
HAL Id: hal-00947231
https://hal.science/hal-00947231v2

Submitted on 19 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization of bulk states in one-edge quantum
Hall systems

Peter D. Hislop, Nicolas Popoff, Eric Soccorsi

To cite this version:
Peter D. Hislop, Nicolas Popoff, Eric Soccorsi. Characterization of bulk states in one-edge quantum
Hall systems. Annales Henri Poincaré, 2016, 17 (1), pp.37-62. �10.1007/s00023-014-0388-3�. �hal-
00947231v2�

https://hal.science/hal-00947231v2
https://hal.archives-ouvertes.fr


CHARACTERIZATION OF BULK STATES IN ONE-EDGE QUANTUM HALL

SYSTEMS

PETER D. HISLOP, NICOLAS POPOFF, AND ERIC SOCCORSI

ABSTRACT. We study magnetic quantum Hall systems in a half-plane with Dirichlet boundary

conditions along the edge. Much work has been done on the analysis of the currents associated

with states whose energy is located between Landau levels. These edge states carry a non-zero

current that remains well-localized in a neighborhood of the boundary. In this article, we study

the behavior of states with energies close to a Landau level. Such states are referred to as bulk

states in the physics literature. Since magnetic Schrödinger operator is invariant with respect to

translations along the edge, it is a direct integral of operators indexed by a real wave number.

We analyse these fiber operators and prove new asymptotics on the band functions and their first

derivative as the wave number goes to infinity. We apply these results to prove that the current

carried by a bulk state is small compared to the current carried by an edge state. We also prove

that the bulk states are small near the edge.
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1. INTRODUCTION

Quantum Hall systems consist of independent electrons constrained to open regions Ω in the

plane R
2 :“ tpx, yq, x, y P Ru subject to a transverse magnetic field Bpx, yq “ p0, 0, bpx, yqq “

∇ ˆ a, and possibly an electric potential V . The quantum Hamiltonian is Hpa, V q “ p´i∇ ´
aq2`V acting on a dense domain inL2pΩq with self-adjoint boundary conditions. Several articles

describe the physics of such systems when Ω is bounded. The analysis distinguishes between

edge and bulk behavior for the states associated with the Hamiltonian, see for example [15, 2]

and [21] for a longer review. This behavior is captured by in two model domains: the plane and

a half-plane, modeling the interior or the boundary of such a bounded system, respectively.

In the first case, the plane model is the Landau model Ω “ R
2 with constant magnetic field

bpx, yq “ b. When V “ 0, the classical electron moves in a closed circular orbit of radius the

size of b´1{2. The spectrum of Hpa, 0q is pure point with infinitely degenerate eigenvalues at the

Landau levels Enb, for n “ 1, 2, . . ., where En “ 2n ´ 1. In the terminology introduced below,

all of the states are bulk states.

In the second case of the half-plane, the restriction of the Landau model to the half-plane x ą 0

(with various boundary conditions along x “ 0) has profound consequences for the spectral and

transport properties of the system. From the classical viewpoint, the edge at x “ 0 reflects the

classical orbits forming a new current along the edge. This classical current provides the heuristic

insight for quantum edge currents. Edge states for quantum Hall systems restrained to a half-

plane R
˚
` ˆ R :“ tpx, yq, x ą 0u with Dirichlet, or other boundary conditions, at x “ 0 have

been analyzed by several authors [9, 13, 19]. These states ϕ are constructed from wave packets

with energy concentration between two consecutive Landau levels. The edge current carried by

these states is Opb1{2q and it is stable under a class of electric and magnetic perturbations of the

Hamiltonian. Furthermore, these states are strongly localized near x “ 0.

In contrast to edge states, bulk states are built from wave packets with at least one Landau level

in their energy interval ([9], [21, Section 7]). This article is devoted to the mathematical study

of transport and localization properties of bulk states. More specifically, we prove that one may
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construct bulk states for which the strength of the current is much smaller than for edge states. In

addition, we prove that the bulk states are spatially localized away from the edge. Both of these

results are consequences of the fact that a bulk state has its energy concentrated in the vicinity of

a Landau level. These results are consistent with the classical picture where the orbit of particles

localized away from the edge are closed and bounded.

Due to the translational invariance of the system in the y direction, the magnetic Hamiltonian

admits a fiber decomposition and H is unitarily equivalent to the multiplication operator by a

family of real analytic functions either called dispersion curves or band functions. The presence

of an edge at x “ 0 results in non constant dispersion curves, each of them being a decreasing

function in R. Namely, for all n ě 1, the n-th band function decreases from infinity to En,

revealing thatEn is a threshold in the spectrum ofH . Moreover, the transport properties ofH are

determined from the behavior of the velocity operator, defined as the multiplication operator by

the family formed by the first derivative of the band functions. It is known that any quantum state

with energy concentration between two consecutive Landau levels carries a non trivial current,

indeed the velocity operator is lower bounded by some positive constant in the corresponding

energy interval I . This condition guarantees in addition the existence of a Mourre inequality

for H in I (see [14]). Such an estimate does not hold anymore if, unlike this, the infimum of

the velocity of the band function is zero, a situation occurring when there is at least one Landau

level in I . In this article we study the quantum states localized in such an interval and we

provide and accurate upper bound for their current when their energy concentrates near a Landau

level. Moreover, for all n ě 1, the n-th band function approaches En as the quasi-momentum

goes to infinity, but it does not reach its limits. Hence, none of thresholds of this model is

attained, and the set of quasi-momenta associated with energy levels concentrated in the vicinity

of any threshold is subsequently unbounded. This has several interesting transport and dynamical

consequences, such as the the delocalization of the corresponding quantum states away from the

edge x “ 0 following from the phase space analysis carried out in this article.

Notice that the usual methods of harmonic approximation, requiring that thresholds be critical

points of the dispersion curves, do not apply to this peculiar framework. The same is true for

several magnetic models examined in [24, 9, 30, 12, 5] where the band functions tend to finite

limits. Nevertheless, there is, to our knowledge, only a very small number of articles available

in the mathematical literature, studying magnetic quantum Hamiltonians at energy levels in the

vicinity of these non-attained thresholds: we refer to [5] for the same model (with either Dirichlet

or Neumann boundary conditions) as the one investigated in the present paper and to [6] for some

3-dimensional quantum system with variable magnetic field. In these two articles, the number

of eigenvalues induced by some suitable electric perturbation, which accumulate below the first

threshold of the system, is estimated. The method we provide in this article to study bulk states

can be easily adapted to other magnetic systems where band functions tend to finite limits, as

Iwatsuka models ([24, 11, 20, 10]) and 3D translationally invariant magnetic field ([26],[30]).

1.1. Half-plane quantum Hall Hamiltonian.

‚ Fiber decomposition and band functions. Put Ω :“ R
˚
` ˆ R Ă R

2 and let the potential

apx, yq :“ p0,´bxq generate a constant magnetic field with strength b ą 0, orthogonal to Ω.

We consider the quantum Hamiltonian in Ω with magnetic potential a and Dirichlet boundary



4 P. D. HISLOP, N. POPOFF, AND E. SOCCORSI

conditions at x “ 0, i.e. the self-adjoint operator acting on the dense domain C8
0 pΩq as Hpbq :“

p´i∇ ´ aq2, and then closed in L2pΩq. Since VbHpbqV˚
b “ bHp1q, where the transform

(1.1) pVbψqpx, yq :“ b´1{4ψp x
b1{2 ,

y

b1{2 q,
is unitary in L2pΩq, we may actually chose b “ 1 without limiting the generality of the foregoing.

Thus, writing H instead of Hp1q for notational simplicity, we focus our attention on the operator

H :“ ´B2
x ` p´iBy ´ xq2,

in the remaining part of this text.

