the model of the calibration target used hereafter. This reference

can be printed (or etched) as a “physical” calibration target and pictured by a

camera. This second image has experienced optical biases due to the imperfec-

tions of the objective lenses of the camera. This corresponds to image g(x) in

the “deformed” — or rather “distorted” — configuration. It is to be stressed

that the measured distortions consist of the optical distortion of the imaging

device as well as the printing or etching distortion. The partition of the global

distortions between these two sources will not be discussed herein (see Ref. [19]

on that issue). However, the technology of printing or etching may not share

the same type of distortions as the optical ones, in which case some distortion

modes may be considered as resulting primarily from one source or another.

For instance, if the printing is carried out with a high fidelity ink-jet printer,

one of the main sources of distortion is a line to line repositioning, which is

not expected for a camera lens. This is in line with the philosophy of using a
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parametric approach. However, if it cannot be proven that the optical modes

are absent in the printing process, this separation cannot be performed in a

definitive way.

In this paper, two different calibration targets have been used. The first

one has been printed on an aluminum sheet (Figure 1(b)) from a reference

picture shown in Figure 1(a). The second one has been etched on a steel plate

(Figure 2(b)) from another reference picture (Figure 2(a)). The two references

are composed of black dots randomly distributed on a white background, their

location is not exactly the same in both cases. The plane is partitioned into

equally sized square elements and one disk is randomly positioned within each

square. The center and the diameter of these dots are therefore known.

(a) (b)

Figure 1: Numerical reference (a) and picture of the printed calibration target (b). It can be

noted that there are some defaults due to the printer

Contrary to standard calibration targets [8, 10, 4, 5], the calibration proce-

dure is based on a random pattern. It allows us to use digital image correlation

instead of a geometrical approach to correct for distortions. This numerical

reference is then printed onto an aluminum sheet or laser etched on a stainless

steel plate that was initially burnished. To determine the orientation of the
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(a) (b)

Figure 2: Numerical reference (a) and picture of the etched calibration target (b). It can be

noted that the large dot on the lower left corner was not etched

target 3 larger dots are marked in the corners (Figure 2). The etched target

used herein is a 150× 150 mm2 plate with 1.46-mm diameter dots. The printed

target is a 150× 150 mm2 plate with 1-mm diameter dots.

3.1. DIC Algorithm

DIC consists of satisfying as best as possible the gray level conservation

f(x) = g(x+ u(x)) (5)

by minimizing the sum of squared differences

η2 =
∑

ROI

[g(x+ u(x))− f(x)]2 (6)

over the considered Region of Interest (ROI) with respect to the unknown dis-

placement field u. To estimate u, a modified Newton scheme is used in which

the linearized functional η2lin is considered

η2lin =
∑

ROI

[g(x+ ũ(x)) + δu(x) ·∇f(x)− f(x)]2 (7)
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where ũ is the current estimate of the sought displacement field, and δu is the

estimated correction to be applied.

At this point, the displacement field u(x) can be decomposed over a set of

trial fields ψn(x)

u(x) =
∑

n

anψn (8)

where an are the unknown amplitudes. As mentioned above, two different bases

will be tested in the following studies. First, when a parametric description

of the distortions is used, Equation (4) defines displacement fields that can be

considered directly in the present setting. Second, a non-parametric description

is also possible (e.g., spline-based) of the sought displacement field.

The linearized functional η2lin is thus rewritten as a function of the unknown

amplitudes so that its minimization leads to linear systems in terms of the

corrections δam

Mmn δan = bm (9)

with

Mmn =
∑

ROI

(ψm ·∇f)(x)(ψn ·∇f)(x)

bm =
∑

ROI

[

f(x)− g

(

x+
∑

n

ãnψn(x)

)]

(ψm ·∇f)(x) (10)

where {ã} are the current estimates of the displacement amplitudes. The mini-

mization stops when reaching a gray level residual less than to 1% of the dynamic

range of the reference picture or when the RMS difference between two consec-

utive solutions {ã} is less than 10−3 pixel. This value can be justified with the

resolution analysis performed in Section 4.1. A linear interpolation of the gray

levels is used in the proposed examples and the picture gradient is calculated

using centered differences for inner pixels and forward and backward differences

on the edges of the ROI.
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3.2. Resolution Analysis

The resolution is defined as the ‘smallest change, in the value of a quantity

being measured by a measuring system, that causes a perceptible change in the

corresponding indication. The resolution of a measuring system may depend

on, for example, noise (internal or external) [...]’ [20]. A reference picture is

considered and the sensitivity of the measured degrees of freedom δan to noise

associated with image acquisition is assessed. In the present case, only the

deformed image is affected by acquisition noise.

