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CHARACTERIZATION OF BULK STATES IN ONE-EDGE QUANTUM HALL
SYSTEMS

PETER D. HISLOP, NICOLAS POPOFF, AND ERIC SOCCORSI

ABSTRACT. We study magnetic quantum Hall systems in a half-plane with Dirichlet boundary
conditions along the edge. Much work has been done on the analysis of the currents associated
with states whose energy is located between Landau levels. These edge states are localized near
the boundary and they carry a non-zero current. In this article, we study the behavior of states
with energy close to a Landau level that are referred to as bulk states in the physics literature.
The magnetic Schrödinger operator is invariant with respect to translations in the direction of the
edge and is a direct integral of operators indexed by a real wave number. We analyse the fiber
operators and prove new asymptotics on the band functions and their first derivative as the wave
number goes to infinity. We apply these results to prove that the current carried by a bulk state
is small compared to the current carried by an edge state. We also prove that the bulk states are
exponentially small near the edge.
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1. INTRODUCTION

Quantum Hall systems consist of independent electrons constrained to open, unbounded regions
Ω in the plane R2 subject to a transverse magnetic field Bpx, yq � p0, 0, bpx, yqq � ∇ � a, and
possibly an electric potential V . The quantum Hamiltonian is Hpa, V q � p�i∇�aq2�V acting
on a dense domain in L2pΩq with self-adjoint boundary conditions. The best known model is
the Landau model for which Ω � R2 and the magnetic field is a constant bpx, yq � b. When
V � 0, the classical electron moves in a closed circular orbit of radius the size of b�1{2. The
spectrum of Hpa, 0q is pure point with infinitely degenerate eigenvalues at the Landau levels
Enb, for n � 1, 2, . . ., where En � 2n� 1.

The restriction of the Landau model to the half-plane x ¡ 0, with various boundary conditions
along x � 0, has profound consequences for the spectral and transport properties of the system.
From the classical viewpoint, the edge at x � 0 reflects the classical orbits forming a new current
along the edge. This classical current provides the heuristic insight for quantum edge currents.
Edge states for quantum Hall systems restrained to a half-plane R�

� � R :� tpx, yq | x ¡ 0u
with Dirichlet or other boundary conditions at x � 0 have been analyzed by several authors
[7, 11, 16]. These states ϕ are constructed from wave packets with energy concentration between
two consecutive Landau levels. The edge current carried by these states is bounded below by
Opb1{2q and it is stable under a class of electric and magnetic perturbations of the Hamiltonian.
Furthermore, these states are strongly localized near x � 0.

In contrast to edge states, bulk states are built from wave packets with at least one Landau level
in their energy interval. This article is devoted to the mathematical study of transport and lo-
calization properties of bulk states. More specifically, we prove that the strength of the current
carried by a bulk state is even less, and that it is even more distant from the edge, since its energy
is concentrated in the vicinity of the Landau levels. This result is coherent with the classical
picture where the orbit of particles localized away from the edge are closed and bounded.
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Due to the translational invariance of the system in the y direction, the magnetic Hamiltonian
admits a fiber decomposition and H is unitarily equivalent to the multiplication operator by a
family of real analytic functions either called dispersion curves or band functions. The presence
of an edge at x � 0 results in non constant dispersion curves, each of them being a decreasing
function in R. Namely, for all n ¥ 1, the n-th band function decreases from infinity to En,
revealing that En is a threshold in the spectrum of H . Moreover, the transport properties of H
are determined from the behavior of the velocity operator, defined as the multiplication operator
by the family formed by the first derivative of the band functions. This can be seen from the fact
that any quantum state with energy concentration between two consecutive Landau levels carries
a non trivial current since the velocity operator is lower bounded by some positive constant in the
corresponding energy interval I . This condition guarantees in addition the existence of a Mourre
inequality for H in I (see [12]). Such an estimate does not hold anymore if, unlike this, the
infimum of the velocity of the band function is zero, a situation reflecting the occurrence of at
least one Landau level in I . Moreover, for all n ¥ 1, the n-th band function approaches En as the
quasi-momentum goes to infinity, but it does not reach its limits. Hence, none of thresholds of
this model is attained, and the set of quasi-momenta associated with energy levels concentrated
in the vicinity of any threshold is subsequently unbounded. This has several interesting transport
and dynamical consequences, such as the the delocalization of the corresponding quantum states
away from the edge x � 0 following from the phase space analysis carried out in this article.

Notice that the usual methods of harmonic approximation ([]), requiring that thresholds be critical
points of the dispersion curves, do not apply to this peculiar framework, and that the same is
true for several magnetic models examined in [3, 18, 7, 23, 10]. Nevertheless, there is, to our
knowledge, only a very small number of articles available in the mathematical literature, studying
magnetic quantum Hamiltonians at energy levels in the vicinity of their non-attained thresholds:
we refer to [4] for the same model (with either Dirichlet or Neumann boundary conditions) as
the one investigated in the present paper and to [5] for some 3-dimensional quantum system with
variable magnetic field. In these two papers, the number of eigenvalues induced by some suitable
electric perturbation, which accumulate below the first threshold of the system, is estimated.

SS:HPmodel

1.1. Half-plane quantum Hall Hamiltonian.

 Fiber decomposition and band functions. Put Ω :� R�
� � R � R2 and let the potential

apx, yq :� p0,�bxq generate a constant magnetic field with strength b ¡ 0, orthogonal to Ω.
We consider the quantum Hamiltonian in Ω with magnetic potential a and Dirichlet boundary
conditions at x � 0, i.e. the self-adjoint operator acting on the dense domain C8

0 pΩq as Hpbq :�
p�i∇� aq2, and then closed in L2pΩq. Since VbHpbqV�

b � bHp1q, where the transform

pVbψqpx, yq :� b�1{4ψp x
b1{2

, y
b1{2

q
is unitary in L2pΩq, we may actually chose b � 1 without limiting the generality of the foregoing.
Thus, writing H instead of Hp1q for notational simplicity, we focus our attention on the operator

H :� �B2
x � p�iBy � xq2,

in the remaining part of this text.
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Let Fy be the partial Fourier transform with respect to y, i.e.

ϕ̂px, kq � pFyϕqpx, kq :� 1?
2π

»
R
e�ikyϕpx, yqdy, ϕ P L2pΩq.

Due to the translational invariance of the operatorH in the y-direction, we have the direct integral
decomposition

fiber-decfiber-dec (1.1) FyHF�
y �

» `

R
hpkqdk,

where the 1D operator

D:ghkD:ghk (1.2) hpkq :� �B2
x � V px, kq, V px, kq :� px� kq2, x ¡ 0, k P R,

acts in L2pR�q with Dirichlet boundary conditions at x � 0. The full definition of the operator
hpkq, k P R, can be found in Section 2. For all k P R fixed, V p., kq is unbounded as x goes to
infinity, so hpkq has a compact resolvent. Let tλnpkq, n P N�u denote the eigenvalues, arranged
in non-decreasing order, of hpkq. Since all these eigenvalues λnpkq, n P N�, are simple then
each k ÞÑ λnpkq is a real analytic function in R. The dispersion curves λn, n P N�, have been
extensively studied in several articles (see e.g. [7]). They are decreasing functions of k P R,
obeying

E:limbandE:limband (1.3) lim
kÑ�8

λnpkq � �8 and lim
kÑ�8

λnpkq � En,

for all n P N�, where En :� 2n� 1 is the n-th Landau level.