Let Fy be the partial Fourier transform with respect to y, i.e.

ϕ̂px, kq “ pFyϕqpx, kq :“ 1?
2π

ż

R

e´ikyϕpx, yqdy, ϕ P L2pΩq.

Due to the translational invariance of the operatorH in the y-direction, we have the direct integral

decomposition

(1.2) FyHF
˚
y “

ż ‘

R

hpkqdk,

where the 1D operator

(1.3) hpkq :“ ´B2
x ` V px, kq, V px, kq :“ px ´ kq2, x ą 0, k P R,

acts in L2pR`q with Dirichlet boundary conditions at x “ 0. The full definition of the operator

hpkq, k P R, can be found in Section 2. For all k P R fixed, V p., kq is unbounded as x goes to

infinity, so hpkq has a compact resolvent. Let tλnpkq, n P N
˚u denote the eigenvalues, arranged

in non-decreasing order, of hpkq. Since all these eigenvalues λnpkq with n P N
˚ are simple, then

each k ÞÑ λnpkq is a real analytic function in R. The dispersion curves λn, n P N
˚, have been

extensively studied in several articles (see e.g. [9]). They are decreasing functions of k P R,

obeying

(1.4) lim
kÑ´8

λnpkq “ `8 and lim
kÑ`8

λnpkq “ En,

for all n P N
˚, where En :“ 2n´ 1 is the n-th Landau level.

Remark 1.1. For further reference, we notice from (1.4) the following useful property:

lim
nÑ`8

inf
kPR

λnpkq “ `8.

As a consequence the spectrum SpHq of H is SpHq “ Yně1λnpRq “ r1,`8q. The Landau

levels En, n P N
˚, are thresholds in the spectrum of H , and they play a major role in the analysis

carried out in the remaining part of this paper.

‚ Fourier decomposition. For n P N
˚ and k P R, we consider a normalized eigenfunction

unp¨, kq of hpkq associated with λnpkq. It is well known that unp¨, kq depends analytically on k.

We define the n-th generalized Fourier coefficient of ϕ P L2pΩq by

(1.5) ϕnpkq :“ xFyϕp¨, kq, unp¨, kqyL2pR`q “ 1?
2π

ż

R`

ϕ̂px, kqunpx, kqdx,
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and denote by πn the orthogonal projection associated with the n-th harmonic:

(1.6) πnpϕqpx, yq :“ 1?
2π

ż

R

eiykϕnpkqunpx, kqdk, px, yq P Ω.

In light of (1.2) we have for all ϕ P L2pΩq:

(1.7) ϕ “
ÿ

ně1

πnpϕq,

and the Parseval theorem yields

(1.8) }ϕ}2L2pΩq “
ÿ

ně1

}ϕn}2L2pRq.

For any non-empty interval I Ă R, we denote by PI the spectral projection of H associated with

I . We say that the energy of a quantum state ϕ P L2pΩq is concentrated (or localized) in I if

PIϕ “ ϕ. With reference to (1.2) and (1.5) this condition may be equivalently reformulated as

(1.9) @n P N
˚, supppϕnq Ă λ´1

n pIq .

1.2. Edge versus bulk.

‚ Current operator and link with the velocity. Let y denote the multiplier by the coordinate y

in L2pΩq. The time evolution of y is the Heisenberg variable yptq :“ e´itHyeitH , for all t P R.

Its time derivative is the velocity and is given by
dyptq
dt

“ ´irH, yptqs “ ´ie´itH rH, yseitH . We

define the current operator as the self adjoint operator

Jy :“ ´irH, ys “ ´iBy ´ x,

acting on DompHq X Dompyq. The current carried by a state ϕ is xJyϕ, ϕyL2pΩq.

Well-known computations based on the Feynman-Hellman formula (see also [9, 24, 11] for sim-

ilar formulas involving the Iwatsuka models) yield

(1.10) @ϕ P L2pΩq, xJyπnpϕq, πnpϕqyL2pΩq “
ż

R

λ1
npkq|ϕnpkq|2dk,

linking the velocity operator, defined as the multiplication operator in
À

nPN˚ L2pRq by the fam-

ily of functions tλ1
n, n P N

˚u, to the current operator.

Remark 1.2. It is easy to see that (1.10) extends to any quantum state ϕ P L2pΩq satisfying the

non-overlapping condition

@m ‰ n, supppϕmq X supppϕnq “ H,

as

xJyϕ, ϕyL2pΩq “
ÿ

ně1

ż

R

λ1
npkq|ϕnpkq|2dk.
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‚ Edge states and bulk states. For any bounded subinterval I Ă SpHq, the spectrum of H , it is

physically relevant to estimate the current carried by a state with energy concentration in I and

to describe the support of such a state.

Let ϕ P RanPI be decomposed in accordance with (1.5)–(1.7). Since I is bounded by assump-

tion, then the set tn P N
˚, I X λnpRq ‰ Hu is finite by Remark 1.1, so the same is true for

tn P N
˚, πnpϕq ‰ 0u. As a consequence the sum in the r.h.s. of (1.7) is finite. Notice that this

fact is not a generic property of fiberered magnetic Hamiltonians (see e. g. [30, 6]).

For all n P N
˚ put

Xn,I :“ RanPI X Ranπn,

so we have RanPI “ À
ně1Xn,I . We shall now describe the transport and localization proper-

ties of functions in Xn,I . We shall see that, depending on whether En lies inside or outside I ,

functions in Xn,I may exhibit radically different behaviors.

Let us first recall the results of [9], corresponding to the case En R I . Put c´pn, Iq :“ infI |λ1
n ˝

λ´1
n | and c`pn, Iq :“ supI |λ1

n ˝ λ´1
n |. Since λn is a decreasing function, (1.4) yields

@k P λ´1
n pIq, 0 ă c´pn, Iq ď |λ1

npkq| ď c`pn, Iq ă `8.

As a consequence, the spectrum of the current operator restricted toXn,I is r´c`pn, Iq,´c´pn, Iqs
by (1.9)-(1.10). This entails that any state ψ P Xn,I carries a non-trivial current:

(1.11) @ψ P Xn,I , |xJyψ, ψyL2pΩq| ě c´pn, Iq}ψ}2.
Moreover, all quantum states ψ P Xn,I are mainly supported in a strip S of width Op1q along the

edge.

Assume that there is no threshold in I , that is tEn, n P N
˚u X I “ H, and pick ϕ P RanPI .

Since tn P N
˚, πnpϕq ‰ 0u is finite and πnpϕq P Xn,I is mainly supported in S for each n P N

˚,

then the same is true for ϕ “ ř
nPN˚ πnpϕq. This explains why it is referred to ϕ as an edge state.

Moreover, based on Remark 1.2, [9][Proposition 2.1] entails upon eventually shortening I , that

such a state ϕ carries a non void edge current:

DcpIq ą 0, @ϕ P RanPI , |xJyϕ, ϕyL2pΩq| ě cpIq}ϕ}2.

Let us now examine the case where En P I for some n P N
˚. For the sake of clarity we assume

in addition that there is no other threshold than En lying in I , i.e. tm P N
˚, Em P Iu “ tnu. It

is apparent that the general case where several thresholds are lying in I may be easily deduced

from the single threshold situation by superposition principle.

Put I´
n :“ p´8, Enq and I`

n “ I X pEn,`8q. Since λnpRq X I´
n “ H, we have πn ˝ PI´

n
“ 0,

whence Xn,I “ Xn,I`
n

. Thus it suffices to consider an energy interval I of the form

(1.12) Inpδq :“ pEn, En ` δq, δ P p0, 2q.
For further reference we define knpδq as the unique real number satisfying

(1.13) λnpknpδqq “ En ` δ.

