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Abstract: An abnormal behavior of a moving vehicule or a moving person is characterized by an unusual or not expected

trajectory. The definition of exptected trajectories refers to supervised learning where an human operator

should define expected behaviors. Conversely, definition of usual trajectories, requires to learn automatically

the dynamic of a scene in order to extract its typical trajectories. We propose, in this paper, a method able

to identify abnormal behaviors based on a new unsupervised learning algorithm. The original contributions

of the paper lies in the following aspects: first, the evaluation of similarities between trajectories is based on

string kernels. Such kernels allow us to define a kernel-based clustering algorithm in order to obtain groups

of similar trajectories. Finally, identification of abnormal trajectories is performed according to the typical

trajectories characterized during the clustering step. The method has been evaluated on a real dataset and

comparisons with other state-of-the-arts methods confirm its efficiency.

1 INTRODUCTION

In the last decades we have witnessed a growing

need for security in many public environments, which

has lead to a proliferation in the number of control

systems and, consequently, in the presence of acqui-

sition peripherals. In particular, cameras represent a

suitable solution for their relative low cost of mainte-

nance, the possibility of installing them virtually ev-

erywhere and, finally, the ability to analyze complex

events.

For these reasons, a deep analysis has been re-

cently conducted in order to realize control systems

able to automatically generate alarms. Most of re-

searches recently conducted in the field of behavior

analysis has focused on the recognition of simple ac-

tivities (i.e. running, waving, jumping) in high resolu-

tion videos, by exploiting the details of human body

(Aggarwal and Ryoo, 2011). The main problem in

such an approach lies in the fact that in a lot of real ap-

plications detailed information related, for instance,

to the pose or to the clothing colors of people are not

available.

As a matter of fact, in these situations, objects are

in a far-field or video has a low-resolution: the only

information that a video analytic system is reliably

able to extract is a noisy trajectory. This consideration

has recently drawn the scientific community to store

(d’Acierno et al., 2012a) (d’Acierno et al., 2012b) and

analyze moving objects’ trajectories in order to under-

stand their behaviors, identifying abnormal ones (Pi-

ciarelli et al., 2008)(Acampora et al., 2012). In fact,

in a lot of real contexts trajectories provide the con-

trol system with enough elements to detect an anoma-

lous behavior inside a scene: think, as an example,

to a person who moves in the opposite direction of a

crowd or who follows a path that the system has never

seen.

The architecture of a system for behavior un-

derstanding is usually based on the following steps:

learning phase and operating phase. The learning

phase aims at defining rules or at extracting proto-

types of normal trajectories. The definition of rules

is strongly dependent on the environment and, at the

same time, on the knowledge that the human operator

has about the possible (ab)normal behaviors (Dee and

Hogg, 2004). On the other hand, the extraction of pro-

totypes for (ab)normal trajectories can be performed

by following one of this two models: supervised and

unsupervised. Techniques trained in supervised mode

(Zhou et al., 2007) assume the availability of a train-

ing data set with labeled instances of normal as well as

abnormal trajectories. However, such an approach has

a significant drawback: abnormal instances are usu-



ally far fewer compared to normal ones in the train-

ing set, so implying that the prototypes extracted for

abnormal trajectories are not accurate and representa-

tive. Furthermore, it is impossible to predict all ab-

normal behaviors inside a complex scenario.

Techniques operating in unsupervised mode

(Morris and Trivedi, 2011) do not require labeled data

since they make the implicit assumption that normal

instances are far more frequent than abnormal ones.

An unsupervised learning phase makes the control

system context-independent and can be easily applied

in different real environments, since it does not use

human knowledge. This is a very important and not

negligible feature, since it allows the system to au-

tonomously understand dynamics within a scene.

For all these reasons, we propose an unsuper-

vised approach, where an abnormal trajectory refers

to something that the control system has never (or

rarely) seen. However, a system that raises an alarm

for each trajectory which has not been seen before

risks to generate too many false alarms: the system

needs to identify a normal trajectory as one enough

similar to one or more trajectories that the system al-

ready knows. For this purpose, we propose a learn-

ing phase based on the following steps, as depicted in

Figure 1a:

• Trajectory extraction: the tracking algorithm

detailed in (Di Lascio et al., 2012) is applied in

order to extract moving objects’ trajectories from

a video for a long time period.

• Trajectories representation: the scene is parti-

tioned into zones according to the distribution of

trajectories; starting from this, each trajectory is

represented as a sequence of symbols, according

to the zones crossed in the scene.

• Trajectories similarity: similarity between two

trajectories is evaluated by using a kernel-based

method. The main advantage in this choice lies in

the fact that we may combine these kernels with

a large class of clustering and machine learning

algorithms, which can be expressed using only

scalar product between input data.

• Clustering: Given the kernel, a novel clustering

algorithm is applied in order to extract clusters

of trajectories inside the scene. Each cluster en-

codes a type of normal trajectories, dynamically

extracted from the scene.

Once extracted the prototypes of normal trajecto-

ries, the control system can start the operating phase,

depicted in Figure 1b: for each detected abnormal tra-

jectory, it raises an alarm. In particular we propose to

subdivide the operating phase in the following steps:
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Figure 1: Learning phase (a) and operating phase (b).

• Trajectory extraction: the trajectory is extracted

from a video by using the tracking algorithm de-

tailed in (Di Lascio et al., 2012).

• Trajectory representation: the extracted trajec-

tory is represented as a sequence of symbols.

• Classification: the trajectory is compared with

the prototypes of each cluster and a similarity

value is obtained for each comparison.

• Decision: the computed similarity values are pro-

cessed; if such similarities are sufficiently high

the trajectory is considered normal (✓), otherwise

it is considered abnormal (✗). In this way, the

proposed system is able to identify both rare and

atypical trajectories: the former refer to some-

thing that does not appear in the training set (or

only rarely appears); the latter consider all those

trajectories differing in a slightly but significant

way from a group of normal trajectories.

