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Abstract  

This paper reports on the mechanical behaviour of nanostructured W/Cu thin films 

deposited on Kapton
®
 under controlled biaxial loadings thanks to a biaxial testing device 

developed on DiffAbs beamline at SOLEIL synchrotron (Saint-Aubin, France). In situ 

tensile tests were carried out combining 2D synchrotron x-ray diffraction (XRD) and 

digital-image correlation (DIC) techniques. First, the elastic behaviour of the composite 

metallic film – polymeric substrate was investigated under equi-biaxial and non-equi-

biaxial loading conditions. The results show that the strain measurements (in the crystalline 

film by XRD and the substrate by DIC) match to within 10
-4

. This result demonstrates the 

full transmission of strains in the elastic domain through the film-substrate interface and 

thus a good adhesion of the thin film to the substrate. The second part of the paper deals 

with higher strains response under equi-biaxial tensile tests. The elastic limit of the 

nanostructured W/Cu thin films was determined at the bifurcation point between strains 

obtained by XRD and DIC. Deformation mechanisms such as strain localisation and film 

fragmentation are proposed. 
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1. Introduction  

 

Nanostructured refractory metals, such as nanostructured tungsten (W), offer a great 

potential for applications in critical conditions such as aerospace, electronics, lighting and 

medicine [1-4] due to their high melting point, good mechanical and physical properties [5-

7]. Ion beam sputtering techniques employing a multilayer elaboration process is used in 

this work to fabricate nanostructured W thin films. The method consists in sputtering 

tungsten and copper (two immiscible metals) alternatively on polyimide substrates with the 

control of the thickness of each sub-layer in the nanometre range [8]. The obtained 

composites present interesting properties including good conductivity (thermal and 

electrical), enhanced mechanical properties (high strength of W combined with improved 

ductility of Cu) [1, 9-10] and a flexible polymer substrate for use in technological 

applications such as sensors and stretchable microelectronics components [11-13]. Given 

the complex microstructure of the nanostructured materials due to the small grain size, 

strong crystallographic texture, high density of defects and significant grain boundary areas 

[14-17], their mechanical behaviour is particularly affected and not well understood yet.   

Several studies reported that mechanical behaviour of layered composites becomes 

affected when the layer thickness lies in the nanometre range. Size effects are observed for 

sub-micron structures. The grain size is found to decrease with decreasing film thickness, 

which induces a strong increase of both the yield stress and strain hardening rate [18-22]. 

In particular, high hardness is observed in nanolayered composites that result from a 

combination of increased yield strength and increased work hardening rate at low layer 

thicknesses [23-26]. This results from the change of deformation mechanisms and size-

dependent mechanisms of plasticity for materials at the nanoscale [27-30]. 

Different mechanical methods have been used to investigate the strength of metal thin 

films such as tensile testing, indentation and bending technique [31-37]. However, these 

tests still do not necessarily reflect the real conditions of systems in use. Biaxial tests allow 



mimicking real operating conditions. Although some biaxial tests have been developed, the 

most available experiments are restricted to equi-biaxial loadings and often with crucial 

sample preparation such as bulge testing [38] and ring-on-ring tests [39].  

In this work, the elastic-plastic behaviour of nanostructured W thin films deposited on 

Kapton
®
 was investigated under different controlled biaxial loadings thanks to a testing 

device developed on DiffAbs beamline at SOLEIL synchrotron (Saint-Aubin, France) [40]. 

In particular, equi-biaxial and non-equi-biaxial loading conditions have been applied. The 

in-grain strain of thin films was investigated by synchrotron x-ray diffraction (XRD) 

technique with a hybrid-pixel area detector XPAD3.1 used for its low noise and high 

dynamic range [41] while the macroscopic strain of the Kapton
®
 substrate was monitored 

thanks to digital image correlation (DIC). We illustrate the use of these combined 

techniques in order to obtain the elastic limit of nanostructured W/Cu thin films. 

 

2. Experiments  

 

2.1. Samples 

 

Nanostructured W thin films were fabricated by introducing Cu as an immiscible interlayer 

into W thin films [11]. The process is based on sputtering alternatively W and Cu on 127-

µm-thick polyimide (Kapton
®
) cruciform substrate. The thin films were produced at room 

temperature by physical vapour deposition in a central area of 20 mm in diameter of the 

cruciform polyimide substrate, which has 20-mm wide arms and a 5-mm toe weld. 