R:compacite Remark 1.1. For further reference, we notice from (1.3) the following useful property:

lim
nÑ�8

inf
kPR

λnpkq � �8.

As a consequence we have SpHq � Yn¥1λnpRq � r1,�8q. The Landau levels En, n P N�,
are thresholds in the spectrum of H , and they play a major role in the analysis carried out in the
remaining part of this paper.

 Fourier decomposition. For n P N� and k P R, we consider a normalized eigenfunction
unp�, kq of hpkq associated with λnpkq. It is well known that unp�, kq depends analytically on k.
We define the n-th generalized Fourier coefficient of ϕ P L2pΩq by

def-phindef-phin (1.4) ϕnpkq :� xFyϕp�, kq, unp�, kqyL2pR�q �
1?
2π

»
R�
ϕ̂px, kqunpx, kqdx,

and denote by πn the orthogonal projection associated with the n-th harmonic:

def-pindef-pin (1.5) πnpϕqpx, yq :� 1?
2π

»
R
eiykϕnpkqunpx, kqdk, px, yq P Ω.

In light of (1.1) we have for all ϕ P L2pΩq:
eq:band-state1eq:band-state1 (1.6) ϕ �

¸
n¥1

πnpϕq,
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and the Parseval theorem yields

eq:l2-prop1eq:l2-prop1 (1.7) }ϕ}2
L2pΩq �

¸
n¥1

}ϕn}2
L2pRq.

For any non-empty interval I � R, we denote by PI the spectral projection of H associated with
I . We say that the energy of a quantum state ϕ P L2pΩq is concentrated in I if PIϕ � ϕ. With
reference to (1.1) and (1.4) this condition may be equivalently reformulated as

E:suppalphanE:suppalphan (1.8) @n P N�, supppϕnq � λ�1
n pIq .

1.2. Edge versus bulk.

 Current operator and link with the velocity. Let y denote the multiplier by the coordinate y in
L2pΩq. The time evolution of y is the Heisenberg variable yptq :� e�itHyeitH , for all t P R. Its
time derivative is the velocity and is given by Jyptq :� dyptq

dt
� �irH, yptqs � �ie�itHrH, yseitH .

We define the current operator as the self adjoint operator

Jy :� �irH, ys � p�iBy � xq,
acting on DompHq X Dompyq. The current carried by a state ϕ is xJyϕ, ϕyL2pΩq.

Well-known computations based on the Feynman-Hellman formula (see also [7, 18, 9] for similar
formulas involving the Iwatsuka models) yield

E:JphiE:Jphi (1.9) @ϕ P L2pΩq, xJyπnpϕq, πnpϕqyL2pΩq �
»
R
λ1npkq|ϕnpkq|2dk,

linking the velocity operator, defined as the multiplication operator in
À

nPN� L
2pRq by the fam-

ily of functions tλ1n, n P N�u, to the current operator.

R:nooverloap Remark 1.2. It is easy to see that (1.9) extends to any quantum state ϕ P L2pΩq satisfying the
non-overlapping condition

@m � n, supppϕmq X supppϕnq � H,
as

xJyϕ, ϕyL2pΩq �
¸
n¥1

»
R
λ1npkq|ϕnpkq|2dk.

 Edge states and bulk spaces. For any bounded subinterval I � SpHq it is physically relevant
to estimate the current carried by a state with energy concentration in I and to describe the
support of such a state.

Let ϕ P RanPI be decomposed in accordance with (1.4)–(1.6). Since I is bounded by as-
sumption, then the set tn P N�, I X λnpRq � Hu is finite by (1.1), so the same is true for
tn P N�, πnpϕq � 0u. As a consequence the sum in the rhs of (1.6) is finite. Notice that this fact
is not a generic property of fiberered magnetic Hamiltonians (see e. g. [23, 5]).

For all n P N� put
Xn,I :� RanPI X Ranπn,
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so we have RanPI �
À

n¥1Xn,I . We shall now describe the transport and localization proper-
ties of functions in Xn,I . We shall see that, depending on whether En lies inside or outside I ,
functions in Xn,I may exhibit radically different behaviors.

Let us first recall the results of [7], corresponding to the case En R I . Put c�pn, Iq :� infI |λ1n �
λ�1
n | and c�pn, Iq :� supI |λ1n � λ�1

n |. Since λn is a decreasing function, (1.3) yields

@k P λ�1
n pIq, 0   c�pn, Iq ¤ |λ1npkq| ¤ c�pn, Iq   �8.

As a consequence, the spectrum of the current operator restricted toXn,I is r�c�pn, Iq,�c�pn, Iqs
by (1.8)-(1.9). This entails that any state ψ P Xn,I carries a non-trivial current:

eq:currenteq:current (1.10) @ψ P Xn,I , |xJyψ, ψyL2pΩq| ¥ c�pn, Iq}ψ}2.

Moreover, all quantum states ψ P Xn,I are mainly supported in a strip S of width Op1q along the
edge.

Assume that there is no threshold in I , that is tEn, n P N�u X I � H, and pick ϕ P RanPI .
Since tn P N�, πnpϕq � 0u is finite and πnpϕq P Xn,I is mainly supported in S for each n P N�,
then the same is true for ϕ � °

nPN� πnpϕq. This explains why it is referred to ϕ as an edge state.
Moreover, based on Remark 1.2, [7][Proposition 2.1] entails upon eventually shortening I , that
such a state ϕ carries a non void edge current:

DcpIq ¡ 0, @ϕ P RanPI , |xJyϕ, ϕyL2pΩq| ¥ cpIq}ϕ}2.

Let us now examine the case where En P I for some n P N�. For the sake of clarity we assume
in addition that there is no other threshold than En lying in I , i.e. tm P N�, Em P Iu � tnu. It
is apparent that the general case where several thresholds are lying in I may be easily deduced
from the single threshold situation by superposition principle.

Put I�n :� p�8, Enq and I�n � I X pEn,�8q. Since λnpRq X I�n � H, we have πn � PI�n � 0,
whence Xn,I � Xn,I�n

. Thus it suffices to consider an energy interval I of the form

D:IdeltaD:Idelta (1.11) Inpδq :� pEn, En � δq, δ P p0, 2q.
For further reference we define knpδq as the unique real number satisfying

D:kdeltanD:kdeltan (1.12) λnpknpδqq � En � δ.

Its existence and uniqueness is guaranteed by (1.3) and the monotonicity of the continuous func-
tion k ÞÑ λnpkq.
For all m � n, it is clear from the above analysis that Xm,Inpδq is made entirely of edge states.

