
HAL Id: hal-00947323
https://hal.science/hal-00947323v1

Submitted on 15 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Turing degrees of limit sets of cellular automata
Alex Borello, Julien Cervelle, Pascal Vanier

To cite this version:
Alex Borello, Julien Cervelle, Pascal Vanier. Turing degrees of limit sets of cellular automata. ICALP
2014, Jul 2014, Copenhaguen, Denmark. pp.74–85, �10.1007/978-3-662-43951-7_7�. �hal-00947323�

https://hal.science/hal-00947323v1
https://hal.archives-ouvertes.fr

Turing degrees of limit sets of cellular automata

Alex Borello, Julien Cervelle, Pascal Vanier

Abstract

Cellular automata are discrete dynamical systems and a model of com-

putation. The limit set of a cellular automaton consists of the configura-

tions having an infinite sequence of preimages. It is well known that these

always contain a computable point and that any non-trivial property on

them is undecidable. We go one step further in this article by giving a

full characterization of the sets of Turing degrees of cellular automata:

they are the same as the sets of Turing degrees of effectively closed sets

containing a computable point.

1 Introduction

Cellular Automata (CAs for short) are both discrete dynamical systems and a
model of computation. They were introduced in the late 1940s independently by
John von Neumann and Stanislaw Ulam to study, respectively, self-replicating
systems and the growth of quasi-crystals.

A d-dimensional CA consists of cells aligned on Z
d that may be in a finite

number of states, and are updated synchronously with a local rule, i.e. depend-
ing only on a finite neighborhood. All cells operate under the same local rule.
The state of all cells at some time step is called a configuration. CAs are very
well known for being simple systems that may exhibit complicated behavior.

A d-dimensional subshift of finite type (SFT for short) is a set of colorings
of Zd by a finite number of colors containing no pattern from a finite family of
forbidden patterns. Most proofs of undecidability concerning CAs involve the
use of SFTs, so both topics are very intertwined [Kar90; Kar92; Kar94a; Mey08;
Kar11]. A recent trend in the study of SFTs has been to give computational
characterizations of dynamical properties, which has been followed by the study
of their computational structure and in particular the comparison with the com-
putational structure of effectively closed sets, which are the subsets of {0, 1}

N

on which some Turing machine does not halt. It is quite easy to see that SFTs
are such sets.

In this paper, we follow this trend and study the limit set Ω (A) of a CA A,
which consist of all the configurations of the CA that can occur after arbitrarily
long computations. They were introduced by Culik, Pachl, and Yu [CPY89] in
order to classify CAs. It has been proved that non-trivial properties on these
sets are undecidable by Kari [Kar94b]; Guillon and Richard [GR10] for CAs
of all dimensions. Limit sets of CAs are subshifts, and the question of which

1

subshifts may be limit sets of CA has been a thriving topic, see [Hur87; Hur90a;
Hur90b; Maa95; FK07; LM09; BGK11]. However, most of these results are on
the language of the limit set or on simple limit sets. Our aim here is to study
the configurations themselves.

In dimension 1, limit sets are effectively closed sets, so it is quite natural
to compare them from a computational point of view. The natural measure
of complexity for effectively closed sets is the Medvedev degree [Sim11], which,
informally, is a measure of the complexity of the simplest points of the set.
As limit sets always contain a uniform configuration (wherein all cells are in
the same state), they always contain a computable point and have Medvedev
degree 0. Thus, if we want to study their computable structure, we need a finer
measure; in this sense, the set of Turing degrees is appropriate.

It turns out that for SFTs, there is a characterization of the sets of Turing
degrees found by Jeandel and Vanier [JV13b], which states that one may con-
struct SFTs with the same Turing degrees as any effectively closed set containing
a computable point. In the case of limit sets, such a characterization would be
perfect, as limit sets always contain a computable point1. This is exactly what
we achieve in this article:

Theorem 1. For any effectively closed set S, there exists a cellular automaton A
such that

degTΩ (A) = degTS ∪ {0}.

In the way to achieve this theorem, we introduce a new construction which
gives us some control over the limit set. We hope that this construction will
lead to other unrelated results on limit sets of CAs, as it was the case for the
construction in [JV13b], see [JV13a].

The paper is organized as follows. In Section 2 we recall the usual definitions
concerning CAs and Turing degrees. In Section 3 we give the reasons for each
trait of the construction which allows us to prove theorem 1. In Section 4 we
give the actual construction. We end the paper by a discussion, in Section 5,
on the Cantor-Bendixson ranks of the limit sets of CAs. The choice has been
made to have colored figures, which are best viewed on screen.