In this paper we focus on the learning phase: Sub-

section 2.1 shows the algorithm used to adaptively

partition the scene into zones, while trajectories rep-

resentation is presented in Subsection 2.2. Some de-

tails about the metric used to evaluate the similarity

are provided in Subsection 2.3, while Section 3 pro-

vides a description of the proposed clustering algo-



rithm. Furthermore, Section 4 shows the approach

used to verify if a novel trajectory is normal or ab-

normal. Experimental results, which confirm the effi-

ciency of the proposed method, are finally presented

in Section 5.

2 THE LEARNING PHASE

A trajectory t can be seen as a sequence of

k spatio-temporal points pi = [pi
x, pi

y, pi
t ]: t =<

p1, p2, ..., pk >. This representation has two main

drawbacks: first, a trajectory results in a very large

amount of data to be managed; second, row data are

more sensible to noise and tracking errors, and thus a

filtering of each trajectory is needed before use. Fur-

thermore, if a system considers the similarity between

row data, it can introduce non relevant differences be-

tween trajectories. For example, many trajectories on

a garden path may be considered as similar indepen-

dently of the exact position of people on the path.

For this reason, a common representation of a tra-

jectory consists in a reduced sequence of symbols,

namely a string, aiming to preserve only the discrim-

inant information and to reduce the space required to

store trajectories.

The discriminant information to be preserved is

strongly influenced by the aim of the system: as a

matter of fact, in order to verify, for instance, if a per-

son is moving in the opposite direction of a crowd or if

a vehicle is driving on the emergence line on the high-

way, the most discriminant feature is the sequence of

zones crossed by the moving object. Such scenarios

can be labeled as constrained: the moving objects are

expected to follow given paths within the scene.

From these considerations, we need to partition

the scene into a set of zones, hence associating a sin-

gle symbol to a sequence of points and eliminating

non discriminant information. The criterion adopted

to subdivide the scene certainly influences the perfor-

mance of the entire system. As a matter of fact, on

one hand it strongly affects the time needed for the

computation of similarity between trajectories; on the

other hand, it could decrease the reliability of the sys-

tem if the chosen number of zones is not sufficiently

representative of the scene. The simplest way could

be to divide the scene using a fixed-size uniform grid,

as in (Papadopoulos, 2008). The main drawback of

an uniform grid, however, is that each zone has an un-

even statistics, causing only a suboptimal statistical

segmentation of trajectories. Furthermore, it is ev-

ident that the distribution of trajectories in the scene

highlights region of interests, in which the major parts

of trajectories lie and for which we need an higher

level of detail.

In order to overcome these limitations, we propose

an adaptive method aimed at minimizing the mean er-

ror made when assimilating a trajectory to its zone

(Section 2.1). As a consequence of this partitioning

criterion, areas in the scene in which most of trajec-

tories lie are represented with an higher number of

zones.

2.1 Scene Partitioning

Initially, the scene is represented by a single zone Z1.

The scene partitioning algorithm aims at dividing Z1

into a fixed number N of zones. The main idea behind

our algorithm is to exploit the distribution of the train-

ing set by taking into account the density, as in the

clustering algorithm proposed in (Brun and Trémeau,

2002). Each zone (Zi)i∈{1,...,N} is represented by us-

ing its statistical properties (mean, major axis and co-

variance matrix); the proposed method works by re-

cursively splitting a selected zone by a set of planes

(cutting planes) at a chosen position (cutting posi-

tion). In the following, more details about this algo-

rithm will be provided since an enhanced kernelized

version of it will be introduced in Section 3.

Let p be a generic point in the scene. We define

f(p) as the number of trajectories passing through p in

the image.

Using function f (.) and our zone’s representation,

we define the statistical property of a zone Zi (cardi-

nality |Zi|, Mean µi and Covariance Covi):

|Zi|= ∑
p∈Zi

f (p) µi =
∑p∈Zi

f (p)p

|Zi|

Covi =
∑p∈Zi

f (p)p• pt

|Zi|
−µi •µt

i.

(1)

A splitting strategy is based on the definition of

the following steps:

• The selection of the next cluster to be split;

• The selection of the cutting axis (i.e. the direction

normal to each cutting plane);

• The selection of the cutting position (i.e. the loca-

tion of the cutting plane along the cutting axis).

Since the set of all possible partitions into N zones

is too large for an exhaustive enumeration, an heuris-

tic needs to be applied. In particular, we decided to

use the following heuristics, detailed in (Braquelaire

and Brun, 1997).

Splitting Strategy: Each zone Zi is recursively

split into two sub-zones until the N final zones are ob-

tained. This bipartitioning strategy generates a tree-

structured vector quantization, as shown in Figure 2.

Each leaf of the tree represents a zone of the scene.
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Figure 2: Tree-structured vector quantization obtained re-
cursively partitioning the scene into N = 8 zones.

Cluster Selection: At each iteration, a single leaf

of the tree-structured vector quantization is selected

and then split into two zones. Therefore, the choice

of the zone to be split plays a crucial role. Our al-

gorithm attempts to minimize the total squared error

T SE induced by the partition P = {Z1, ...,ZN}:

T SE(P) =
N

∑
i=1

SE(Zi), (2)

where SE(Zi) is the squared error of one zone Zi com-

puted as follows:

SE(Zi) = ∑
p∈Zi

||µi − p||2. (3)

In order to minimize T SE(P), the algorithm splits the

zone Z with the maximum squared error, since its con-

tribution to the T SE(P) is the largest. It has been

shown in (Wan et al., 1988) that this strategy corre-

sponds to a good compromise between the computa-

tional time and the final quantization error.

Cutting Axis: Given a zone Zi to be split, we need

to determine the location of the cutting plane. As in

(Braquelaire and Brun, 1997), we decide to split along

the axis with the greatest variance, namely the major

axis.

Cutting Position: Once chosen the cutting axis,

we need to select the optimal cutting position t⋆ to

subdivide the zone Zi into two sub-zone Z1
i

⋆
and Z2

i

⋆
.