The noise is modeled by a random variable ζ, which is added to g. It

is assumed that ζ is a Gaussian white noise, of zero mean, and covariance

σ2I(x,y), where x and y denote the locations of the pixels, σ2 the variance,

and I the Kronecker matrix. With these hypotheses, matrix [M ] is unaffected

by noise, but the right hand side term {b} is modified by an increment [18]

δbm =
∑

v

(ψm ·∇f)(v)ζ(v) (11)

whose average is thus equal to 0, and its covariance reads

C(δbm, δbn) = σ2
∑

v

∑

w

(ψm ·∇f)(v)δ(v,w)(ψn ·∇f)(w)

= σ2Mmn (12)

whereMmn are the components of matrix [M ] to be inverted in the DIC problem

[see Equation (10)], and δ(., .) is Kronecker’s delta function. By linearity [see

Equation (10)], the mean value of δap vanishes, and its covariance becomes

C(δap, δaq) = σ2M−1
pmMmnM

−1
nq = σ2M−1

pq (13)

3.3. Integrated DIC: DIC with Distortion Model

Let us consider a basis of displacement fields directly deduced from the con-

sidered distortion model [Equation (4)]. Lower degree fields need to be added
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Table 1: Link between displacement fields and distortion parameters for dimensionless coor-

dinates (X,Y ) and (Xr, Yr)

Parameter Component along ex Component along ey

u0 1 0

v0 0 1

u1x X 0

v1x 0 X

u1y Y 0

v1y 0 Y

d1 −(3X2
r + Y 2

r ) 2XrYr

d2 2XrYr −(X2
r + 3Y 2

r )

p1 X2
r + Y 2

r 0

p2 0 X2
r + Y 2

r

r1 Xr(X
2
r + Y 2

r ) Yr(X
2
r + Y 2

r )

to account for rigid body motions between the two pictures, and magnifica-

tion changes (see Appendix). Thus a basis containing eleven fields is obtained,

corresponding to eleven unknown amplitudes. Let us note however that the

distortion fields are naturally expressed in coordinates (xr, yr) whose origin is

the optical axis, whereas the additional fields are expressed in coordinates (x, y)

whose origin is the image center (as the optical axis is not known a priori). In

the following it is more convenient to introduce a characteristic length L (height

or width expressed in number of pixels), and reduced coordinates X ≡ x/L and

Y ≡ y/L (and equivalently with subscripted coordinates). Table 1 gives the

expression of the different distortion fields and additional fields, where it is im-

portant to distinguish coordinates centered on the image or on the optical axis.

With the present convention, the amplitudes of the different fields are all ex-

pressed in pixels. By considering these trial fields, the number of degrees of
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Table 2: Link between distortion parameters and un-centered distortion fields for dimension-

less coordinates

Parameter ex ey

u0 + (d1 + p1 − r1Xc)(X
2
c + Y 2

c ) + 2d1X
2
c + 2d2XcYc 1 0

v0 + (d2 + p2 − r1Yc)(X
2
c + Y 2

c ) + 2d1XcYc + 2d2Y
2
c 0 1

u1x + r1(3X
2
c + Y 2

c )− 2p1Xc − 6d1Xc − 2d2Yc X 0

v1x + r1(2XcYc)− 2p2Xc − 2d1Yc − 2d2Xc 0 X

u1y + r1(2XcYc)− 2p1Yc − 2d1Yc − 2d2Xc Y 0

v1y + r1(X
2
c + 3Y 2

c )− 2p2Yc − 2d1Xc − 6d2Yc 0 Y

d1 − r1Xc −(3X2 + Y 2) 2XY

d2 − r1Yc 2XY −(X2 + 3Y 2)

p1 X2 + Y 2 0

p2 0 X2 + Y 2

r1 X(X2 + Y 2) Y (X2 + Y 2)

freedom necessary to describe the whole displacement field has been reduced

from typically thousands in local or standard global approaches to eleven in the

present method.

