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We study magnetic quantum Hall systems in a half-plane with Dirichlet boundary conditions along the edge. Much work has been done on the analysis of the currents associated with states whose energy is located between Landau levels. These edge states carry a non-zero current that remains well-localized in a neighborhood of the boundary. In this article, we study the behavior of states with energies close to a Landau level. Such states are referred to as bulk states in the physics literature. Since magnetic Schrödinger operator is invariant with respect to translations along the edge, it is a direct integral of operators indexed by a real wave number. We analyse these fiber operators and prove new asymptotics on the band functions and their first derivative as the wave number goes to infinity. We apply these results to prove that the current carried by a bulk state is small compared to the current carried by an edge state. We also prove that the bulk states are small near the edge. CONTENTS P. D. HISLOP, N. POPOFF, AND E. SOCCORSI 4. Characterization of bulk states 18 4.1. Estimates on quasi-momenta associated with bulk components 18 4.2. Asymptotic velocity and proof of Theorem 1.6 18 4.3. Proof of Theorem 1.8 19

Quantum Hall systems consist of independent electrons constrained to open regions Ω in the plane R 2 :" tpx, yq, x, y P Ru subject to a transverse magnetic field Bpx, yq " p0, 0, bpx, yqq " ∇ ˆa, and possibly an electric potential V . The quantum Hamiltonian is Hpa, V q " p´i∇ áq 2 `V acting on a dense domain in L 2 pΩq with self-adjoint boundary conditions. Several articles describe the physics of such systems when Ω is bounded. The analysis distinguishes between edge and bulk behavior for the states associated with the Hamiltonian, see for example [START_REF] Halperin | Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential[END_REF][START_REF] Akkermans | Boundary conditions for bulk and edge states in quantum hall systems[END_REF] and [START_REF] Hornberger | Magnetic edge states[END_REF] for a longer review. This behavior is captured by in two model domains: the plane and a half-plane, modeling the interior or the boundary of such a bounded system, respectively.

In the first case, the plane model is the Landau model Ω " R 2 with constant magnetic field bpx, yq " b. When V " 0, the classical electron moves in a closed circular orbit of radius the size of b ´1{2 . The spectrum of Hpa, 0q is pure point with infinitely degenerate eigenvalues at the Landau levels E n b, for n " 1, 2, . . ., where E n " 2n ´1. In the terminology introduced below, all of the states are bulk states.

In the second case of the half-plane, the restriction of the Landau model to the half-plane x ą 0 (with various boundary conditions along x " 0) has profound consequences for the spectral and transport properties of the system. From the classical viewpoint, the edge at x " 0 reflects the classical orbits forming a new current along the edge. This classical current provides the heuristic insight for quantum edge currents. Edge states for quantum Hall systems restrained to a halfplane R ˚ˆR :" tpx, yq, x ą 0u with Dirichlet, or other boundary conditions, at x " 0 have been analyzed by several authors [START_REF] Bièvre | Propagating edge states for a magnetic hamiltonian[END_REF][START_REF] Fröhlich | On the extended nature of edge states of quantum Hall Hamiltonians[END_REF][START_REF] Hislop | Edge currents for quantum Hall systems, I. one-edge, unbounded geometries[END_REF]. These states ϕ are constructed from wave packets with energy concentration between two consecutive Landau levels. The edge current carried by these states is Opb 1{2 q and it is stable under a class of electric and magnetic perturbations of the Hamiltonian. Furthermore, these states are strongly localized near x " 0.

In contrast to edge states, bulk states are built from wave packets with at least one Landau level in their energy interval ( [START_REF] Bièvre | Propagating edge states for a magnetic hamiltonian[END_REF], [START_REF] Hornberger | Magnetic edge states[END_REF]Section 7]). This article is devoted to the mathematical study of transport and localization properties of bulk states. More specifically, we prove that one may construct bulk states for which the strength of the current is much smaller than for edge states. In addition, we prove that the bulk states are spatially localized away from the edge. Both of these results are consequences of the fact that a bulk state has its energy concentrated in the vicinity of a Landau level. These results are consistent with the classical picture where the orbit of particles localized away from the edge are closed and bounded.

Due to the translational invariance of the system in the y direction, the magnetic Hamiltonian admits a fiber decomposition and H is unitarily equivalent to the multiplication operator by a family of real analytic functions either called dispersion curves or band functions. The presence of an edge at x " 0 results in non constant dispersion curves, each of them being a decreasing function in R. Namely, for all n ě 1, the n-th band function decreases from infinity to E n , revealing that E n is a threshold in the spectrum of H. Moreover, the transport properties of H are determined from the behavior of the velocity operator, defined as the multiplication operator by the family formed by the first derivative of the band functions. It is known that any quantum state with energy concentration between two consecutive Landau levels carries a non trivial current, indeed the velocity operator is lower bounded by some positive constant in the corresponding energy interval I. This condition guarantees in addition the existence of a Mourre inequality for H in I (see [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF]). Such an estimate does not hold anymore if, unlike this, the infimum of the velocity of the band function is zero, a situation occurring when there is at least one Landau level in I. In this article we study the quantum states localized in such an interval and we provide and accurate upper bound for their current when their energy concentrates near a Landau level. Moreover, for all n ě 1, the n-th band function approaches E n as the quasi-momentum goes to infinity, but it does not reach its limits. Hence, none of thresholds of this model is attained, and the set of quasi-momenta associated with energy levels concentrated in the vicinity of any threshold is subsequently unbounded. This has several interesting transport and dynamical consequences, such as the the delocalization of the corresponding quantum states away from the edge x " 0 following from the phase space analysis carried out in this article.

Notice that the usual methods of harmonic approximation, requiring that thresholds be critical points of the dispersion curves, do not apply to this peculiar framework. The same is true for several magnetic models examined in [START_REF] Mantoiu | Some propagation properties of the Iwatsuka model[END_REF][START_REF] Bièvre | Propagating edge states for a magnetic hamiltonian[END_REF][START_REF] Yafaev | On spectral properties of translationally invariant magnetic Schrödinger operators[END_REF][START_REF] Fournais | Superconductivity between hc2 and hc3[END_REF][START_REF] Bruneau | Dirichlet and Neumann eigenvalues for half-plane magnetic Hamiltonians[END_REF] where the band functions tend to finite limits. Nevertheless, there is, to our knowledge, only a very small number of articles available in the mathematical literature, studying magnetic quantum Hamiltonians at energy levels in the vicinity of these non-attained thresholds: we refer to [START_REF] Bruneau | Dirichlet and Neumann eigenvalues for half-plane magnetic Hamiltonians[END_REF] for the same model (with either Dirichlet or Neumann boundary conditions) as the one investigated in the present paper and to [START_REF] Bruneau | On the Laplacian with magnetic field created by a rectilinear current[END_REF] for some 3-dimensional quantum system with variable magnetic field. In these two articles, the number of eigenvalues induced by some suitable electric perturbation, which accumulate below the first threshold of the system, is estimated. The method we provide in this article to study bulk states can be easily adapted to other magnetic systems where band functions tend to finite limits, as Iwatsuka models ([24, 11, 20, 10]) and 3D translationally invariant magnetic field ( [START_REF] Raikov | On the spectrum of a translationally invariant pauli operator[END_REF], [START_REF] Yafaev | On spectral properties of translationally invariant magnetic Schrödinger operators[END_REF]).

Half-plane quantum Hall Hamiltonian.