In particular, we choose the value able to maximize

the decrease of the total squared error induced by the

split:

SE(Zi)−
[

SE(Z1
i )+SE(Z2

i )] (4)

Let m and M be respectively the minimum and the

maximum projections of Zi on the cutting axis. It can

be proved (Braquelaire and Brun, 1997) that the max-

imization of Equation 4 can be reached by computing

the optimal cutting position t⋆ as follows:

t⋆ = arg max
t∈[m,M]

[

δ(t)

1−δ(t)
||µi −µ1

i ||
2

]

, (5)

where µi and µ1
i denote respectively the mean of Zi

and Z1
i

⋆
and δ(t) is defined as δ(t) =

|Z1
i |

|Zi|
. It is worth

noting that if δ(t) = 1/2, the zone is divided into two

sub-zones with the same cardinality.

An example of the output of the proposed scene

partitioning method is provided in Figure 3: starting

from the trajectory distribution in Figures 3a and 3b,

we show the partition of the scene by using different

values of N = {20,50}.

2.2 Trajectory representation

Once partitioned the scene into zones, a trajectory

can be segmented into l segments: t = {< s1, ...,sl >
}, where the j-th segment is defined as the sequence

of points lying in the same zone Zk: s j = {pi ∈<
pa, ...pb > |pi ∈ Zk}.

Finally, the operator α(•) allows us to map the

j-th segment into a symbol of our alphabet, each

symbol identifying the passing through a zone. It

means that the trajectory t can be now defined as

t = {< α(s1), ...,α(sl)>}.

Once obtained the information about the zones

crossed in the scene, additional features are extracted

in order to improve the reliability of the proposed sys-

tem. For each segment, information about the speed

v and the shape s of the trajectories are taken into ac-

count by means of the operator θ(•). In particular,

we use the Bernstein Polynomial Approximation to

model each trajectory into a zone:

s =
cs

∑
i=0

= as
i · ti v =

cv

∑
i=0

= av
i · ti. (6)

In our experiment, cs is bounded by 3 and cv is

bounded by 2. The operator θ(•) is then computed

as the vector composed by the ai values: θ(•) =
[as

1, ...,a
s
cs
,av

1, ...,a
v
cv
].

Thanks to this representation, each trajec-

tory can be seen as t = {< α(s1), ...,α(sl) >,<
θ(s1), ...,θ(sl)>}.

Although the operator α(•) gives to our method

the most important contribution, the shape of the tra-

jectory is an important feature, since it contributes to

distinguish trajectories lying in the same zones but

with very different shapes. We can think, for instance,

to a person which moves with a very irregular shape

but following a common path.
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Figure 3: Partition of the scene starting from the training set depicted in (a) represented by the frequency map in (b). The
quantization algorithm is applied with different values of N: (c) N=20, (d) N=50.

2.3 Trajectories similarity

The complexity and the different typology of infor-

mation to take into account to represent a trajectory

result in a complex strategy to verify the similarity

between trajectories. In fact, we need to manage a

string for the position and a sequence of numerical

values for the speed and the shape, respectively ob-

tained by means of the α(•) and the θ(•) operators.

In the last years, a lot of different methods based

on dynamic programming have been proposed in or-

der to evaluate the similarity between two sequences.

These algorithms are based on similarity criteria such

as the Dynamic-Time-Warping (DTW) score (Shi-

modaira et al., 2002), the Smith Waterman algorithm

(Saigo et al., 2004) and the edit-distance (Neuhaus

and Bunke, 2006). However, the main problem lies in

the fact that, although these methods are able to com-

pute a similarity value, they do not define a metric.

In order to solve these problems, we propose a novel

similarity metric based on kernels: the main advan-

tage is that the problem can then be formulated in an

implicit vector space on which statistical methods for

pattern analysis can be applied.

Furthermore, thanks to this choice, is it possible to

evaluate the similarity between sequences of symbol

with different length, so avoiding to force the repre-

sentation of trajectories to a vector of features with a

fixed dimension, as in (Piciarelli et al., 2008).

In particular, we construct our kernel starting from

the Fast Global Alignment Kernel (FGAK) proposed

in (Cuturi, 2011). The main idea of all global align-

ment kernels is to measure the similarity between two

sequences by summing up scores obtained from local

alignments with gaps of the sequences.

An alignment between two sequences x =
{x1, ...,xn} and y = {y1, ...,ym} of length n and m

respectively is a pair of increasing integral vectors

(π1,π2) of length p < n+m, such that 1 = π1(1) ≤
... ≤ π1(p) = n and 1 = π2(1) ≤ ... ≤ π2(p) = m,

with unary increments and no simultaneous repeti-

tions. Let A(n,m) be the set of all the possible align-

ments between the two time series of lengths n and

m.

The global alignment kernel (GAK) is defined as:

kGA(x,y) = ∑
π∈A(n,m)

|π|

∏
i=1

k(xπ1(i),yπ2(i)). (7)

It can be shown (Cuturi, 2011) that kGA is a pos-

itive definite kernel if k and k/(1 + k) are positive

definitive kernels. Furthermore, the GAK avoids the

diagonal dominance of the Gram matrix. Diagonal

dominance is an undesirable property, since it implies

that all the points in a training set are nearly orthogo-

nal to each other in the corresponding feature space.

Starting from the representation of our trajecto-

ries, we need to define a kernel which is able to prop-

erly combine all the different features related to a tra-

jectory. In particular, we defined the following ker-

nels.

Toeplitz Kernel: In order to speed up the compu-

tation of the kernel, we use the triangular kernel for

integers, also known as Toeplitz kernel:

w(i, j) =

(

1−
|i− j|

T

)

, (8)

where T is the order of the kernel. The main advan-

tage in the use of the triangular kernel is that it allows

to only consider a smaller subset of alignments.