Let us denote with a¯oversign the amplitudes of uncentered distortion am-
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plitudes, then Table 2 can be rewritten as the linear transform
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
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






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ū0

v̄0

ū1x
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where T is composed of four blocks

T =





I T1

05,6 T2





with

T1 =

































(3X2
c + Y 2

c ) 2XcYc (X2
c + Y 2

c ) 0 −(X3
c +XcY

2
c )

2XcYc (X2
c + 3Y 2

c ) 0 (X2
c + Y 2

c ) −(X2
cYc + Y 3

c )

−6Xc −2Yc −2Xc 0 (3X2
c + Y 2

c )

−2Yc −2Xc 0 −2Xc 2XcYc

−2Yc −2Xc −2Yc 0 2XcYc

−2Xc −6Yc 0 −2Yc (X2
c + 3Y 2

c )

































and

T2 =

























1 0 0 0 −Xc

0 1 0 0 −Yc

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
























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The above correspondence shows in particular that a radial distortion centered

at xc does generate two decentering corrections. Conversely, it is appropriate to

define the distortion center as the point xc such that the decentering corrections

vanish. The procedure then simply consists of evaluating the above amplitudes,

d̄1, d̄2 and r̄1 by digital image correlation, and compute the effective distortion

center as

xc ≡ −(d̄1/r̄1)L

yc ≡ −(d̄2/r̄1)L
(15)

so that one can easily check that d1 = d2 = 0. The optical distortion can thus

finally be captured by the following intrinsic 7 parameters, namely, mean devi-

atoric strain (to be computed from u1x and u1y) (i.e., 2 parameters), paraxial

corrections (i.e., 2 parameters), radial correction (i.e., 1 parameter) and the po-

sition of the distortion center (i.e., 2 parameters). From the above 11 variables

introduced, three correspond to arbitrary rigid body motions, and a fourth one

sets the magnification factor.

3.4. Artificial Test Case

To check that the proposed approach does actually measure distortion fields,

a numerical test case has been implemented. It consists of applying a distortion

field to the dot centers of the numerically generated target and uses I-DIC

between this deformed picture and the reference one. Two different pictures

have been generated (Figure 3), one of them with global gray level variations

and the other with no variation. The variation is an artificial shadow created

by adding a gray level proportional to the distance from the upper left corner

of the image to each pixel. In the example used herein, the difference between

the gray level of the upper left and the bottom right corner is 30 (i.e., from 0

to 30 gray levels for black pixels, and from 225 to 255 for the white pixels).

The RMS error between the prescribed and the measured distortion field is

3×10−2 pixel in both cases. The main cause explaining these values is related to
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(a) (b)

Figure 3: Numerically deformed calibration pattern used for the artificial test case: (a) with

gray level gradient, (b) with no variation

the binarization of the images, and not to the non uniformity of the gray levels.

The corresponding error on the distortion coefficients is less than 6×10−2 pixel.

This value is deemed sufficient for distortion analyses. The positioning error of

the center is about 1 pixel in the x-direction and 3 pixels in the y-direction as

shown in Figure 4. This small value validates the proposed procedure.
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Figure 4: Position of the distortion center. In red the prescribed center and in blue the

calculated one.
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4. Analysis

In this section, discussions about the proposed method will be developed.

Moreover, a comparison with other procedures [21, 12, 8, 10, 11, 4, 22] and an

analysis on an a priori resolution estimation [14] will be performed. A Canon

EOS 60D camera is used herein with a 50-mm Optimus lens. The definition

of the pictures is 1662 × 1662 pixels. The picture is acquired in RAW format.