2 Preliminary definitions

A (1-dimensional) cellular automaton is a triple A = (Q, r, δ), where Q is the
finite set of states, r > 0 is the radius and δ : Q2r+1 → Q the local transition
function.

An element of i ∈ Z is called a cell, and the set Ji−r, i+rK is the neighborhood
of i (the elements of which are the neighbors of i). A configuration is a function c :
Z → Q. The local transition function induces a global transition function (that
can be regarded as the automaton itself, hence the notation), which associates

1Note that this is not the case for subshifts: there exist non-empty subshifts containing
only non-computable points.

2

to any configuration c its successor :

A(c) :

{

Z → Q
i 7→ δ(c(i − r), . . . , c(i− 1), c(i), c(i + 1), . . . , c(i+ r))).

In other words, all cells are finite automata that update their states in parallel,
according to the same local transition rule, transforming a configuration into its
successor.

If we draw some configuration as a horizontal bi-infinite line of cells, then
add its successor above it, then the successor of the latter and so on, we ob-
tain a space-time diagram, which is a two-dimensional representation of some
computation performed by A.

A site (i, t) ∈ Z
2 is a cell i at a certain time step t of the computation we

consider (hereinafter there will never be any ambiguity on the automaton nor
on the computation considered).

The limit set of A, denoted by Ω (A), is the set of all the configurations that
can appear after arbitrarily many computation steps:

Ω (A) =
⋂

k∈N

Ak(QZ).

For surjective CAs, the limit set is the set of all possible configurations QZ,
while for non-surjective CAs, it is the set of all configurations containing no
orphan of any order, see [Hur90a]. An orphan of order n is a finite word w
which has no preimage by An

|Q|w| .

An effectively closed set, or Π0
1 class, is a subset S of {0, 1}

N
for which there

exists a Turing machine that, given any x ∈ {0, 1}
N
, halts if and only if x 6∈ S.

Equivalently, a class S ⊆ {0, 1}N is Π0
1 if there exists a computable set L such

that x ∈ S if and only if no prefix of x is in L. It is then quite easy to see that
limit sets of CAs are Π0

1 classes: for any limit set, the set of forbidden patterns
is the set of all orphans of all orders, which form a recursively enumerable set,
since it is computable to check whether a finite word is an orphan.

For x, y ∈ {0, 1}
N
, we say that x≤T y if x is computable by a Turing machine

using x as an oracle. If x≤T y and x≥T y, x and y are said to be Turing-equivalent,
which is noted x≡T y. The Turing degree of x, noted degTx, is its equivalence
class under relation ≡T . The Turing degrees form a lattice whose bottom is 0,
the Turing degree of computable sequences.

Effectively closed sets are quite well understood from a computational point
of view, and there has been numerous contributions concerning their Turing
degrees, see the book of Cenzer and Remmel [CR98] for a survey. One of the
most interesting results may be that there exist Π0

1 classes whose members are
two-by-two Turing incomparable [JS72].

3 Requirements of the construction

The idea to prove Theorem 1 is to make a construction that embeds computa-
tions of a Turing machine that will check a read-only oracle tape containing a

3

member of the Π0
1 class S that will have to appear “non-deterministically”. The

following constraints have to be addressed.

• Since CAs are intrinsically deterministic, this non-determinism will have
to come from the “past”, i.e. from the “limit” of the preimages.

• The oracle tape, the element of {0, 1}N that needs to be checked, needs to
appear entirely on at least one configuration of the limit set.

• Each configuration of the limit set containing the oracle tape needs to have
exactly one head of the Turing machine, in order to ensure that there really
is a computation going on in the associated space-time diagram.

• The construction, without any computation, needs to have a very simple
limit set, i.e. it needs to be computable, and in particular countable; this
to ensure that no complexity overhead will be added to any configura-
tion containing the oracle tape, and that “unuseful” configurations of the
limit set – the configurations that do not appear in a space-time diagram
corresponding to a computation – will be computable.

• The computation of the embedded Turing machine needs to go backwards,
this to ensure that we can have the non-determinism. And an error in the
computation must ensure that there is no infinite sequence of preimages.

