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Abstract

In the current technical note we provide a topological generalization of hierarchy of
partitions(HOP) structure, and the implications over the axioms of h-increasingness and
scale increasingness [13]. Further in this study we will explicit the Lagrange optimization
in the optimal cuts problem and the conditions necessary on the energy to obtain a global
optimum using the a dynamic program. Further a general multi-constraint optimization
problem is considered with multiple Lagrangian multipliers, leading to a general version
of scale increasingness that orders cuts, by ordered tuples of multipliers. The report
also differentiates Inf-Modularity and Submodularity and their space of application. The
final demonstration on wavering hierarchies show how one can relax conditions on the
hierarchical structure.

1 Introduction

What follows aims to build up a basic theory for optimizing the cuts in a hierarchy of
partitions of the space, and study in particular the Lagrange type methods. The need
for such hierarchies appears frequently in image processing, where segmentation (i.e.
partitioning the space of definition of a function) is a major goal. Image compression by
wavelets also belongs to the same sort of questions. In all these issues, the level of details
to keep vary from place to place. In the photograph of a face, the features of the eyes
carry more information than the wallpaper of the background. It can be convenient to
keep all levels of details by generating a sequence of segmentations from fine to coarse.
In a second step, one then chooses and picks up the good details at the good place. It is
this second step that we would like to formalize here.

Most of the methods proposed in literature in image processing refer to the famous
Lagrange approach and to the Lagrange-Euler Equation. Its links optimal segmentation
of an image, considered as a numerical function in R2, have been studied for the first time
by Mumford and Shah in their classical paper [17], followed by an abundant literature

∗A shorter version of this report has been submitted to Special Sessions: SS1 - Variational and morphological
optimizations: a tribute to Vicent Caselles, ICIP 2014, titled Energetic Lattice for optimizing over hierarchies
of partitions.
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on the theme, e.g. the theoretical basis proposed in the monograph [16] by Morel and
Solimini.

The idea of using a hierarchy of partitions for solving the Lagrange problem is devel-
oped [20], where Salembier and Garrido find the optimal cut for a given λ, but not the
whole hierarchy of potential optimal cuts when the cost varies. In contrast, Guigues et
Al. establish at once the series of optimal cuts, which permit them to solve the Lagrange
problem [2] [11]. These authors focus on linear energies, which is a particular case, and
introduce some singularity without telling what is really necessary with it.

Further Mumford-Shah functional minimization has been studied in the hierarchical
space of component trees by [10],[5] and over a more general space of, hierarchies of
partitions in [9] by Caselles et Al and has been further extended for level line selection in
[24]. Lagrange optimization has also been extended to sets in [19], [12], [3], but, as far as
we know, neither to partitions nor to hierarchies of partitions, except for a linear version
cited above.

Two troubles If we want to build up a theory for Lagrange minimizations on par-
titions, two difficulties arise. Firstly, the number of ways to partition a set increases
exponentially with its number of elements, and is approximately multiplied by ten for
each new element added. According to a classical formula due to E.T. Bell [6], a small
square image of 5 by 5 pixels can partitioned in half a billion of billion of different man-
ners 1! Even if we make the range of energies extend from one to one million, which
is probably too much, even then, each energy corresponds on average to 500 billions of
different segmentations of the small square. We are very far away from the classical La-
grange situation of minimizing a function f(x, y) represented by a derivable surface in
R3, and we can wonder which surreptitious assumption underlies the approaches which
work (Salembier, Guigues, etc.).

The second trouble is the concern of convexity. A numerical function f defined on a
vector space V is convex when, in the product space V × R, the set of points above the
graph {x, f(x)} is convex. Such a function admits a unique minimum, hence its interest in
optimization problems. But there is no such thing as a vector space for partitions. What
could be the weighted average of two partitions? This useful tool for grasping minima in
optimizations vanishes here... We must build up new concepts, adapted to partitions.

Lagrange’s optimization for point functions In the classical point-wise La-
grange optimization, the purpose is to find the points x ∈ Rn of coordinates x =
{x1..., xn} where the numerical function ωϕ(x) is minimal, when x are constrained by
the relations

minimize
x

ωϕ(x)

subject to ω∂(x), ωε(x) ≤ 0, θ(x) = 0.
(1)

ωϕ is called the objective function, ω∂ , are inequality constraints, and θ an equality
constraint. One can prove [8] that the x with Lagrange multipliers λ, ν, and ρ are then
solutions of the system composed by the equations (1) plus the n derivatives

∇ωϕ(x) = ∇ω∂(x) + λ∇θ(x) + ν∇ωε(x) (2)

1One often estimates at 1080 the number of particles of the universe. Thus the number of ways to partition
a 250× 250 square, which is higher than 10200 equals the particles of billions of billions of universes.