Dirac Kernel: In order to evaluate the similarity

between two strings α(x) and α(y) encoding the se-

quences of zones respectively traversed by trajectories

x and y, we use a dirac kernel δ(α(xi),α(yi)), defined

as:

δ(α(xi),α(yi)) =

{

0 if α(xi) 6= α(yi)

1 if α(xi) = α(yi)
(9)

The Dirac Kernel is combined with the Toeplitz Ker-

nel so obtaining:

kZ(xi,y j, i, j) = w(i, j)•δ(α(xi),α(y j)). (10)

Weighted Dirac Kernel: The main lack of this

similarity evaluation lies in the fact that the proximity
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Figure 4: Graph-based representation of the scene. Each
zone is represented by a vertex and each border between two
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determined by the length of the corresponding border.

of two zones is not considered. In order to overcome

this limitation by taking into account adjacency rela-

tionships between zones, a weighted version of the

dirac kernel is also exploited:

kWZ(xi,y j, i, j) = w(i, j)•δw(α(xi),α(y j)). (11)

Zones are mapped into a non-oriented weighted graph

G = {V,E,w}, whose vertices V = {V1, ...,VN} iden-

tify zones and whose edges E = {E1, ...,EL} identify

proximity of two zones. Each edge is associated to a

weight ev1,v2
, identifying the number of pixels sepa-

rating two zones. An example is shown in Figure 4:

δw(α(xi),α(yi)) =



















0 if α(xi) 6= α(yi)

and eα(xi),α(yi) /∈ E

eI
α(xi),α(yi)

if eα(xi),α(yi) ∈ E

1 if α(xi) = α(yi)
(12)

where eI
α(xi),α(yi)

is a normalized version of eα(xi),α(yi),

obtained by dividing eα(xi),α(yi) by the length of the

longest zone’s border.

Speed and Shape Kernel: The evaluation of the

similarity related to the velocity and to the shape is

based on the following kernel:

kSS(θ(xi),θ(yi)) = e−φσ(θ(xi),θ(yi)), (13)

where

φσ(θ(xi),θ(yi)) =
1

2σ2
||θ(xi)−θ(yi)||

2+

log

(

2− e
−

|θ(xi)−θ(yi)||
2 |

2σ2

)

. (14)

This last kernel is used instead of the Gaussian one in

order to guarantee the p.d. of kGA (Cuturi, 2011). The

combination of these two last kernels is defined as:

k(W )ZSS(xi,y j, i, j) =

k(W )Z(α(xi),α(y j))• kSS(θ(xi),θ(yi)). (15)

Starting from Equation 7, products of any of the 4

kernels (kZ , kWZ , kZSS and kWZSS) can be considered

to obtain the final kernel kGA. Finally, a normalization

of the kernel is performed in order to normalize ker-

nel’s values in the interval [0,1]. Therefore, the final

normalized kernel kN
GA is:

kN
GA(xi,y j, i, j) =

kGA(xi,y j, i, j)
√

kGA(xi,xi, i, i)∗ kGA(y j,y j, j, j)
.

(16)

3 CLUSTERING

From a general point of view, the goal of a cluster-

ing algorithm is to find a fixed number NC of groups

that are both homogeneous and well separated, that

is, trajectories within the same group should be sim-

ilar and entities in different groups dissimilar. In our

context, we aim at exploiting a clustering algorithm

in order to obtain a set of prototypes of normal trajec-

tories.

In the last decades, a lot of graph-based clus-

tering algorithms (Foggia et al., 2007)(Schaeffer,

2007)(Foggia et al., 2008), like Spectral Clustering or

Cut-Clustering, have been exploited. Although these

techniques seem to provide good results, they do not

allow to readily verify if a novel trajectory belongs to

a cluster, that is our main objective.

In order to avoid this restriction, k-means ap-

proach and its derivative methods are most frequently

used. In particular, the Kernel k-mean (Dhillon et al.,

2004) is a generalization of the standard k-means al-

gorithm: the input data are mapped into a higher di-

mensional feature space through a non-linear transfor-

mation and then k-means is applied in feature space.

In this way, this algorithm allows to separate the non

linearly separable clusters. However, the main prob-

lem of such an approach consists in the initializa-

tion, which strongly influences the performance of

this method since the algorithm converges to the lo-

cal minimum closest to the initial condition.

In (Tzortzis and Likas, 2009) an improved ver-

sion of the basic Kernel k-means, the Global Kernel

k-means, has been proposed. The main idea is that a

near-optimal solution with k clusters can be obtained

by starting with a near-optimal solution with k − 1

clusters and initializing the kth cluster appropriately

based on a local search. During the local search, N

initializations are tried, where N is the size of the data

set. The k − 1 clusters are always initialized to the

k−1-clustering problem solution, while the kth clus-

ter for each initialization includes a single point of the

data set. The solution with the lowest clustering error

is kept as the solution with k clusters. Since the op-

timal solution for the 1-clustering problem is known,



the above procedure can be applied iteratively to find

a near-optimal solution to the M-clustering problem.

It is clear that the main drawback of the Global Kernel

k-means is the high computational cost, as experimen-

tal results conducted will show in Section 5.

In order to overcome these limitations, we intro-

duce a novel and efficient kernelized clustering algo-

rithm. The proposed clustering algorithm is based on

the splitting methods presented in Section 2.1: the

cluster with the maximum squared error is selected

and then split into two different clusters along the ma-

jor axis. However, the main novelty refers to the ker-

nelization of the considered algorithm.

Thanks to the chosen heuristics, the partitioning

of the space into NC clusters is performed by a se-

quence of NC − 1 iterations. It is an important and

not negligible feature, since a lot of recently proposed

clustering algorithms (Tzortzis and Likas, 2009) are

very expensive from a computational point of view,

as we will show in Section 5.

Given the cluster C containing all the trajectories

belonging to the training set, let us consider a generic

cluster Ct ⊂C. This cluster is encoded by the follow-

ing vector of R|C|:

Λi
Ct
=

{

1 if i ∈Ct

0 otherwise
(17)

Finally, K is the Gramm Matrix of the training set,

defined by Ki j = (kN
GA(si,s j))i j.

As mentioned in Section 2.1, our clustering algo-

rithm builds a sequence of partitions P1, . . . ,Pn of C,

with P1 = {C} and Pn enconding a partition of C into n

clusters. The following heuristics have been selected

for each step:

Cluster Selection: For each iteration k, the cluster

Ct of Pk with the maximum squared error SE(Ct) is

selected.