• The computation needs to have a beginning (also to ensure the presence
of a head), so the construction needs some marked beginning, and the
representation of the oracle and work tapes in the construction need to
disappear at this point, otherwise by compactness the part without any
computation could be extended bi-infinitely to contain any member of
{0, 1}

N
, thus leading to the full set of Turing degrees.

There are other constraints that we will discuss during the construction, as they
arise.

In order to make a construction complying to all these constraints, we reuse,
with heavy modifications, an idea of Jeandel and Vanier [JV13b], which is to
construct a sparse grid. However, their construction, being meant for subshifts,
requires to be completely rethought in order to work for CAs. In particular,
there was no determinism in this construction, and the oracle tape did not need
to appear on a single column/row, since their result was on two-dimensional
subshifts.

4 The construction

4.1 A self-vanishing sparse grid

In order to have space-time diagrams that constitute sparse grids, the idea is to
have columns of squares, each of these columns containing less and less squares
as we move to the left, see fig. 1. The CA has three categories of states:

4

• a killer state, which is a spreading state that erases anything on its path;

• a quiescent state, represented in white in the figures; its sole purpose is to
mark the spaces that are “outside” the construction;

• some construction states, which will be constituted of signals and back-
ground colors.

In order to ensure that just with the signals themselves it is not possible to
encode anything non-computable in the limit set, all signals will need to have,
at all points, at any time, different colors on their left and right, otherwise the
local rule will have a killer state arise. Here are the main signals.

• Vertical lines: serve as boundaries between columns of squares and form
the left/right sides of the squares.

• SW-NE and SE-NW diagonals: used to mark the corners of the squares,
they are signals of respective speeds 1 and −1. Each time they collide
with a vertical line (except for the last square of the row), they bounce
and start the converse diagonal of the next square.

• Counting signal: will count the number of squares inside a column; every
time it crosses the SW-NE diagonal of a square it will shift to the left.
When it is superimposed to a vertical line, it means that the square is the
last of its column, so when it crosses the next SE-NW diagonal, it vanishes
and with it the vertical line.

• Starting signals: used to start the next column to the left, at the bottom
of one column. Here is how they work.

– The bottommost signal, of speed − 1
4 , is at the boundary between

the empty part of the space-time diagram and the construction. It is
started 4 time steps after the collision with the signal of speed − 1

3 .

– The signal of speed − 1
3 is started just after the vertical line sees the

incoming SE-NW diagonal of the first square of the row on the right,
at distance 32 (the diagonal will collide with the vertical line 2 time
steps after the start of that signal).

– At the same time as the signal of speed − 1
3 is created, a signal of

speed − 1
2 is generated. When this signal collides with the bottom-

most signal, it bounces into a signal of speed 1
4 that will create the

first SE-NW diagonal of the first square of the row of squares of the
left, 4 time steps after it will collide with the vertical line.

On top of the construction states, except on the vertical lines, we add a
parity layer {0, 1}: on a configuration, two neighboring cells of the construction
must have different parity bits, otherwise a killer state appears. On the left
of a vertical line there has to be parity 1 and on the right parity 0, otherwise
the killer state pops up again. This is to ensure that the columns will always
contain an even number of squares.

2That can be done, provided the radius of the CA is large enough.

5

4
3
2
1

2
1

time

Figure 1: The sparse grid construction: it is based on columns containing a
finite number of squares, whose number decreases when we go left. Note that
the figure is squeezed vertically.

The following lemmas address which types of configurations may occur in the
limit set of this CA. First note that any configuration wherein the construction
states do not appear in the right order do not have a preimage.

Lemma 4.1. The sequence of preimages of a segment ended by consecutive
vertical lines (and containing none) is a slice of a column of squares of even
side.

Proof. Suppose a configuration contains two vertical-line symbols, then to be
in the limit set, in between these two symbols there needs to be two diagonal

6

symbols, one for the SE-NW one and one for SW-NE one, a symbol for the
counting signal, and in between these signals there needs to be the appropriate
colors: there is only one possibility for each of them. If this is not the case, then
the configuration has no preimage.

Also, the distance between the first vertical line and the SE-NW diagonal
needs to be the same than the distance between the second vertical line and
the SW-NE diagonal, otherwise the signals at the bottom – the ones starting a
column, that are the only preimages of the first diagonals – would have, in one
case, created a vertical line in between, and in the other case, not started at the
same time on the right vertical.

The side of the squares is even, otherwise the parity layer has no preimage.