2



The expression ωϕ+λω∂ +νωε+ρθ is called Lagrangian, and the numbers λ, ν, and ρ are
the Karush Kuhn Tucker KKT(and Lagrangian for equality constraint) multipliers. There
is expansive work on the conditions on functions ω∂(x), ωε(x), θ(x) to ensure convexity
[8].

Lagrange type approach for partitions Given an energy ωϕ, we also would like
to find a cut which minimizes ωϕ on ΠH(E) under some energy constraint ω∂ . In contrast
with the classical Lagrange formalism, there are no longer points here (they are replaced
by the leaves), and the space E, does not always lend itself to derivatives. Moreover, as
we saw, the idea of convexity which underlies most of the methods in optimization [8]
does not apply here, unfortunately.

Since Lagrange’s starting points seems unrealistic here, why not to start from his
arrival point, i.e. from Lagrangians of the type (2)? For the convenience, we begin with
one constraint only, and introduce the energy ωλ

ωλ(π) = ωϕ(π) + λω∂(π) π ∈ ΠH(E). (3)

Plan of the paper From this starting point a twofold approach can be sketched.
Independently of the Lagrange model (3), which is rather particular, we must firstly

1. give to ”minimal cut” a sense which ensures that such a cut exists and is unique;

2. characterize the families {ωλ} convenient for the optimization purposes;

3. obtain explicitly the minimal cuts π∗λ.

In a second part, we shall come back to the Lagrange model, and specify the conditions
under which a (non constrained) minimal cut π∗λ relative to energy ωλ is also the cut which
minimizes ωϕ under the constraint ω∂ . Before entering the issue of constrained Lagrange
energy, we thus present the three major notions of a singular, of a scale increasing energy,
and of a h-increasing. Already partly introduced in [13] in a finite framework, they are
re-formulated below in a broader context, and with additional properties.

2 Hierarchies of partitions

This section extends to the continuous case the basic notions on hierarchies of partitions
of [13]. We keep the same notation and vocabulary (cut, class, etc.).Consider an arbitrary
space E, which may be discrete or not, finite or not, topological or not. P(E) stands for
its power set. A partition of E into classes S is an extensive mapping S : E → P(E) such
that

x, y ∈ E ⇒ S(x) = S(y) or S(x) ∩ S(y) = ∅ (4)

Below, the partitions of E are given the generic symbol π. The set of all partitions
of E forms a complete lattice for the partial ordering of the refinement, where πi ≤ πj
when the class Si(x) of πi at any point x ∈ E is included in the class Sj(x) of πj at the
same point:

πi ≤ πj ⇔ Si(x) ⊆ Sj(x). (5)

The refinement infimum of a family {πi, i ∈ I ⊆ R} in Π(E) is the partition π whose
class at point x is ∩Si(x), and the refinement supremum is the finest partition π′ such
that Si(x) ⊆ S′(x) for all i ∈ I and x ∈ E.
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Hierarchy We will define a hierarchy as a family of partitions characterized by three
axioms:

Definition 1 A family {πi, i ∈ I ⊆ R} of partitions of E defines a hierarchy when
(i) the partitions πi form a chain for the refinement ordering, i.e.

H = {πi, i ∈ I} with i ≤ k ⇒ πi ≤ πk, I ⊆ R, (6)

(ii) the chain is closed. Its finest partition π0 is called the leaves and its coarsest one
{E} is called the root,

π0 ≤
∧
{πi, i ∈ J} with π0 ∈ H (7)

(iii) the map i→ πi is ↑ continuous, i.e. for any sub family J ⊆ I

i0 =
∨
{i ∈ J} ⇒ πi0 =

∨
{πi, i ∈ J}. (8)