However, this is not true for Xn,Inpδq. Indeed, since infInpδq |λ1n � λ�1
n | � 0, the bottom of the

spectrum of the current operator restricted to Xn,Inpδq is zero and c�pn, Inpδqq � 0, so that (1.10)
does not hold anymore for all ψ P Xn,Inpδq. This indicates the presence of quantum states in
Xn,Inpδq carrying an arbitrarily small edge current. It turns out that such a state has part of its
support localized away from the edge (a fact that will be rigorously established in this paper)
and it is called a bulk state in physical literature. We thus refer to Xn,δ as a bulk space and
subsequently write Xb

n,δ instead of Xn,Inpδq.
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Remark 1.3. It is worth to mention that there are actual edge states lying in Xb
n,δ. With refer-

ence to (1.4)–(1.6), this can be seen upon noticing that any ϕ � πnpϕq P Xb
n,δ such that ϕn is

compactly supported in pknpδq,�8q, satisfies (1.10).

Let us now stress out that any ϕ P Xb
n,δ expressed as

E:decomposepurebulkE:decomposepurebulk (1.13) ϕpx, yq �
» 8

knpδq
eiykϕnpkqunpx, kqdk,

where ϕn P L2ppknpδq,�8qq is defined by (1.4) and satisfies

E:normealphanE:normealphan (1.14) }ϕ}2
L2pΩq �

» �8

knpδq
|ϕnpkq|2dk,

according to (1.7). Further, recalling (1.9), the current carried by ϕ P Xn,δ has the following
expression:

E:currentbulkE:currentbulk (1.15) xJyϕ, ϕyL2pΩq �
» �8

knpδq
λ1npkq|ϕnpkq|2dk.

 Main goal. In view of exhibiting pure bulk behavior, we investigate Xn,δ as δ goes to 0. We
firstly aim to compute a suitable upper bound on the current carried by quantum states lying in
Xn,δ, as δ Ó 0. Secondly we characterize the area where such states are supported.

Since knpδq tends to 8 as δ Ó 0 from (1.3), it is apparent that the analyis of (1.15) requires
accurate asymptotic expansions of λnpkq and λ1npkq as k goes to infinity.

Actually, it is well known from [7] or [10, Section 2] that each λn, for n P N�, decreases super-
exponentially fast to En as k goes to �8:

@α P p0, 1q, Dpkn,α, Cn,αq P R�
� � R�

�, k ¥ kn,α ùñ |λnpkq � En| ¤ Cn,αe
�αk2{2.

A similar upper bound on |λ1n| can be found in [7], but it turns out that these estimates are not as
sharp as the one required by the analysis developped in this paper. Notice that the asymptotics
of λnpkq as k tends to infnity was already investigated in [19][Chapter 1] and in the unpublished
work [17] (the asympotics of the first derivative is derived as well in the last reference). All the
above mentioned results are covered by the one obtained in this article. Notice that the asymp-
totics of λ1npkq as k tends to infinity is obtained from those calculated for the eigenfunctions
associated with λnpkq as k Ñ �8. Moreover these asymptotics on the eigenfunctions are useful
when describing the geometrical localization of bulk states when δ Ó 0.

subsec:main-results1

1.3. Main results and outline. Our first result is a precise asymptotics of the band functions
and its derivative when k Ñ �8:

thm-asymptotics Theorem 1.4. For every n P N� there is a constant γn ¡ 0 such that the two following estimates

i) λnpkq � En � 22n�1γ2
nk

2n�1e�k
2 p1 �Opk�2qq,

ii) λ1npkq � �22nγ2
nk

2ne�k
2 p1 �Opk�2qq,

hold as k goes to �8.
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Remark 1.5. Notice that the second part of Theorem 1.4 may actually be recovered upon formally
differentiating the first part with respect to k.

The method used in the derivation of Theorem 1.4 is inspired from [3]. Moreover, as detailed
in Subsection 2.5, the computation of the asymptotics of λnpkq is closely related to the rather
tricky problem of understanding the eigenvalues of the Schrödinger operator with double wells
�h2B2

t � p|t| � 1q2 in the semi-classical limit h Ó 0.

Next we give the smallness of the current carried by bulk states localized in energy near the n-th
Landau level:

thm-bulk Theorem 1.6. For every n P N� we may find two constants µn ¡ 0 and δn ¡ 0, both of them
depending only on n, such that for each δ P p0, δnq and all ϕ P Xb

n,δ, we have

i1i1 (1.16) 0 ¤ xJyϕ, ϕy ¤
�

2δ
a
| log δ| � µn

δ log | log δ|a| log δ|

�
}ϕ}2

L2pΩq.

Estimate (1.16) is accurate in the following sense:

R:encadrement Remark 1.7. Let 0   δ1   δ2   2 and In :� pEn � δ1, En � δ2q an interval avoiding the Landau
level En. Define cnpδq :� 2δ

a| log δ| � µn
δ log | log δ|?

| log δ| . Then by arguing in the exact same way as

in the derivation of Theorem 1.6, we get for sufficiently small δ1 and δ2 that:

@ϕ P Xn,In , cnpδ1q}ϕ}2
L2pΩq ¤ xJyϕ, ϕy ¤ cnpδ2q}ϕ}2

L2pΩq .

Finally, we discuss the localization of the bulk states in Xb
n,δ.

thm-bulk-loc1 Theorem 1.8. Fix n P N�. Then for any ε P p0, 1q there exists δnpεq ¡ 0, such that for all
δ P p0, δnpεqq, the estimate

eq:bulk-local1eq:bulk-local1 (1.17)
» p1�εq

?
| log δ|

0

}ϕpx, �q}2
L2pRqdx ¤ Cnε

2n�1δε
2 | log δ| 2n�1

2
p1�ε2q}ϕ}2

L2pΩq

holds for every ϕ P Xb
n,δ and some positive constant Cn depending only on n.

Let ϕptq :� e�itHϕ, for t P R, be the time evolution of ϕ P Xb
n,δ. Since ϕptq P Xb

n,δ for all t P R it
is apparent that Theorems 1.6 and 1.8 remain valid upon substituting ϕptq for ϕ in (1.16)-(1.17).
As a consequence, the localization property and the upper bound on the current carried by a state
lying in Xb

n,δ survive for any time.

2. ASYMPTOTICS OF THE BAND FUNCTIONS
sec:asymptotics1

In this section, we prove the first part of Theorem 1.4 on the asymptotic expansion of the band
functions λnpkq as k Ñ 8. The proof consists of 4 steps. We first recall results on the harmonic
oscillator and its eigenfunctions. We next construct approximate eigenfunctions fnpx, kq of hpkq
so that hpkqfnpx, kq � Enfnpx, kq�Rnpx, kq and estimate the norm }Rnp�, kq}L2pR��q. We prove
that the energy ηnpkq :� xhpkqfnp�, kq, fnp�, kqy of the approximate eigenfunction fn is a good



CHARACTERIZATION OF BULK STATES 9

approximation to the Landau level En. Finally, we use the Kato-Temple inequality ot obtain the
result.

Here are some notations and definitions. Let us define the quadratic form

D:fqghD:fqgh (2.1) qkrus :�
»
R�
p|u1pxq|2 � px� kq2|upxq|2qdx, Dompqkq :� tu P H1

0 pR�
�q, xu P L2pR�

�qu.

