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We report a wave generator of complex solutions of the nonlinear Schrödinger equation (NLSE) combining both
intensity and phase spectral shaping of an initial optical frequency comb with subsequent nonlinear propagation
in an optical fiber. We apply the explicit analytical form of the two-breather solutions of the NLSE as a linear
spectral filter to shape ideal modulation of a continuous wave. The additional nonlinear propagation of the tailored
wave provides experimental evidence of both the growth and decay of the fundamental second-order periodic
breather solution. The temporal and spectral profiles of the higher-order breather are in excellent agreement with
the corresponding analytical solution.
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Complex periodic solutions of the nonlinear Schrödinger
equation (NLSE), known as solitons on a finite background
or breathers, have attracted particular attention during recent
years since they are considered as prototypes to model extreme
energy localization in many nonlinear dispersive systems [1,2].
These localized waves are observed when small-amplitude
perturbations on a continuous wave (cw) become strongly
focused due to modulation instability of nonlinear waves,
thus providing a simple approach for the description of the
famous hydrodynamic rogue wave formation [3–6]. Their
existence has also been confirmed in other fields of physics
driven by the NLSE [7–9]. The first experimental studies
on breathers have already demonstrated that nonideal initial
perturbations may lead to the generation of complex behaviors
that may differ from the expected mathematical solution
of single breathers [10,11]. In particular, the sensitivity to
initial perturbations depends on the complexity or order of
the solution (i.e., the order of energy localization). In water
wave experiments, the initial wave profiles are generated with
a paddle located at one end of a tank. An electric signal,
derived from the exact mathematical expression describing the
water surface elevation, drives the paddle to directly modulate
the surface height. Specific initial modulations such as a
ratio of polynomials have been applied to the wave maker
to excite super-rogue waves [5,12,13]. However, such ideal
perturbations in optics are nontrivial to synthesize in the
temporal domain by means of the usual intensity modulators
at gigahertz levels. Previous experiments in optics have used
only sinusoidal modulations [8,10].

In this context we propose to introduce the advantages of
ultrafast optics technology and programmable optical pulse
shaping that allow the generation of nearly arbitrarily shaped
ultrafast optical wave forms [14,15]. Shaped laser pulses
have already demonstrated their potential for many appli-
cations such as telecommunications systems, multiphoton
microscopy, and coherent control of quantum systems. Here
we consider Fourier-transform optical pulse shaping in order to
provide the ultimate control in terms of phase and amplitude for
achieving the ideal excitation of complex NLSE solutions. In
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particular, our optical processing is based on spectral line-by-
line shaping of a frequency comb generator [16], which is well
suited for studies of time-periodic NLSE solutions. Nonlinear
wave propagation is next completed in a standard optical fiber
to analyze both temporal and spectral evolutions compared
to mathematical predictions. In this paper, we describe the
experimental observation of both the growth and decay of
the fundamental second-order periodic breather solution by
exploiting the two-stage linear-nonlinear shaping of an optical
frequency comb at telecommunications wavelengths. This
work opens the way to experimental investigations of the
rich family of complex solutions of the NLSE by using
low-cost optical-fiber-based systems and may motivate similar
experiments in other nonlinear dispersive media, governed by
the NLSE.

The self-focusing NLSE is written in dimensionless form
as iψξ + (1/2)ψττ + ψ2ψ = 0, where subscripted variables
stand for partial differentiations. ψ is a wave group or
pulse envelope which is a function of ξ (a propagation
distance or longitudinal variable) and τ (a comoving time
or transverse variable). General first-order breather solutions
of the NLSE are usually associated with the following
explicit wording: solitons on a finite background [8,17].
These fundamental solutions are either periodic in space and
localized in time or periodic in time and localized in space;
they are referred to as Kuznetsov-Ma solitons (KMSs) and
Akhmediev breathers (ABs), respectively. Taking the period
of both solutions to infinity gives rise to a first-order doubly
localized Peregrine soliton (PS). Here we are interested in
fundamental two-breather solutions (i.e., second-order NLSE
solutions) that correspond to the nonlinear superposition of
two first-order elementary breathers [18]. The dynamics of
such solutions describes the interaction in the plane (ξ ,τ )
between fundamental ABs, KMSs, and PSs. Various forms
of the second-order periodic solutions have been recently
derived [18]. Nonlinear superposition of several breathers has
already been observed in optics by stimulating the modulation
instability process with a single or a combination of two
cosine modulations [11,19,20], but the generated breathers
only approach the exact solutions. Up to date, only one case
of a second-order NLSE solution has been experimentally
studied with exact initial conditions [12,13]; it concerns the
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limiting rational case of synchronized superposition of PSs.
The experiments related to this solution were performed for
water waves by splitting its evolution into several stages
of propagation and by reconstructing the wave dynamics
afterwards in order to overcome the restriction in terms of
wave flume length [12]. More precisely, after starting the
breather wave generation repetitively with different boundary
conditions provided from theory, the measured wave profiles,
collected at the other end of the tank, were then compared
to the corresponding theoretical predictions. Deviations from
theory were minimal so that this process was repeated several
times to reach a long propagation distance, which corresponds
to the point of maximum wave amplitude. We propose to
apply this technique to our nonlinear propagation stage to
overcome here the impact of fiber losses on the full evolution