One writes i ↑ i0 ⇒ πi ↑ πi0 . The notation {E} stands for the partition of E in
a single class. Relation (8) makes more precise the merging process in continuous cases.
Consider, for example, a hierarchy H of two partitions and a range of scales I = [0, 1].
For i < 0.5 one has the finer partition π1, and for i > 0.5 the larger one π2. The axiom (8)
states that one has π1 for i = 0.5. In particular, the axiom (8) is automatically satisfied
when the set I is finite. In this case, the first axiom suffices for characterizing hierarchies
[7], [4]. But set I may be infinite, even in discrete backgrounds. Then the axiom (7)
cannot be dropped. For example, the nested partitions of Z:

i = 0 E = [−∞,+∞]

i = 1 π1 = [−∞,−1]; {0}; [1,+∞]

i = 2 π2 = [−∞,−2]; {−1}; {0}; {+1}; [2,+∞]

i = 3 π3 = [−∞,−3]; {−2}{−1}; {0}; {+1}; {+2}; {+3}; [3,+∞]

...............................................

for all integers i ≥ 0, does not suffice for generating a hierarchy, though it satisfies Rel.(6)
up to a change of sign, and needs to be completed by the leaves level ∧πi.

Classes A hierarchy can be described from its classes, or nodes. The axiom (6) means
that at each point x ∈ E the family of all classes Si(x) containing x forms a closed chain
of nested elements in P(E), from S0(x) to E. Let S ={Si(x), x ∈ E, i ∈ I} be the family
of all classes of H. One directly extends to S the characterization (4) of a partition by
its classes by putting

i ≤ j and x, y ∈ E ⇒ Si(x) ⊆ Sj(y), or Si(x) ⊇ Sj(y), or Si(x) ∩ Sj(y) = ∅. (9)

One can also transpose the axiom (7) in terms of classes:

x ∈ E and Si(x) ∈ S ⇒ S = ∩{Si(x), i ∈ I} ∈ S, (10)

and as well Axiom (8), which becomes

i ↑ i0 , x ∈ E, and Si(x) ∈ S ⇒ Si(x) ↑ Si0(x)), with Si0(x) ∈ S. (11)

Below, the symbol t is used for expressing that groups of classes are concatenated,
i.e.

S = S1 t S2 ⇔ S = S1 ∪ S2 and S1 ∩ S2 = ∅.
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Cuts and energy A cut of H is a partition of the space E into classes taken in S.
The symbol ΠH(E) stands for the set of all cuts of H. The notion of a partition applies
also to any set A ∈ P(E). One then speaks of partial partition (in short p.p.) of support
A [18]. If A ∈ S(H), then ΠH(A) denotes the family of all partial partitions of A whose
classes are in S(H). In particular, ΠH(A) contains the one class p.p. denoted by {A}.
An energy ω is a non negative function over the set D(E) of the partial partitions of E.

3 Singular energies

First of all, what does ”minimal cut” mean? A cut of minimal energy? If so, how to go
from energies to cuts? Remember the instructive result given introduction (a small set of
only 25 leaves generates 0.5 × 1018 different partitions). We propose to drop the lattice
of the positive numbers, and to act directly on some lattice of cuts, which should involve
the energy ω by some modalities. Then the existence and unicity of minimal cuts will be
ensured by this lattice structure. In fact, we do not need more than a semi-lattice, i.e. an
ordered set where every family of elements admits a unique infimum (maximizations and
always possible by changing ω into K −ω, but a semi-lattice does not permit to work on
suprema and infima at the same time).

The key notion required here is that of singularity.

Definition 2 Let D(E) be the set of the partial partitions of E. A energy ω on D(E) is
singular when

i) the energy ω({S}) of every one class partition {S} differs from the energy of any
p.p. π(S) of S, i.e.

π(S) ∈ ΠH(S) ⇒ ω({S}) 6= ω(π(S)), (12)

ii) the inequality of energies passes at the limit:

Si ↑ Si0 and ω({Si}) < ω(π(Si))⇒ ω({Si0}) < ω(π(Si0)). (13)

The second axiom, always satisfied in finite cases, has to be demanded otherwise.
Since we are dealing with hierarchies, the monotone convergence (which does not require
a topology) is sufficient. As a counter example, take for E the segment [0, 1], and for
stack of classes Si at point x the sequence ]2−1, 1[, ]2−2, 1[, ..]2−i, 1[...]0, 1[. For an energy
ω which equals zero when the length ` of Si < 1 and 1 when not, Axiom (13) is not
satisfied, though the energy ω(Si) = `(Si) is acceptable.