Lemma 4.2. A configuration of the limit set containing at least three vertical-
line symbols needs to verify, for any three consecutive symbols, that if the dis-
tance between the first one and the second one is k, then the distance between
the second one and the third one needs to be (k + 2).

Proof. Let us take a configuration containing at least three vertical-line symbols,
take three consecutive ones. The states between them have to be of the right
form as we said above. Suppose the first of these symbols is at distance k1 of
the second one, which is at distance k2 of the third one. This means that the
first (resp. second) segment defines a column of squares of side k1 (resp. k2). It
is clear that the second column of squares cannot end before the first one.

Now let i be the position of the counting signal of the first column and j the
distance between the SW-NE diagonal and the left vertical line. The preimage
of the first segment ends (k1i + j) (resp. (k1(i − 1) + j)) steps before if the
counting signal is on the left (resp. right) of the SW-NE diagonal. Then, the
preimages of the left and right vertical lines of this column are the creating
signals. Before the signal created on the right bounces on the one of speed − 1

4
created on the left, it collides with the one of speed − 1

3 , thus determining the
height of the squares on the right column of squares. So k1 = k2 − 2.

Lemma 4.3. A configuration having two vertical-line symbols pertaining to the
limit set needs to verify one of the following statements.

• It is constituted of a finite number of vertical lines.

• It appears in the space-time diagram of fig. 1.

• It is constituted of an infinite number of vertical lines, then starting from
some position it is equal on the right to some (shifted) line of fig. 1.

Proof. We place ourselves in the case of a configuration of the limit set. Because
of lemma 4.1, two consecutive vertical lines at distance k from each other define
a column of squares. In a space-time diagram they belong to, on their left there
necessarily is another column of squares, because of the starting signal generated
at the beginning of the left vertical line, except when k = 3, in which case there

7

is nothing on the left. In this column, the vertical lines are at distance (k − 2),
see lemma 4.2. So, if there is an infinite number of vertical lines, either it is of
the form of fig. 1, or there is some killer state coming from infinity on the left
and “eating” the construction.

4.2 Backward computation inside the grid

We now wish to embed the computation of a reversible Turing machine inside
the aforementioned sparse grid, which for this purpose is better seen as a lattice.
The fact the TM is reversible allows us to embed it backwards in the CA. We
will below denote by TM time (resp. CA time) the time going forward for the
Turing machine (resp. the CA); on a space-time diagram, TM time goes from
top to bottom, while CA time goes from bottom to top (cf. arrows in fig. 2a).
That way, the beginning of the computation of the TM will occur in the first
(topmost) square of the first (leftmost) column of squares.

We have to ensure that any computation of the TM is possible, and in
particular ensure that such a computation is consistent over time; the idea is
that at the first TM time step, i.e. the moment the sparse grid disappears, the
tape is on each of the vertical line symbols, but since these all disappear a finite
number of CA steps before, we have to compel all tape cells to shift to the right
regularly as TM time increases.

Moreover, we want to force the presence of exactly one head (there could be
none if it were, for instance, infinitely far right). To do that, the grid is divided
into three parts that must appear in this order (from left to right): the left of
the head, the right of the head (together referred to as the computation zone)
and the unreachable zone (where no computation can ever be performed), resp.
in blue, yellow and green in fig. 2a.

The vertices of our lattice are the top left corners of the squares, each one
marked by the rebound of a SE-NW diagonal on a vertical line, while the top
right corners will just serve as intermediate points for signals. More precisely, if
we choose (arbitrarily) the top left corner of the first square of the first column
to appear at site (0, 0), then for any i, j ∈ N, the respective sites for the top left
and top right corners of si,j , the (j + 1)-th square of the (i+ 1)-th column, are
the following (cf. fig. 2a):

{

sℓi,j = (i(i+ 1),−2(i+ 1)j)
sri,j = ((i + 1)(i+ 2),−2(i+ 1)j).

Fig. 2b illustrates a computation by the TM, with the three aforementioned
zones, as it would be embedded the usual way (but with reverse time) into a
CA, with site (i,−t) corresponding to the content of the tape at i ∈ N and TM
time t ∈ N.

Fig. 2c represents another, still simple, embedding, which is a distortion of
the previous one: the head moves every even time step within a tape that is
shifted every odd time steps, so that instead of site (i,−t), we have two sites,
(i+ t,−2t) and (i+ t,−2t− 1), resp. the computation site (big circle on fig. 2c)

8

and the shifting site (small circle on fig. 2c). The head only reads the content of
the tape when it lies on a computation site. This type of embedding can easily
be realized forwards or backwards (provided the TM is reversible).