Its existence and uniqueness is guaranteed by (1.4) and the monotonicity of the continuous func-

tion k ÞÑ λnpkq.
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For all m ‰ n, it is clear from the above analysis that Xm,Inpδq is made entirely of edge states.

However, this is not true for Xn,Inpδq. Indeed, since infInpδq |λ1
n ˝ λ´1

n | “ 0, c´pn, Inpδqq “ 0

and the bottom of the spectrum of the current operator restricted to Xn,Inpδq is zero, so that (1.11)

does not hold anymore for all ψ P Xn,Inpδq. This indicates the presence of quantum states in

Xn,Inpδq carrying an arbitrarily small edge current. It turns out that such a state has part of its

support localized away from the edge (a fact that will be rigorously established in this paper)

and it is called a bulk state in physical literature. We thus refer to Xn,Inpδq as a bulk space and

subsequently write Xb
n,δ instead of Xn,Inpδq.

Notice that a definition of bulk states based on another approach is proposed in [9]: De Bièvre

and Pulé say that a state ϕ is a bulk state associated with the non-rescaled Hamiltonian Hpbq
when πnpϕq “ ϕ and ϕnpkq is supported in an interval of the form pbγ ,`8q whith γ ą 1{2.

After stating our results we will come back in Section 1.4 to the non-rescaled Hamiltonian and

we will show that our approach is more general than the one of [9] and cover their results.

Remark 1.3. It is worth to mention that there are actual edge states lying in Xb
n,δ. With refer-

ence to (1.5)–(1.7), this can be seen upon noticing that any ϕ “ πnpϕq P Xb
n,δ such that ϕn is

compactly supported in pknpδq,`8q, satisfies an inequality similar to (1.11).

Let us now stress that any ϕ P Xb
n,δ expressed as

(1.14) ϕpx, yq “
ż 8

knpδq

eiykϕnpkqunpx, kqdk,

where ϕn P L2ppknpδq,`8qq is defined by (1.5) and satisfies

(1.15) }ϕ}2L2pΩq “
ż `8

knpδq

|ϕnpkq|2dk,

according to (1.8). Further, recalling (1.10), the current carried by ϕ P Xn,δ has the following

expression:

(1.16) xJyϕ, ϕyL2pΩq “
ż `8

knpδq

λ1
npkq|ϕnpkq|2dk.

‚ Main goal. In view of exhibiting pure bulk behavior, we investigate Xn,δ as δ goes to 0. We

firstly aim to compute a suitable upper bound on the current carried by quantum states lying

in Xn,δ, as δ Ó 0. Secondly we characterize the region in the half-plane where such states are

supported.

Since knpδq tends to 8 as δ Ó 0 from (1.4), it is apparent that the analyis of (1.16) requires

accurate asymptotic expansions of λnpkq and λ1
npkq as k goes to infinity.

Actually, it is well known from [9] or [12, Section 2] that each λn, for n P N
˚, decreases super-

exponentially fast to En as k goes to `8:

@α P p0, 1q, Dpkn,α, Cn,αq P R
˚
` ˆ R

˚
`, k ě kn,α ùñ |λnpkq ´ En| ď Cn,αe

´αk2{2.

A similar upper bound on |λ1
n| can be found in [9], but it turns out that these estimates are not as

sharp as the one required by the analysis developped in this paper. Notice that the asymptotics
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of λnpkq as k tends to infnity was already investigated in [25][Chapter 1] and in the unpublished

work [22] (the asympotics of the first derivative is derived as well in the last reference). All the

above mentioned results are covered by the one obtained in this article. Notice that the asymp-

totics of λ1
npkq as k tends to infinity is obtained from those calculated for the eigenfunctions

associated with λnpkq as k Ñ `8. Moreover these asymptotics on the eigenfunctions are useful

when describing the geometrical localization of bulk states when δ Ó 0.

1.3. Main results and outline. Our first result is a precise asymptotics of the band functions

and its derivative when k Ñ `8:

Theorem 1.4. For every n P N
˚ there is a constant γn ą 0 such that the two following estimates

i) λnpkq “ En ` 22n´1γ2nk
2n´1e´k2 p1 ` Opk´2qq,

ii) λ1
npkq “ ´22nγ2nk

2ne´k2 p1 ` Opk´2qq,

hold as k goes to `8.

Remark 1.5. Notice that the second part of Theorem 1.4 may actually be recovered upon formally

differentiating the first part with respect to k.

The method used in the derivation of Theorem 1.4 is inspired by the method of quasi-modes used

in [4, Section 5]. Moreover, as detailed in Subsection 2.5, the computation of the asymptotics

of λnpkq is closely related to the rather tricky problem of understanding the eigenvalues of the

Schrödinger operator with double wells ´h2B2
t ` p|t| ´ 1q2 in the semi-classical limit h Ó 0.

Let us now characterize bulk states with energy concentration near the Landau levelEn, in terms

of the distance δ ą 0 of their energy to En. We recall that Xb
n,δ denotes the linear space of

quantum states with energy in the interval pEn, En ` δq and all Fourier coefficients uniformly

zero, except for the n-th one.

Firstly we give the smallness of the current carried by bulk states when δ goes to 0:

Theorem 1.6. For every n P N
˚ we may find two constants µn ą 0 and δn ą 0, both of them

depending only on n, such that for each δ P p0, δnq and all ϕ P Xb
n,δ, we have

(1.17) |xJyϕ, ϕy| ď
˜
2δ

a
| log δ| ` µn

δ log | log δ|a
| log δ|

¸
}ϕ}2L2pΩq.

Remark 1.7. Estimate (1.17) is accurate in the sense that for all 0 ă δ1 ă δ2 ă 2 and any

interval In :“ pEn ` δ1, En ` δ2q avoiding En, we find by arguing in the exact same way as in

the derivation of Theorem 1.6 that

@ϕ P Xn,In, cnpδ1q}ϕ}2L2pΩq ď |xJyϕ, ϕy| ď cnpδ2q}ϕ}2L2pΩq,

provided δ1 and δ2 are sufficiently small. Here cnpδjq, j “ 1, 2, stands for the constant obtained

by substituting δj for δ in the prefactor of }ϕ}2
L2pΩq in the r.h.s. of (1.17).

Finally, we discuss the localization of the bulk states in Xb
n,δ. We prove that when δ goes to 0,

there are small in a strip of width
a

| log δ|, showing that thay are not localized near the boundary.
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Theorem 1.8. Fix n P N
˚. Then for any ǫ P p0, 1q there exists δnpǫq ą 0, such that for all

δ P p0, δnpǫqq, the estimate

(1.18)

ż p1´ǫq
?

| log δ|

0

}ϕpx, ¨q}2L2pRqdx ď Cnǫ
2n´1δǫ

2 | log δ| 2n´1

2
p1´ǫ2q}ϕ}2L2pΩq

holds for every ϕ P Xb
n,δ and some positive constant Cn depending only on n.

Let ϕptq :“ e´itHϕ, for t P R, be the time evolution of ϕ P Xb
n,δ. Since ϕptq P Xb

n,δ for all t P R it

is apparent that Theorems 1.6 and 1.8 remain valid upon substituting ϕptq for ϕ in (1.17)-(1.18).

As a consequence, the localization property and the upper bound on the current carried by a state

lying in Xb
n,δ survive for all times.