' Fiber decomposition and band functions. Put Ω :" R ˚ˆR Ă R 2 and let the potential apx, yq :" p0, ´bxq generate a constant magnetic field with strength b ą 0, orthogonal to Ω. We consider the quantum Hamiltonian in Ω with magnetic potential a and Dirichlet boundary conditions at x " 0, i.e. the self-adjoint operator acting on the dense domain C 8 0 pΩq as Hpbq :" p´i∇ ´aq 2 , and then closed in L 2 pΩq. Since V b HpbqV b " bHp1q, where the transform (1.1) pV b ψqpx, yq :" b ´1{4 ψp x b 1{2 , y b 1{2 q, is unitary in L 2 pΩq, we may actually chose b " 1 without limiting the generality of the foregoing. Thus, writing H instead of Hp1q for notational simplicity, we focus our attention on the operator H :" ´B2

x `p´iB y ´xq 2 , in the remaining part of this text.

Let F y be the partial Fourier transform with respect to y, i.e. φpx, kq " pF y ϕqpx, kq :" 1 ? 2π

ż R e ´iky ϕpx, yqdy, ϕ P L 2 pΩq.

Due to the translational invariance of the operator H in the y-direction, we have the direct integral decomposition

(1.2) F y HF ẙ " ż ' R hpkqdk,
where the 1D operator (1.3) hpkq :" ´B2

x `V px, kq, V px, kq :" px ´kq 2 , x ą 0, k P R, acts in L 2 pR `q with Dirichlet boundary conditions at x " 0. The full definition of the operator hpkq, k P R, can be found in Section 2. For all k P R fixed, V p., kq is unbounded as x goes to infinity, so hpkq has a compact resolvent. Let tλ n pkq, n P N ˚u denote the eigenvalues, arranged in non-decreasing order, of hpkq. Since all these eigenvalues λ n pkq with n P N ˚are simple, then each k Þ Ñ λ n pkq is a real analytic function in R. The dispersion curves λ n , n P N ˚, have been extensively studied in several articles (see e.g. [START_REF] Bièvre | Propagating edge states for a magnetic hamiltonian[END_REF]). They are decreasing functions of k P R, obeying (1.4) In light of (1.2) we have for all ϕ P L 2 pΩq:

(1.7) ϕ " ÿ ně1 π n pϕq,
and the Parseval theorem yields

(1.8) }ϕ} 2 L 2 pΩq " ÿ ně1 }ϕ n } 2 L 2 pRq .
For any non-empty interval I Ă R, we denote by P I the spectral projection of H associated with I. We say that the energy of a quantum state ϕ P L 2 pΩq is concentrated (or localized) in I if P I ϕ " ϕ. With reference to (1.2) and (1.5) this condition may be equivalently reformulated as (1.9) @n P N ˚, supppϕ n q Ă λ ´1 n pIq .

Edge versus bulk.

' Current operator and link with the velocity. Let y denote the multiplier by the coordinate y in L 2 pΩq. The time evolution of y is the Heisenberg variable yptq :" e ´itH ye itH , for all t P R. Its time derivative is the velocity and is given by dyptq dt " ´irH, yptqs " ´ie ´itH rH, yse itH . We define the current operator as the self adjoint operator J y :" ´irH, ys " ´iB y ´x, acting on DompHq X Dompyq. The current carried by a state ϕ is xJ y ϕ, ϕy L 2 pΩq .

Well-known computations based on the Feynman-Hellman formula (see also [START_REF] Bièvre | Propagating edge states for a magnetic hamiltonian[END_REF][START_REF] Mantoiu | Some propagation properties of the Iwatsuka model[END_REF][START_REF] Exner | Magnetic strip waveguides[END_REF] Let ϕ P Ran P I be decomposed in accordance with (1.5)-(1.7). Since I is bounded by assumption, then the set tn P N ˚, I X λ n pRq ‰ Hu is finite by Remark 1.1, so the same is true for tn P N ˚, π n pϕq ‰ 0u. As a consequence the sum in the r.h.s. of (1.7) is finite. Notice that this fact is not a generic property of fiberered magnetic Hamiltonians (see e. g. [START_REF] Yafaev | On spectral properties of translationally invariant magnetic Schrödinger operators[END_REF][START_REF] Bruneau | On the Laplacian with magnetic field created by a rectilinear current[END_REF]).

For all n P N ˚put X n,I :" Ran P I X Ran π n , so we have Ran P I " À ně1 X n,I . We shall now describe the transport and localization properties of functions in X n,I . We shall see that, depending on whether E n lies inside or outside I, functions in X n,I may exhibit radically different behaviors.

Let us first recall the results of [START_REF] Bièvre | Propagating edge states for a magnetic hamiltonian[END_REF], corresponding to the case

E n R I. Put c ´pn, Iq :" inf I |λ 1 n λ´1 n | and c `pn, Iq :" sup I |λ 1 n ˝λ´1 n |. Since λ n is a decreasing function, (1.4) yields @k P λ ´1 n pIq, 0 ă c ´pn, Iq ď |λ 1
n pkq| ď c `pn, Iq ă `8. As a consequence, the spectrum of the current operator restricted to X n,I is r´c `pn, Iq, ´c´p n, Iqs by (1.9)-(1.10). This entails that any state ψ P X n,I carries a non-trivial current:

(1.11) @ψ P X n,I , |xJ y ψ, ψy L 2 pΩq | ě c ´pn, Iq}ψ} 2 .
Moreover, all quantum states ψ P X n,I are mainly supported in a strip S of width Op1q along the edge.

Assume that there is no threshold in I, that is tE n , n P N ˚u X I " H, and pick ϕ P Ran P I . Since tn P N ˚, π n pϕq ‰ 0u is finite and π n pϕq P X n,I is mainly supported in S for each n P N ˚, then the same is true for ϕ " ř nPN ˚πn pϕq. This explains why it is referred to ϕ as an edge state. Moreover, based on Remark 1.2, [9][Proposition 2.1] entails upon eventually shortening I, that such a state ϕ carries a non void edge current:

DcpIq ą 0, @ϕ P Ran P I , |xJ y ϕ, ϕy L 2 pΩq | ě cpIq}ϕ} 2 .
Let us now examine the case where E n P I for some n P N ˚. For the sake of clarity we assume in addition that there is no other threshold than E n lying in I, i.e. tm P N ˚, E m P Iu " tnu. It is apparent that the general case where several thresholds are lying in I may be easily deduced from the single threshold situation by superposition principle.

Put I ń :" p´8, E n q and I ǹ " I X pE n , `8q. Since λ n pRq X I ń " H, we have π n ˝PI ń " 0, whence X n,I " X n,I ǹ . Thus it suffices to consider an energy interval I of the form (1.12)

I n pδq :" pE n , E n `δq, δ P p0, 2q.

For further reference we define k n pδq as the unique real number satisfying

(1.13) λ n pk n pδqq " E n `δ.
Its existence and uniqueness is guaranteed by (1.4) and the monotonicity of the continuous func-

tion k Þ Ñ λ n pkq.
For all m ‰ n, it is clear from the above analysis that X m,Inpδq is made entirely of edge states.

However, this is not true for X n,Inpδq . Indeed, since inf Inpδq |λ 1 n ˝λ´1 n | " 0, c ´pn, I n pδqq " 0 and the bottom of the spectrum of the current operator restricted to X n,Inpδq is zero, so that (1.11) does not hold anymore for all ψ P X n,Inpδq . This indicates the presence of quantum states in X n,Inpδq carrying an arbitrarily small edge current. It turns out that such a state has part of its support localized away from the edge (a fact that will be rigorously established in this paper) and it is called a bulk state in physical literature. We thus refer to X n,Inpδq as a bulk space and subsequently write X b n,δ instead of X n,Inpδq . Notice that a definition of bulk states based on another approach is proposed in [START_REF] Bièvre | Propagating edge states for a magnetic hamiltonian[END_REF]: De Bièvre and Pulé say that a state ϕ is a bulk state associated with the non-rescaled Hamiltonian Hpbq when π n pϕq " ϕ and ϕ n pkq is supported in an interval of the form pb γ , `8q whith γ ą 1{2. After stating our results we will come back in Section 1.4 to the non-rescaled Hamiltonian and we will show that our approach is more general than the one of [START_REF] Bièvre | Propagating edge states for a magnetic hamiltonian[END_REF] and cover their results.