Each group of four pixels is then used to calculate the corresponding gray level

pixel that ranges from 0 to 255 using standard RGB to grayscale conversion

formula [23].

Since the reference configuration is purely numerical, a first procedure is

required to make the gray level registration easier. Furthermore, to avoid light-

ing and reflection issues, a set of pictures has been segmented to obtain binary

copies. The present procedure uses Otsu’s method [24] to calculate the thresh-

old. It consists of assuming that the image contains two classes of pixels (i.e.,

white and black) and then calculating the threshold that minimizes the intra-

class variance. Moreover, to avoid the sharp edge effects of the black dots,

the images are convolved with a Gaussian filter to smoothen the interfaces be-

tween black dots and the white background. This Gaussian filter has a 5-pixel

diameter.

4.1. Integrated-DIC

The correlation operation is performed between these pictures and leads to

a displacement field. The reliability of the method is evaluated by the gray level

error field (or correlation residual), which is computed at any pixel location as

the deviation from the gray level conservation

ϵ(x) = |f(x)− g(x+ um(x))| (16)

where um is the measured displacement field.
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Figures 5(a-b) show the distortion fields obtained by I-DIC with an etched

target. In this case, the distortion field is easily extracted from the results be-

cause of the formulation used. The physical size of one pixel is about 90 µm

(this value is obtained by measuring the pixel size of the target on the picture

and divide it by its actual length, which was evaluated with a caliper) The

maximum amplitude of the displacement field is equal to 7 pixels. As expected,

the distortion levels are larger at the corners. A residual error map (in gray

levels) is shown in Figure 5(c). It proves that the random pattern was properly

registered, and that the sharpest parts of the picture (dot boundaries) revealed

large error values. These errors on the dot boundaries come from the compar-

ison of a numerical target with rather sharp dot edges and a real picture shot

by a camera (dot boundaries are smoother). This effect can be reduced by pro-

cessing pictures (segmentation and convolution by a Gaussian filter as earlier

mentioned).

4.1.1. Resolution Estimation

To estimate the resolution of the distortion measurements, several pictures of

the same etched calibration target are taken. The correlation procedure between

the numerical reference and each of these images results in the position of the

center of the radial distortion, a distortion field u(x) and a set of distortion

coefficients (see Section 2.2).

The mean and the standard deviation of these values are calculated to com-

pare the results. A reference displacement field is estimated as the average of

the 10 measured displacement fields. Then, a root mean square (RMS) average

is computed on the difference between a displacement field and the reference

solution. Figure 6 shows the change of the RMS average in both directions for

the 10 analyzed pictures. The RMS difference between consecutive displacement

measurements is 2.5 × 10−3 pixel for the displacement field. This level is very
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Figure 5: Example of distortion field (a-b) expressed in pixels, and gray level error (c). The

digitization of the picture of the etched target is 8 bits. The missing dot (left corner, see

Figure 2) leads to very high residuals

low. It can be achieved only thanks to the integrated approach used herein.

In the proposed setting, the position of the effective center of distortion is

part of the unknowns. Figure 7 shows the coordinates found for the 10 pictures.

The position of the center belongs to a box whose size is of the order of 1 pixel

(RMS difference: 0.65 pixel and 0.43 pixel along each direction). This value

is very small and illustrates the robustness of the evaluation of the distortion

center.

This a posteriori resolution analysis can be related to the a priori estimates
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Figure 6: RMS average on displacement (induced by distortions only) difference along the 2

considered directions ex (solid line) and ey (dashed line) for a series of ten pictures of the

etched target
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Figure 7: Position of the distortion center on the reference picture (a) and on the zoom (b)

introduced in Section 3.2. Performing this calculation in the present case leads to

an evaluation of the error on each unknown coefficient. The a priori estimation

of the uncertainties is shown in Figure 8(a) and the actual covariance matrix is

presented in Figure 8(b). The same order of magnitude is observed in both cases.
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The error on r1 parameter (i.e., corresponding to the radial distortion) is larger

than the others, which can be explained by its influence on the measurement

(i.e., the radial field is the most important one [3]).
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Figure 8: Covariance matrix (expressed in pixel2) obtained from the a priori estimation

(a) and with the correlation calculation (b). Each component of the covariance matrix is

represented by its magnitude

It is important to note that the present estimation of the uncertainties does

not take in account the procedure used to search for the center of the radial

distortions. This approximation can explain the difference of standard resolution

level on the fields except the radial one. By performing the same analysis with

a higher degree of representation for the radial distortions, the same magnitude

is observed for the new coefficients, but their level of resolution was ten times

higher.