1.4. Influence of the magnetic field strength. All our results are stated for the rescaled Hamil-

tonian H with unit magnetic field strength b “ 1. We discuss the corresponding results for the

magnetic Hamiltonian Hpbq associated with a constant magnetic field of strength b ą 0. Recall

that Vb is the unitary transformation defined in (1.1) implementing the b1{2-scaling that allows us

to normalized Hpbq. Let Jypbq :“ ´iBy ´ bx be the non-rescaled current operator, then we have

VbJypbqV˚
b “ b1{2Jy and

@ϕ P DompJypbqq, xJypbqϕ, ϕy “ b1{2 xJyVbϕ,Vbϕy .
Moreover ϕ P Xn,bInpδq if and only if Vbϕ P Xn,δ, therefore applying Theorem 1.6 we get

@ϕ P Xn,bInpδq, |xJypbqϕ, ϕy| ď b1{2

˜
2δ

a
| log δ| ` µn

δ log | log δ|a
| log δ|

¸
}ϕ}2L2pΩq,

as soon as δ is small enough. Looking at quantum Hall systems with strong magnetic field, it

is then natural to consider b large and δ “ δpbq going to 0 as b goes to `8 and one may use

our result to describe the states of such a system. It is now natural to provide another possible

definition for edge and bulk states associated with the non-rescaled HamiltonianHpbq, in relation

with the magnetic field strength: given an interval I Ă R, a state ϕ P Xn,I is an edge state if its

current is of size b1{2, and it is a bulk state if its current is opb1{2q as b gets large.

We now compare our results with the analysis of De Bièvre and Pulé ([9]). They define a bulk

state ϕ associated with the magnetic Hamiltonian Hpbq as a state satisfying πnpϕq “ ϕ and such

that ϕnpkq is supported in an interval of the form pbγ ,`8q with γ ą 1{2. Put γ “ 1{2 ` ǫ, such

a state is localized in energy in the interval pbEn, bλnpbǫqq. Using Theorem 1.4, we get when b

gets large λnpbǫq ´ En „ e´2b2ǫ . Therefore their approach is covered by the one presented in

this article by setting δpbq :“ e´2b2ǫ and letting b going to `8. For this particular choice of

δpbq, Theorem 1.6 provides a better estimate than in [9][Corollary 2.1]. Moreover our approach

is more general, in the sense that we do not restrict our analysis by a particular choice of δ.

Similarly, Theorem 1.8 implies that any states localized in energy in the interval pbEn, bEn ` δbq
is small in a strip of width b´1{2 when δ becomes small, with a control given by the r.h.s. of

(1.18).
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2. ASYMPTOTICS OF THE BAND FUNCTIONS

In this section, we prove the first part of Theorem 1.4 on the asymptotic expansion of the band

functions λnpkq as k Ñ 8. The proof consists of 4 steps. We first recall results on the harmonic

oscillator and its eigenfunctions. We next construct approximate eigenfunctions fnpx, kq of hpkq
so that hpkqfnpx, kq “ Enfnpx, kq `Rnpx, kq and estimate the norm }Rnp¨, kq}L2pR˚

`q. We prove

that the energy ηnpkq :“ xhpkqfnp¨, kq, fnp¨, kqy of the approximate eigenfunction fn is a good

approximation to the Landau level En. Finally, we use the Kato-Temple inequality ot obtain the

result.

Here are some notations and definitions. Let us define the quadratic form

(2.1) qkrus :“
ż

R`

p|u1pxq|2 ` px´ kq2|upxq|2qdx, Dompqkq :“ tu P H1
0 pR˚

`q, xu P L2pR˚
`qu.

Here H1
0 pR˚

`q is as usual the closure of C8
0 pR˚

`q in the topology of the first order Sobolev space

H1pR˚
`q. The operator hpkq (expressed in (1.3)) is the Friedrichs extansion of the above quadratic

form and it its domain is

(2.2) Domphpkqq :“ tu P H1
0pR˚

`q X H2pR˚
`q, x2u P L2pR˚

`qu .

2.1. Getting started: recalling the harmonic oscillator. The harmonic oscillator

h :“ ´B2
x ` x2, x P R,

has a pure point spectrum made of simple eigenvalues tEn :“ 2n ´ 1, n P N
˚u, the Landau

levels. The associated L2pRq-normalized eigenfunctions are the Hermite functions

(2.3) Ψnpxq :“ Pnpxqe´x2{2, x P R, n P N
˚

where Pn stands for the n-th Hermite polynomial obeying degpPnq “ n ´ 1. These functions

satisfy Ψnp´xq “ p´1qn´1Ψnpxq. The explicit expression (2.3) results in the two following

asymptotic formulae (see [1] or [28])

(2.4) Ψnpxq “
xÑ´8

γn2
n´1xn´1e´x2{2

`
1 ` Opx´2q

˘

and

(2.5) Ψ1
npxq “

xÑ´8
γn2

n´1xne´x2{2
`
´1 ` Opx´2q

˘
,

where γn :“ p2n´1pn´ 1q!?πq´1{2 is a normalization constant. Next, put

(2.6) Φnpxq :“ Ψnpxq
ż x

0

|Ψnptq|´2dt, x P R, n P N
˚,

so tΨn,Φnu forms a basis for the space of solutions to the ODE hf “ Enf . Then we get

(2.7) Φnpxq “
xÑ´8

pγn2nq´1 e
x2{2

xn

`
1 ` Opx´2q

˘

and

(2.8) Φ1
npxq “

xÑ´8
pγn2nq´1 e

x2{2

xn´1

`
1 ` Opx´2q

˘
,
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through elementary computations based on (2.4)–(2.6).

2.2. Building quasi-modes for hpkq in the large k regime. Following the idea of [4] and [3]

we now build quasi-modes for the operator hpkq when the parameter k is taken sufficiently large.

We look at vectors of the form

(2.9) fnpx, kq “ αpkqΨnpx´ kq ` βpkqχpx, kqΦnpx ´ kq, x ą 0, k P R,

where Ψn and Φn are respectively defined by (2.3) and (2.6), and α, β are two functions of k

we shall make precise below. Bearing in mind that Φnp¨, kq is unbounded on R
˚
`, the cut-off

function χ is chosen in such a way that fp¨, kq P L2pR˚
`q. Namely, we pick a non-increasing

function χ0 P C8pR`, r0, 1sq such that χ0pxq “ 1 for x P r0, 1
2
s and χpxq “ 0 for x P r3

4
,`8q,

and put

χpx, kq :“ χ0

´x
k

¯
, x ą 0, k P R.

We impose Dirichlet boundary condition at x “ 0 on fnp¨, kq, getting

βpkq “ ´αpkqΨnp´kq
Φnp´kq ,

since Φnp´kq is non-zero for k sufficiently large, by (2.7). From this, (2.4) and (2.7), it then

follows that

(2.10) βpkq “ 22n´1γ2nαpkqk2n´1e´k2
`
1 ` Opk´2q

˘
,

which entails }fnp¨, kq}2
L2pR˚

`q
“ αpkq2

´
1 ` Opk2n´1e´k2q

¯
, through direct computation. As a

consequence we have

(2.11) αpkq “ 1 ` Opk2n´1e´k2q
by compliance with the normalization condition }fnp¨, kq}L2pR˚

`q “ 1, hence

(2.12) βpkq “ 22n´1γ2nk
2n´1e´k2

`
1 ` Opk´2q

˘
,

according to (2.10).

2.3. Energy estimation. Bearing in mind that fnp0, kq “ 0 and fnpx, kq “ αpkqΨnpx ´ kq for

x ě 3k{4, it is clear from (2.2) that fnp¨, kq P Domphpkqq, so the energy carried by the state

fnp¨, kq is well defined by

(2.13) ηnpkq :“ xhpkqfnp¨, kq, fnp¨, kqyL2pR˚
`q.