SE(Ct) = ∑
s∈Ct

||ψs −µt ||
2 = |Ct |−

1

|Ct |
Λt

Ct
KΛCt ,

(18)

where ψs is the projection of the string s in the Hilbert

space implicitly defined by kN
GA. Equation 18 may be

evaluated in O(|Ct |
2), with |Ct | denoting the cardinal-

ity of Ct A.1.

Cutting Axis: Once selected the cluster Ct , we

need to chose a cutting plane to obtain clusters C1
t and

C2
t : the optimum cutting plane aims at minimizing

SE(C1
t )+SE(C2

t ).
In particular, we decided to cut the cluster along

the major axis, obtained by means of a Kernel PCA

(Schölkopf et al., 1998). The Gramm Matrix K is first

diagonalized and the centered matrix K′ = (K − 1Ct ·
K−K ·1Ct +1Ct ·K ·1Ct ) is obtained, with 1Ct being a

|Ct | by |Ct | matrix for which each element takes value

1/|Ct |.
The first eigenvector α, satisfying: λα = K′α is

then computed. For each trajectory s, the projection

of ψs on the major axis α is obtained by:

< α,ψs >=
|Ct |

∑
i=1

αik(si,s). (19)

Thanks to the computed projections, trajectories be-

longing to Ct are ordered along the major axis in order

to obtain the optimum cutting position.

Cutting Position: Given the selected cluster Ct

and its cutting axis, the cutting position t⋆ is com-

puted in the range [m,M], being m and M respectively

the minimal and the maximal projection of Ct on the

major axis by means of Equation 5.

It can be shown A.2 that ||µ− µt ||
2 can be com-

puted as follows:

||µ−µt ||
2 =

1

|C|2
etKe−

2

|Ct ||C|
etKΛCt +

1

|Ct |2
Λt

Ct
KΛCt ,

(20)

where |C| denotes the cardinality of cluster C.

We can note that this operation must be performed

for each point in the range [m,M]. Since it requires

multiple matrix multiplications, it results in a high

computational cost. Let p denotes the next trajectory

to add to Ct in order to obtain Ct+1 (Ct+1 =Ct ∪{p}).

It can be shown A.2 that ||µ−µt+1||
2 can be efficiently

updated from ||µ− µt ||
2. In particular, the first term

1
|C|2

etKe is constant since it does not depend on the

partition induced by t. Let be ΛCt+1
= ΛCt +δp, being

δp the vector of zeros containing a single 1 at position

p. The second term etKΛCt+1
of equation 20 may be

defined iteratively as follows:

etKΛCt+1
= etKΛCt +

n

∑
i=1

k(i, p). (21)

Note that the second term of equation 21 may be pre-

computed. Equation 21 is thus evaluated in constant

time. Finally, the last term Λt
Ct+1

KΛCt+1
becomes:

Λt
Ct+1

KΛCt+1
= Λt

Ct
KΛCt +2 ∑

i∈Ct

k(i, p)+ k(p, p).

(22)

Using equations 21 and 22, we significantly re-

duce the computational cost of our algorithm: as

a matter of fact, the evaluation of ‖µ − µt+1‖
2

only requires to compute, for each iteration, values

∑i∈Ct
k(i, p) and k(p, p) this last term being equal to 1

since we use a normalized kernel.

Stop Condition: In our context, the clustering al-

gorithm is used to initialize the system during its un-

supervised learning phase. It means that the number



of clusters can not be fixed a priori, since the system

has not any knowledge about the environment. For

this reason, we choose to use as stop condition a lower

bound on the mean squared error (MSE) made when

assimilating one trajectory to its cluster:

MSE(Ct) =
SE(Ct)

|Ct |
. (23)

In this way, the system does not need knowledge of

the human operator about the environment, but is able

to determine the optimum number of clusters starting

from the distribution of trajectories.

4 OPERATING PHASE

The operating phase aims at identifying abnormal

behaviors according to the set of typical trajectories

determined during the learning phase (Section 3). In

particular, our algorithm evaluates the distance be-

tween a trajectory ts and all cluster’s centers C1, ...CNC

obtained during the learning phase. The cluster with

the closest mean from ts is selected as the potential

typical trajectory followed by ts. An additional test

should then be performed in order to determine if ts
belongs to this closest cluster. According to this last

test ts is classified as normal (it belongs to one cluster

encoding typical trajectories) or an alert is raised and

ts is classified as an abnormal behavior.

Classification: Les s denote the string associated

to ts and ψs the projection of s into the Hilbert space

encoded by one of our kernel. The squared distance

between ψs and the mean µt of a cluster Ct is defined

by:

d2
t (µt ,Ψs) =< µt ,µt >+< Ψs,Ψs >−2 < µt ,Ψs >

= 1+1−2 < µt ,Ψs >

= 2(1−< µt ,Ψs >)

= 2

(

1−
1

|Ct |
∑

si∈Ct

k(s,si)

)

. (24)

Decision: Let C∗
t denote the cluster with the clos-

est center (µ∗t ) determined according to equation 24.

Since our clustering algorithm always split clusters

according to their axis of greatest variance, we con-

sider that the covariance matrix of each cluster is ap-

proximately diagonal. In this case, a threshold on

the Gaussian probablity that string ts belongs to C∗
t

is approximated by comparing the squared distance

d2(µ∗t ,Ψs) with a multiple of the squared error of C∗
t :

d2(µ∗t ,Ψs)≤ α∗MSE(C∗
t ). (25)

Conversely to the parameter ν of one class

SVM (Cortes and Vapnik, 1995), a high value of α

provides a better generalization but may increases the

number of false positive in the test determining the

classification to C∗
t .