Remark 1.3. It is worth to mention that there are actual edge states lying in X b n,δ . With reference to (1.5)-(1.7), this can be seen upon noticing that any ϕ " π n pϕq P X b n,δ such that ϕ n is compactly supported in pk n pδq, `8q, satisfies an inequality similar to (1.11).

Let us now stress that any ϕ P X b n,δ expressed as ' Main goal. In view of exhibiting pure bulk behavior, we investigate X n,δ as δ goes to 0. We firstly aim to compute a suitable upper bound on the current carried by quantum states lying in X n,δ , as δ Ó 0. Secondly we characterize the region in the half-plane where such states are supported.

(
Since k n pδq tends to 8 as δ Ó 0 from (1.4), it is apparent that the analyis of (1.16) requires accurate asymptotic expansions of λ n pkq and λ 1 n pkq as k goes to infinity. Actually, it is well known from [START_REF] Bièvre | Propagating edge states for a magnetic hamiltonian[END_REF] or [12, Section 2] that each λ n , for n P N ˚, decreases superexponentially fast to E n as k goes to `8:

@α P p0, 1q, Dpk n,α , C n,α q P R ˚ˆR ˚, k ě k n,α ùñ |λ n pkq ´En | ď C n,α e ´αk 2 {2 .
A similar upper bound on |λ 1 n | can be found in [START_REF] Bièvre | Propagating edge states for a magnetic hamiltonian[END_REF], but it turns out that these estimates are not as sharp as the one required by the analysis developped in this paper. Notice that the asymptotics of λ n pkq as k tends to infnity was already investigated in [START_REF] Popoff | Sur l'opérateur de Schrödinger magnétique dans un domaine diédral[END_REF][Chapter 1] and in the unpublished work [START_REF] Ivrii | Microlocal Analysis, Sharp Spectral Asymptotics and Applications[END_REF] (the asympotics of the first derivative is derived as well in the last reference). All the above mentioned results are covered by the one obtained in this article. Notice that the asymptotics of λ 1 n pkq as k tends to infinity is obtained from those calculated for the eigenfunctions associated with λ n pkq as k Ñ `8. Moreover these asymptotics on the eigenfunctions are useful when describing the geometrical localization of bulk states when δ Ó 0.

1.3. Main results and outline. Our first result is a precise asymptotics of the band functions and its derivative when k Ñ `8: Theorem 1.4. For every n P N ˚there is a constant γ n ą 0 such that the two following estimates i)

λ n pkq " E n `22n´1 γ 2 n k 2n´1 e ´k2 p1 `Opk ´2qq, ii) λ 1 n pkq " ´22n γ 2 n k 2n e ´k2 p1 `Opk ´2qq,
hold as k goes to `8.

Remark 1.5. Notice that the second part of Theorem 1.4 may actually be recovered upon formally differentiating the first part with respect to k.

The method used in the derivation of Theorem 1.4 is inspired by the method of quasi-modes used in [4, Section 5]. Moreover, as detailed in Subsection 2.5, the computation of the asymptotics of λ n pkq is closely related to the rather tricky problem of understanding the eigenvalues of the Schrödinger operator with double wells ´h2 B 2 t `p|t| ´1q 2 in the semi-classical limit h Ó 0. Let us now characterize bulk states with energy concentration near the Landau level E n , in terms of the distance δ ą 0 of their energy to E n . We recall that X b n,δ denotes the linear space of quantum states with energy in the interval pE n , E n `δq and all Fourier coefficients uniformly zero, except for the n-th one.

Firstly we give the smallness of the current carried by bulk states when δ goes to 0: Theorem 1.6. For every n P N ˚we may find two constants µ n ą 0 and δ n ą 0, both of them depending only on n, such that for each δ P p0, δ n q and all ϕ P X b n,δ , we have

(1.17) |xJ y ϕ, ϕy| ď ˜2δ a | log δ| `µn δ log | log δ| a | log δ| ¸}ϕ} 2 L 2 pΩq .
Remark 1.7. Estimate (1.17) is accurate in the sense that for all 0 ă δ 1 ă δ 2 ă 2 and any interval I n :" pE n `δ1 , E n `δ2 q avoiding E n , we find by arguing in the exact same way as in the derivation of Theorem 1.6 that @ϕ P X n,In , c n pδ 1 q}ϕ} 2 L 2 pΩq ď |xJ y ϕ, ϕy| ď c n pδ 2 q}ϕ} 2 L 2 pΩq , provided δ 1 and δ 2 are sufficiently small. Here c n pδ j q, j " 1, 2, stands for the constant obtained by substituting δ j for δ in the prefactor of }ϕ} 2 L 2 pΩq in the r.h.s. of (1.17).

Finally, we discuss the localization of the bulk states in X b n,δ . We prove that when δ goes to 0, there are small in a strip of width a | log δ|, showing that thay are not localized near the boundary.

Theorem 1.8. Fix n P N ˚. Then for any ǫ P p0, 1q there exists δ n pǫq ą 0, such that for all δ P p0, δ n pǫqq, the estimate

(1.18) ż p1´ǫq ? | log δ| 0 }ϕpx, ¨q} 2 L 2 pRq dx ď C n ǫ 2n´1 δ ǫ 2 | log δ| 2n´1 2 p1´ǫ 2 q }ϕ} 2 L 2 pΩq
holds for every ϕ P X b n,δ and some positive constant C n depending only on n.

Let ϕptq :" e ´itHϕ , for t P R, be the time evolution of ϕ P X b n,δ . Since ϕptq P X b n,δ for all t P R it is apparent that Theorems 1.6 and 1.8 remain valid upon substituting ϕptq for ϕ in (1.17)-(1.18). As a consequence, the localization property and the upper bound on the current carried by a state lying in X b n,δ survive for all times.

1.4. Influence of the magnetic field strength. All our results are stated for the rescaled Hamiltonian H with unit magnetic field strength b " 1. We discuss the corresponding results for the magnetic Hamiltonian Hpbq associated with a constant magnetic field of strength b ą 0. Recall that V b is the unitary transformation defined in (1.1) implementing the b 1{2 -scaling that allows us to normalized Hpbq. Let J y pbq :" ´iB y ´bx be the non-rescaled current operator, then we have

V b J y pbqV b " b 1{2 J y and @ϕ P DompJ y pbqq, xJ y pbqϕ, ϕy " b 1{2 xJ y V b ϕ, V b ϕy .
Moreover ϕ P X n,bInpδq if and only if V b ϕ P X n,δ , therefore applying Theorem 1.6 we get

@ϕ P X n,bInpδq , |xJ y pbqϕ, ϕy| ď b 1{2 ˜2δ a | log δ| `µn δ log | log δ| a | log δ| ¸}ϕ} 2 L 2 pΩq ,
as soon as δ is small enough. Looking at quantum Hall systems with strong magnetic field, it is then natural to consider b large and δ " δpbq going to 0 as b goes to `8 and one may use our result to describe the states of such a system. It is now natural to provide another possible definition for edge and bulk states associated with the non-rescaled Hamiltonian Hpbq, in relation with the magnetic field strength: given an interval I Ă R, a state ϕ P X n,I is an edge state if its current is of size b 1{2 , and it is a bulk state if its current is opb 1{2 q as b gets large.