4.1.2. Repeatability of the measurement

Distortion fields are mainly determined by the sensor-lens pair. A given

camera with a given lens setting will yield a specific distortion field. This work

focuses on the uncertainties due to the repositioning of the lens on the camera

with the etched target. Between each image, the lens has been totally removed

21



and repositioned on the camera while the other settings remained unchanged.

Two sets of pictures have been shot, the camera has been rotated by a small

angle between the two sets. In this calculation, only the first five pictures have

been segmented, the others are the raw acquisitions.

As in the previous case, the mean and the standard deviation over these

values are calculated to compare the results. A reference calculation is obtained

for each set of 5 pictures (one for the first five and a second one for the pictures

with the second camera orientation) as the mean of the 5 displacement fields

along e(x) (respectively e(y)). Again, an RMS calculation is performed with

the difference between a displacement field and its respective reference. Figure 9

shows the change of RMS values for the 10 pictures. It is impossible to see a

clear difference between the two groups of pictures. The segmentation does not

appear to have any influence on the accuracy of the registration. The main

effect is due to the fact that the lens is fully disassembled from the camera.

When compared to the previous case (Figure 6), the standard uncertainties of

the measured displacement field has increased by a factor close to 4 on average.

The present level, of the order of 10−2 pixel, still remains very low.

As for the previous case, Figure 10 shows the coordinate locations found

for the distortion center for the 10 pictures. The position of the distortion

center varies more (close to a factor 5) and the positioning error has become as

large as the displacement values. Two different groups of position are obtained

corresponding to the two sets of pictures. The segmentation does not appear to

have any influence on the accuracy of the positioning.

To quantify the difference induced by the binarization, a calculation on the

same image with and without segmentation has been performed. Figure 11

shows the differences between the displacement field obtained with and without

segmentation. The main differences are located on the edges of the picture.

When considering the RMS average, the following values are obtained: 0.016
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Figure 9: RMS average on displacement (induced by distortions only) difference along the 2

considered directions ex (solid line) and ey (red dashed line) for a series of 2× 5 lens removals
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Figure 10: Position of the distortion center on the reference picture with lens removal (a).

The blue box corresponds to the zoom (b). The two sets of pictures are clearly visible

and 0.012 pixel along both directions. This level is slightly higher than what was

observed in the previous analyses (Figure 9). However, it is worth remembering

that reflection artifacts are present in that case.

Figure 12 shows the impact on the position of the center of the distortion.
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Figure 11: Difference between the displacement field (expressed in pixels) obtained from a

segmented and a raw picture along ex (a) and ey (b) directions

A positioning error appears between the two images, which has the same order

of magnitude as the variations observed previously (Figure 10).
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Figure 12: Position of the calculated center of the radial distortion for a segmented and a raw

picture (a). Zoom on the interesting area (b)

4.2. Spline Basis Functions

Several methods exist to evaluate and correct for optical distortions (see Sec-

tion 1). In the sequel, a spline-based kinematics to describe the distortions [12]
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will be used on the etched target and compared to the previous results. The

comparison is performed with a third-order and fifth-order spline representation.

It follows that 16 × 2 and 36 × 2 degrees of freedom are considered, which are

at least three times as many as in the integrated approach. The mean residual

error with the present approach (i.e., 5.6% and 5.1% of the gray-level dynamic

range) is lower when compared with the integrated approach, which is to be

expected since the number of degrees of freedom has increased, but remains

close to the previous value (i.e., 6.3%). These (rather) high values are due to

the fact that a synthetic reference image is considered herein.