To estimate the error of approximation of En by ηnpkq, we introduce

(2.14) rnpx, kq :“ phpkq ´ Enqfnpx, kq, x ą 0,

in such a way that ηnpkq´En “ xrnp¨, kq, fnp¨, kqyL2pR˚
`q. Integrating by parts twice successively

in this integral and remembering (2.9), we find out that

ηnpkq ´ En “ βpkq
@

phpkq ´ Enqpχp¨, kqΦnp¨ ´ kqq, fnp¨, kq
D
L2pR˚

`q
(2.15)

“ ´βpkqΦnp´kqf 1
np0, kq ` βpkq

@
χp¨, kqΦnp¨ ´ kq, rnp¨, kq

D
L2pR˚

`q
.
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Further, upon combining (2.9) and (2.14) with the commutator formula rhpkq, χs “ ´χ2 ´2χ1Bx,

we get that

(2.16) rnpx, kq “ ´βpkqχ2px, kqΦnpx´ kq ´ 2βpkqχ1px, kqΦ1
npx´ kq, x ą 0,

showing that rnp¨, kq is supported in supppχ1p¨, kqq, ie

(2.17) suppprnp¨, kqq Ă rk
2
, 3k

4
s.

Putting (2.7), (2.8), (2.12) and (2.16) together, and taking into account that

(2.18) }χ1p¨, kq}L8pRq “ Op1{kq and }χ2p¨, kq}L8pRq “ Op1{k2q,
we obtain for further reference that

(2.19) }rnp¨, kq}2L2pR˚
`q “ Opk2n´1e´ 7k

2

4 q.

Let us now prove that the interaction term ´βpkqΦnp0, kqf 1
np0, kq is the main contribution to the

r.h.s. of (2.15). Applying (2.7) and (2.8), we get

}Φnp¨ ´ kq}L8pk

2
, 3k
4

q “ Opk´nek
2{8q and }Φ1

np¨ ´ kq}L8pk

2
, 3k
4

q “ Opk´n`1ek
2{8q,

which, together with (2.10), (2.16) and (2.18), yields }rnp¨, kq}L8pR˚
`q “ Opkn´1e´ 7k

2

8 q. From

this, (2.12) and the estimate
ˇ̌
ˇxχp¨, kqφnp¨ ´ kq, rnp¨, kqyL2pR˚

`q

ˇ̌
ˇ ď k

4
}rnp¨, kq}L8pR˚

`q}Φnp¨ ´ kq}L8pk

2
, 3k
4

q,

then it follows that βpkqxχp¨, kqφnp¨ ´ kq, rnp¨, kqyL2pR˚
`q “ Opk2n´1e´ 7k

2

4 q. Hence we have

(2.20) ηnpkq ´ En “ ´βpkqf 1
np0, kqΦnp´kq ` Opk2n´1e´ 7k

2

4 q,
by (2.15). In order to evaluate the remaining term ´βpkqf 1

np0, kqΦnp´kq, we take advantage of

the fact that χkp0q “ 1 and χ1
kp0q “ 0, and derive from (2.5) and (2.8)-(2.9) that

(2.21) f 1
np0, kq “ αpkqΨ1

np´kq ` βpkqΦ1
np´kq “ p´1qn´12nγnk

ne´k2{2
`
1 ` Opk´2q

˘
.

Therefore we have ´βpkqf 1
np0, kqΦnp´kq “ 22n´1γ2nk

2n´1e´k2 p1 ` Opk´2qq by (2.7) and (2.12),

so we end up getting

(2.22) ηnpkq ´ En “ 22n´1γ2nk
2n´1e´k2

`
1 ` Opk´2q

˘
,

with the aid of (2.20).

2.4. Asymptotic expansion of λnpkq. Let us first introduce the error term

ǫnpkq :“ }phpkq ´ ηnpkqqfnp¨, kq}L2pR˚
`q,

and combine the estimate ǫnpkq ď }rnp¨, kq}L2pR`q `|ηnpkq´En| arising from (2.14), with (2.19)

and (2.22). We obtain that

(2.23) ǫnpkq2 “ Opk2n´1e´ 7k
2

4 q.
We are now in position to apply Kato-Temple’s inequality (see [17, Theorem 2]), which can be

stated as follows.
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Lemma 2.1. Let A be a self-adjoint operator acting on a Hilbert space H. We note a the

quadratic form associated with A. Let ψ P DompAq be H-normalized and put η “ arψs and

ǫ “ }pA ´ ηqψ}H. Let α ă β and λ P R be such that SpAq X pα, βq “ tλu. Assume that

ǫ2 ă pβ ´ ηqpη ´ αq. Then we have

η ´ ǫ2

β ´ η
ă λ ă η ` ǫ2

η ´ α
.

Fix N P N
˚. Since limkÑ`8 λnpkq “ En for all n P N

˚, we may choose kN ą 0 so large that

λnpkq P pEn, En ` 1s for all k ě kN and n P r|1, N ` 1|s. This entails

(2.24) |λnpkq ´ λppkq| ě 1, k ě kN , p ‰ n, n P r|1, N |s.
Moreover, upon eventually enlarging kN , we have

(2.25) |ηnpkq ´ pEn ˘ 1q| ě 1
2
, k ě kN , n P r|1, N |s,

in virtue of (2.22). Thus, applying Lemma 2.1 with η “ ηnpkq, α “ En ´ 1, β “ En ` 1

and ǫ “ ǫnpkq for each n P r|1, N |s and k ě kN , there is necessarily one eigenvalue of hpkq
belonging to the interval pηnpkq ´ 2ǫ2npkq, ηnpkq ` 2ǫ2npkqq, according to (2.25). Since the only

eigenvalue of hpkq, k ě kN , lying in pEn, En ` 1s is λnpkq, we obtain that

(2.26) |λnpkq ´ ηnpkq| ď 2ǫ2npkq, k ě kN , n P r|1, N |s.
Putting this together with (2.22) and (2.23) we end up getting the first part of Theorem 1.4.

2.5. Relation to a semiclassical Schrödinger operator and to the Iwatsuka model. In this

section we exhibit the link between the asymptotics of the eigenpairs of hpkq for large k and the

semi-classical limit of a Schrödinger operator on R with a symmetric double-wells potential.

Let us introduce the operator Hpkq :“ ´B2
x ` p|x| ´ kq2 acting on L2pRq and denote by µnpkq

its n-th eigenvalue. The operator Hpkq is the fiber of the magnetic Laplacian associated with the

Iwatsuka magnetic field Bpx, yq “ signpxq defined on R
2. This Hamiltonian has been studied in

[27, 10]. The eigenfunction associated to µnpkq are even when n is odd and odd when n is even,

therefore the restriction to R` of any eigenfunction associated with µ2npkq is an eigenfunction

for the operator hpkq associated with λnpkq and we have µ2npkq “ λnpkq. In the same way we

prove that µ2n´1pkq is the n-th eigenvalue of the operator hNpkq :“ ´B2
x ` px ´ kq2 acting on

L2pR`q with a Neumann boundary condition.

We refer to [25, Proposition 1.1] or [10] for more details on the link between Hpkq, hpkq and the

operator hNphq.

Using the scaling t “ kx we get that Hpkq is unitary equivalent to the operator

h´1
`
´h2B2

t ` p|t| ´ 1q2
˘
, t P R

where we have set h “ k´2. Therefore when k gets large we reduce the problem to the under-

standing of the eigenvalues of the Schrödinger operator ´h2B2
t ` p|t| ´ 1q2 in the semi-classical

limit h Ó 0. The asymptotic expansion of the eigenvalues of Schrödinger operators is well-known

when the potential has a unique non-degenerated minimum and uses the “harmonic approxima-

tion”, see for example [29]. However in our case the potential p|t| ´ 1q2 is even and have a

double-wells and one may expect tunneling effect between the two wells t “ 1 and t “ ´1.
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More precisely the eigenvalues clusters into pairs exponentially close to the eigenvalue associ-

ated to the one-wells problem that are the Landau levels (see [16], [7] or [18]).