We now compare our results with the analysis of De Bièvre and Pulé ( [START_REF] Bièvre | Propagating edge states for a magnetic hamiltonian[END_REF]). They define a bulk state ϕ associated with the magnetic Hamiltonian Hpbq as a state satisfying π n pϕq " ϕ and such that ϕ n pkq is supported in an interval of the form pb γ , `8q with γ ą 1{2. Put γ " 1{2 `ǫ, such a state is localized in energy in the interval pbE n , bλ n pb ǫ qq. Using Theorem 1.4, we get when b gets large λ n pb ǫ q ´En " e ´2b 2ǫ . Therefore their approach is covered by the one presented in this article by setting δpbq :" e ´2b 2ǫ and letting b going to `8. For this particular choice of δpbq, Theorem 1.6 provides a better estimate than in [START_REF] Bièvre | Propagating edge states for a magnetic hamiltonian[END_REF][Corollary 2.1]. Moreover our approach is more general, in the sense that we do not restrict our analysis by a particular choice of δ.

Similarly, Theorem 1.8 implies that any states localized in energy in the interval pbE n , bE n `δbq is small in a strip of width b ´1{2 when δ becomes small, with a control given by the r.h.s. of (1.18).

ASYMPTOTICS OF THE BAND FUNCTIONS

In this section, we prove the first part of Theorem 1.4 on the asymptotic expansion of the band functions λ n pkq as k Ñ 8. The proof consists of 4 steps. We first recall results on the harmonic oscillator and its eigenfunctions. We next construct approximate eigenfunctions f n px, kq of hpkq so that hpkqf n px, kq " E n f n px, kq `Rn px, kq and estimate the norm }R n p¨, kq} L 2 pR ˚q. We prove that the energy η n pkq :" xhpkqf n p¨, kq, f n p¨, kqy of the approximate eigenfunction f n is a good approximation to the Landau level E n . Finally, we use the Kato-Temple inequality ot obtain the result.

Here are some notations and definitions. Let us define the quadratic form (2.1) q k rus :"

ż R `p|u
1 pxq| 2 `px ´kq 2 |upxq| 2 qdx, Dompq k q :" tu P H 1 0 pR ˚q, xu P L 2 pR ˚qu.

Here H 1 0 pR ˚q is as usual the closure of C 8 0 pR ˚q in the topology of the first order Sobolev space H 1 pR ˚q. The operator hpkq (expressed in (1.3)) is the Friedrichs extansion of the above quadratic form and it its domain is (2.2) Domphpkqq :" tu P H 1 0 pR ˚q X H 2 pR ˚q, x 2 u P L 2 pR ˚qu .

2.1.

Getting started: recalling the harmonic oscillator. The harmonic oscillator

h :" ´B2 x `x2 , x P R,
has a pure point spectrum made of simple eigenvalues tE n :" 2n ´1, n P N ˚u, the Landau levels. The associated L 2 pRq-normalized eigenfunctions are the Hermite functions (2.3) Ψ n pxq :" P n pxqe ´x2 {2 , x P R, n P N ẘhere P n stands for the n-th Hermite polynomial obeying degpP n q " n ´1. These functions satisfy Ψ n p´xq " p´1q n´1 Ψ n pxq. The explicit expression (2.3) results in the two following asymptotic formulae (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] or [START_REF] Sibuya | Global theory of a second order linear ordinary differential equation with a polynomial coefficient[END_REF])

(2.4) Ψ n pxq " xÑ´8 γ n 2 n´1 x n´1 e ´x2 {2 `1 `Opx ´2q ȃnd (2.5) Ψ 1 n pxq " xÑ´8 γ n 2 n´1 x n e ´x2 {2 `´1 `Opx ´2q ˘,
where γ n :" p2 n´1 pn ´1q! ? πq ´1{2 is a normalization constant. Next, put

(2.6) Φ n pxq :" Ψ n pxq ż x 0 |Ψ n ptq| ´2dt, x P R, n P N ˚,
so tΨ n , Φ n u forms a basis for the space of solutions to the ODE hf " E n f . Then we get (2.7)

Φ n pxq " xÑ´8 pγ n 2 n q ´1 e x 2 {2 x n `1 `Opx ´2q ȃnd (2.8) Φ 1 n pxq " xÑ´8 pγ n 2 n q ´1 e x 2 {2
x n´1 `1 `Opx ´2q ˘, through elementary computations based on (2.4)-(2.6).

2.2.

Building quasi-modes for hpkq in the large k regime. Following the idea of [START_REF] Bolley | An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material[END_REF] and [START_REF] Bolley | Modélisation du champ de retard à la condensation d'un supraconducteur par un problème de bifurcation[END_REF] we now build quasi-modes for the operator hpkq when the parameter k is taken sufficiently large. We look at vectors of the form (2.9) f n px, kq " αpkqΨ n px ´kq `βpkqχpx, kqΦ n px ´kq, x ą 0, k P R, where Ψ n and Φ n are respectively defined by (2.3) and (2.6), and α, β are two functions of k we shall make precise below. Bearing in mind that Φ n p¨, kq is unbounded on R ˚, the cut-off function χ is chosen in such a way that f p¨, kq P L 2 pR ˚q. Namely, we pick a non-increasing function χ 0 P C 8 pR `, r0, 1sq such that χ 0 pxq " 1 for x P r0, 1 2 s and χpxq " 0 for x P r Let us now prove that the interaction term ´βpkqΦ n p0, kqf 1 n p0, kq is the main contribution to the r.h.s. of (2.15). Applying (2.7) and (2.8), we get

}Φ n p¨´kq} L 8 p k 2 , 3k 4 q " Opk ´ne k 2 {8 q and }Φ 1 n p¨´kq} L 8 p k 2 , 3k
4 q " Opk ´n`1 e k 2 {8 q, which, together with (2.10), (2.16) 4 q. We are now in position to apply Kato-Temple's inequality (see [START_REF] Harrell | Generalizations of Temple's inequality[END_REF]Theorem 2]), which can be stated as follows.

Lemma 2.1. Let A be a self-adjoint operator acting on a Hilbert space H. We note a the quadratic form associated with A. Let ψ P DompAq be H-normalized and put η " arψs and ǫ " }pA ´ηqψ} H . Let α ă β and λ P R be such that SpAq X pα, βq " tλu. Assume that ǫ 2 ă pβ ´ηqpη ´αq. Then we have

η ´ǫ2 β ´η ă λ ă η `ǫ2 η ´α .
Fix N P N ˚. Since lim kÑ`8 λ n pkq " E n for all n P N ˚, we may choose k N ą 0 so large that λ n pkq P pE n , E n `1s for all k ě k N and n P r|1, N `1|s. 

2.5.

Relation to a semiclassical Schrödinger operator and to the Iwatsuka model. In this section we exhibit the link between the asymptotics of the eigenpairs of hpkq for large k and the semi-classical limit of a Schrödinger operator on R with a symmetric double-wells potential.

Let us introduce the operator Hpkq :" ´B2

x `p|x| ´kq 2 acting on L 2 pRq and denote by µ n pkq its n-th eigenvalue. The operator Hpkq is the fiber of the magnetic Laplacian associated with the Iwatsuka magnetic field Bpx, yq " signpxq defined on R 2 . This Hamiltonian has been studied in [START_REF] Reijniers | Snake orbits and related magnetic edge states[END_REF][START_REF] Dombrowski | Edge currents and eigenvalue estimates for magnetic barrier Schrödinger operators[END_REF]. The eigenfunction associated to µ n pkq are even when n is odd and odd when n is even, therefore the restriction to R `of any eigenfunction associated with µ 2n pkq is an eigenfunction for the operator hpkq associated with λ n pkq and we have µ 2n pkq " λ n pkq. In the same way we prove that µ 2n´1 pkq is the n-th eigenvalue of the operator h N pkq :" ´B2

x `px ´kq 2 acting on L 2 pR `q with a Neumann boundary condition.