Two thin films were fabricated with two different number of W-Cu bi-layers (called 

periods), namely, 60 periods (217  10 nm total thickness) and 38 periods (140  10 nm 

total thickness). The deposition time of each W and Cu layers was 60 s and 7 s, 

respectively, with an average growing rate for W and Cu of 0.05 nm/s and 0.07 nm/s, 

respectively. The nominal thicknesses both W and Cu sub-layers were 3 and 1 nm, 

respectively. Details about the deposition method and thickness measurements are 



described in Ref. [42]. The effective period thickness was about 3.7 nm in which Cu 

represents 13% of the total thickness. The obtained microstructure consists of equiaxed 

grains with an average size close to the sub-layer thickness [8] and the crystallographic 

texture of W sub-layers is predominantly a {110}-fibre texture with a dispersion of 

approximately 18° for the two thin films [40]. The thin films are subjected to high 

compressive residual stresses ( GPas
W 4.03.3Re  ) obtained by x-ray diffraction stress 

analysis in W phase [43-44]. The origin of the compressive stress in tungsten thin films is 

due basically to deposition processing: ion beam sputtering induces high compressive 

stress state by atomic peening process [45-47].  Noticeably, the x-ray stress analysis in W 

phase is much simpler than general cases because W is a perfect isotropic material from 

the mechanical point of view [36, 48]. 

 

2.2. Strain measurements 

 

The samples have been loaded biaxially thanks to the biaxial testing device developed on 

the DiffAbs beamline at SOLEIL synchrotron. This machine was designed to allow for 

loadings along two perpendicular axes of cruciform substrates coated at their centre by the 

studied films (no adhesion layer was deposited). Further information about this biaxial 

device can be found in Ref. [40]. The polyimide substrate (Kapton
®
 HN from DuPont

TM
) is 

expected to behave elastically in a strain range of about 4-5 %. 

Strain measurements have been performed for equi-biaxial and non equi-biaxial loadings 

using both x-ray diffraction and digital image correlation techniques. Therefore, the 

mechanical behaviour of the sample was obtained at two different scales. At the micro-

scale, XRD was used to measure strains within the W metal coating over coherent 

diffraction domains. At the macro-scale, DIC was used to assess macroscopic applied 

strains in the polyimide cruciform substrate. The image of the bottom side of the substrate 

(the uncoated side) was captured using a CCD camera [42]. The applied loads are 

incrementally increased from the initial loading state. For [W-Cu] × 60 periods, the load 



range was between 0 and 40 N for excursions in the elastic domain, while the applied loads 

ranged from 0 to 160 N for [W-Cu] × 38 periods (excursions above the elastic limit). 

Tensile tests were performed in quasi-static conditions; for each applied load, DIC 

measurements were performed by recording a set of ten images of the non-coated surface 

of the polyimide substrate before and after XRD measurements conducted on W/Cu thin 

films.        

  

2.2.1. Synchrotron X-ray diffraction:  in-grain strains 

 

Highly accurate and reliable strain measurements can be achieved by exploiting x-ray 

synchrotron radiation. X-ray synchrotron radiation has unique properties compared to 

standard x-ray sources, namely, high flux, high brilliance, a wide range of photon energy 

tunability and a well-defined polarization state of the emitted radiation. The first 

characteristic is particularly interesting for the study of nanostructured thin films due to the 

very small diffracting volumes and the nano-size of its grains. Performing x-ray diffraction 

measurements with a hybrid pixel detector XPAD3.1, strain measurements are achieved in 

short counting times with good accuracy. Thus, sample creep and substrate relaxation can 

be avoided. For our experiments, the 2D detector is mainly interesting for its fast read-out 

time (2 ms), a large dynamic range (27 bits) and a very low noise [41].      

In this study, the x-ray energy and beam size have been set to 8.8 keV and 

0.320 × 0.370 mm
2
 (full width at half maximum, horizontal × vertical), respectively. 

Diffraction patterns were recorded with the XPAD3.1 detector placed on the 2-theta in the 

vertical plane of the 6-circle Kappa goniometer of DiffAbs beamline at 536 mm away from 

the sample. The measurements have been performed for the {211} lattice planes of the -

W-phase using sin² method since measurements at high angle diffraction peaks are more 

accurate than those at low angle peaks with a good compromise in the diffraction intensity 

for the {211} lattice planes [43, 48]. In particular, twenty six different tilt-angles  have 

been used for two azimuth directions ( = 0° and  = 90°; corresponding to the two 



loading directions of the cruciform sample). This number of experimental points allows for 

accurate and reliable strain measurements as illustrated in Section 3. Applied in-grain 

strains were determined from the diffraction peak shifts according to Bragg’s law for each 

applied load step. Peaks diagram was obtained by an azimuthally integration along the 

radial direction of 2D diffraction patterns collected from the 2D detector. 