Our embedding, derived from the latter, is drawn on fig. 2a. The “only”
difference is the replacement of sites (i+ t,−2t) and (i+ t,−2t− 1) by sites sℓi,t
and sℓi,t+1. Notice that as the number of squares in a column is always finite,
each square can “know” whether its top left corner is a computation or a shifting
site with a parity bit. More precisely, the j-th square (from bottom to top) of
a column has a computation site on its top left if and only if j is even.

Let si,j be a square of our construction. sℓi,j is either a computation site
or a shifting site. In the latter case, it is supposed to receive the content of a
cell of the TM tape with an incoming signal of speed −1. All it has to do is
to send it to sℓi,j−1 (at speed 0), which is a computation site. In the former
case, however, things a slightly more complicated. The content of the tape has
to be transmitted to sℓi−1,j−1 (which is a shifting site). To do that, a signal of

speed 0 is sent and waits for site sri−1,j , which sends the content to sℓi−1,j−1 with
a signal of speed −1 along the SE-NW diagonal. The problem is to recognize
which sr site is the correct one. Fortunately, there are only two possibilities: it
is either the first or the second sr site to appear after (in CA time, of course)
sℓi,j on the vertical line. The first case corresponds exactly to the unreachable
zone (where j ≤ i), hence the result if the three zones are marked. The lack of
other cases is due to the number of si squares, which is only 2(i+ 1).

Another issue is the superposition of such signals. Here again, there are only
two cases: in the unreachable zone there is none, whereas in the computation
zone a signal of speed 0 from a computation site can be superimposed to the
signal of speed 0 sent by the shifting site just above it. As aforesaid, there is
no other case because of the limited number of si squares. Thus, there is no
problem to keep the number of states of the CA finite, since the number of
signals going through a same cell is limited to two at the same time.

While the two parts of the computation zones are to be separated by the
presence of a head, the unreachable zone is at the right of a signal that is
sent from any computation site that has two diagonals (one from the left and
one from the right) below it (indicated as circles on fig. 1), goes at speed 0
until the next sr site, then at speed 1 (along SE-NW diagonals) to the second
next shifting site, and finally at speed 0 again, to the next computation site
(cf. fig. 2a), which also has two diagonals below it if the grid contains no error.
Another way to detect the unreachable zone is to detect that the counting signal
crossed the SW-NE diagonal exactly two CA time steps after it has crossed the
SE-NW diagonal. This means that the unreachable zone is structurally coded
in the construction.

Now only the movements of the head remain to be described (in black on
fig. 2a). Let sℓi,j be a computation site containing the head.

• If the previous move of the head (previous because we are in CA time,
that is, in reverse TM time) was to the left, the next computation site
is the one just above, that is, sℓi,j−2. The head is thus transferred by a

9

simple signal of speed 0.

• If the previous move was to stand still, the next computation site is
sℓi−1,j−2. It can be reached by a signal of speed 0 until the second next
sr site, from which a signal of speed −1 (along a SE-NW diagonal) is
launched, to be replaced by another signal of speed 0 from sℓi−1,j−1 on.

• If the previous move was to the right, the next computation site is sℓi−2,j−2.
It can be reached by a signal of speed 0 until the second next sr site, from
which a signal of speed −1 (along a SE-NW diagonal) is launched, to be
replaced by another signal of speed 0 from sℓi−1,j−1 on, which itself waits
for the next sr site (which is sri−2,j) to start another signal of speed 1
(along a SW-NE diagonal) that is finally succeeded to by a last signal of
speed 0 from sℓi−2,j−1 on.

4.3 The computation itself

As we said before, the computation will take place on the computation sites,
which will contain two kinds of tape cells: one for the oracle and one for the
work. In the unreachable zone there are only oracle cells, which do not change
over time except for the shifting. Now we want to eliminate all space-time
diagrams corresponding to rejecting computations of some Turing machine M .
Bennett [Ben73] has proved that for any Turing machine, we can construct a
reversible one computing the same function. So a first idea would just be to
encode this reversible Turing machine in the sparse grid; however there is no
way to guarantee that the work tape that was non-deterministically inherited
from the past corresponds to a valid configuration and by the time the Turing
machine “realizes” this it will be too late, there will already exist configurations
containing some oracle that we would otherwise have rejected.