The asymptotic behavior of the gap between eigenvalues in such a problem is given in [18] under

the hypothesis that the potential is C8pRq. Helffer and Sjöstrand use a BKW expansion of the

eigenfunctions far from the wells. The key point is a pointwise estimate of an interaction term

involving among others the high order derivatives of the potential at 0. Here it is not possible

to use their result since the potential p|t| ´ 1q2 is not C1 at 0. Our proof uses the fact that the

potential is piecewise analytic and the knowledge of the solutions of the ODE associated to the

eigenvalue problem.

Note that mimicking the above proof it is possible to get the asymptotic expansion of the eigen-

values of the operator hNpkq for large k as in [25, Section 1.4].

3. ASYMPTOTICS OF THE DERIVATIVE OF THE BAND FUNCTIONS

In this section, we prove the asymptotic expansion of λ1
npkq, the second part of Theorem 1.4.

3.1. Hadamard formula. We turn now to establishing Part ii) of Theorem 1.4. To this pur-

pose we introduce a sequence tunp¨, kq, n P N
˚u of L2pR˚

`q-normalized eigenfunctions of hpkq,

verifying "
´u2

npx, kq ` px´ kq2unpx, kq “ λnpkqunpx, kq, x ą 0

unp0, kq “ 0.

Since the operator hpkq is self-adjoint with real coefficients we choose all the unp¨, kq to be real.

Due to the simplicity of λnpkq, each unp., kq is thus uniquely defined, up to the multiplicative

constant ˘1. We note Πnpkq : ϕ ÞÑ xϕp¨q, unp¨, kqyL2pR˚
`qunp¨, kq the spectral projection of hpkq

associated with λnpkq and call Fnpkq the eigenspace spanned by unp¨, kq.

The proof of the asymptotic expansion of λ1
n stated in Theorem 1.4 relies on the Hadamard

formula (see [8, Section VI] or [23]):

(3.1) λ1
npkq “ ´u1

np0, kq2, k P R,

and thus requires that u1
np¨, kq be appropriately estimated at x “ 0. We proceed as in the deriva-

tion of [18, Proposition 2.5].

3.2. H1-estimate of the eigenfunctions. The method boils down to the fact that the operator

hpkq ´ λnpkq is a boundedly invertible on FnpkqK. Hence phpkq ´ λnpkqq´1 is a bounded iso-

morphism from FnpkqK onto Domphpkqq X FnpkqK and there exists kn ą 0 such that we have

}phpkq ´ λnpkqq´1}LpFnpkqKq ď 1, k ě kn,

in virtue of (2.24). From this and the identity

phpkq ´ λnpkqq pfnp¨, kq ´ Πnpkqfnp¨, kqq “ rnp¨, kq ` pEn ´ λnpkqqfnp¨, kq,
arising from (2.14), it then follows that

(3.2) }fnp¨, kq ´ Πnpkqfnp¨, kq}L2pR˚
`q ď }rnp¨, kq}L2pR˚

`q ` |En ´ λnpkq|, k ě kn.
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Moreover we have

qkrfnp¨, kq ´ Πnpkqfnp¨, kqs
“ pqk ´ λnpkqqrfnp¨, kq ´ Πnpkqfnp¨, kqs ` λnpkq}fnp¨, kq ´ Πnpkqfnp¨, kq}2L2pR˚

`q

“ pqk ´ λnpkqqrfnp¨, kqs ` λnpkq}fnp¨, kq ´ Πnpkqfnp¨, kq}2L2pR˚
`q

“ ηnpkq ´ λnpkq ` λnpkq}fnp¨, kq ´ Πnpkqfnp¨, kq}2L2pR˚
`q,

from (2.13), hence

(3.3) qkrfnp¨, kq ´ Πnfnp¨, kqs1{2 “ O
`
ǫnpkq ` }rnp¨, kq}L2pR˚

`q ` |En ´ λnpkq|
˘
,

according to (2.26) and (3.2). Since Domphpkqq (endowed with the natural norm qkr¨s1{2) is

continuously embedded in H1pR˚
`q, we may substitute }fnp¨, kq ´ Πnpkqfnp¨, kq}H1pR˚

`q for

qkrfnp¨, kq ´ Πnfnp¨, kqs1{2 in the lhs of (3.3). Thus we obtain

(3.4) }fnp¨, kq ´ Πnpkqfnp¨, kq}H1pR˚
`q “ Opkn´ 1

2 e´ 7k
2

8 q,

with the help of (2.19) and Part i) in Theorem 1.4. As a consequence we have

(3.5) |1 ´ }Πnpkqfnp¨, kq}L2pR˚
`q| ď }fnp¨, kq ´ Πnpkqfnp¨, kq}L2pR˚

`q “ Opkn´ 1

2 e´ 7k
2

8 q,

whence

(3.6)

›››››fnp¨, kq ´ Πnpkqfnp¨, kq
}Πnpkqfnp¨, kq}L2pR˚

`q

›››››
H1pR˚

`q

“ Opkn´ 1

2 e´ 7k
2

8 q.

Bearing in mind that

(3.7) unp¨, kq “ Πnpkqfnp¨, kq
}Πnpkqfnp¨, kq}L2pR˚

`q

,

upon eventually substituting p´unp¨, kqq for unp¨, kq, it follows from (3.6) that the quasi-mode

fnp¨, kq is close to the eigenfunction unp¨, kq in the H1-norm sense, provided k is large enough.

We summarize these results in the following propostion.

Proposition 3.1. For large k, the eigenfunction unpx, kq is well approximated by the quasi-mode

fnpx, kq in the sense that.

}fnp¨, kq ´ unp¨, kq}H1pR˚
`q “ Opkn´ 1

2 e´ 7k
2

8 q.

In terms of the quadratic form qk defined in (2.1), it follows that

(3.8) qkrunp¨, kq ´ fnp¨, kqs “ Opk2n´1e´ 7k
2

4 q.

The proof of the second part of the proposition follows from (2.19), the first part of Theorem 1.4,

(3.3), (3.5) and (3.7).
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3.3. H2-estimate of the eigenfunctions. The H1-estimate of Proposition 3.1 implies uniform

pointwise approximation of unpx, kq by fnpx, kq. The Hadamard formula (3.1) requires a point-

wise estimate of u1
np¨, kq. Consequently, we need to estimate unp¨, kq in the H2-topology. Actu-

ally, unp¨, kq being an eigenfunction of hpkq, it is enough to estimate the H1-norm of x2unp¨, kq.

The same problem was investigated in [4, Section 5] in the context of a bounded interval so the

authors could take advantage of the fact that the multiplier by x2 is a bounded operator. Although

this is not the case in the framework of the present paper this slight technical issue can be over-

comed through elementary commutator computations performed in the following subsection.

We start with the following straightforward inequality

}u2
np¨, kq ´ f 2

np¨, kq}L2pR˚
`q ď }hpkqrunp¨, kq ´ fnp¨, kqs}L2pR˚

`q

`}px´ kq2runp¨, kq ´ fnp¨, kqs}L2pR˚
`q.(3.9)

Recall from (2.14) that rnpx, kq “ phpkq ´ Enqfnpx, kq. Then, since

hpkqrunp¨, kq ´ fnp¨, kqs “ λnpkqunp¨, kq ´ Enfnp¨, kq ` rnp¨, kq,
the first term on the right hand side of (3.9) is bounded above by

}hpkqrunp¨, kq´fnp¨, kqs}L2pR˚
`q ď |λnpkq´En|`En}unp¨, kq´fnp¨, kq}L2pR˚

`q `}rnp¨, kq}L2pR˚
`q.