Here H1
0 pR�

�q is as usual the closure of C8
0 pR�

�q in the topology of the first order Sobolev space
H1pR�

�q. The operator hpkq (expressed in (1.2)) is the Friedrichs extansion of the above quadratic
form and it its domain is

D:domhkD:domhk (2.2) Domphpkqq :� tu P H1
0 pR�

�q XH2pR�
�q, x2u P L2pR�

�qu .

2.1. Getting started: recalling the harmonic oscillator. The harmonic oscillator

h :� �B2
x � x2, x P R,

has a pure point spectrum made of simple eigenvalues tEn :� 2n � 1, n P N�u, the Landau
levels. The associated L2pRq-normalized eigenfunctions are the Hermite functions

D:PsiD:Psi (2.3) Ψnpxq :� Pnpxqe�x2{2, x P R, n P N�

where Pn stands for the n-th Hermite polynomial obeying degpPnq � n � 1. These functions
satisfy Ψnp�xq � p�1qn�1Ψnpxq. The explicit expression (2.3) results in the two following
asymptotic formulae (see [1] or [21])

A:PsiA:Psi (2.4) Ψnpxq �
xÑ�8

γn2n�1xn�1e�x
2{2 �1 �Opx�2q�

and

A:Psi’A:Psi’ (2.5) Ψ1
npxq �

xÑ�8
γn2n�1xne�x

2{2 ��1 �Opx�2q� ,
where γn is the same as in Theorem 1.4. Next, put

D:PhiD:Phi (2.6) Φnpxq :� Ψnpxq
» x

0

|Ψnptq|�2dt, x P R, n P N�,

so tΨn,Φnu forms a basis for the space of solutions to the ODE hf � Enf . Then we get

A:PhiA:Phi (2.7) Φnpxq �
xÑ�8

pγn2nq�1 e
x2{2

xn
�
1 �Opx�2q�

and

A:Phi’A:Phi’ (2.8) Φ1
npxq �

xÑ�8
pγn2nq�1 e

x2{2

xn�1

�
1 �Opx�2q� ,

through elementary computations based on (2.4)–(2.6).
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SS:quasimode

2.2. Building quasi-modes for hpkq in the large k regime. Following the idea of [3] and [2]
we now build quasi-modes for the operator hpkq when the parameter k is taken sufficiently large.
We look at vectors of the form

qm1qm1 (2.9) fnpx, kq � αpkqΨnpx� kq � βpkqχpx, kqΦnpx� kq, x ¡ 0, k P R,

where Ψn and Φn are respectively defined by (2.3) and (2.6), and α, β are two functions of k
we shall make precise below. Bearing in mind that Φnp�, kq is unbounded on R�

�, the cut-off
function χ is chosen in such a way that fp�, kq P L2pR�

�q. Namely, we pick a non-increasing
function χ0 P C8pR�, r0, 1sq such that χ0pxq � 1 for x P r0, 1

2
s and χpxq � 0 for x P r3

4
,�8q,

and put

χpx, kq :� χ0

�x
k

	
, x ¡ 0, k P R.

We impose Dirichlet boundary condition at x � 0 on fnp�, kq, getting

βpkq � �αpkqΨnp�kq
Φnp�kq ,

since Φp�kq is non-zero for k sufficiently large, by (2.7). From this, (2.4) and (2.7), then follows
that

E:beta0E:beta0 (2.10) βpkq � 22n�1γ2
nαpkqk2n�1e�k

2 �
1 �Opk�2q� ,

which entails }fnp�, kq}2
L2pR��q � αpkq2

�
1 �Opk2n�1e�k

2q
	

, through direct computation. As a
consequence we have

A:alphakA:alphak (2.11) αpkq � 1 �Opk2n�1e�k
2q

by compliance with the normalization condition }fnp�, kq}L2pR��q � 1, hence

E:beta1E:beta1 (2.12) βpkq � 22n�1γ2
nk

2n�1e�k
2 �

1 �Opk�2q� ,
according to (2.10).

subsec:energy-est1

2.3. Energy estimation. Bearing in mind that fnp0, kq � 0 and fnpx, kq � αpkqΨnpx � kq for
x ¥ 3k{4, it is clear from (2.2) that fnp�, kq P Domphpkqq, so the energy carried by the state
fnp�, kq is well defined by

qm1bqm1b (2.13) ηnpkq :� xhpkqfnp�, kq, fnp�, kqyL2pR��q.

To estimate the error of approximation of En by ηnpkq, we introduce

qm2qm2 (2.14) rnpx, kq :� phpkq � Enqfnpx, kq, x ¡ 0,

in such a way that ηnpkq�En � xrnp�, kq, fnp�, kqyL2pR��q. Integrating by parts twice successively
in this integral and remembering (2.9), we find out that

ηnpkq � En � βpkq@phpkq � Enqpχp�, kqΦnp� � kqq, fnp�, kq
D
L2pR��q

E:interaction+integral (2.15)

� �βpkqΦnp�kqf 1np0, kq � βpkq@χp�, kqΦnp� � kq, rnp�, kq
D
L2pR��q

.
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Further, upon combining (2.9) and (2.14) with the commutator formula rhpkq, χs � �χ2�2χ1Bx,
we get that

E:exprrE:exprr (2.16) rnpx, kq � �βpkqχ2px, kqΦnpx� kq � 2βpkqχ1px, kqΦ1
npx� kq, x ¡ 0,

showing that rnp�, kq is supported in supppχ1p�, kqq, ie

E:supprE:suppr (2.17) suppprnp�, kqq � rk
2
, 3k

4
s.

Putting (2.7), (2.8), (2.12) and (2.16) together, and taking into account that

E:estimchideriveE:estimchiderive (2.18) }χ1p�, kq}L8pRq � Op1{kq and }χ2p�, kq}L8pRq � Op1{k2q,
we obtain for further reference that

E:estimaterE:estimater (2.19) }rnp�, kq}2
L2pR��q � Opk2n�1e�

7k2

4 q.
Let us now prove that the interaction term p�βpkqqΦnp0, kqf 1np0, kq is the main contribution to
the rhs of (2.15). Applying (2.7) and (2.8), we get

}Φnp� � kq}L8p k
2
, 3k
4
q � Opk�nek2{8q and }Φ1

np� � kq}L8p k
2
, 3k
4
q � Opk�n�1ek

2{8q,

which, together with (2.10), (2.16) and (2.18), yields }rnp�, kq}L8pR��q � Opkn�1e�
7k2

8 q. From
this, (2.12) and the estimate���xχp�, kqφnp� � kq, rnp�, kqyL2pR��q

��� ¤ k

4
}rnp�, kq}L8pR��q}Φnp� � kq}L8p k

2
, 3k
4
q,

then follows that βpkqxχp�, kqφnp� � kq, rnp�, kqyL2pR��q � Opk2n�1e�
7k2

4 q. Hence we have

qm3qm3 (2.20) ηnpkq � En � �βpkqf 1np0, kqΦnp�kq �Opk2n�1e�
7k2

4 q,
by (2.15). In order to evaluate the remaining term p�βpkqqf 1np0, kqΦnp�kq, we take advantage
of the fact that χkp0q � 1 and χ1kp0q � 0, and derive from (2.5) and (2.8)-(2.9) that

E:evalf’0E:evalf’0 (2.21) f 1np0, kq � αpkqΨ1
np�kq � βpkqΦ1

np�kq � p�1qn�12nγnk
ne�k

2{2 �1 �Opk�2q� .
Therefore we have p�βpkqqf 1np0, kqΦnp�kq � 22n�1γ2

nk
2n�1e�k

2 p1 �Opk�2qq by (2.7) and
(2.12), so we end up getting

E:etaestimE:etaestim (2.22) ηnpkq � En � 22n�1γ2
nk

2n�1e�k
2 �

1 �Opk�2q� ,
with the aid of (2.20).