3.1 Energetic ordering and lattices

Consider now two cuts π, π′ ∈ ΠH(E) of a hierarchy H, and the two classes S ∈ π and
S′ ∈ π′ which contain the point x ∈ E. We have either S ⊆ S′, or S′ ⊆ S. In the first
case, S′ is the support of a certain p.p. of π, a say, and in the second case, S is the
support of a p.p. of π′, a′ say (see Figure 1). Intuitively, one may assess that π is less
energetic than π′ in S ∪ S′ when the binary relation defined by

i) either S ⊂ S′ and then ω(a) < ω({S′}), (14)

ii) or S′ ⊂ S and then ω({S}) < ω(a′), (15)

iii) or S′ = S and then ω({S}) = ω({S′}) (16)
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Figure 1: An example of energetic ordering: π �ω π′ because in each class of π ∨ π′, the ω
energy is smaller or equal.

is true. Let us denote it by S �ω S′. Which condition on the energy ω makes �ω an
ordering relation on cuts? The answer is given by the following result (proof given in [13]
and reproduce in annex):

Proposition 3 Let H be a hierarchy of partitions of E, and π, π′be two cuts of H. The
implication

S ∈ π and S′ ∈ π′ ⇒ S �ω S′, (17)

for all pairs of classes of S and S′, induces an ordering on the set ΠH(E) of all cuts of
H if and only if ω is singular. One calls it energetic ordering w.r.t. ω, and one writes
π �ω π′, π, π′ ∈ ΠH(E).

The energetic ordering induces an inf semi-lattice on the set ΠH(E) of all cuts of H :

Theorem 4 The set ΠH(E) of all cuts of H(E) forms an inf semi-lattice for the energetic
ordering �ω. Given a family {πj , j ∈ J} of cuts in ΠH(E), the class T (x) at point x ∈ E
of the infimum π = ∧ωπj is the largest class of the πj to be less energetic than the partial
partitions of the πj whose T (x) is the support. .

Proof. For the sake of clarity, we firstly give the proof for finite families, and next
we extend it to the infinite case. Let S(x) = {Sj(x), j ∈ J} be set of all classes of the
finite family {πj , j ∈ J} at point x. Consider the class Sj(x). Some partitions πk of the
family may cut up, in Sj(x), a p.p. ak,j(x) = πk u {Sj(x)}. If {Sj(x)} is less energetic
than ak,j(x), then we pick it out as a candidate, and we take the largest candidate T (x),
as j spans J , to be the class at x of the cut π = t{T (x), x ∈ E}. If, whatever j ∈ J the
class Sj(x) is never cut up by an internal p.p. πk u {Sj(x)} more energetic than Sj(x),
then we take the smallest element ∩{Sj(x), j ∈ J} as class T (x) at point x in the cut π.
The partition π is �ωthan all πj since, on the one hand, each class T (x) is �ω than the
p.p. induced on it by a πj , and, on the other hand, each class Sj(x) of a πj that contains
T (x) is more energetic than the p.p. πj u {T (x)}.

Moreover, cut π is the largest lower bound of the family {πj , j ∈ J}. If another lower
bound π̃ is not �ω π, two possibilities arise. Either, for some x, the class T (x) is the
support of a p.p. of π̃ both more energetic than T (x) and less than the πj u T (x), which

is impossible by definition of T (x), or for some y ∈ E, a class S̃(y) of π̃ covers T (x) and

is more energetic than the restriction of π to S̃(y) but less than the πju S̃(y). Again this
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is impossible, because the πj classes ⊇ T (y) are more energetic than T (y). Therefore the
finite family {πj , j ∈ J} admits π as a unique largest lower bound, i.e. π = ∧ωπj .

Suppose now J infinite. The class T (x) of the previous proof was obtained by a finite
union of classes of H which now may become infinite. But Rel. (8) ensures us that T (x)
is still a class of H (possibly not in the family {πj , j ∈ J}). In addition, axiom (13) of
the singular energies ensures us that the energy of T (x) is minimal like it was in the finite
case, which achieves the proof.

In particular the universal infimum of the inf semi-lattice ΠH(E) is denoted by π∗ =
∧ω{π, π ∈ ΠH(E)}. It is the unique cut of H smaller than all the other cuts of ΠH(E)
for the ordering �ω.

For illustrating the theorem, let us give the two examples of the finite case and of that
of open classes.

Finite case In the applications, the number of leaves is finite, thus also is the number
of possible cuts. In this finite case, the axiom (13), which intervenes in the infinite case
only, has no longer reason for being. Clearly, the rest of the proof of the theorem may be
presented, just as well, in terms of suprema, which leads to [13]:

Corollary 5 When the number of leaves of H is finite, then the energetic ordering �ω
induces a lattice on the cuts ΠH(E).