5 EXPERIMENTAL RESULTS

The proposed method has been validated on the

MIT trajectories dataset (Wang et al., 2011), a stan-

dard and freely available dataset composed by 40.453

trajectories obtained from a parking lot scene within

five days. Starting from the entire dataset D, a sub-

set D∗ of trajectories belonging to vehicles (10.335)

has been manually extracted by an expert (see Figure

3a) and the proposed system has been evaluated. The

experiments have been conducted on a MacBook Pro

equipped with Intel Core 2 Duo running at 2.4 GHz.

The experimentation has been conducted into

three different steps: the first aims to validate the pro-

posed kernels, highlighting advantages and disadvan-

tages of each by means of a visual interpretation. The

second is a quantitative and qualitative experimenta-

tion conducted over the clustering algorithm, aimed

at confirming the efficiency of the proposed method

if compared with other state of the art methods. Fi-

nally, a misclassification matrix is presented, in order

to confirm the efficiency of the proposed classification

method.

Experimentation over kernels: As for the first

step, it is interesting to note that kernels induce met-

rics. This means that a quantitative comparison of

different kernels is not possible outside a regression

or classification task with a ground truth which is

not available for this data set. We thus only per-

form a qualitative evaluation based on visual compar-

isons. Such an experiment has been performed over

the dataset D∗, aiming at extracting the M most simi-

lar trajectories with respect to the one shown in Figure

5a (M=30).

The parameters of the kernels that we need to tune

are respectively T (for the Toeplitz Kernel) and σ (for

the Speed and Shape Kernel). In particular, in (Cuturi,

2011) is shown that the best result can be achieved by

using the following parameters:

• The Bandwidth σ is set to a multiple of a sim-

ple estimate of the median distance K of differ-

ent points observed in different time-series of our

training set, scaled by the square root of the me-

dian length of time-series in the training set. In

particular, in (Cuturi, 2011) is suggested to try

σ ∈ {0.1,1,10} ·K, where

K =

median||θ(xi)−θ(yi)||
√

median(||x||) (26)



and to use higher multiples (e.g. 2,5). Being K =
60 in our dataset, we choose σ = 2∗60 = 120.

• The Triangular parameter T can be set to a rea-

sonable multiple of the median length, e.g. 0.2 or

0.5. Being the median length equal to 5 in our

dataset, we chose T = 3.

An example of our different kernels at work is

shown in Figure 5. It is worth noting that the

Weighted Dirac Kernel (Figure 5c) s less sensitive

than the Dirac Kernel (Figure 5b) to small variations

in the position of trajectories. It is a very desirable

property, especially in the operating phase, since it al-

lows to reduce the number of false positive. On the

contrary, the combination of Weighted Dirac Kernel,

Gaussian and Toeplitz ones (Figure 5d) increases the

reliability of the evaluation by taking into account the

shape of trajectories.

Experimentation over clustering: As for the

second step, a qualitative evaluation of the proposed

method over the dataset D∗ is shown in Figure 6,

where some of the obtained clusters are depicted in

a tree structure.

In order to have a quantitative measure, we com-

pute the C-index (Hubert and Schultz, 1976). It is

defined as:

C =
S−Smin

Smax −Smin

, (27)

where S is the sum of distances over all pairs of ob-

jects form the same cluster, n is the number of those

pairs and Smin is the sum of the n smallest distances

if all pairs of objects are considered. Likewise Smax

is the sum of the n largest distances out of all pairs.

The C-index ranges from 0 to 1 and the optimum

value is 0. The above mentioned index has been used

to compare the proposed method with other state of

the art approaches. In particular, we considered the

traditional Kernel k-mean with its two improved ver-

sions, the Global Kernel k-means (Tzortzis and Likas,

2009) and the Fast Global Kernel k-means (Tzortzis

and Likas, 2009).

A comparison in terms of C-Index and computa-

tional cost is shown in Tables 1a and 1b. Note that

the results of the Kernel k-mean (in terms of C-index

and time) is obtained by taking the minimal c-index

and overall time over 200 different trials, in order to

limit the dependency of the results from a particular

initialization.

The value that we obtained, equal to 0.0580 if the

similarity value is computed by using the Dirac Ker-

nel, while it is equal to 0.0799 when using a Weighted

Dirac Kernel instead of a simple Dirac Kernel. In both

cases, the efficiency of our technique is confirmed,

since the proposed method outperforms the other con-

sidered approaches. Furthermore, the computational

Method (Dirac Kernel) C-Index Time (secs)

Proposed Method 0.0580 947.18

K-Means 0.3907 15.946

Global K-Means 0.1282 3.45 ·104

Fast Global K-Means 0.1877 67.882

(a)

Method
C-Index Time (secs)

(Weighted Dirac Kernel)

Proposed Method 0.0799 1055.98

K-Means 0.4203 12.783

Global K-Means 0.1376 3.45 ·104

Fast Global K-Means 0.2868 75.201

(b)

Table 1: Comparison of the proposed method with other
state of the art approaches, in terms of C-index and com-
putational cost. The similarity between trajectories is com-
puted by using the Dirac Kernel (a) and the Weighted Dirac
Kernel (b).

Predicted Class

Normal Abnormal

GT
Normal 84.10% 21.40%

Abnormal 15.90% 76.60%

(a)

Predicted Class

Normal Abnormal

GT
Normal 85.30% 7.10%

Abnormal 14.70% 92.90%

(b)

Table 2: Misclassification Matrix obtained by using Dirac
Kernel (a) and Weighted Dirac Kernel (b).

cost is not too expensive if we consider that this al-

gorithm does not need to work in real time, since it is

only used at the start-up of the system.

Experimentation over operating phase: The

dataset D∗ has been divided into three folds and one

of these has been used for the learning phase. The re-

maining two folds have been mixed with the remain-

ing trajectories (D \D∗) and are used to test the sys-

tem. The tests have been performed by computing

the similarity between trajectories by using the Dirac

Kernel and the Speed and Shape Kernel.

The confusion matrix obtained is depicted in Ta-

ble 2. The results, for a fixed value of α (α = 2), show

that the Weighted Dirac Kernel provides a better gen-

eralization than the Dirac Kernel, without paying in

terms of false positive errors.