2.4. Asymptotic expansion of λnpkq. Let us first introduce the error term

εnpkq :� }phpkq � ηnpkqqfnp�, kq}L2pR��q,

and combine the estimate εnpkq ¤ }rnp�, kq}L2pR�q�|ηnpkq�En| arising from (2.14), with (2.19)
and (2.22). We obtain that

E:epsilonestimE:epsilonestim (2.23) εnpkq2 � Opk2n�1e�
7k2

4 q.
We are now in position to apply Kato-Temple’s inequality (see [14, Theorem 2]), which can be
stated as follows.
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L:temple Lemma 2.1. Let A be a self-adjoint operator acting on a Hilbert space H. We note a the qua-
dratic form associated with A. Let ψ P DompAq be H-normalized and put η � arψs and
ε � }pA � ηqψ}H. Let α   β and λ P R be such that SpAq X pα, βq � tλu. Assume that
ε2   pβ � ηqpη � αq. Then we have

η � ε2

β � η
  λ   η � ε2

η � α
.

Fix N P N�. Since limkÑ�8 λnpkq � En for all n P N�, we may choose kN ¡ 0 so large that
λnpkq P pEn, En � 1s for all k ¥ kN and n P r|1, N � 1|s. This entails

E:spectralgapE:spectralgap (2.24) |λnpkq � λppkq| ¥ 1, k ¥ kN , p � n, n P r|1, N |s.
Moreover, upon eventually enlarging kN , we have

qm4qm4 (2.25) |ηnpkq � pEn � 1q| ¥ 1
2
, k ¥ kN , n P r|1, N |s,

in virtue of (2.22). Thus, applying Lemma 2.1 with η � ηnpkq, α � En � 1, β � En � 1
and ε � εnpkq for each n P r|1, N |s and k ¥ kN , there is necessarily one eigenvalue of hpkq
belonging to the interval pηnpkq � 2ε2npkq, ηnpkq � 2ε2npkqq, according to (2.25). Since the only
eigenvalue of hpkq, k ¥ kN , lying in pEn, En � 1s is λnpkq, we obtain that

E:avecepsilonE:avecepsilon (2.26) |λnpkq � ηnpkq| ¤ 2ε2npkq, k ¥ kN , n P r|1, N |s.
Putting this together with (2.22) and (2.23) we end up getting the first part of Theorem 1.4.

subsec:iwatsuka1

2.5. Relation to a semiclassical Schrödinger operator and to the Iwatsuka model. In this
section we exhibit the link between the asymptotics of the eigenpairs of hpkq for large k and the
semi-classical limit of a Schrödinger operator on R with a symmetric double-wells potential.

Let us introduce the operator Hpkq :� �B2
x � p|x| � kq2 acting on L2pRq and denote by µnpkq

its n-th eigenvalue. The operator Hpkq is the fiber of the magnetic Laplacian associated with
the Iwatsuka magnetic field Bpx, yq � signpxq. This Hamiltonian has been studied in [20, 8].
The eigenfunction associated to µnpkq are even when n is odd and odd when n is even, therefore
the restriction to R� of any eigenfunction associated with µ2npkq is an eigenfunction for the
operator hpkq associated with λnpkq and we have µ2npkq � λnpkq. In the same way we prove
that µ2n�1pkq is the n-th eigenvalue of the operator hNpkq :� �B2

x � px� kq2 acting on L2pR�q
with a Neumann boundary condition.

We refer to [19, Proposition 1.1] or [8] for more details on the link between Hpkq, hpkq and the
operator hNphq.
Using the scaling t � kx we get that Hpkq is unitary equivalent to the operator

h�1
��h2B2

t � p|t| � 1q2� , t P R
where we have set h � k�2. Therefore when k gets large we reduce the problem to the under-
standing of the eigenvalues of the Schrödinger operator �h2B2

t � p|t| � 1q2 in the semi-classical
limit hÑ 0. The asymptotic expansion of the eigenvalues of Schrödinger operator is well-known
when the potential has a unique non-degenerated minimum and uses the “harmonic approxima-
tion”, see for example [22]. However in our case the potential p|t| � 1q2 is even and have a
double-wells and one may expect tunneling effect between the two wells x � 1 and x � �1.
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More precisely the eigenvalues clusters into pairs exponentially close to the eigenvalue associated
to the one-wells problem that are the Landau levels (see [13], [6] or [15]).

The asymptotic behavior of the gap between eigenvalues in such a problem is given in [15] under
the hypothesis that the potential is C8pRq. Helffer and Sjöstrand use a BKW expansion of the
eigenfunctions far from the wells. The key point is a pointwise estimate of an interaction term
involving among others the high order derivatives of the potential at 0. Here it is not possible
to use their result since the potential p|t| � 1q2 is not C1 at 0. Our proof uses the fact that the
potential is piecewise analytic and the knowledge of the solutions of the ODE associated to the
eigenvalue problem.

Note that mimicking the above proof it is possible to get the asymptotic expansion of the eigen-
values of the operator hNpkq for large k as in [19, Section 1.5].

3. ASYMPTOTICS OF THE DERIVATIVE OF THE BAND FUNCTIONS
sec:asymptotics-deriv1

In this section, we prove the asymptotic expansion of λ1npkq, the second part of Theorem 1.4.

3.1. Hadamard formula. We turn now to establishing Part ii) of Theorem 1.4. To this pur-
pose we introduce a sequence tunp�, kq, n P N�u of L2pR�

�q-normalized eigenfunctions of hpkq,
verifying " �u2npx, kq � px� kq2unpx, kq � λnpkqunpx, kq, x ¡ 0

unp0, kq � 0.