The first part of Theorem 1.4, (2.19) and (3.7) then yield

(3.10) }hpkqrunp¨, kq ´ fnp¨, kqs}L2pR˚
`q “ Opkn´ 1

2 e´ 7k
2

8 q.

To treat the second term on the right in (3.9), we introduce

vnpx, kq :“ px ´ kqunpx, kq and gnpx, kq :“ px ´ kqfnpx, kq,
and notice that gnp¨, kq belongs to Domphpkqq. Similarly, taking into account that unp¨, kq decays

super-exponentially fast for x sufficiently large, since limxÑ`8 V px, kq “ `8, we see that

vnp¨, kq belongs to Domphpkqq as well. Therefore, we have

hpkq pvnpx, kq ´ gnpx, kqq “ λnpkqvnpx, kq´Engnpx, kq´2pu1
npx, kq´f 1

npx, kqq`px´kqrnpx, kq,
by straightforward computations, hence

(3.11) qkrvnp¨, kq ´ gnp¨, kqs ď }rrnp¨, kq}L2pR˚
`q}vnp¨, kq ´ gnp¨, kq}L2pR˚

`q,

where we have set

(3.12) rrnpx, kq :“ λnpkqvnpx, kq´Engnpx, kq´2pu1
npx, kq´f 1

npx, kqq`px´kqrnpx, kq, x ą 0.

Evidently,

(3.13) }vnp¨, kq ´ gnp¨, kq}2L2pR˚
`q ď qkrunp¨, kq ´ fnp¨, kqs,

so, by (3.8), we are left with the task of estimating the L2-norm of rrnp¨, kq. In light of (3.12)-

(3.13) and the basic estimate }u1
np¨, kq ´ f 1

np¨, kq}2
L2pR˚

`q
ď qkrunp¨, kq ´ fnp¨, kqs, we find that

}rrnp¨, kq}L2pR˚
`q ď |λnpkq ´ En|}gnp¨, kq}L2pR˚

`q ` p2 ` λnpkqqqkrunp¨, kq ´ fnp¨, kqs1{2

`}px´ kqrnp¨, kq}L2pR˚
`q.(3.14)
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Next, we pick kn ą 0 so large that ηnpkq “ qkrfnp¨, kqs ď En ` 1 for all k ě kn, according to

(2.22), so we have

(3.15) }gnp¨, kq}L2pR˚
`q ď qkrfnp¨, kqs ď En ` 1, k ě kn.

Bearing in mind that λnpkq ď λnp0q ď 4n ´ 1 for k ě 0, we deduce from (3.14)-(3.15) that

(3.16)

}rrnp¨, kq}L2pR˚
`q ď cn

`
|λnpkq ´ En| ` qkrunp¨, kq ´ fnp¨, kqs1{2

˘
` }px´ kqrnp¨, kq}L2pR˚

`q,

for all k ě kn, where cn is some positive constant depending only on n. Last, recalling (2.17)

and (2.19), we get that

}px´ kqrnp¨, kq}L2pR˚
`q “ Opkn` 1

2 e´ 7k
2

8 q.
From this, Part i) in Theorem 1.4, (3.8) and (3.16) then it follows that

(3.17) }rrnp¨, kq}L2pR˚
`q “ Opkn` 1

2 e´ 7k
2

8 q.

Now, putting (3.8), (3.11), (3.13) and (3.17) together, we obtain

(3.18) qkrvnp¨, kq ´ gnp¨, kqs “ Opk2ne´ 7k
2

4 q.
Further, since }px´kq2unp¨, kq´px´kq2fnp¨, kq}2

L2pR˚
`q

ď qkrvnp¨, kq´gnp¨, kqs, we deduce from

(3.9), (3.10) and (3.18) that }f 2
np¨, kq ´ u2

np¨, kq}L2pR˚
`q “ Opkne´ 7k

2

8 q. We obtain the following

proposition.

Proposition 3.2. For all n P N
˚, there exists kn P R and Cn ą 0 such that we have

(3.19) @k ą kn, }fnp¨, kq ´ unp¨, kq}H2pR˚
`q ď Cnk

ne´ 7k
2

8 .

Since H2pR˚
`q is continuously embedded in W 1,8pR˚

`q, we deduce for k ě kn:

(3.20) }f 1
np¨, kq ´ u1

np¨, kq}L8pR˚
`q ď Cnk

ne´ 7k
2

8

and

(3.21) }fnp¨, kq ´ unp¨, kq}L8pR˚
`q ď Cnk

ne´ 7k
2

8 .

These results guarantee that any pointwise estimate of u1
np¨, kq on R` is uniformly well approx-

imated by the one of the quasi-mode f 1
np¨, kq, provided k is large enough. More precisely, we

have

(3.22) u1
np0, kq “ f 1

np0, kq ` Opkne´ 7k
2

8 q.
Finally, plugging (2.21) into (3.22) and then applying (3.1), we obtain the second part of Theorem

1.4.

Remark 3.3. Higher order expansions of λnpkq and λ1
npkq may be derived from sharper asymp-

totics of the Hermite functions than (2.4)-(2.5) (see [25, Section 1.4]).
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4. CHARACTERIZATION OF BULK STATES

This section is devoted to characterizing functions in the bulk space Xb
n,δ as δ Ó 0. This is

achieved by means of the asymptotic analysis carried out in the previous sections.

Remember from Subsection 1.1 that ϕ P Xb
n,δ decomposes as in (1.14), that knpδq is defined

by (1.13), that ϕn P L2pknppδq,`8qq and that the current carried by ϕ is given by (1.16). The

asymptotic behavior of the quasi-momentum knpδq when δ Ó 0 is derived in Section 4.1. Section

4.2 and 4.3 are devoted to the proof of Theorems 1.6 and 1.8.

4.1. Estimates on quasi-momenta associated with bulk components. We already know that

knpδq goes to `8 as δ Ó 0. More precisely:

Lemma 4.1. We have the following asymptotics as δ Ó 0:

(4.1) knpδq “
a

| log δ| ` 2n´ 1

4

˜
log | log δ|a

| log δ|

¸
` o

˜
log | log δ|a

| log δ|

¸
.

Proof. Since limδÓ0 knpδq “ `8 by (1.4), we deduce from the first part of Theorem 1.4 that

γ2n2
2n´1knpδq2n´1e´knpδq2

`
1 ` Opknpδq´2q

˘
“ δ.

Set rγn :“ logpγn22n´1q. Taking the logarithm of both sides of this identity we find

(4.2) rγn ` p2n´ 1q logpknpδqq ´ knpδq2 “ log δ ` Opknpδq´2q,
showing that

(4.3) knpδq „
δÓ0

a
| log δ|.

Plugging this into (4.2), we get

k2npδq “ ´ log δ ` p2n´ 1q log
´a

| log δ| ` op
a

| log δ|q
¯

` rγn ` Opknpδq´2q

“ ´ log δ ` 2n´ 1

2
log p´ log δqq ` rγn ` op1q,

which entails (4.1). �

Notice that the first-order term in the above asymptotic expansion of knpδq as δ Ó 0, is indepen-

dent of n.

4.2. Asymptotic velocity and proof of Theorem 1.6. In light of (4.1) we may estimate the

asymptotics of λ1
npkpδqq as δ Ó 0. We combine both parts of Theorem 1.4, getting,

λ1
npkq

λnpkq ´ En

“ ´2k
`
1 ` Opk´2q

˘
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and then substitute knpδq (resp., the r.h.s. of (4.1)) for k in the lhs (resp., the r.h.s.) of this identity.