In the case of an equi-biaxial planar stress state, as usually used [49], the in-grain strain 

 hkl
ε   corresponding to {hkl} diffracting planes and a scattering vector with orientation 

(Φ,) is given by  
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where (0)d  is the reference lattice spacing, and  0θ  the associated reference diffraction 

angle, it corresponds here to the unloaded state. d  and θ  are the lattice spacing and 

the diffraction angle, respectively, for the loaded states. xx  and zz  correspond to in-plane 

and out-of-plane strains respectively. The superscript Appl (respectively Res) is related to 

the applied (respectively residual) strains. The XRD total strains (residual + applied) can 

be calculated from ln(1/sin ) versus sin²psi plots. In order to obtain the XRD applied 

strain, the first load state is considered as the reference state [50]. 

 

2.2.2. Digital image correlation: macroscopic strain 

 

Digital image correlation was used to investigate the mechanical response of the polyimide 

substrate. This technique is interesting and well adapted to assess large strains of polymers 

with high accuracy since x-ray diffraction method is restricted to measure elastic strains in 

crystalline materials. The DIC technique measures the displacement field u  of one image 

of the deformed configuration with respect to the reference image of the sample surface; u  

is determined by correlating the grey scale distribution between the two images. In order to 

obtain different grey levels, the rear surface of the polyimide substrate (non-coated face) 



was spray-painted with a speckle pattern. Digital images of the sample surface were 

recorded by a CCD camera where the size of the captured region is 9 × 6.3 mm². The CCD 

camera (pixelfly qe) is very interesting for its high resolution (1392 × 1024 pixel, H × V), 

12 bit dynamic range and a pixel size of 6.45 × 6.45 µm².  

The displacement field u  relates the reference and deformed states (called )f(x  and )g(x  

respectively at a point of coordinate x) by requiring the conservation of grey levels [51] 

 )(g)f( xuxx            (2) 

For each applied load, a set of ten images (one image per second) was recorded in order to 

improve statistics and accuracy of the measurements. Applied macroscopic strains have 

been checked to be uniform in a central area of 8 mm in diameter of the cruciform 

polyimide substrate. More details about these measurements are given in Ref. [42]. 

 

3. Results and discussion 
 

3.1. XPAD- image processing 

 

The procedure consisted in geometrical corrections and intensity integration of each image 

using an algorithm that was programmed in ImageJ macro language. The diffraction 

images were recorded with the XPAD3.1 detector [41]. The measurements have been 

restricted to selected parts of the diffraction pattern (Fig. 1a) due to the large sample to 

detector distance that was necessary in order to avoid collision during the measurements.  

The geometrical correction for the tilting and the overlap of the modules due to the tiling 

design of the XPAD3.1 detector has been applied by taking into account the module shifts 

measured with a metallic grid. Moreover, double pixels are present on the edges of each 

chip composing the detector modules. These pixels are replaced by 2.5 pixels of the same 

size as the others and by renormalizing the measured intensities by a factor 1/2.5. The non-

uniform response of the detector that induces image distortions was corrected by dividing 

each image by the flat field signal. Thus, a new corrected image is generated (Fig. 1b). 



Then, each diffraction image was converted by a radial integration method to a one-

dimensional 2 scan as seen in Fig. 1c. Figure 1c shows a peak with a good signal to noise 

ratio but with missing data points resulting from the shadows existing between XPAD 

modules. Details concerning the correction method are described in Ref. [52]. 

 

3.2. Strain measurements 

 

First, the elastic behaviour of the nanostructured W thin film was investigated under equi-

biaxial and non-equi-biaxial loading conditions combining synchrotron XRD and DIC 

techniques. Next, the mechanical study was extended to the plastic behaviour. 