Since the operator hpkq is self-adjoint with real coefficients we choose all the unp�, kq to be real.
Due to the simplicity of λnpkq, each unp., kq is thus uniquely defined, up to the multiplicative
constant �1. We note Πnpkq :� x�, unp, �, kqyL2pR��q the spectral projection of hpkq associated
with λnpkq and call Fnpkq the eigenspace spanned by unp�, kq.
The proof of the asymptotic expansion of λ1n stated in Theorem 1.4 relies on the Hadamard
formula

E:formuleHadamardE:formuleHadamard (3.1) λ1npkq � �u1np0, kq2, k P R,
and thus requires that u1np�, kq be appropriately estimated at x � 0. We proceed as in the deriva-
tion of [15, Proposition 2.5].

subsec:H1-est1

3.2. H1-estimate of the eigenfunctions. The method boils down to the fact that the operator
hpkq � λnpkq is a boundedly invertible on FnpkqK. Hence phpkq � λnpkqq�1 is a bounded iso-
morphism from FnpkqK onto Domphpkqq X FnpkqK and there exists kn ¡ 0 such that we have

}phpkq � λnpkqq�1}LpFnpkqKq ¤ 1, k ¥ kn,

in virtue of (2.24). From this and the identity

phpkq � λnpkqq pfnp�, kq � Πnpkqfnp�, kqq � rnp�, kq � pEn � λnpkqqfnp�, kq,
arising from (2.14), then follows that

E:estimnormef-piE:estimnormef-pi (3.2) }fnp�, kq � Πnpkqfnp�, kq}L2pR��q ¤ }rnp�, kq}L2pR��q � |En � λnpkq|, k ¥ kn.
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Moreover we have

qkrfnp�, kq � Πnpkqfnp�, kqs
� pqk � λnpkqqrfnp�, kq � Πnpkqfnp�, kqs � λnpkq}fnp�, kq � Πnpkqfnp�, kq}2

L2pR��q

� pqk � λnpkqqrfnp�, kqs � λnpkq}fnp�, kq � Πnpkqfnp�, kq}2
L2pR��q

� ηnpkq � λnpkq � λnpkq}fnp�, kq � Πnpkqfnp�, kq}2
L2pR��q,

from (2.13), hence

E:estimgqE:estimgq (3.3) qkrfnp�, kq � Πnfnp�, kqs1{2 � O
�
εnpkq � }rnp�, kq}L2pR��q � |En � λnpkq|

�
, k ¥ kn.

according to (2.26) and (3.2). Since Domphpkqq (endowed with the natural norm qkr�s1{2) is
continuously embedded in H1pR�

�q, we may substitute }fnp�, kq � Πnpkqfnp�, kq}H1pR��q for
qkrfnp�, kq � Πnfnp�, kqs1{2 in the lhs of (3.3). Thus we obtain

E:estimH1E:estimH1 (3.4) }fnp�, kq � Πnpkqfnp�, kq}H1pR��q � Opkn� 1
2 e�

7k2

8 q, k ¥ kn,

with the help of (2.19) and Part i) in Theorem 1.4. As a consequence we have

qm4bqm4b (3.5) |1�}Πnpkqfnp�, kq}L2pR��q| ¤ }fnp�, kq�Πnpkqfnp�, kq}L2pR��q � Opkn� 1
2 e�

7k2

8 q, k ¥ kn,

whence

qm5qm5 (3.6)

�����fnp�, kq � Πnpkqfnp�, kq
}Πnpkqfnp�, kq}L2pR��q

�����
H1pR��q

� Opkn� 1
2 e�

7k2

8 q, k ¥ kn.

Bearing in mind that

E:approxu-fE:approxu-f (3.7) unp�, kq � Πnpkqfnp�, kq
}Πnpkqfnp�, kq}L2pR��q

,

upon eventually substituting p�unp�, kqq for unp�, kq, it follows from (3.6) that the quasi-mode
fnp�, kq is close to the eigenfunction unp�, kq in the H1-norm sense, provided k is large enough.
We summarize these results in the following propostion.

prop:H1-est1 Proposition 3.1. For k ¥ knpδq, the eigenfunction unpx, kq is well approximated by the quasi-
mode fnpx, kq in the sense that.

}fnp�, kq � unp�, kq}H1pR��q � Opkn� 1
2 e�

7k2

8 q.
In terms of the quadratic form qk defined in (2.1), it follows that for k ¥ knpδq, we have

qm5aqm5a (3.8) qkrunp�, kq � fnp�, kqs � Opk2n�1e�
7k2

4 q.

The proof of the second part of the proposition follows from (2.19), the first part of Theorem 1.4,
(3.3), (3.5) and (3.7).
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subsec:H2-est1

3.3. H2-estimate of the eigenfunctions. The H1-estimate of Proposition 3.1 implies uniform
pointwise approximation of unpx, kq by fnpx, kq. The Hadamard formula (3.1) requires a point-
wise estimate of u1np�, kq. Consequently, we need to estimate unp�, kq in the H2-topology. Actu-
ally, unp�, kq being an eigenfunction of hpkq, it is enough to estimate the H1-norm of x2unp�, kq.
The same problem was investigated in [3, Section 5] in the context of a bounded interval so the
authors could take advantage of the fact that the multiplier by x2 is a bounded operator. Although
this is not the case in the framework of the present paper this slight technical issue can be over-
comed through elementary commutator computations performed in the following subsection.

We start with the following straightforward inequality

}u2np�, kq � f2np�, kq}L2pR��q ¤ }hpkqrunp�, kq � fnp�, kqs}L2pR��q

�}px� kq2runp�, kq � fnp�, kqs}L2pR��q.E:liennormH2normfg (3.9)

Recall from (2.14) that rnpx, kq � phpkq � Enqfnpx, kq. Then, since

hpkqrunp�, kq � fnp�, kqs � λnpkqunp�, kq � Enfnp�, kq � rnp�, kq,
the first term on the right hand side of (3.9) is bounded above by

}hpkqrunp�, kq�fnp�, kqs}L2pR��q ¤ |λnpkq�En|�En}unp�, kq�fnp�, kq}L2pR��q�}rnp�, kq}L2pR��q.

The first part of Theorem 1.4, (2.19) and (3.7) then yield

E:estimterme1E:estimterme1 (3.10) }hpkqrunp�, kq � fnp�, kqs}L2pR��q � Opkn� 1
2 e�

7k2

8 q.

To treat the second term on the right in (3.9), we introduce

vnpx, kq :� px� kqunpx, kq and gnpx, kq :� px� kqfnpx, kq,
and notice that gnp�, kq belongs to Domphpkqq. Similarly, taking into account that unp�, kq decays
super-exponentially fast for x sufficiently large, since limxÑ�8 V px, kq � �8, we see that
vnp�, kq belongs to Domphpkqq as well. Therefore, we have

hpkq pvnpx, kq � gnpx, kqq � λnpkqvnpx, kq�Engnpx, kq�2pu1npx, kq�f 1npx, kqq�px�kqrnpx, kq,
by straightforward computations, hence

E:trouveqv-gE:trouveqv-g (3.11) qkrvnp�, kq � gnp�, kqs ¤ }rrnp�, kq}L2pR��q}vnp�, kq � gnp�, kq}L2pR��q,

where we have set

qm5bqm5b (3.12) rrnpx, kq :� λnpkqvnpx, kq�Engnpx, kq�2pu1npx, kq�f 1npx, kqq�px�kqrnpx, kq, x ¡ 0.