Furthermore, it is worth pointing out that in this

case it has not been possible to compare our approach

with other state-of-the-art methods since the results



(a) (b) (c) (d)

Figure 5: Most similar trajectories to the one shown in (a), obtained by using Dirac Kernel (b), Weighted Dirac Kernel (c),
Speed and Shape Kernel (d).

. 

. 

. 

Figure 6: A part of the tree obtained by using the proposed
clustering method. The color of each trajectory highlights
its direction: it starts in green and progressively turns its
color into red.

on the considered dataset are not available. As a mat-

ter of fact, a lot of recently proposed methods have

been tested over owner datasets, not always available.

In any case, starting from the obtained results,

which are sufficiently good for most practical applica-

tions, we can enforce the effectiveness of the method

by drawing some considerations about the nature of

the errors; first of all, as shown in Figure 7a, we can

see a trajectory labelled as abnormal in our dataset,

but classified as genuine by the system. This happens

because they refer to vehicle’s trajectories partially lo-

cated in the grass (labelled as abnormal in the dataset)

and at the same time very similar in shape and close to

others that avoid the grass just for a few centimeters.

The system, based for its nature on shape similarity,

has no chance to give a correct answer. It is worth not-

ing that this error cannot be recovered by any unsuper-

vised system based on similarity evaluation; only the

introduction of information about the boundaries of

the areas can provide a system the possibility of dis-

criminating among very close trajectories on the basis

of possible boundary crosses. Another similar situa-

tions occurs in Figure 7b, where the vehicle tries to

park, but because of car place lack, fails, consequently

leaving the parking by exiting after a complete turn.

In this case, the description of the trajectory follows

a regular and normal path, except for a very limited

stretch, reproducing the same typology of error oc-

curring in the previous case.

Opposite kinds of error occur in Figure 8, in which

some trajectories, normal with respect to their seman-

tic and consequently labelled in this way, are wrongly

classified as abnormal by the system because their

short dimension, probably caused by a tracking al-

gorithm error, do not allow to associate them with a

sufficient reliability to a cluster containing normal tra-

jectories.

In conclusions, the yet sufficiently high perfor-

mance are even more acceptable at the light of the

fact that a rather high percentage of errors cannot be

recovered by using unsupervised methods, as their

elimination would require further information pos-

sibly given by a supervised approach. However,

we could think, as future work, the introduction

of a mixed solution based both on clustering and

boundary-constraints so as to catch the advantages of

both these approaches, even at the cost of introduc-

ing a little more heavy a priory knowledge about the

scene to be processed.

6 CONCLUSIONS

We propose a system able to identify abnormal

trajectories without the human operator explicitly

defining the rules. It has been achieved by introduc-



(a) (b)

Figure 7: Abnormal trajectories classified as normal.

(a) (b)

Figure 8: Normal trajectories classified as abnormal.

ing an unsupervised method able to deduce properties

of a scene from a set of trajectories. Starting from

a set of normal trajectories acquired by means of a

video analysis system, our method represent each tra-

jectory by a sequence of symbols associated to rele-

vant features of trajectories (crossed zones, shape and

speed in each zone). This quantization is obtained by

partitioning the scene into a fixed number of adap-

tive zones. Similarity between trajectories is evalu-

ated by means of a fast alignment global kernel. Tra-

jectories are then grouped into homogenous clusters

encoding normal trajectories. The classification into

(ab)normal trajectories is performed by taking advan-

taging on the statistical properties of the clusters. Ex-

periments have been performed on a real dataset and

the obtained results, compared with other state of the

art methods, confirm the efficiency of the proposed

approach. However, a deeper analysis will be con-

ducted in order to confirm the efficiency of the entire

approach if compared with other state-of-the art meth-

ods. Furthermore, some more reliable classifiers will

be exploited in order to increase the overall depend-

ability of the system.

A APPENDIX

In the following, the formal proofs of the compu-

tation of the squared error and of the cutting position

of the clustering algorithm are provided.

A.1 Squared Error

Let be:

bi
s =











1− 1
|Ct |

if i = s

− 1
|Ct |

if i ∈Ct ∧ i 6= s

0 otherwise

(28)

δi
s =

{

1 if i = s

0 otherwise
(29)

bs =−
1

|Ct |
ΛCt +δs. (30)

SE(Ct) = ∑
s∈Ct

||ψs −µt ||
2 (31)

= ∑
s∈Ct

||ψs −
1

|Ct |
∑
i∈Ct

ψi||
2

= ∑
s∈Ct

|| ∑
i∈Ct

bi
sψi||

2

= ∑
s∈Ct

∑
i, j∈Ct

bi
sb

j
s < ψi,ψ j >

= ∑
s∈Ct

bt
sKbs

= ∑
s∈Ct

(

−
1

|Ct |
ΛCt +δs

)t

K

(

−
1

|Ct |
ΛCt +δs.

)

= ∑
s∈Ct

1

|Ct |2
Λt

Ct
KΛCt −

2

|Ct |
Λt

Ct
Kδs +δsKδs

=
1

|Ct |
Λt

Ct
KΛCt −

2

|Ct |
∑

s∈Ct

Λt
Ct

Kδs + ∑
s∈Ct

k(s,s)

=
1

|Ct |
Λt

Ct
KΛCt −

2

|Ct |
Λt

Ct
K

(

∑
s∈Ct

δs

)

+ ∑
s∈Ct

k(s,s)

=−
1

|Ct |
Λt

Ct
KΛCt + ∑

s∈Ct

k(s,s)

= |Ct |−
1

|Ct |
Λt

Ct
KΛCt

A.2 Cutting Position

Let be:

µ =
1

|C| ∑
i∈C

Ψi (32)

µt =
1

|Ct |
∑
i∈Ct

Ψi =
1

|Ct |
∑
i∈C

Λi
Ct

Ψi. (33)

bi =
1

|C|
−

Λi
Ct

|Ct |
; (34)

b =
1

|C|
e−

Λi
Ct

|Ct |
, (35)



being e a vector of one values.