The solution to this problem is to use a robust Turing machine in the sense
of Hooper [Hoo66], that is to say a Turing machine that regularly rechecks its
whole computation. Kari and Ollinger [KO08] have constructed reversible such
machines. In these constructions the machines constructed were working on
a bi-infinite tape, which had the drawback that some infinite side of the tape
might not be checked; here it is not the case, hence we can modify the machine
so that on an infinite computation it visits all cells of the tape (we omit the
details for brevity’s sake).

In terms of limit sets, this means that if some oracle is rejected by the
machine, then it must have been rejected an infinite number of times in the
past (CA time). So, only oracles pertaining to the desired class may appear in
the limit set.

Furthermore, even if some killer state coming from the right eats the grid,
at some point in the past of the CA, it will be in the unreachable zone, and stay
there for ever, so the computation from that moment on even ensures that the
oracle computed is correct. Though, that doesn’t matter, because in this case
the configurations of the corresponding space-time diagram that are in the limit

10

time

CA TM

(a)

(b)

(c)

Figure 2: The embedding of a Turing machine computation in the sparse grid
(2a), compared to the usual embedding (2b) and a slightly distorted one (2c).
The paths followed by the content of each cell of the tape are in red and orange
(two colors just to keep track of the signals), while the one of the head is in black.
The arrows indicate the next move of the head (for TM time, going towards the
bottom). The green background denotes the zone the head cannot reach, while
the computation zone is in blue on the left of the head and in yellow on its right.

11

set are uniform both on the right and on the left except for a finite part in the
middle, and are hence computable.

5 Cantor-Bendixson rank of limit sets

The Cantor-Bendixson derivative of some set S ⊆ ΣZ, with Σ finite, is noted
D (S) and consists of all configurations of S except the isolated ones. A config-
uration c is said to be isolated if there exists a pattern P such that c is the only
configuration of S containing P (up to a shift). For any ordinal λ we can define
S(λ), the Cantor-Bendixson derivative of rank λ, inductively:

S(0) = S

S(λ+1) = D
(

S(λ)
)

S(λ) =
⋂

γ<λ

S(γ).

The Cantor-Bendixson rank of S, denoted by CB (S), is defined as the first
ordinal λ such that S(λ+1) = S(λ). In particular, when S is countable, S(CB(S))

is empty. An element s is of rank λ in S if λ is the least ordinal such that s /∈ S(λ).
For more information about Cantor-Bendixson rank, one may skim [Kec95].

The Cantor-Bendixson rank corresponds to the height of a configuration cor-
responding to a preorder on patterns as noted by Ballier, Durand, and Jeandel
[BDJ08].Thus, it gives some information on the way the limit set is structured
pattern-wise. A straightforward corollary of the construction above is the fol-
lowing.

Corollary 5.1. There exists a constant c ≤ 10 such that for any Π0
1 class S,

there exists a CA A such that

CB (Ω (A)) = CB (S) + c.

Here the constant corresponds to the pattern overhead brought by the sparse-
grid construction.

Acknowledgments

This work was sponsored by grants EQINOCS ANR 11 BS02 004 03 and TAR-
MAC ANR 12 BS02 007 01. The authors would like to thank Nicolas Ollinger
and Bastien Le Gloannec for some useful discussions.

References

[BDJ08] A. Ballier, B. Durand, and E. Jeandel. “Structural aspects of tilings”.
In: 25th International Symposium on Theoretical Aspects of Com-
puter Science. Ed. by S. Albers and P. Weil. Vol. 1. Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2008, pp. 61–72.

12

[Ben73] C. H. Bennett. “Logical Reversibility of Computation”. In: IBM J.
Res. Dev. 17.6 (Nov. 1973), pp. 525–532.

[BGK11] A. Ballier, P. Guillon, and J. Kari. “Limit Sets of Stable and Unstable
Cellular Automata”. In: Fundam. Inform. 110.1-4 (2011), pp. 45–57.

[CPY89] K. Culik, J. Pachl, and S. Yu. “On the limit sets of cellular automata”.
In: SIAM Journal on Computing 18.4 (1989), pp. 831–842.

[CR98] D. Cenzer and J. Remmel. “Π0
1 classes in mathematics”. In: Handbook

of Recursive Mathematics - Volume 2: Recursive Algebra, Analysis
and Combinatorics. Vol. 139. Studies in Logic and the Foundations
of Mathematics. Elsevier, 1998. Chap. 13, pp. 623–821.