Evidently,

E:estimordre1E:estimordre1 (3.13) }vnp�, kq � gnp�, kq}2
L2pR��q ¤ qkrunp�, kq � fnp�, kqs,

so, by (3.8), we are left with the task of estimating the L2-norm of rrnp�, kq. In light of (3.12)-
(3.13) and the basic estimate }u1np�, kq � f 1np�, kq}2

L2pR��q ¤ qkrunp�, kq � fnp�, kqs, we find that

}rrnp�, kq}L2pR��q ¤ |λnpkq � En|}gnp�, kq}L2pR��q � p2 � λnpkqqqkrunp�, kq � fnp�, kqs1{2
�}px� kqrnp�, kq}L2pR��q.qm6 (3.14)
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Next, we pick kn ¡ 0 so large that ηnpkq � qkrfnp�, kqs ¤ En � 1 for all k ¥ kn, according to
(2.22), so we have

qm7qm7 (3.15) }gnp�, kq}L2pR��q ¤ qkrfnp�, kqs ¤ En � 1, k ¥ kn.

Bearing in mind that λnpkq ¤ λnp0q ¤ 4n� 1 for k ¥ 0, we deduce from (3.14)-(3.15) that
qm8qm8 (3.16)

}rrnp�, kq}L2pR��q ¤ cn
�|λnpkq � En| � qkrunp�, kq � fnp�, kqs1{2

�� }px� kqrnp�, kq}L2pR��q,

for all k ¥ kn, where cn is some positive constant depending only on n. Last, recalling (2.17)
and (2.19), we get that

}px� kqrnp�, kq}L2pR��q � Opkn� 1
2 e�

7k2

8 q.
From this, Part i) in Theorem 1.4, (3.8) and (3.16) then follows that

qm9qm9 (3.17) }rrnp�, kq}L2pR��q � Opkn� 1
2 e�

7k2

8 q.

Now, putting (3.8), (3.11), (3.13) and (3.17) together, we obtain

qm10qm10 (3.18) qkrvnp�, kq � gnp�, kqs � Opk2ne�
7k2

4 q.
Further, since }px�kq2unp�, kq�px�kq2fnp�, kq}2

L2pR��q ¤ qkrvnp�, kq�gnp�, kqs, we deduce from

(3.9), (3.10) and (3.18) that }f2np�, kq � u2np�, kq}L2pR��q � Opkne� 7k2

8 q. We obtain the following
proposition.

prop:H2est1 Proposition 3.2. For all n P N�, there exists kn P R and Cn ¡ 0 such that we have

eq:h2est2eq:h2est2 (3.19) @k ¡ kn, }fnp�, kq � unp�, kq}H2pR��q ¤ Cnk
ne�

7k2

8 .

since H2pR�
�q is continuously embedded in W 1,8pR�

�q, we deduce for k ¥ kn:

eq:Linf-deriv-est1eq:Linf-deriv-est1 (3.20) }f 1np�, kq � u1np�, kq}L8pR��q ¤ Cnk
ne�

7k2

8

and

eq:Linf-fnc-est1eq:Linf-fnc-est1 (3.21) }fnp�, kq � unp�, kq}L8pR��q ¤ Cnk
ne�

7k2

8 ,

These results guarantee that any pointwise estimate of u1np�, kq on R� is uniformly well approx-
imated by the one of the quasi-mode f 1np�, kq, provided k is large enough. More precisely, we
have

qm11qm11 (3.22) u1np0, kq � f 1np0, kq �Opkne� 7k2

8 q.
Finally, plugging (2.21) into (3.22) and then applying (3.1), we obtain the second part of Theorem
1.4.

Remark 3.3. Higher order expansions of λnpkq and λ1npkq may be derived from sharper asymp-
totics of the Hermite functions than (2.4)-(2.5) (see [19, Section 1.5]).
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4. CHARACTERIZATION OF BULK STATES
sec:bulk-states1

This section is devoted to characterizing functions in the bulk space Xb
n,δ as δ Ó 0. This is by

means of the asymptotic analysis carried out in the prevous sections.

Remember from Subsection 1.1 that ϕ P Xb
n,δ decomposes as in (1.13), that knpδq is defined

by (1.12), that ϕn P L2pknppδq,�8qq and that the current carried by ϕ is given by (1.15). The
asymptotic behavior of the quasi-momentum knpδq when δ Ó 0 is derived in Section 4.1. Section
4.2 and 4.3 are devoted to the proof of Theorems 1.6 and 1.8.

subsec:ev-est1

4.1. Estimates on quasi-momenta associated with bulk components. We already know that
knpδq goes to �8 as δ Ó 0. More precisely:

Lemma 4.1. We have the following asymptotics as δ Ó 0:

bs1bs1 (4.1) knpδq �
a
| log δ| � 2n� 1

4

log | log δ|a| log δ| � o

�
log | log δ|a| log δ|

�
.

Proof. Since limδÓ0 knpδq � �8 by (1.3), we deduce from the first part of Theorem 1.4 that

γ2
n22n�1knpδq2n�1e�knpδq

2 �
1 �Opknpδq�2q� � δ.

Set rγn :� logpγn22n�1q. Taking the logarithm of both sides of this identity we find

E:logkdeltaE:logkdelta (4.2) rγn � p2n� 1q logpknpδqq � knpδq2 � log δ �Opknpδq�2q,
showing that

bs0bs0 (4.3) knpδq �
δÓ0

a
| log δ|.

Plugging this into (4.2), we get

k2
npδq � � log δ � p2n� 1q log

�a
| log δ| � op

a
| log δ|q

	
� rγn �Opknpδq�2q

� � log δ � 2n� 1

2
log p� log δqq � rγn � op1q,

which entails (4.1). �

Notice that the first-order term in the above asymptotic expansion of knpδq as δ Ó 0, is indepen-
dent of n.

subsec:proof-of-main1

4.2. Asymptotic velocity and proof of Theorem 1.6. In light of (4.1) we may estimate the
asymptotics of λ1npkpδqq as δ Ó 0. We combine both parts of Theorem 1.4, getting,

λ1npkq
λnpkq � En

� �2k
�
1 �Opk�2q�
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and then substitute knpδq (resp., the rhs of (4.1)) for k in the lhs (resp., the rhs) of this identity.
Bearing in mind that λnpknpδqq � En � δ, we obtain

λ1npknpδqq � �2δ
a
| log δ| � 2n� 1

2

δ log | log δ|a| log δ| � o

�
δ log | log δ|a| log δ|

�
.

Similarly to (4.1) it turns out that the first order term in this expansion does not depend on the
energy level n.

Let us now upper bound p�λ1npkqq in the interval pknpδq,�8q with the following:

lm-derivative Lemma 4.2. Let n P N�. Then there are two constants δn ¡ 0 and µn ¡ 0, such that the estimate

0 ¤ �λ1npkq ¤ 2δ
a
| log δ| � µn

δ log | log δ|a| log δ| ,

holds for all δ P p0, δnq and all k ¥ knpδq.

Proof. From the second part of Theorem 1.4, we may find two constants k̃n ¡ 0 and cn ¡ 0,
depending only on n, such that we have

bs2bs2 (4.4) @k ¥ k̃n, 0 ¤ �λ1npkq ¤ 22nγ2
nk

2ne�k
2
�

1 � cn
k2

	
.