We can also remark that, in the finite case, the proof of the theorem provides a climbing
procedure for finding π∗ which is passably combinatorial. But the h-increasingness of
section 5 reduces it to a greedy algorithm.

Figure 2 depicts a toy example of the energetic infimum ∧ω. At point x the larger
class to be less energetic than its internal p.p. is that of π2 and at point y it is the class
of π1. The energetic infimum ∧ω is the partition drawn at the bottom. If we replace 14
by 11 in the energy of π3, the ∧ωinfimum becomes the one class partition π3.

Topological case Though the above algebraic framework suffices for the main the-
orem 4, it tolerates many ”pathological” partitions. But we can try and restrict it to
a topological structure more adapted to model the segmentations met in practice. The
space E under study is now topological, and G(E) stands for the set of all open sets of
E plus all points of E. We consider the set Π(G) of all partitions of E into classes of
G(E). Such partitions describe for example the geometry of the Voronoi polygons in R2,
or the skeletons by zone of influence [21], where a locally finite number of open classes are
separated by simple arcs. The set G(E) forms a complete lattice for the partial ordering
of the refinement, where π1 ≤ π1 when the open classes of π1 are contained in those of
π2. The infimum becomes now the interior of ∩Si(x), and the supremum the interior of
the smaller upper bound. The definition of an energy now includes that the points classes
of G(E) have always a zero weight. The definition of a singular energy is the same as
previously.

If we focus on a hierarchy H and a singular energy ω, the proposition 3 on the
energetic order and the theorem 4 on the energetic lattices remain valid. In what follows,
all notions (scale increasingness, h-increasingness, inf-modularity, Lagrange families) and
theoretical results apply for both families Π(E) and G(E). For the presentation, we keep
the algebraic framework of Π(E).
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Figure 2: Energetic infimum of three partitions

3.2 The three lattices

We see, finally, that a hierarchy H admits a unique minimal cut for the energetic ordering
�ω if and only if ω is singular. As we purpose to compare minimal cuts depending on a
scale parameter λ, we must be sure that each of them is unique, and thus suppose that
the energy ω(λ) is singular. If we drop this assumption, the hierarchy of minimal cuts of
Theorem 6 no longer exist, and we also loose the theorem 16, hence the solution to the
Lagrange minimization we contemplate. Fortunately, the singularity hypothesis is not
very restricting in practice, where most of the energies admit a singular version, up to
minor changes.

In the notation, one distinguishes the refinement lattice from the ω-semi-lattice by
using for the former the three symbols ≤,∨, and ∧, without ω subscript. Below, the
expression ”minimal cuts” always refers to energy infima ∧ω, the only ones for which
the expression makes sense. This meaning is indeed twofold: it associates an energetic
minimum with each class of π ∨ π′, and also globally, to the whole cuts π.

Three lattice interact in the present study. There is the numerical one ( ≤,∨, and ∧)
for energies, that of the refinement ( ≤,∨, and ∧) for partitions, and the energetic ∧ω
semi-lattice, again for partitions. The relations between the last two form the matter of
the next section, and the relations between the first and the third will be investigated
afterwards.
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4 Scale increasing families of energies

We thus begin by comparing the energetic ordering �ω with that ≤ of the refinement,
when both apply on the partitions ΠH(E). At a first glance, no relation between them
sticks out a mile. They do not hold on the same features of the partitions. But we can
enlarge the scope and consider a family {ωλ, λ ≥ 0} of singular energies which act on the
same partitions ΠH(E). Each energy ωλ induces a minimal cut π∗λ. Would it be possible
to order them for the refinement, so that the relation (19) be true?

By setting the problem this way, we automatically reduce the set of p.p. under study.
We only need to deal with the p.p. that generate the family {π∗λ, λ ≥ 0} of the minimal
cuts, a collection incomparably smaller than all the p.p. of H, as involved in Theorem 4.
We will denote that family by D∗

D∗ = {π, π ∈ D(E), π v π∗λ, λ > 0}

and denote by
S∗ = {S, {S} v π∗λ, λ > 0}

the family of all classes of the minimal cuts. A convenient starting point is provided by
the notion of scale increasingness of the family {ωλ}[13], i.e. by the axiom (18):

λ ≤ µ and ωλ({S}) ≤ ωλ(π) ⇒ ωµ({S}) ≤ ωµ(π), S ∈ S∗, π ∈ D∗, π v {S} (18)

These inequalities become strict when the scale increasing ωλ are singular energies. Then
the minimal cuts form a hierarchy:

Theorem 6 Let {ωλ, λ ≥ 0} be a family of singular energies acting on a hierarchy H.
Their minimal cuts {π∗λ, λ ≥ 0} for the ωλ-lattices are ordered by refinement, i.e.:

λ ≤ µ ⇒ π∗λ ≤ π∗µ λ, µ ≥ 0. (19)

if and only if the family {ωλ, λ ≥ 0} is scale increasing.