It can be shown that ||µ−µt ||
2 can be computed as

follows:

||µ−µt ||
2 = ||∑

i∈C

Ψi

|C|
−

Λi
Ct

Ψi

|Ct |
||2 (36)

= ||∑
i∈C

(

1

|C|
−

Λi
Ct

|Ct |

)

Ψi||
2

= ||∑
i∈C

biΨi||
2

= ∑
i, j∈C

bib j < Ψi,Ψ j >

= ∑
i, j∈C

bib j · k(si,s j)

= btKb

=

(

1

|C|
e−

Λi
Ct

|Ct |

)t

K

(

1

|C|
e−

Λi
Ct

|Ct |

)

=
1

|C|2
etKe−

2

|Ct ||C|
etKΛCt +

1

|Ct |2
Λt

Ct
KΛCt .

Furthermore, starting from ||µ−µt ||
2, ||µ−µt+1||

2

can be quickly computed. In particular, the second

term etKΛCt+1
is:

etKΛCt+1
= etK(ΛCt +δ) (37)

= etKΛCt + etKδp

= etKΛCt +
n

∑
i=1

k(i, p).

Finally, the last term Λt
Ct+1

KΛCt+1
becomes:

Λt
Ct+1

KΛCt+1
= (ΛCt +δp)

t
K (ΛCt +δp) (38)

= Λt
Ct

KΛCt +2Λt
Ct

Kδp +δt
pKδp

= Λt
Ct

KΛCt +2 ∑
i∈Ct

k(i, p)+ k(p, p).
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Brun, L. and Trémeau, A. (2002). Digital Color Imaging
Handbook, chapter 9 : Color quantization, pages 589–
637. Electrical and Applied Signal Processing. CRC
Press.

Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20:273–297.

Cuturi, M. (2011). Fast global alignment kernels. In
Getoor, L. and Scheffer, T., editors, Proceedings of
the 28th International Conference on Machine Learn-
ing (ICML-11), ICML ’11, pages 929–936, New York,
NY, USA. ACM.

d’Acierno, A., Leone, M., Saggese, A., and Vento, M.
(2012a). An efficient strategy for spatio-temporal data
indexing and retrieval. In to appear in Proceedings of
the ”International Conference on Knowledge Discov-
ery and Information Retrieval (KDIR)”.

d’Acierno, A., Leone, M., Saggese, A., and Vento, M.
(2012b). A system for storing and retrieving huge
amount of trajectory data, allowing spatio-temporal
dynamic queries. In to appear in Proceedings of the
”IEEE Conference on Intelligent Transportation Sys-
tems (ITSC)”.

Dee, H. and Hogg, D. (2004). Detecting inexplicable be-
haviour. In In: Proceedings of the British Machine
Vision Conference, The British Machine Vision Asso-
ciation, pages 477–486.

Dhillon, I. S., Guan, Y., and Kulis, B. (2004). Kernel k-
means: spectral clustering and normalized cuts. In
Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining,
KDD ’04, pages 551–556. ACM.

Di Lascio, R., Foggia, P., Saggese, A., and Vento, M.
(2012). Tracking interacting objects in complex sit-
uations by using contextual reasoning. In Csurka,
G. and Braz, J., editors, VISAPP (2), pages 104–113.
SciTePress.

Foggia, P., Percannella, G., Sansone, C., and Vento, M.
(2007). Assessing the performance of a graph-based
clustering algorithm. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics),
4538 LNCS:215–227.

Foggia, P., Percannella, G., Sansone, C., and Vento, M.
(2008). A graph-based algorithm for cluster detection.
IJPRAI, 22(5):843–860.

Hubert, L. and Schultz, J. (1976). Quadratic assignment
as a general data analysis strategy. British Journal of
Mathematical and Statistical Psychology, 29(2):190–
241.

Morris, B. and Trivedi, M. (2011). Trajectory learning
for activity understanding: Unsupervised, multilevel,
and long-term adaptive approach. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
33(11):2287 –2301.

Neuhaus, M. and Bunke, H. (2006). Edit distance-based
kernel functions for structural pattern classification.
Pattern Recognition, 39(10):1852 – 1863.

Papadopoulos, A. N. (2008). Trajectory retrieval with latent
semantic analysis. In Proceedings of the 2008 ACM



symposium on Applied computing, SAC ’08, pages
1089–1094, New York, NY, USA. ACM.

Piciarelli, C., Micheloni, C., and Foresti, G. (2008).
Trajectory-based anomalous event detection. IEEE
Transactions on Circuits and Systems for Video Tech-
nology, 18(11):1544–1554.

Saigo, H., Vert, J.-P., Ueda, N., and Akutsu, T. (2004). Pro-
tein homology detection using string alignment ker-
nels. Bioinformatics, 20(11):1682–1689.

Schaeffer, S. (2007). Graph clustering. Computer Science
Review, 1(1):27–64.

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Non-
linear component analysis as a kernel eigenvalue prob-
lem. Neural Comput., 10(5):1299–1319.

Shimodaira, H., ichi Noma, K., Nakai, M., and Sagayama,
S. (2002). Dynamic time-alignment kernel in support
vector machine. In Advances in Neural Information
Processing Systems (NIPS2002), volume 14(2), pages
921–928. MIT Press.

Tzortzis, G. F. and Likas, A. C. (2009). The global kernel k-
means algorithm for clustering in feature space. Trans.
Neur. Netw., 20(7):1181–1194.

Wan, S. J., Wong, S. K. M., and Prusinkiewicz, P. (1988).
An algorithm for multidimensional data clustering.
ACM Trans. Math. Softw., 14(2):153–162.

Wang, X., Ma, K. T., Ng, G.-W., and Grimson, W. E.
(2011). Trajectory analysis and semantic region mod-
eling using nonparametric hierarchical bayesian mod-
els. Int. J. Comput. Vision, 95:287–312.

Zhou, Y., Yan, S., and Huang, T. (2007). Detecting anomaly
in videos from trajectory similarity analysis. In Multi-
media and Expo, 2007 IEEE International Conference
on, pages 1087 –1090.