With reference to (4.3), we choose δn ¡ 0 so small that knpδnq ¥ k̃n. We get

bs3bs3 (4.5) @δ P p0, δnq, @k ¥ knpδq, 0 ¤ �λ1npkq ¤ 22nγ2
nk

2ne�k
2
�

1 � cn
k2

	
,

from (4.4). Further, k ÞÑ 22nγ2
nk

2ne�k
2p1 � cn{k2q being a decreasing function on r?n,�8q, it

follows from (4.5), upon eventually shortening δn so that knpδnq ¥
?
n, that

bs4bs4 (4.6) @δ P p0, δnq, @k ¥ knpδq, 0 ¤ �λ1npkq ¤ 22nγ2
nknpδq2ne�knpδq

2

�
1 � cn

knpδq2


.

Due to the first part of Theorem 1.4 the rhs of (4.6) is upper bounded by 2knpδqpλnpknpδqq �
Enqp1 � c̃n{knpδq2q for some constant c̃n ¡ 0 depending only on n. The desired result follows
from this, (4.1) and the identity λnpknpδqq � En � δ. �

Now Theorem 1.6 follows readily from (1.14), (1.15) and Lemma 4.2.
subsec:proof-of-main2

4.3. Proof of Theorem 1.8. For ε P p0, 1q fixed, put anpδq :� p1 � εqknpδq, where knpδq is de-
fined in (1.12). Letϕ P Xb

n,δ be aL2-normalized state and introduce Enpδq :� ³anpδq
0

}ϕpx, �q}2
L2pRqdx.

Then we have

eq:local-est0eq:local-est0 (4.7)
» ?

log δ

x�0

»
R
|ϕpx, yq|2dxdy ¤ Enpδq,

from (4.1), provided δ is small enough. In view of majorizing Enpδq, we recall from (1.13) that

}ϕpx, �q}L2pRq � }ϕ̂px, �q}L2pRq � }ϕnunpx, �q}L2pknpδq,�8q,
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so we get that

eq:local-est1eq:local-est1 (4.8) Enpδq �
» 8

knpδq
|ϕnpkq|2}unp�, kq}2

L2p0,anpδqqdk.

Let fnp�, kq be the quasi-mode of hpkq introduced in Section 2.2. As

}unp�, kq}2
L2p0,anpδqq ¤ 2

�
}unp�, kq � fnp�, kq}2

L2pR��q � }fnp�, kq}2
L2p0,anpδqq

	
,

we deduce from (1.14), (4.8) and Proposition 3.1 that for every δ ¡ 0 small enough, we have

eq:local-est3eq:local-est3 (4.9) Enpδq ¤ Cnknpδq2n�1e�7knpδq2{4}ϕ}2
L2pΩq � 2Fnpδq,

with Fnpδq :� ³anpδq
0

|ϕnpkq|2}fnp�, kq}2
L2p0,anpδqq. Here and henceforth, Cn is some positive con-

stant, depending only on n. In virtue of (4.7) and (4.9), we are thus left with the task of estimating
Fnpδq from above. To do that we use the explicit form (2.9) of the quasi-mode fn, getting

eq:local-est3aeq:local-est3a (4.10) Fnpδq ¤ 2pψnpδq � φnpδqq,
with

ψnpδq :�
» 8

knpδq
|αpkq|2|ϕnpkq|2}Ψnp� � kq}2

L2p0,anpδqqdkeq:local-est3b (4.11)

φnpδq :�
» 8

knpδq
|βpkq|2|ϕnpkq|2}Φnp� � kq}2

L2p0,anpδqqdk.eq:local-est3c (4.12)

Bearing in mind that knpδq tends to �8 as δ Ó 0, we treat each of the two terms in the rhs of
(4.10) separately.

Performing the change of variable x̃ � x� k in the rhs of (4.11) and bearing in mind that knpδq
tends to �8 as δ Ó 0, we deduce from (2.11) that

ψnpδq �
» �8

k�knpδq

» �k�p1�εqknpδq

x̃��k
|αpkq|2|ϕnpkq|2|Ψnpx̃q|2dx̃dk

¤ Cn

» �8

k�knpδq

» �k�p1�εqknpδq

x̃��k
|ϕnpkq|2|Ψnpx̃q|2dx̃dk

¤ Cn

» �εknpδq

x̃��8

» �x̃�p1�εqknpδq

k�maxpknpδq,�x̃q
|ϕnpkq|2|Ψnpx̃q|2dkdx̃,eq:local-est3d (4.13)

for δ sufficiently small. Next, recalling the normalization condition (1.14), giving
³
kPR |ϕnpkq|2dk �

}ϕ}2
L2pΩq � 1, and taking δ ¡ 0 so small that εknpδq is large enough so we can apply (2.4), we

derive from (4.13) that

ψnpδq ¤ Cn

» �εknpδq

x̃��8
x̃2ne�x̃

2

dx̃.

Further, taking into account that
³L
�8 x̃

me�x̃
2
dx̃ � �Lm�1

2
e�L

2 as L Ñ �8 for any m P N, we
may thus find δnpεq ¡ 0 so that we have

E:controlepsindeltaE:controlepsindelta (4.14) @δ P p0, δnpεqq, ψnpδq ¤ Cnε
2n�1knpδq2n�1e�ε

2knpδq2 .
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Similarly, upon substituting φn, (2.12) and (4.12) for ψn, (2.11) and (4.11), respectively, in the
above reasoning, we find out for δ sufficiently small that

E:controlepsindeltabE:controlepsindeltab (4.15) φnpδq ¤ Cn

» �εknpδq

x̃��8

» �x̃�p1�εqknpδq

k�maxpknpδq,�x̃q
k4n�2e�2k2 |ϕnpkq|2|Φnpx̃q|2dkdx̃.

Thus, taking δ ¡ 0 so small that k ÞÑ k4n�2e�2k2 is decreasing for k ¥ knpδq, we deduce from
(4.15) with the help of (1.14), that

φnpδq ¤ Cn

�» �knpδq

x̃��8
x̃4n�2e�2x̃2 |Φnpx̃q|2dx̃�

» �εknpδq

x̃��knpδq
knpδq4n�2e�2knpδq2 |Φnpx̃q|2dx̃

�
Applying (2.7) we see that there exists δnpεq ¡ 0 so small that we have

@δ P p0, δnpεqq, φnpδq ¤ Cnknpδq2n�3e�knpδq
2

.

Putting this together with (4.9)-(4.10) and (4.14) we end up getting δnpεq ¡ 0 such that

@δ P p0, δnpεqq, Enpδq ¤ Cnε
2n�1knpδq2n�1e�ε

2knpδq2 .

Now, Theorem 1.8 follows from this, (4.1) and (4.7).
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[15] B. HELFFER, J. SJÖSTRAND. Multiple wells in the semiclassical limit. I. Comm. Partial Differential Equations
9(4) (1984) 337–408.

[16] P. D. HISLOP, E. SOCCORSI. Edge currents for quantum hall systems, i. one-edge, unbounded geometries.
Rev. Math. Phys. 20(1) (2008) 71–115.

[17] V. IVRII. Microlocal Analysis, Sharp Spectral Asymptotics and Applications (Future book).
[18] M. MANTOIU, R. PURICE. Some propagation properties of the Iwatsuka model. Communications in mathe-

matical physics 188(3) (1997) 691–708.
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