Proof. Suppose that the family is scale increasing, and denote by Sλ (resp. Sµ) the
class of π∗λ (resp. π∗µ) that contains the point x ∈ E. As H is a hierarchy, have either
Sλ ⊆ Sµ, or Sµ ⊆ Sλ. If Sµ ⊂ Sλ there exists a partial partition aµ of π∗µ of support Sλ,
whose ω-energy is > ωλ({Sλ}), because π∗λ is the ∧ω(λ)infimum of the cuts of H. Then by
scale increasingness ωµ({Sλ}) ≤ ωµ(aµ). In Besides, as π∗µ is the minimal cut for ∧ω(µ),
the p.p. aµ is strictly less ωµ-energetic than its support {Sλ}, i.e. ωµ(aµ) < ωµ({Sλ}),
which contradicts the previous inequality. Thus Sλ ⊆ Sµ, and as this inclusion is valid
for all x ∈ E, we finally obtain π∗λ ≤ π∗µ.

Conversely, suppose that there exists a set S ⊆ E for which ωλ({S}) ≤ ωλ(π), π ∈
ΠH(S) does not imply ωµ({S}) ≤ ωµ(π), hence implies ωµ({S}) > ωµ(π). It means that
{S}, which is a class of π∗λ, is replaced by π in π∗µ, so that π∗λ 
 π∗µ, which achieves the
proof.

In addition, we also have π∗λ �ωλ π∗µ by scale increasingness (18). In the continuous
cases, an additional condition of monotony can make the theorem more precise. Indeed,
it would be nice to know whether π∗µ ↓ π∗λ as µ ↓ λ. Let Sµ = Sµ(x) the class of π∗µ at
point x, and S′λ = ∩{Sµ, µ ≥ λ}. We add to the axiom (18) of scale increasingness the
following condition of monotony

ωµ({Sµ}) < ωµ({Sµ} u π) for all µ > λ ⇒ ωλ({S′λ}) < ωλ({S′λ} u π) (20)
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Suppose that π∗µ # π∗λ. Then there exists a class Sλ of π∗λ such that Sλ ⊂ S′λ, which
implies ωλ({S′λ}uπ∗λ) ≤ ωλ(S′λ) since {S′λ}uπ∗λ is a p.p. of the minimal cut for the energy
ωλ. Besides, we draw from (20) that ωλ(S′λ) < ωλ({S′λ}uπ) a contradiction which means
that π∗µ ↓ π∗λ, so that we can state

Corollary 7 When the family {ωλ, λ ≥ 0} is monotone in the sense of the condition
(20), then the increasing mapping λ→ π∗λ is right continuous, i.e.

µ ↓ λ ⇒ π∗µ ↓ π∗λ (21)

In finite model, the conditions (20) and (21) are always satified, since λ is the smallest
of the µ. In the topological model, one must take the interior of the set S′λ = ∩{Sµ, µ ≥ λ}
to express the monotone convergence π∗µ ↓ π∗λ.

The following corollary shows how to easily construct scale increasing families:

Corollary 8 When the map λ → ωλ is increasing, then the family {ωλ} is scale in-
creasing.

Proof. For λ ≤ µ and π ∈ ΠH(S), we have ωλ(S) ≤ ωµ(S) and ωλ(π) ≤ ωµ(π). By
difference, it comes ωλ(π) − ωλ(S) ≤ ωµ(π) − ωµ(S). Hence, when ωλ(π) − ωλ(S) ≥ 0,
then ωµ(π)− ωµ(S) ≥ 0, i.e. the axiom (18).

Usual energies, like ωλ = ωϕ + λω∂ , ωλ = ωϕ ∨ λω∂ , or ωλ = ωϕ ∧ λω∂ lead thus to
hierarchies of minimal cuts. This nice property can be used for compressing a hierarchy
by reducing the number levels in a significant manner.

5 h-increasing energies

This section is devoted to the links between an energetic ordering �ω on the cuts ΠH(E)
and the numerical ordering of the energies of these cuts. The question is set at the level
of one energy ω, and no longer for a family {ωλ} as previously, and scale increasingness
is not assumed anymore in this section.