of the wave profiles related to the higher-order breather
solutions.

The first stage of our setup is based on spectral line-by-line
shaping of an optical frequency comb, which synthesizes
time-periodic initial perturbations. Consequently, it restricts
our present study to nonlinear superposition of several ABs
with commensurate frequencies. In the following, we illustrate
our work by generating a synchronized nonlinear superposition
of two ABs with two different modulation frequencies; in par-
ticular with a frequency ratio of 2:1. Each first-order breather
j in the higher-order solution is described by the governing
parameter aj , the modulation frequency ωj = 2(1 − 2aj )1/2,
the instability growth rate bj = [8aj (1 − 2aj )]1/2, and a
shifted point of origin (ξj ,τj ) [7,10,18]. The second-order
breather solution is given in Ref. [18] as

ψ2(ξ,τ ) = eiξ

[
1 + G2 + iH2
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where ξsj = ξ − ξj and τsj = τ − τj are shifted variables. In
this study, we consider a synchronized nonlinear superposition
at the origin so that ξ1 = ξ2 = 0 and τ1 = τ2 = 0. The above
solution describes the full wave evolution of the second-order
breather during its nonlinear propagation.

The experimental setup depicted in Fig. 1 is based on
high-speed telecommunications-grade components. It benefits
from a different fiber-based test bed in comparison to previous
studies of single breathers in optics [7,8]. The initial frequency
comb is generated by the implementation of a 20-GHz
repetition rate pulse source centered at 1550 nm based on the
nonlinear compression of an initial beatsignal in a cavityless
optical-fiber-based device. To generate the initial beat signal
we used an external cavity laser (ECL) diode combined with a
LiNbO3 intensity modulator (IM) driven by a 20-GHz external
rf clock. A phase modulator (PM), driven at 100 MHz, is
also introduced to prevent the detrimental effect of stimulated
Brillouin backscattering in our experiment. The resulting
sinusoidal beat signal is amplified to an optimal average
power (here 0.45 W) by means of an erbium-doped fiber
amplifier (EDFA) before injection into the compression fiber.
The nonlinear compression takes place in a 2.1-km-long

segment of standard single-mode fiber (SMF1) with group
velocity dispersion β2 = −20.4 ps2 km−1, linear losses αdB =
0.3 dB km−1, and nonlinearity γ = 1.2 W−1 km−1.More details
about similar fiber-based frequency combs can be found in
Refs. [21,22]. Measurements of both temporal and spectral
profiles of the frequency comb are reported in Figs. 1(b) and
1(c). The spectrum of such a pulse source can be approximated
as a series of Dirac δfunctions separated by the repetition rate.
The width of the comb envelope depends on the nonlinear
compression of the initial modulated cw and it determines the
number of sidebands and their decreasing amplitude. The input
average power was determined according to the modulation
amplitude of the initial beat signal to optimize the output
spectral bandwidth without significant pump depletion, thus
leading to the typical triangular spectrum on a logarithmic
scale well suited for studies of breathers [23,24].

Next a programmable optical filter (wave shaper) pro-
vides an extremely fine control of the amplitude and phase
characteristics of each line of the frequency comb. The high
resolution (�1 GHz) of this solid-state liquid crystal on silicon
system allows us to select or control individual spectral peaks
of the comb [25]. Relative amplitude and phase differences
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FIG. 1. (Color online) (a) Experimental setup. ECL, external
cavity laser diode; PM, phase modulator; IM, intensity modulator;
EDFA, erbium-doped fiber amplifier; SMF, single-mode fiber; OSA,
optical spectrum analyzer; OSO, optical sampling oscilloscope.
Experimental profiles (black lines) of the frequency comb generator in
both time (b) and frequency (c) domains measured with the help of the
OSO and OSA, respectively. Corresponding numerical simulations
(red circles) based on the NLSE including fiber losses.

of 24 sidebands with the central peak at 1550 nm (i.e., the
background wave) are managed to define the exact initial
conditions to stimulate the second-order periodic breather
solution in the fiber. An EDFA is used to amplify the average
power of the synthesized wave before coupling into another
1.5-km-long segment of standard optical fiber (SMF2) with
group velocity dispersion β2 = −21.1 ps2 km−1, linear losses
αdB = 0.3 dB km−1, and nonlinearity γ = 1.2 W−1 km−1.