We refer to [25, Proposition 1.1] or [START_REF] Dombrowski | Edge currents and eigenvalue estimates for magnetic barrier Schrödinger operators[END_REF] for more details on the link between Hpkq, hpkq and the operator h N phq.

Using the scaling t " kx we get that Hpkq is unitary equivalent to the operator

h ´1 `´h 2 B 2
t `p|t| ´1q 2 ˘, t P R where we have set h " k ´2. Therefore when k gets large we reduce the problem to the understanding of the eigenvalues of the Schrödinger operator ´h2 B 2 t `p|t| ´1q 2 in the semi-classical limit h Ó 0. The asymptotic expansion of the eigenvalues of Schrödinger operators is well-known when the potential has a unique non-degenerated minimum and uses the "harmonic approximation", see for example [START_REF] Simon | Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions[END_REF]. However in our case the potential p|t| ´1q 2 is even and have a double-wells and one may expect tunneling effect between the two wells t " 1 and t " ´1.

More precisely the eigenvalues clusters into pairs exponentially close to the eigenvalue associated to the one-wells problem that are the Landau levels (see [START_REF] Harrell | Double wells[END_REF], [START_REF] Combes | Krein's formula and one-dimensional multiple-well[END_REF] or [START_REF] Helffer | Multiple wells in the semiclassical limit[END_REF]).

The asymptotic behavior of the gap between eigenvalues in such a problem is given in [START_REF] Helffer | Multiple wells in the semiclassical limit[END_REF] under the hypothesis that the potential is C 8 pRq. Helffer and Sjöstrand use a BKW expansion of the eigenfunctions far from the wells. The key point is a pointwise estimate of an interaction term involving among others the high order derivatives of the potential at 0. Here it is not possible to use their result since the potential p|t| ´1q 2 is not C 1 at 0. Our proof uses the fact that the potential is piecewise analytic and the knowledge of the solutions of the ODE associated to the eigenvalue problem.

Note that mimicking the above proof it is possible to get the asymptotic expansion of the eigenvalues of the operator h N pkq for large k as in [START_REF] Popoff | Sur l'opérateur de Schrödinger magnétique dans un domaine diédral[END_REF]Section 1.4].

ASYMPTOTICS OF THE DERIVATIVE OF THE BAND FUNCTIONS

In this section, we prove the asymptotic expansion of λ 1 n pkq, the second part of Theorem 1.4.

3.1. Hadamard formula. We turn now to establishing Part ii) of Theorem 1.4. To this purpose we introduce a sequence tu n p¨, kq, n P N ˚u of L 2 pR ˚q-normalized eigenfunctions of hpkq, verifying " ´u2 n px, kq `px ´kq 2 u n px, kq " λ n pkqu n px, kq, x ą 0 u n p0, kq " 0.

Since the operator hpkq is self-adjoint with real coefficients we choose all the u n p¨, kq to be real. Due to the simplicity of λ n pkq, each u n p., kq is thus uniquely defined, up to the multiplicative constant ˘1. We note Π n pkq : ϕ Þ Ñ xϕp¨q, u n p¨, kqy L 2 pR ˚qu n p¨, kq the spectral projection of hpkq associated with λ n pkq and call F n pkq the eigenspace spanned by u n p¨, kq.

The proof of the asymptotic expansion of λ 1 n stated in Theorem 1.4 relies on the Hadamard formula (see [8, Section VI] or [START_REF] Joseph | Parameter and domain dependence of eigenvalues of elliptic partial differential equations[END_REF]):

(3.1) λ 1 n pkq " ´u1 n p0, kq 2 , k P R, and thus requires that u 1 n p¨, kq be appropriately estimated at x " 0. We proceed as in the derivation of [18, Proposition 2.5].

3.2.

H 1 -estimate of the eigenfunctions. The method boils down to the fact that the operator hpkq ´λn pkq is a boundedly invertible on F n pkq K . Hence phpkq ´λn pkqq ´1 is a bounded isomorphism from F n pkq K onto Domphpkqq X F n pkq K and there exists k n ą 0 such that we have }phpkq ´λn pkqq ´1} LpFnpkq K q ď 1, k ě k n , in virtue of (2.24). From this and the identity phpkq ´λn pkqq pf n p¨, kq ´Πn pkqf n p¨, kqq " r n p¨, kq `pE n ´λn pkqqf n p¨, kq, arising from (2.14) In terms of the quadratic form q k defined in (2.1), it follows that (3.8) q k ru n p¨, kq ´fn p¨, kqs " Opk 2n´1 e ´7k 2 4 q.

The proof of the second part of the proposition follows from (2.19), the first part of Theorem 1.4, (3.3), (3.5) and (3.7).

Next, we pick k n ą 0 so large that η n pkq " q k rf n p¨, kqs ď E n `1 for all k ě k n , according to (2.22), so we have

(3.15) }g n p¨, kq} L 2 pR ˚q ď q k rf n p¨, kqs ď E n `1, k ě k n .
Bearing in mind that λ n pkq ď λ n p0q ď 4n ´1 for k ě 0, we deduce from (3. 

CHARACTERIZATION OF BULK STATES

This section is devoted to characterizing functions in the bulk space X b n,δ as δ Ó 0. This is achieved by means of the asymptotic analysis carried out in the previous sections.

Remember from Subsection 1.1 that ϕ P X b n,δ decomposes as in (1.14), that k n pδq is defined by (1.13), that ϕ n P L 2 pk n ppδq, `8qq and that the current carried by ϕ is given by (1.16). The asymptotic behavior of the quasi-momentum k n pδq when δ Ó 0 is derived in Section 4.1. Section 4.2 and 4.3 are devoted to the proof of Theorems 1.6 and 1.8.

4.1.

Estimates on quasi-momenta associated with bulk components. We already know that k n pδq goes to `8 as δ Ó 0. More precisely: Lemma 4.1. We have the following asymptotics as δ Ó 0:

(4.1) k n pδq " a | log δ| `2n ´1 4 ˜log | log δ| a | log δ| ¸`o ˜log | log δ| a | log δ| ¸.
Proof. Since lim δÓ0 k n pδq " `8 by (1.4), we deduce from the first part of Theorem 1.4 that

γ 2 n 2 2n´1 k n pδq 2n´1 e ´knpδq 2 `1 `Opk n pδq ´2q ˘" δ.
Set r γ n :" logpγ n 2 2n´1 q. Taking the logarithm of both sides of this identity we find (4.2) r γ n `p2n ´1q logpk n pδqq ´kn pδq Notice that the first-order term in the above asymptotic expansion of k n pδq as δ Ó 0, is independent of n.

4.2.

Asymptotic velocity and proof of Theorem 1.6. In light of (4.1) we may estimate the asymptotics of λ 1 n pkpδqq as δ Ó 0. We combine both parts of Theorem 1.4, getting, λ 1 n pkq λ n pkq ´En " ´2k `1 `Opk ´2q ˘ and then substitute k n pδq (resp., the r.h.s. of (4.1)) for k in the lhs (resp., the r.h.s.) of this identity.

Bearing in mind that λ n pk n pδqq " E n `δ, we obtain

λ 1 n pk n pδqq " ´2δ a | log δ| ´2n ´1 2 ˜δ log | log δ| a | log δ| ¸`o ˜δ log | log δ| a | log δ| ¸.
Similarly to (4.1) it turns out that the first order term in this expansion does not depend on the energy level n.