Figures 13(a-b) show the distortion fields obtained by the spline basis with

the printed target. In that case, the method does not allow for the separation

between rigid body motions and the distortion field. The residual error map

shown in Figure 13(c) proves that the random pattern was properly registered.

Two different displacement fields are measured with the spline decomposi-

tion. Figures 14 and 15 show the difference between those displacement fields

along the two directions with those obtained with the parametric description.

Large differences are observed on the boundary, but the central values are sim-

ilar with all methods. The RMS differences between the displacement fields

found with the parametric model and the third-order spline basis method are

equal to 0.68 pixel along ex and 0.39 pixel along ey (0.66 pixel along ex and

0.44 pixel along ey for the fifth order spline basis). These differences can be at-

tributed to the manufacturing process of the target, since when performing the

same operation with a printed target (Figure 16) instead of an etched one, these

differences are reduced by a factor close to 10. This observation stresses the fact

that only global distortions are measured. The decomposition into optical and

printing (or etching) contribution has not been addressed herein. Thus, if this

procedure is to be used to measure the optical distortion, the calibration target
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Figure 13: Example of displacement field (a-b) expressed in pixels, and gray level error (c)

for the printed calibration target

should be printed with high fidelity.

Differences between the spline approach and the parametric description in-

crease with the spline degree as could be anticipated. The parametric description

seems to be effective since with half as much degrees of freedom as the spline

approach, it is possible to closely describe the whole distortion field. Moreover,

the use of two different descriptions allows us to compare the fields and use this

comparison to cross-validate the truncation of the two bases.

The main drawback of this non-parametric approach is that rigid body mo-

tions, magnification changes and distortion fields are coupled and cannot be
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Figure 14: Difference between the displacement field (expressed in pixels) for a third-order

spline basis and the parametric model along ex (a) and ey (b) corresponding to an RMS

difference of 0.68 pixel and 0.39 pixel in both directions with an etched target
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Figure 15: Difference between the displacement field (expressed in pixels) for a fifth-order

spline basis and the parametric model along ex (a) and ey (b) corresponding to an RMS

difference of 0.66 pixel and 0.44 pixel in both directions with an etched target

separated without an additional post-processing step. Moreover, it means that

the position of the calibration target has to be perfect with respect to the

camera (e.g., perpendicularity, centering) to represent only the distortion field.

Otherwise the apparent center is not properly estimated.

A resolution analysis is also performed with the spline-based calculation

by using the method presented above. Figure 17 shows the covariance matrix
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Figure 16: Difference between the displacement field (expressed in pixels) for a third-order

spline basis and the parametric model along ex (a) and ey (b) corresponding to an RMS

difference of 0.08 pixel and 0.04 pixel in both directions with a printed target

for third order basis along ex. The most uncertain parameters are the values
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Figure 17: Covariance obtained from the a priori estimation (a) and the correlation calculation

(b). Each component of the covariance matrix is represented by its magnitude

corresponding to the center area of the field in both case. A very good agreement

is observed for the a priori estimate of the covariance matrix, when compared

to its experimental evaluation.
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5. Conclusions

This study introduces a new method to evaluate global distortions (i.e.,

coming from optical imaging and printing of known calibration target). First,

an artificial random texture has been printed on an aluminium sheet. Second,

a steel plate has been etched with randomly generated pattern of dots from a

numerical reference. Therefore, in both cases the reference is a synthetic picture.

The calibration target is imaged and the corresponding picture is registered

with the numerical reference. The registration is based upon digital image

correlation. The first procedure corresponds to an integrated approach in which

the distortion fields, which are defined with a few degrees of freedom, are directly

measured. Contrary to most techniques used for the correction of distortions,

which are geometrical methods, the present approach is solely based on digital

image correlation.

The proposed methodology provides a natural definition of the effective dis-

tortion center position such that the decentering distortion field is exactly can-

celed. This definition enables for an intrinsic characterization of the distortion

field.

As all measurement techniques, the present method implies uncertainties.

Some are due to the optical model (i.e., first order approximation, Taylor trun-

cation), to the correlation procedure (e.g., gray level interpolation) or the imag-

ing device itself (e.g., acquisition noise, vibration during picture acquisition).