The average power of the input wave is fixed so that it
satisfies the values of the general parameters aj using the
fiber properties (see below for rescaling in dimensional units).
At the fiber output, the optical wave profile is characterized
using an ultrafast optical sampling oscilloscope (OSO) with
subpicosecond resolution and a high-dynamic-range optical
spectrum analyzer (OSA) with 2.5 GHz resolution.

To illustrate the principle of operation of the complex
nonlinear wave generator, we have performed numerical simu-
lations based on the NLSE using the initial characterization of
the frequency comb. In Fig. 2, we show the particular case for
which we obtain the maximal amplitude of the second-order
solution at the fiber output. For this the initial condition at the
fiber input has to be equal to ψIN = ψ2(ξ = −LSMF2/LNL,τ ),
with the fiber length LSMF2 = 1.5 km. This requires only a
calculation of spectral (phase and intensity) profile differences
between the initial frequency comb and the corresponding
Fourier transform ψ̃IN; next one can apply the resulting (phase
and intensity) corrections as a pulse shaping mask to the wave
shaper.

The correspondence between theory and experiment can be
retrieved by recalling that dimensional distance z (m) and time
t (s) are related to the previous normalized parameters by z =
ξLNL and t = τ t0, where the characteristic (nonlinear) length
and time scales are LNL = (γP0)−1 and t0 = (|β2|LNL)1/2, re-
spectively. The dimensional field A(z,t) (W1/2) is A = P

1/2
0 ψ ,

P0 being the average power of the input wave. The modulation
frequency ωmod of a single breather is related to the general
governing parameter a by 2a = [1 − (ωmod/ωc)2], where the
critical frequency value of the modulation instability gain is
given by ω2

c = 4γP0/β2 [10]. For simulation and experiment,
the parameters used are the following:P0 = 0.513 W, β2 and
γ are fiber parameters from the SMF2, a1 = 0.2294 (ωmod1 =
40 GHz), and a2 = 0.4323 (ωmod2 = 20 GHz).

Figure 2 shows three stages of the evolution of tempo-
ral intensity, spectral phase, and spectral intensity which
correspond to (a) the initial frequency comb, (b) the syn-
thesized input wave, and (c) the fiber output wave. The
numerical results are compared to the analytic solution of the

FIG. 2. (Color online) Evolution of temporal intensity, (unwrapped) spectral phase, and spectral intensity in our second order breather
generator which correspond to (a) the initial frequency comb, (b) the synthesized input wave using a linear shaping, and (c) the fiber output
wave resulting from the nonlinear shaping. Solid black lines and red circles correspond to NLSE simulations and the theoretical solution given
by Eq. (1), respectively.
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FIG. 3. (Color online) Evolution of the second-order periodic
breather in the temporal domain as a function of propagation distance.
(a) Experiments. (b) Analytic solution given by Eq. (1). Note
that dimensional distance and time are normalized here for better
comparison with theory.

second-order solution given by Eq. (1) for the last two stages:
(b) ψ2(ξ = −LSMF2/LNL,τ ) and (c) ψ2(ξ = 0,τ ), respec-
tively. The excellent agreement between the simulation results
and the theoretical solution is confirmed, but this requires
a careful (phase and amplitude) shaping of each line of
the frequency comb. Note that the spectral phase of the
initial frequency comb is obtained from numerical simulations
corresponding to our frequency comb generator described
above. The agreement between experimental measurements
and simulations shown in Figs. 1(b) and 1(c) ensures a good
estimate of the spectral phase used in Fig. 2(a).