Let us now upper bound p´λ 1 n pkqq in the interval pk n pδq, `8q with the following: Lemma 4.2. Let n P N ˚. Then there are two constants δ n ą 0 and µ n ą 0, such that the estimate

0 ď ´λ1 n pkq ď 2δ a | log δ| `µn δ log | log δ| a | log δ| ,
holds for all δ P p0, δ n q and all k ě k n pδq.

Proof. From the second part of Theorem 1.4, we may find two constants kn ą 0 and c n ą 0, depending only on n, such that we have

(4.4) @k ě kn , 0 ď ´λ1 n pkq ď 2 2n γ 2 n k 2n e ´k2 ´1 `cn k 2 ¯.
With reference to (4.3), we choose δ n ą 0 so small that k n pδ n q ě kn . We get (4.5) @δ P p0, δ n q, @k ě k n pδq, 0 ď ´λ1

n pkq ď 2 2n γ 2 n k 2n e ´k2 ´1 `cn k 2
¯, from (4.4). Further, k Þ Ñ 2 2n γ 2 n k 2n e ´k2 p1 `cn {k 2 q being a decreasing function on r ? n, `8q, it follows from (4.5), upon eventually shortening δ n so that k n pδ n q ě ? n, that (4.6) @δ P p0, δ n q, @k ě k n pδq, 0 ď ´λ1 n pkq ď 2 2n γ 2 n k n pδq 2n e ´knpδq 2

ˆ1

`cn k n pδq 2

˙.

Due to the first part of Theorem 1.4 the r.h.s. of (4.6) is upper bounded by 2k n pδqpλ n pk n pδqq Én qp1 `c n {k n pδq 2 q for some constant cn ą 0 depending only on n. The desired result follows from this, (4.1) and the identity λ n pk n pδqq ´En " δ. Here and henceforth, C n is some positive constant, depending only on n. In virtue of (4.7) and (4.9), we are thus left with the task of estimating F n pδq from above. To do that we use the explicit form (2.9) of the quasi-mode f n , getting Bearing in mind that k n pδq tends to `8 as δ Ó 0, we treat each of the two terms in the r.h.s. of (4.10) separately.

Now

Performing the change of variable x " x ´k in the r.h.s. of (4.11) and bearing in mind that k n pδq tends to `8 as δ Ó 0, we deduce from (2.11) 
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 8282 (4.10) F n pδq ď 2pψ n pδq `φn pδqq, with ψ n pδq :"ż |ϕ n pkq| 2 }Ψ n p¨´kq} 2 L 2 p0,anpδqq dk (4.11) φ n pδq :" ż |ϕ n pkq| 2 }Φ n p¨´kq} 2L 2 p0,anpδqq dk. (4.12)

  As a consequence the spectrum SpHq of H is SpHq " Y ně1 λ n pRq " r1, `8q. The Landau levels E n , n P N ˚, are thresholds in the spectrum of H, and they play a major role in the analysis carried out in the remaining part of this paper.' Fourier decomposition. For n P N ˚and k P R, we consider a normalized eigenfunction u n p¨, kq of hpkq associated with λ n pkq. It is well known that u n p¨, kq depends analytically on k. iyk ϕ n pkqu n px, kqdk, px, yq P Ω.

	and denote by π n the orthogonal projection associated with the n-th harmonic:
	(1.6)	π n pϕqpx, yq :"	2π ? 1	ż
		lim kÑ´8	λ n pkq " `8 and lim kÑ`8	λ n pkq " E n ,
	for all n P N ˚, where E n :" 2n ´1 is the n-th Landau level.
	Remark 1.1. For further reference, we notice from (1.4) the following useful property:
				lim nÑ`8	inf kPR	λ n pkq " `8.
	We define the n-th generalized Fourier coefficient of ϕ P L 2 pΩq by (1.5) ϕ n pkq :" xF y ϕp¨, kq, u n p¨, kqy L 2 pR `q " ż 1 ? 2π R `φpx, kqu n px, kqdx,

R

e

  L 2 pΩq, xJ y π n pϕq, π n pϕqy L 2 pΩq " Edge states and bulk states. For any bounded subinterval I Ă SpHq, the spectrum of H, it is physically relevant to estimate the current carried by a state with energy concentration in I and to describe the support of such a state.

	'					
							for sim-
	ilar formulas involving the Iwatsuka models) yield	
	(1.10)	@ϕ P ż	R	λ 1 n pkq|ϕ n pkq| 2 dk,
	linking the velocity operator, defined as the multiplication operator in ily of functions tλ 1 n , n P N ˚u, to the current operator.	À	nPN	˚L2 pRq by the fam-
	Remark 1.2. It is easy to see that (1.10) extends to any quantum state ϕ P L 2 pΩq satisfying the non-overlapping condition
		@m ‰ n, supppϕ m q X supppϕ n q " H,
	as	xJ y ϕ, ϕy L 2 pΩq "	ÿ ně1	ż	R	λ 1 n pkq|ϕ n pkq| 2 dk.

  To estimate the error of approximation of E n by η n pkq, we introduce(2.14) r n px, kq :" phpkq ´En qf n px, kq, x ą 0, in such a way that η n pkq´E n " xr n p¨, kq, f n p¨, kqy L 2 pR ˚q. Integrating by parts twice successively in this integral and remembering (2.9), we find out that η Further, upon combining (2.9) and (2.14) with the commutator formula rhpkq, χs " ´χ2 ´2χ 1 B x , we get that (2.16) r n px, kq " ´βpkqχ 2 px, kqΦ n px ´kq ´2βpkqχ 1 px, kqΦ 1 n px ´kq, x ą 0, showing that r n p¨, kq is supported in supppχ 1 p¨, kqq, ie }χ 1 p¨, kq} L 8 pRq " Op1{kq and }χ 2 p¨, kq} L 8 pRq " Op1{k 2 q,

	(2.17)	supppr n p¨, kqq Ă r k 2 , 3k 4 s.	
	Putting (2.7), (2.8), (2.12) and (2.16) together, and taking into account that
	(2.18)			
	we obtain for further reference that and put χpx, kq :" χ 0 (2.19) }r n p¨, kq} 2 L 2 pR ˚q " Opk 2n´1 e ´x k ¯, x ą 0, k P R. ´7k 2 4 q.	3 4 , `8q,
	(2.12)	βpkq " 2 2n´1 γ 2 n k 2n´1 e ´k2	`1 `Opk ´2q	˘,
	according to (2.10).			

We impose Dirichlet boundary condition at x " 0 on f n p¨, kq, getting βpkq " ´αpkq Ψ n p´kq Φ n p´kq , since Φ n p´kq is non-zero for k sufficiently large, by (2.7). From this, (2.4) and (2.7), it then follows that (2.10) βpkq " 2 2n´1 γ 2 n αpkqk 2n´1 e ´k2 `1 `Opk ´2q ˘, which entails }f n p¨, kq} 2 L 2 pR ˚q " αpkq 2 ´1 `Opk 2n´1 e ´k2 q ¯, through direct computation. As a consequence we have (2.11) αpkq " 1 `Opk 2n´1 e ´k2 q by compliance with the normalization condition }f n p¨, kq} L 2 pR ˚q " 1, hence 2.3. Energy estimation. Bearing in mind that f n p0, kq " 0 and f n px, kq " αpkqΨ n px ´kq for x ě 3k{4, it is clear from (2.2) that f n p¨, kq P Domphpkqq, so the energy carried by the state f n p¨, kq is well defined by (2.13) η n pkq :" xhpkqf n p¨, kq, f n p¨, kqy L 2 pR ˚q. n pkq ´En " βpkq @ phpkq ´En qpχp¨, kqΦ n p¨´kqq, f n p¨, kq D L 2 pR ˚q (2.15) " ´βpkqΦ n p´kqf 1 n p0, kq `βpkq @ χp¨, kqΦ n p¨´kq, r n p¨, kq D L 2 pR ˚q.