The theorem 4 says nothing about the energy of a minimal cut, and does not tell
whether the energetic ordering π �ω π′ between two cuts implies the same sense of
variation for the energies themselves, i.e. ω(π) ≤ ω(π′). Indeed, one easily sees that it is
not always the case. For example, take for singular energy ω(π) = 0 (resp. 1) when the
number of classes of the p.p. π is odd (resp. even). Then, in Figure 1, π �ω π′ whereas
ω(π) = 1 and ω(π′) = 0. A new axiom is needed, namely the h-increasingness:

Definition 9 Let (ai, a
′
i) be two different p.p. of the same support Si, and {Si(x), x ∈

E, i ∈ I} a family of disjoint supports. A singular energy ω on the partial partitions D(E)
is h-increasing when for every triplet {ai, a′i, Si(x), x ∈ E, i ∈ I} one has

ω(ai) ≤ ω(a′i) for all i ∈ I ⇒ ω(tai) ≤ ω(ta′i). (22)

For example, a linear energy, i.e. an energy where ω(tai) is the sum of the ω(ai) is
h-increasing, an even strictly h-increasing since

ω(ai) < ω(a′i) for all i ∈ I ⇒ ω(tai) < ω(ta′i). (23)

Unlike, the h-increasing energy ω(tai) =
∑
ω(ai) when

∑
ω(ai) < K and = K when

not, is not strictly h-increasing.

10



Figure 3: h-increasingness for the finite case Eqn(23).

The two orderings � and ≤ h-increasingness bridges the gap between the two
orderings � and ≤ for partitions. Consider two cuts π and π′ of a hierarchy H, and
denote by {Si, i ∈ I } the set of all classes of π ∨ π′. If ai and a′i stand for the p.p. of
support Si of π and π′ respectively, and ω for a h-increasing energy, then the left member
of (22) implies ω(π) ≤ ω(π′), hence:

π �ω π′ ⇒ ω(π) ≤ ω(π′). (24)

with in particular

π∗ ≤ ∧ω{π ∈ ΠH(E)} ⇒ ω(π∗) ≤ ω(π) ∀π ∈ Π(H)

Additive energies, where ω(tiai) =
∑
ω(ai), and energies composed by supremum,

where ω(tiai) =
∨
ω(ai), which are the two most popular ones, satisfy both the Rel.(22).

The axiom of h-increasingness has already been introduced in [13] for the case of a
finite number of classes by the Rel.(25) below. The above definition 9 generalizes it to
infinite situations:

Proposition 10 When the family {ai, a′i ∈ D(E), i ∈ I} of Definition 9 is finite, then
the h-increasingness is equivalent to:

ω(a) ≤ ω(a′) ⇒ ω(a t a0) ≤ ω(a′ t a0), a, a′ ∈ ΠH(S) (25)

where a and a′ are two p.p. of same support S, and where a0 is a p.p. of support S0

disjoint of S.

Proof. The implication (22) ⇒ (25) is obvious. For the reverse sense, consider the
two pairs (a1, a

′
1) and (a2, a

′
2). The relation (25) allows us to write

ω(a1) ≤ ω(a′1) ⇒ ω(a1 t a2) ≤ ω(a′1 t a2)

ω(a2) ≤ ω(a′2) ⇒ ω(a′1 t a2) ≤ ω(a′1 t a′2)

hence ω(a1ta2) < ω(a′1ta′2). Under iteration, this inequality extends to any finite family
{ω(ai), ω(a′i), i ∈ I}, i.e. to Relation (22).

Minimal cut and h-increasingness The finite definition (25) is the one intro-
duced in [13].where one proves that it yields a greedy algorithm for scanning the classes
of H only once ([2] and Proposition 4.3. in [13])

11



Proposition 11 When ω is h-increasing and singular, then, in each sub hierarchy of H
of root S, the unique cut of minimal energy is either {S}, or concatenation π∗1 tπ∗2 ...tπ∗p
of the minimal cuts of the sons T1, T2, ...Tp of S.

For comparing the energy of the one class partition {S} to the energies of all its
descendants, it suffices to compare S to its sons. It results indeed in a simplified version
of the algorithm given in the proof of Theorem 4 (which is established without assuming h-
increasingness). The further descendants do not intervene. Moreover, if ω is not singular,
one can always decide to choose ω({S}) when ω({S}) = ω(π), π ∈ ΠH(S). This choice
makes ω singular and preserves its h-increasingness (Proposition 4.4 of [13]).