In order to validate our complex NLSE solution generator,
we have experimentally investigated the parameters of nonlin-
ear superposition described above. Inspired by a hydrodynamic
higher-order breather experiment, we have also applied an
original method for reconstructing the wave evolution as a
function of propagation distance, benefiting from the pro-
grammable wave shaper. Indeed, the initial shaped conditions
for the nonlinear propagation are generated repetitively with
different boundary conditions, given from theory, in order to
reach a long propagation distance (without additional fiber
losses). In fact, we consider only short nonlinear propagation
sequences in the SMF2 of about 0.92LNL. First, we begin with
initial conditions fixed at a position 3 km from the maximal
breather amplitude and in the next step we record at the
fiber output. Subsequently, we proceed with a propagation
step equal to 0.1 km (0.0616LNL) to generate new initial
conditions from the theory. Repetition of this recording process
25 times allows the accurate observation of the nonlinear
wave evolution over 2.5 km, which corresponds to the value
1.54LNL, as shown in Fig. 3. Additional propagation could
be investigated by using other adjustments of the initial
frequency comb characteristics (power, bandwidth). As shown
in Fig. 3(a), we clearly observe both growth and decay of
the second-order periodic breather. Specific characteristics are
revealed, such as the time-periodic central second-order wave

FIG. 4. (Color online) Comparison between experiment (black
lines) and theory (red circles) at the distance corresponding to
the maximal amplitude of the second-order solution. (a) Temporal
intensity profile. (b) Corresponding spectral profile. (c) and (d)
Similar comparison between experiment (black lines) and NLSE
simulation taking into account linear fiber losses (blue diamonds).
Note also that both experimental and simulated intensity profiles are
normalized to the input average power P0.

peak due to the merging of the two AB components, but also
the typical X-shape signature in the plane (ξ ,τ ). One can note
that the high-amplitude central peak appears and disappears
over less than half of the nonlinear length. The experimental
results are compared to the analytic solution given by Eq. (1)
in Fig. 3(b). Note also that the experimental intensity profile
is normalized to the input average power P0. The agreement is
remarkable for the entire evolution measured in the plane (ξ ,τ ).

Figure 4 gives an explicit comparison at a distance
corresponding to the maximal amplitude of the second-order
solution. Only small discrepancies with theory appear for
the peak intensity. We underline that only the fiber losses,
which are equal to 0.3 dB km−1, affect the results obtained.
Indeed, the experimental wave profile in the time and fre-
quency domains is indistinguishable from predictions given
by NLSE simulations taking into account the linear losses
[see Figs. 4(c) and 4(d)]. The resulting misfit parameter
between the experimental shape and theory, defined as M =
∫(|ψexpt|2 − |ψ2|2)2dt/ ∫(|ψexpt|2)2 dt , is below 4% [here,
|ψj |2 denotes the normalized shape, i.e., max(|ψj |2) = 1].

To complete our experimental characterization, spectral
measurements have also been performed [see Fig. 4(b)].
Multiple sideband generation is clearly observed when com-
pared to the initial spectrum of the frequency comb shown in
Fig. 1(c). In particular, we have checked that the inverse Fourier
transform of the experimental spectrum is close to the temporal
profile measured, thus indicating that the generated pulses
exhibit a near-flat spectral phase as expected from Fig. 2(c).
The excellent signal-to-noise ratio in our experiments allows
the theoretical predictions to be satisfied over a 40 dB dynamic
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FIG. 5. (Color online) Evolution of the second-order breather in
the frequency domain as a function of propagation distance. (a)
Experiments. (b) Analytic solution given by Eq. (1). Note that
dimensional distance and frequency are normalized here for a better
comparison with theory.

range. Note also that the main frequency modulation of the
breather spectrum is ω2 (ωmod2 =20 GHz), which corresponds
to the temporal period of the central second-order wave peak.
The full experimental evolution of the higher-order breather in
the frequency domain is shown in Fig. 5(a). A strong spectral
broadening occurs when the second-order breather reaches
its maxima of temporal compression and peak intensity. As

in previous studies of single breathers, we confirm that the
temporal compression is associated with an increased spatial
localization of the energy transfer to higher sideband orders
along the propagation distance (this energy transfer occurs
in less than 0.5LNL in Fig. 5). The agreement between the
spectral evolution recorded and the theoretical solution is again
excellent [see Fig. 5(b)].

In conclusion, we have experimentally confirmed that
complex periodic solutions of the NLSE can be generated
in nonlinear fiber optics by using exact initial modulated
waves. The synthesized input conditions rely on a spectral
line-by-line shaping of an optical frequency comb. Moreover
we have used the original approach of short propagation
sequences for reconstructing the full wave evolution, thus
allowing the observation of both the growth and decay of
an ideal second-order breather. This technique overcomes the
destructive cutback method required for direct measurements
of the longitudinal evolution. Experimental measurements of
the synchronized nonlinear superposition of two Akhmediev
breathers are in excellent agreement with the theoretical
solution. The experimental proof of both the existence and
control of such complex waves is of fundamental importance
for testing theories of nonlinear wave dynamics in cross-
disciplinary research.
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