  and (2.18), yields }r n p¨, kq} L 8 pR ˚q " Opk n´1 e Asymptotic expansion of λ n pkq. Let us first introduce the error term ǫ n pkq :" }phpkq ´ηn pkqqf n p¨, kq} L 2 pR ˚q, and combine the estimate ǫ n pkq ď }r n p¨, kq} L 2 pR `q `|η n pkq´E n | arising from(2.

	this, (2.12) and the estimate	´7k 2 8 q. From
	ˇˇxχp¨, kqφ ´7k 2 4 q. Hence we have
	(2.20) by (2.15). In order to evaluate the remaining term ´βpkqf 1 η n pkq ´En " ´βpkqf 1 n p0, kqΦ n p´kq `Opk 2n´1 e ´7k 2 4 q, n p0, kqΦ n p´kq, we take advantage of the fact that χ k p0q " 1 and χ 1 k p0q " 0, and derive from (2.5) and (2.8)-(2.9) that (2.21) f 1 n p0, kq " αpkqΨ 1 n p´kq `βpkqΦ 1 n p´kq " p´1q n´1 2 n γ n k n e ˘. ´k2 {2 `1 `Opk ´2q Therefore we have ´βpkqf 1 n p0, kqΦ n p´kq " 2 2n´1 γ 2 n k 2n´1 e ´k2 p1 `Opk ´2qq by (2.7) and (2.12), so we end up getting (2.22) η n pkq ´En " 2 2n´1 γ 2 n k 2n´1 e ´k2 ˘, `1 `Opk ´2q with the aid of (2.20).
	2.4. 14), with (2.19)
	and (2.22). We obtain that	
	(2.23)	ǫ n pkq 2 " Opk 2n´1 e ´7k

n p¨´kq, r n p¨, kqy L 2 pR ˚qˇď k 4 }r n p¨, kq} L 8 pR ˚q}Φ n p¨´kq} L 8 p k 2 , 3k 4 q ,

then it follows that βpkqxχp¨, kqφ n p¨´kq, r n p¨, kqy L 2 pR ˚q " Opk 2n´1 e

  This entails (2.24) |λ n pkq ´λp pkq| ě 1, k ě k N , p ‰ n, n P r|1, N|s. Moreover, upon eventually enlarging k N , we have (2.25) |η n pkq ´pE n ˘1q| ě 1 2 , k ě k N , n P r|1, N|s, in virtue of (2.22). Thus, applying Lemma 2.1 with η " η n pkq, α " E n ´1, β " E n `1 and ǫ " ǫ n pkq for each n P r|1, N|s and k ě k N , there is necessarily one eigenvalue of hpkq belonging to the interval pη n pkq ´2ǫ 2 n pkq, η n pkq `2ǫ 2 n pkqq, according to (2.25). Since the only eigenvalue of hpkq, k ě k N , lying in pE n , E n `1s is λ n pkq, we obtain that (2.26) |λ n pkq ´ηn pkq| ď 2ǫ 2 n pkq, k ě k N , n P r|1, N|s. Putting this together with (2.22) and (2.23) we end up getting the first part of Theorem 1.4.

  , it then follows that (3.2) }f n p¨, kq ´Πn pkqf n p¨, kq} L 2 pR ˚q ď }r n p¨, kq} L 2 pR ˚q `|E n ´λn pkq|, k ě k n . we have q k rf n p¨, kq ´Πn pkqf n p¨, kqs " pq k ´λn pkqqrf n p¨, kq ´Πn pkqf n p¨, kqs `λn pkq}f n p¨, kq ´Πn pkqf n p¨, kq} 2 L 2 pR ˚q " pq k ´λn pkqqrf n p¨, kqs `λn pkq}f n p¨, kq ´Πn pkqf n p¨, kq} 2 L 2 pR ˚q " η n pkq ´λn pkq `λn pkq}f n p¨, kq ´Πn pkqf n p¨, kq} 2 rf n p¨, kq ´Πn f n p¨, kqs 1{2 " O `ǫn pkq `}r n p¨, kq} L 2 pR ˚q `|E n ´λn pkq| ˘, according to (2.26) and (3.2). Since Domphpkqq (endowed with the natural norm q k r¨s 1{2 ) is continuously embedded in H 1 pR ˚q, we may substitute }f n p¨, kq ´Πn pkqf n p¨, kq} H 1 pR ˚q for q k rf n p¨, kq ´Πn f n p¨, kqs 1{2 in the lhs of (3.3). Thus we obtain (3.4) }f n p¨, kq ´Πn pkqf n p¨, kq} H 1 pR ˚q " Opk n´1 2 e |1 ´}Π n pkqf n p¨, kq} L 2 pR ˚q| ď }f n p¨, kq ´Πn pkqf n p¨, kq} L 2 pR ˚q " Opk n´1 2 e Π n pkqf n p¨, kq }Π n pkqf n p¨, kq} L 2 pR ˚q , upon eventually substituting p´u n p¨, kqq for u n p¨, kq, it follows from (3.6) that the quasi-mode f n p¨, kq is close to the eigenfunction u n p¨, kq in the H 1 -norm sense, provided k is large enough. We summarize these results in the following propostion. Proposition 3.1. For large k, the eigenfunction u n px, kq is well approximated by the quasi-mode f n px, kq in the sense that. }f n p¨, kq ´un p¨, kq} H 1 pR ˚q " Opk n´1 2 e

	Moreover L 2 pR ˚q,
	from (2.13), hence			
	(3.3)	q k ´7k 2 8 q,
	with the help of (2.19) and Part i) in Theorem 1.4. As a consequence we have
	(3.5)				´7k 2 8 q,
	whence (3.6)	› › › › › f n p¨, kq	´Πn pkqf n p¨, kq }Π n pkqf n p¨, kq} L 2 pR	˚q › › › › › H 1 pR	˚q " Opk n´1 2 e ´7k 2 8 q.
	Bearing in mind that			
	(3.7)		u n p¨, kq "		
					´7k 2 8 q.

  14)-(3.15) that (3.16) }r r n p¨, kq} L 2 pR ˚q ď c n `|λ n pkq ´En | `qk ru n p¨, kq ´fn p¨, kqs 1{2 ˘`}px ´kqr n p¨, kq} L 2 pR ˚q, for all k ě k n , where c n is some positive constant depending only on n. Last, recalling (2.17) and (2.19), we get that }px ´kqr n p¨, kq} L 2 pR ˚q " Opk n`1 2 e }r r n p¨, kq} L 2 pR ˚q " Opk n`1 2 e rv n p¨, kq ´gn p¨, kqs " Opk 2n e Further, since }px´kq 2 u n p¨, kq´px´kq 2 f n p¨, kq} 2 L 2 pR ˚q ď q k rv n p¨, kq´g n p¨, kqs, we deduce from (3.9), (3.10) and (3.18) that }f 2 n p¨, kq ´u2 n p¨, kq} L 2 pR ˚q " Opk n e For all n P N ˚, there exists k n P R and C n ą 0 such that we have (3.19) @k ą k n , }f n p¨, kq ´un p¨, kq} H 2 pR ˚q ď C n k n e Since H 2 pR ˚q is continuously embedded in W 1,8 pR ˚q, we deduce for k ě k n : }f n p¨, kq ´un p¨, kq} L 8 pR ˚q ď C n k n eThese results guarantee that any pointwise estimate of u 1 n p¨, kq on R `is uniformly well approximated by the one of the quasi-mode f 1 n p¨, kq, provided k is large enough. More precisely, we have

		´7k 2 8 q.
	From this, Part i) in Theorem 1.4, (3.8) and (3.16) then it follows that
	(3.17)	´7k 2 8 q.
	Now, putting (3.8), (3.11), (3.13) and (3.17) together, we obtain	
	(3.18)	q k ´7k 2 4 q.
	proposition.		´7k 2 8 q. We obtain the following
	Proposition 3.2. ´7k 2 8 .
	(3.20)	}f 1 n p¨, kq ´u1	´7k 2 8
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	(3.21)	´7k 2 8 .
	(3.22)	u 1 n p0, kq " f 1 n p0, kq `Opk n e ´7k 2 8 q.
	Finally, plugging (2.21) into (3.22) and then applying (3.1), we obtain the second part of Theorem
	1.4.		

n p¨, kq} L 8 pR ˚q ď C n k n e Remark 3.3. Higher order expansions of λ n pkq and λ 1 n pkq may be derived from sharper asymptotics of the Hermite functions than (2.4)-(2.5) (see

[START_REF] Popoff | Sur l'opérateur de Schrödinger magnétique dans un domaine diédral[END_REF] Section 1.4]

).