 

3.2.1. Elastic response  

 

The composite [W-Cu] × 60 periods was subjected to equi-biaxial and non-equi-biaxial 

loadings restricted to the elastic domain. The two strain components have been extracted 

from XRD measurements as well as DIC measurements. Figure 2 shows the obtained 

results for both loading paths and we can see a good agreement between XRD and DIC 

strains. The results show the two strain measurements match to within 10
-4

 in the elastic 

domain for strain levels less than 0.3%, and for both loading paths. It is worth noting that 

the non equi-biaxial path goes through equi-biaxial loadings. These results illustrate the 

opportunity of employing both DIC and XRD with a high dynamic range. It is noteworthy 

to recall each XRD point of the curve is the result of the analysis of seventeen  

experimental points obtained thanks to the XPAD detector. Validation has been achieved 

by checking the measurement accuracy and the method reliability for the two types of 

analyses (synchrotron XRD and DIC) for which thin films deposited on polymer substrate 

have been adopted [42]. The consequence of the accuracy of the two strain measurements 

techniques is that the applied strain is determined to be transmitted unchanged in the elastic 

domain through the metallic film - polymeric substrate interface although no adhesion 

layer was used as already reported for gold films [53]. 



 

3.2.2. Response above the elastic limit 

 

Equi-biaxial tensile tests have been carried out for the composite [W-Cu] × 38 periods at 

higher applied strains, i.e. the mechanical test is extended into the plastic regime of the 

metallic thin film. Figure 3 shows the complete set of 






 2sin -
θsin

1ln  plots. This figure 

reflects the change of the total stress (residual and applied) within W grains during the 

tensile test. The total stress is first compressive and decreases when the applied load is 

increased. Then, it is reversed to tensile going through a zero total stress at an applied load 

of 88.7 N approximately. As clearly shown (inset of fig. 3), the slope of 








 2sin -
θsin

1ln  linear regressions is going from negative to positive values. The total 

stress becomes almost constant when an applied load of ~100 N is reached. XRD 

measurements have been performed for twenty six tilt-angles  as can be seen in Fig. 4. 

The obtained applied x-ray strains as functions of the applied load demonstrate Poisson’s 

effect on the different oriented W grains. {211} planes family parallel to the film surface is 

subjected to compressive applied strains. However, {211} planes family perpendicular to 

the film surface is subjected to tensile applied strains. Hence, the measured x-ray strain is 

either negative or positive depending on the measurement direction. It is worth noting that 

some planes family with a particular orientation are not subjected to any applied strain as 

can be observed for the x-ray strain obtained at tilt  around 45°. We observe a single 

crossing point over all the loading state indicating the conservation of the stress-free 

parameter.   

As shown in the previous section, DIC measurements have been confronted to those 

obtained by XRD in this study also. Figures 5 and 6 present the obtained applied strains 

measured by the two techniques. Applied x-ray strain in the film increases, as the applied 

macroscopic strain in the polyimide substrate, up to an applied load of ~75 N (domain I, 



Fig. 5). Above this load, the film response departs from the substrate one (beginning of 

domain II). In this domain, the substrate deforms non-linearly (viscoelastic behaviour). In 

contrast, the film applied strain still increases linearly up to an applied load of ~100 N (i.e. 

a corresponding strain of 0.67%). This observation emphasizes the need of measuring both 

substrate and film strains with high accuracy to determine the elastic limit. Domain III 

starts when the elastic strain saturates.  

Figure 6 shows the XRD elastic strains versus DIC strains and introduces the adopted 

method to determine the elastic limit of the thin film. It has been shown (Section 3.2.1) that 

the applied strain in the elastic domain is fully transmitted through the film - substrate 

interface. Then, the elastic limit is determined when the x-ray strain is no longer equal to 

the macroscopic strain. This XRD strain-DIC strain relationship could be reasonably well 

fitted by a two-degree polynomial: 221 1013311084   ...   (3) 

where   (respectively  ) is the strain measured by XRD (respectively DIC) technique. To 

perform the fitting procedure, the data have been chosen in a range from 0 to 0.7 %. Here, 

the elastic limit defined as the domain I limit (Figure 6) is determined at the point where 

the linear plot and the fitted equation differ by more than 0.02%. Following the above 

criterion, the elastic limit is around 0.5%. It corresponds to an equi-biaxial applied stress of 

~ 2.9 GPa in the crystalline part of the W phase. Taking into account of the as-deposited 

residual stress state, i.e. GPas
W 4.03.3Re  , the apparent elastic limit corresponds to a 

total compressive stress of ~  GPa4.04.0   in W crystalline phase.  