The error due to acquisition noise is evaluated with two different methods. The

first one consists of taking many pictures of the same scene and measuring the

scatter of the results. These results can be compared with an a priori resolu-

tion analysis, which provides the performance of the DIC technique based on

a propagation of uncertainties. The uncertainties found in both cases are very

close to each other and their level is very low as they benefit from the integrated
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DIC approach.

Once the distortion field has been estimated, it can be accounted for in the

picture to create a ‘distortion-free’ image. Using an integrated approach to DIC

enables only a few parameters to be determined to describe the entire field and

to improve the uncertainties on these coefficients. Using a parametric approach

gives the opportunity to decompose the results in terms of referential dependent

fields and intrinsic optical distortions.

This technique has many possible applications. It can be used to pre-

calibrate cameras in a stereoDIC method to separate the distortion corrections

and the stereo-system calibration. More generally, it can be used to suppress

(or limit) the influence of the distortion in many DIC measurements (e.g., in

optical or electron microscopy [19]). As taking a picture of the calibration target

and calculating the distortion parameters are fast steps, this technique remains

simple and easy to implement prior to or after any mechanical test. However,

special care should be exercised to check the quality of physical reproduction

by printing or etching of the calibration target.
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Appendix: Effect of Rigid Motions of the Target on the Kinematic

Basis

The following analysis aims at discussing the effect of slight mispositionings

of the calibration target on the apparent motions in the image plane of the cam-

era sensor. The latter is assumed to be unskewed. The reference configuration

corresponds to the situation in which the optical axis of the camera is perfectly

aligned with the normal to the target plane. Without loss of generality, these

two axes are aligned with the z direction. The so-called pinhole camera model

is used hereafter. Under these hypotheses, the pixel coordinates p(xr, yr) of any

point P(Xr, Yr, 0) belonging to the calibration target reads (Figure 18)
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
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



(17)

where dz denotes the distance between the optical center of the camera and the

center of the calibration target, and fx, fy parameters including the scale factors

and the focal length of the pinhole system [5]. In the present case, dz = 500 mm,

fx = fy = 5 × 103 pixels. This first transformation allows the physical size of

one pixel to be determined.

Let us assume that there are misalignments with respect to the reference

configuration. Let dx and dy denote the in-plane displacements, and Rij the

components of the rotation matrix describing the three rigid body rotations.

These rigid body motions induce apparent motions in the image plane so that

the new (pixel) coordinates read
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(18)

where cx, cy corresponds to the decentering of the optical axis. The magnitude

of the angular offsets are assumed to be small so that only first order terms are

considered (i.e., (R31Xr +R32Yr) ≪ dz), cos θ ≈ 1, sin θ ≈ θ). This assumption
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Figure 18: Front image plane construction of the pixel location p(xr, yr) of any point

P(Xr, Yr, 0) of the calibration target

is generally not made when performing bundle adjustments [5]. However, it is

assumed to be a very good approximation in the present case. In the sequel, the

rotation matrix is based upon the choice of Cardan angles (θ1, θ2, θ3) to describe

the frame changes induced by the previous rigid body motions. By using the

so-called x− y − z combination, the rotation matrix reduces to
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(19)

The apparent pixel displacements are expressed as







ua

va







=







xn

yn







−







xr

yr







= (20)







dx − yrθ1 +
tx
tz
θ2xr −

tx
tz
θ3yr −

xr

fx
(yrθ3 − xrθ2)

dy + xrθ1 +
ty
tz
θ2xr −

ty
tz
θ3yr −

yr

fy
(yrθ3 − xrθ2)






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Since |x0|, |y0| < 750 pixels, it follows that |x0/fx|, |y0/fy| < 0.15. The parabolic

terms x0y0θ2/fx and y20θ2/fy are therefore one order of magnitude less than

the linear terms y0(θ1 + θ3) and x0(θ1 + θ3). Therefore, linear displacement

interpolations account for magnification changes and small misalignments of

the camera with respect to the calibration target.
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