[FK07] E. Formenti and P. Kurka. “Subshift attractors of cellular automata”.
In: Nonlinearity 20 (2007), pp. 105–117.

[GR10] P. Guillon and G. Richard. “Revisiting the Rice Theorem of Cellu-
lar Automata”. In: STACS. Ed. by J.-Y. Marion and T. Schwentick.
Vol. 5. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2010, pp. 441–452.

[Hoo66] P. K. Hooper. “The Undecidability of the Turing Machine Immortal-
ity Problem”. In: Journal of Symbolic Logic 31.2 (June 1966), pp. 219–
234.

[Hur87] L. P. Hurd. “Formal Language Characterization of Cellular Automa-
ton Limit Sets”. In: Complex Systems 1.1 (1987), pp. 69–80.

[Hur90a] L. P. Hurd. “Nonrecursive Cellular Automata Invariant Sets”. In:
Complex Systems 4.2 (1990), pp. 131–138.

[Hur90b] L. P. Hurd. “Recursive Cellular Automata Invariant Sets”. In: Com-
plex Systems 4.2 (1990), pp. 131–138.

[JS72] C. G. Jockusch and R. I. Soare. “Degrees of members of Π0
1 classes”.

In: Pacific J. Math. 40.3 (1972), pp. 605–616.

[JV13a] E. Jeandel and P. Vanier. “Hardness of Conjugacy, Embedding and
Factorization of multidimensional Subshifts of Finite Type”. In: STACS.
Ed. by N. Portier and T. Wilke. Vol. 20. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2013, pp. 490–501.

[JV13b] E. Jeandel and P. Vanier. “Turing degrees of multidimensional {SFTs}”.
In: Theoretical Computer Science 505.0 (2013). Theory and Applica-
tions of Models of Computation 2011, pp. 81 –92.

[Kar11] J. Kari. “Snakes and Cellular Automata: Reductions and Inseparabil-
ity Results”. In: Computer Science – Theory and Applications. Ed. by
A. Kulikov and N. Vereshchagin. Vol. 6651. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2011, pp. 223–232.

[Kar90] J. Kari. “Reversibility of 2D cellular automata is undecidable”. In:
Physica D: Nonlinear Phenomena 45.1-3 (1990), pp. 379–385.

13

[Kar92] J. Kari. “The Nilpotency Problem of One-Dimensional Cellular Au-
tomata”. In: SIAM Journal on Computing 21.3 (1992), pp. 571–586.

[Kar94a] J. Kari. “Reversibility and surjectivity problems of cellular automata”.
In: Journal of Computer and System Sciences 48.1 (1994), pp. 149–
182.

[Kar94b] J. Kari. “Rice’s theorem for the limit sets of cellular automata”. In:
Theoretical Computer Science 127.2 (1994), pp. 229 –254.

[Kec95] A. S. Kechris. Classical descriptive set theory. Vol. 156. Graduate
Texts in Mathematics. New York: Springer-Verlag, 1995, pp. xviii+402.

[KO08] J. Kari and N. Ollinger. “Periodicity and Immortality in Reversible
Computing”. In: Mathematical Foundations of Computer Science 2008.
Ed. by E. Ochmański and J. Tyszkiewicz. Vol. 5162. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2008, pp. 419–430.

[LM09] P. D. Lena and L. Margara. “Undecidable Properties of Limit Set
Dynamics of Cellular Automata”. In: 26th International Symposium
on Theoretical Aspects of Computer Science. Ed. by S. Albers and
J.-Y. Marion. Vol. 3. Leibniz International Proceedings in Informat-
ics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2009, pp. 337–348.

[Maa95] A. Maass. “On the sofic limit sets of cellular automata”. In: Ergodic
Theory and Dynamical Systems 15 (04 Aug. 1995), pp. 663–684.

[Mey08] T. Meyerovitch. “Finite entropy for multidimensional cellular au-
tomata”. In: Ergodic Theory and Dynamical Systems 28 (04 Aug.
2008), pp. 1243–1260.

[Sim11] S. G. Simpson. “Mass problems associated with effectively closed
sets”. In: Tohoku Mathematical Journal 63.4 (2011), pp. 489–517.

14

	Introduction
	Preliminary definitions
	Requirements of the construction
	The construction
	A self-vanishing sparse grid
	Backward computation inside the grid
	The computation itself

	Cantor-Bendixson rank of limit sets