The redistribution of applied strain may be induced either by slip, decohesion at the 

interface, or by strain partitioning in the different phases (grain boundaries, W and Cu 

crystalline phases) or by microcracks generation. Dislocation mobility and multiplication 

should be hindered for W nanometric grains [21, 54]. Noticeably, we expect a very high 



volume fraction of grain boundaries. Hence, we propose that within domain II (Figure 6) 

deformation localises at grain boundaries and/or copper grains and extends progressively 

with the observed strain increase. Within domain III, as suggested by Frank et al. in the 

case of brittle Ta layers on polyimide substrates uniaxially tested [55], the observed x-ray 

strain saturation measured in the crystalline W part could be attributed to the onset and 

development of film fragmentation. Additional observations are under progress to localize 

the fragmentation and determine the influence of the biaxial loading on the cracks 

distribution and morphology.  

In summary, the deformation of the tungsten thin film is purely elastic  within domain I 

since the XRD applied strain (i.e. elastic applied strain) is equal to the DIC applied strain 

(macroscopic applied strain). Within domain II, the W thin film strain starts to depart from 

the substrate one but the film continues to deform partly elastically as revealed by the 

increase of XRD strain. This observation may be attributed to decohesion at the interface 

or by microcracks generation. Within domain III, we observe a saturation of the applied 

elastic strain while the macroscopic strain increases significantly; this is attributed to the 

onset of film fragmentation.   

 

4. Conclusions 
 

In this paper, we have presented a combined method for studying metal thin films 

deposited on Kapton
®

. Accurate in-grain strains could be measured employing synchrotron 

x-ray diffraction with a low noise and a high dynamic range pixelated area detector 

(XPAD). The substrate global strain was determined by digital image correlation. The two 

strain (obtained at two different length scales) match to within 10
-4

. Comparison of strain 

measurements of nanostructured W thin films studied in the elastic domain under two 

different biaxial loading conditions (equi and non equi-biaxial) demonstrates the good 

quality and the reliability of the measurements. The elastic limit of the nanostructured 



W/Cu thin films was determined at the bifurcation point (~ 0.5%) between strains obtained 

by XRD and DIC when the in-grain elastic total stress is compressive ( GPa4.04.0  ). 

The excursion above the elastic limit has been achieved thanks to a high number of 

measurement points with a good accuracy. The deviation between substrate and film 

strains is attributed to strain localisation followed by the onset of fragmentation. Further 

experiments are planned to scrutinize the crack development in such nanocrystalline 

structures. 
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Figure captions: 

Fig. 1: a) Raw image taken at 2=65.2°, =80.0° and Φ=0°. The image definition is 

560 × 720 pixels. It represents a part of the tungsten diffraction pattern measured at 8.8 

keV with the XPAD3.1 detector placed 536 mm away from the sample. b) Corrected image 

with shown integration sector (sector angle=90° and integration angle=2°). c) 1D 

diffraction diagram obtained after radial integration after removing data between modules, 

which is not included in analyses. 

 

Fig. 2: Superposition of X-ray elastic strains ( xxε and yyε ) and DIC strains ( xxε and yyε ) 

for different applied load states (equi-biaxial and non equi-biaxial loadings) for the [W-

Cu] × 60 multilayers. Open symbols represent experimental data from DIC measurements, 

and solid symbols correspond to experimental data from XRD measurements. The vertical 

bars represent the uncertainty of XRD and DIC strain measurements. Noteworthy the lines 

are only guide for eyes. 

 

Fig. 3: ln (1/sin) versus sin² plots for {211}-planes of W sub-layers (–phase) obtained 
for the [W-Cu] × 38 multilayered thin film subjected to 27 consecutive equi-biaxial 

loadings (from T0 = 9 N to T26 = 160 N) at azimuth angle Φ = 0°. The inset shows the 

slope evolution of sin² plots during the tensile test. The dashed red line indicates the zero 

total stress (applied + residual), tensile fracture happening afterwards.   

 

Fig. 4: X-ray applied strains as functions of the applied load for the (211) reflection of W-

-phase measured along twenty-six different -angles (values in legend at the right of the 
figure) at azimuth Φ = 0°. 

 

Fig. 5: X-ray applied elastic strains ( yyε ) and DIC macroscopic strains ( yyε ) as functions 

of the applied load (equi-biaxial loadings) for the [W-Cu] × 38 multilayers. 

 

Fig. 6: X-ray applied elastic strains yyε  as functions of DIC strains yyε  (equi-biaxial 

loadings) for the [W-Cu] × 38 multilayers. The red dashed line indicates the obtained 

elastic limit (uncertainty is about the thickness of data points).   
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