  Theorem 1.6 follows readily from (1.15), (1.16) and Lemma 4.2. 4.3. Proof of Theorem 1.8. For ǫ P p0, 1q fixed, put a n pδq :" p1 ´ǫqk n pδq, where k n pδq is defined in (1.13). Let ϕ P X b n,δ be a L 2 -normalized state and define E n pδq :" yq| 2 dxdy ď E n pδq, from (4.1), provided δ is small enough. In view of majorizing E n pδq, we recall from (1.14) that }ϕpx, ¨q} L 2 pRq " } φpx, ¨q} L 2 pRq " }ϕ n u n px, ¨q} L 2 pknpδq,`8q , knpδq |ϕ n pkq| 2 }u n p¨, kq} 2 L 2 p0,anpδqq dk. Let f n p¨, kq be the quasi-mode of hpkq introduced in Section 2.2. As }u n p¨, kq} 2 L 2 p0,anpδqq ď 2 ´}u n p¨, kq ´fn p¨, kq} 2 L 2 pR ˚q `}f n p¨, kq} 2 L 2 p0,anpδqq ¯, we deduce from (1.15), (4.8) and Proposition 3.1 that for every δ ą 0 small enough, we have (4.9) E n pδq ď C n k n pδq 2n´1 e ´7knpδq 2 {4 }ϕ} 2 L 2 pΩq `2F n pδq, with F n pδq :" ş `8 knpδq |ϕ n pkq| 2 }f n p¨, kq} 2 L 2 p0,anpδqq dk.

	so we get that	ż 8			
	(4.8)	E n pδq "				
	Then we have	ż p1´ǫq ?	| log δ|	ż	ş anpδq 0	L 2 pRq dx. }ϕpx, ¨q} 2
	(4.7)					
		x"0				

R

|ϕpx,

  2 |ϕ n pkq| 2 |Ψ n pxq| 2 dxdk n pkq| 2 |Ψ n pxq| 2 dxdk n pkq| 2 |Ψ n pxq| 2 dkdx, (4.[START_REF] Fröhlich | On the extended nature of edge states of quantum Hall Hamiltonians[END_REF] for δ sufficiently small. Next, recalling the normalization condition (1.15), giving ş kPR |ϕ n pkq| 2 dk " }ϕ} 2 L 2 pΩq " 1, and taking δ ą 0 so small that ǫk n pδq is sufficiently large in order to apply (2.4), we derive from (4.13) that ψ n pδq ď C n ´L2 as L Ñ ´8 for any m P N, we may thus find δ n pǫq ą 0 so that we have (4.14) @δ P p0, δ n pǫqq, ψ n pδq ď C n ǫ 2n´1 k n pδq 2n´1 e ´ǫ2 knpδq 2 .Similarly, upon substituting φ n , (2.12) and (4.12) for ψ n , (2.11) and (4.11), respectively, in the above reasoning, we find out for δ sufficiently small that (4.15) φ n pδq ď C n 4n´2 e ´2k 2 |ϕ n pkq| 2 |Φ n pxq| 2 dkdx.Thus, taking δ ą 0 so small that k Þ Ñ k 4n´2 e ´2k 2 is decreasing for k ě k n pδq, we deduce from (4.15) with the help of (1.15), thatφ n pδq ď C n n pδq 4n´2 e ´2knpδq 2 |Φ n pxq| 2 dxApplying(2.7) we see that there exists δ n pǫq ą 0 so small that we have@δ P p0, δ n pǫqq, φ n pδq ď C n k n pδq 2n´3 e ´knpδq 2 .Putting this together with (4.9)-(4.10) and (4.14) we end up getting δ n pǫq ą 0 such that @δ P p0, δ n pǫqq, E n pδq ď C n ǫ 2n´1 k n pδq 2n´1 e ´ǫ2 knpδq 2 .

	ż ´ǫknpδq	ż ´x`p1´ǫqknpδq
		x"´8	k"maxpknpδq,´xq
	˜ż ´knpδq x"´8	x4n´2 e ´2x 2 |Φ n pxq| 2 dx	`ż ´ǫknpδq x"´knpδq
				that
		ż `8	ż ´k`p1´ǫqknpδq
	ψ n pδq "	k"knpδq ż `8	x"´k ż ´k`p1´ǫqknpδq
	ď C n	k"knpδq ż ´ǫknpδq	x"´k ż ´x`p1´ǫqknpδq
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				ż ´ǫknpδq	x2n e ´x 2 dx.
	Further, taking into account that	x"´8 ´8 xm e ´x 2 dx " ş L	´Lm´1 2 e
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3.3. H 2 -estimate of the eigenfunctions. The H 1 -estimate of Proposition 3.1 implies uniform pointwise approximation of u n px, kq by f n px, kq. The Hadamard formula (3.1) requires a pointwise estimate of u 1 n p¨, kq. Consequently, we need to estimate u n p¨, kq in the H 2 -topology. Actually, u n p¨, kq being an eigenfunction of hpkq, it is enough to estimate the H 1 -norm of x 2 u n p¨, kq. The same problem was investigated in [4, Section 5] in the context of a bounded interval so the authors could take advantage of the fact that the multiplier by x 2 is a bounded operator. Although this is not the case in the framework of the present paper this slight technical issue can be overcomed through elementary commutator computations performed in the following subsection.

We start with the following straightforward inequality To treat the second term on the right in (3.9), we introduce v n px, kq :" px ´kqu n px, kq and g n px, kq :" px ´kqf n px, kq, and notice that g n p¨, kq belongs to Domphpkqq. Similarly, taking into account that u n p¨, kq decays super-exponentially fast for x sufficiently large, since lim xÑ`8 V px, kq " `8, we see that v n p¨, kq belongs to Domphpkqq as well. Therefore, we have hpkq pv n px, kq ´gn px, kqq " λ n pkqv n px, kq´E n g n px, kq´2pu 1 n px, kq´f 1 n px, kqq`px´kqr n px, kq, by straightforward computations, hence (3.11) q k rv n p¨, kq ´gn p¨, kqs ď }r r n p¨, kq} L 2 pR ˚q}v n p¨, kq ´gn p¨, kq} L 2 pR ˚q,

where we have set (3.12) r r n px, kq :" λ n pkqv n px, kq´E n g n px, kq´2pu 1 n px, kq´f 1 n px, kqq`px´kqr n px, kq, x ą 0. Evidently, (3.13) }v n p¨, kq ´gn p¨, kq} 2 L 2 pR ˚q ď q k ru n p¨, kq ´fn p¨, kqs, so, by (3.8), we are left with the task of estimating the L 2 -norm of r r n p¨, kq. In light of (3.12)-(3.13) and the basic estimate }u