Bearing in mind that λnpknpδqq “ En ` δ, we obtain

λ1
npknpδqq “ ´2δ

a
| log δ| ´ 2n´ 1

2

˜
δ log | log δ|a

| log δ|

¸
` o

˜
δ log | log δ|a

| log δ|

¸
.

Similarly to (4.1) it turns out that the first order term in this expansion does not depend on the

energy level n.

Let us now upper bound p´λ1
npkqq in the interval pknpδq,`8q with the following:

Lemma 4.2. Let n P N
˚. Then there are two constants δn ą 0 and µn ą 0, such that the estimate

0 ď ´λ1
npkq ď 2δ

a
| log δ| ` µn

δ log | log δ|a
| log δ|

,

holds for all δ P p0, δnq and all k ě knpδq.

Proof. From the second part of Theorem 1.4, we may find two constants k̃n ą 0 and cn ą 0,

depending only on n, such that we have

(4.4) @k ě k̃n, 0 ď ´λ1
npkq ď 22nγ2nk

2ne´k2
´
1 ` cn

k2

¯
.

With reference to (4.3), we choose δn ą 0 so small that knpδnq ě k̃n. We get

(4.5) @δ P p0, δnq, @k ě knpδq, 0 ď ´λ1
npkq ď 22nγ2nk

2ne´k2
´
1 ` cn

k2

¯
,

from (4.4). Further, k ÞÑ 22nγ2nk
2ne´k2p1 ` cn{k2q being a decreasing function on r?n,`8q, it

follows from (4.5), upon eventually shortening δn so that knpδnq ě ?
n, that

(4.6) @δ P p0, δnq, @k ě knpδq, 0 ď ´λ1
npkq ď 22nγ2nknpδq2ne´knpδq2

ˆ
1 ` cn

knpδq2
˙
.

Due to the first part of Theorem 1.4 the r.h.s. of (4.6) is upper bounded by 2knpδqpλnpknpδqq ´
Enqp1 ` c̃n{knpδq2q for some constant c̃n ą 0 depending only on n. The desired result follows

from this, (4.1) and the identity λnpknpδqq ´ En “ δ. �

Now Theorem 1.6 follows readily from (1.15), (1.16) and Lemma 4.2.

4.3. Proof of Theorem 1.8. For ǫ P p0, 1q fixed, put anpδq :“ p1 ´ ǫqknpδq, where knpδq is de-

fined in (1.13). Let ϕ P Xb
n,δ be aL2-normalized state and define Enpδq :“

şanpδq

0
}ϕpx, ¨q}2

L2pRqdx.

Then we have

(4.7)

ż p1´ǫq
?

| log δ|

x“0

ż

R

|ϕpx, yq|2dxdy ď Enpδq,

from (4.1), provided δ is small enough. In view of majorizing Enpδq, we recall from (1.14) that

}ϕpx, ¨q}L2pRq “ }ϕ̂px, ¨q}L2pRq “ }ϕnunpx, ¨q}L2pknpδq,`8q,
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so we get that

(4.8) Enpδq “
ż 8

knpδq

|ϕnpkq|2}unp¨, kq}2L2p0,anpδqqdk.

Let fnp¨, kq be the quasi-mode of hpkq introduced in Section 2.2. As

}unp¨, kq}2L2p0,anpδqq ď 2
´

}unp¨, kq ´ fnp¨, kq}2L2pR˚
`q ` }fnp¨, kq}2L2p0,anpδqq

¯
,

we deduce from (1.15), (4.8) and Proposition 3.1 that for every δ ą 0 small enough, we have

(4.9) Enpδq ď Cnknpδq2n´1e´7knpδq2{4}ϕ}2L2pΩq ` 2Fnpδq,

with Fnpδq :“
ş`8

knpδq
|ϕnpkq|2}fnp¨, kq}2

L2p0,anpδqqdk. Here and henceforth, Cn is some positive

constant, depending only on n. In virtue of (4.7) and (4.9), we are thus left with the task of

estimating Fnpδq from above. To do that we use the explicit form (2.9) of the quasi-mode fn,

getting

(4.10) Fnpδq ď 2pψnpδq ` φnpδqq,
with

ψnpδq :“
ż 8

knpδq

|αpkq|2|ϕnpkq|2}Ψnp¨ ´ kq}2L2p0,anpδqqdk(4.11)

φnpδq :“
ż 8

knpδq

|βpkq|2|ϕnpkq|2}Φnp¨ ´ kq}2L2p0,anpδqqdk.(4.12)

Bearing in mind that knpδq tends to `8 as δ Ó 0, we treat each of the two terms in the r.h.s. of

(4.10) separately.

Performing the change of variable x̃ “ x´k in the r.h.s. of (4.11) and bearing in mind that knpδq
tends to `8 as δ Ó 0, we deduce from (2.11) that

ψnpδq “
ż `8

k“knpδq

ż ´k`p1´ǫqknpδq

x̃“´k

|αpkq|2|ϕnpkq|2|Ψnpx̃q|2dx̃dk

ď Cn

ż `8

k“knpδq

ż ´k`p1´ǫqknpδq

x̃“´k

|ϕnpkq|2|Ψnpx̃q|2dx̃dk

ď Cn

ż ´ǫknpδq

x̃“´8

ż ´x̃`p1´ǫqknpδq

k“maxpknpδq,´x̃q

|ϕnpkq|2|Ψnpx̃q|2dkdx̃,(4.13)

for δ sufficiently small. Next, recalling the normalization condition (1.15), giving
ş
kPR

|ϕnpkq|2dk “
}ϕ}2

L2pΩq “ 1, and taking δ ą 0 so small that ǫknpδq is sufficiently large in order to apply (2.4),

we derive from (4.13) that

ψnpδq ď Cn

ż ´ǫknpδq

x̃“´8

x̃2ne´x̃2

dx̃.

Further, taking into account that
şL

´8
x̃me´x̃2

dx̃ „ ´Lm´1

2
e´L2

as L Ñ ´8 for any m P N, we

may thus find δnpǫq ą 0 so that we have

(4.14) @δ P p0, δnpǫqq, ψnpδq ď Cnǫ
2n´1knpδq2n´1e´ǫ2knpδq2 .
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Similarly, upon substituting φn, (2.12) and (4.12) for ψn, (2.11) and (4.11), respectively, in the

above reasoning, we find out for δ sufficiently small that

(4.15) φnpδq ď Cn

ż ´ǫknpδq

x̃“´8

ż ´x̃`p1´ǫqknpδq

k“maxpknpδq,´x̃q

k4n´2e´2k2|ϕnpkq|2|Φnpx̃q|2dkdx̃.

Thus, taking δ ą 0 so small that k ÞÑ k4n´2e´2k2 is decreasing for k ě knpδq, we deduce from

(4.15) with the help of (1.15), that

φnpδq ď Cn

˜ż ´knpδq

x̃“´8

x̃4n´2e´2x̃2 |Φnpx̃q|2dx̃ `
ż ´ǫknpδq

x̃“´knpδq

knpδq4n´2e´2knpδq2 |Φnpx̃q|2dx̃
¸

Applying (2.7) we see that there exists δnpǫq ą 0 so small that we have

@δ P p0, δnpǫqq, φnpδq ď Cnknpδq2n´3e´knpδq2 .

Putting this together with (4.9)-(4.10) and (4.14) we end up getting δnpǫq ą 0 such that

@δ P p0, δnpǫqq, Enpδq ď Cnǫ
2n´1knpδq2n´1e´ǫ2knpδq2 .

Now, Theorem 1.8 follows from this, (4.1) and (4.7).
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[13] J. Fröhlich, G. M. Graf, and J. Walcher. On the extended nature of edge states of quantum Hall Hamiltonians.
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