Discussion In fact, the energy ω is never minimized. It only intervenes to define en-
ergetic lattice ∧ω associated with each hierarchy, and the minimizations hold on the cuts
of this lattice ∧ω . The same occurs for the sequences {ωλ, λ ≥ 0} of scale increasing
energies: the minimal cuts π∗λ do not increase with the energy ωλ, but with the param-
eter λ of this energy. Similarly, the h-increasingness gives a way from the partitions to
their energies in Rel.(24), but not the way back, because this should validate a bijection
between orderings of cuts and of energies. Now we saw that the number of partitions is
incomparably higher than the possible energies. Everything has been settled indeed to
get round this lack of bijection.

Roughly, the scale increasingness plays the role of a derivation, and the singularity
plus h-increasingness compensate the lack of convexity. And at this theoretical level, no
use is made of notions such as connectivity, saliency, or ultra-metrics.

6 Energies ωλ = ωϕ + λω∂

The above notions were the concern of any type of energy. We now concentrate on the
energies of the type ωλ = ωϕ + λω∂ . The intuition which drives us in the problem of
minimizing ωϕ under the constraint ω∂ is the following. As ωλ is singular, it characterizes
a unique minimal cut π∗λ of hierarchy H, thus a specific pair ωϕ(π∗λ), ω∂(π∗λ) of energies.
If the first one increases with λ and the second decreases, then the Lagrange problem will
be solved. For a given cost C there will exist a smallest λ, λ0 say, such that ω∂(π∗λ0

) ≤ C
and the associated objective energy ωϕ(π∗λ0

) will be the minimal energy which induces a
cut π∗λ0

satisfying the cost constraint ω∂(π∗λ0
) ≤ C.

The studies [20], [11] show the soundness of this approach when the energies ωϕ and
ω∂ are linear, i.e. are additive functions of the classes of the partial partitions. But their
results rest on the linearity assumption, which is in fact a particular case: one finds in
the literature energies which involve other operations, like suprema or infima [22], [1].
We must try and find a more comprehensive approach

6.1 Inf-modularity

We saw that when the family {ωλ} is scale increasing, then the optimal cuts for ∧ω(λ)
form a hierarchy (Rel.(19)). In the present case, the structure of ωλ being more precisely
defined by (3), can we hope stronger properties?

Definition 12 An energy ω∂ : D(E) → R+ is said inf-modular when for each p.p. π of
support S ∈ P(E) we have

ω∂({S}) ≤ ω∂(π) π ∈ ΠH(S), S ∈ P(E). (26)

12



Notice that ω∂({S}) ≤
∧
{ω∂(π), π ∈ ΠH(S)\{S}}, which explains the terminology of

inf-modularity.

inf-modularity and scale increasingness For the Lagrange type energies given
by equation (3), the two notions of scale increasingness and of inf-modularity coincide,
but the latter applies to ω∂ only. More precisely, we can state:

Proposition 13 The family {ωλ = ωϕ + λω∂ , λ ≥ 0} is scale increasing if and only if
ω∂ is inf-modular.

Proof. If ω∂ is inf-modular, and µ > λ, we have (µ − λ)ω∂({S}) ≤ (µ − λ)ω∂(π),
If in addition ωλ({S}) ≤ ωλ(π), then by summing the two inequalities, we obtain
ωµ({S}) ≤ ωµ(π), and the scale increasingness is satisfied. Conversely, if the implication
(18) holds, then by taking the difference between ωϕ({S}) +µω∂({S}) < ωϕ(π) +µω∂(π)
and ωϕ({S}) +λω∂({S}) < ωϕ(π) +λω∂(π), we find (µ−λ)ω∂({S}) ≤ (µ−λ)ω∂(π), i.e.
Rel.(26), which achieves the proof.

The ”only if” part of Proposition 13 is specific of the ωϕ + λω∂ type energies. For a
family such as {ωλ = ωϕ ∨ λω∂} for example, the inf-modularity of ω∂ implies the scale
increasingness of the {ωλ}, but the converse is false.

inf-modularity and sub-modularity The concept of inf-modularity we just in-
troduced is to be compared with the more classical notions of sub-modularity and sub-
additivity, which appear in discrete optimizations, in graph cuts[15]. As these notions
hold on sets of E, whereas the above inf-modularity is relative to the partial partitions of
E, we firstly need to introduce some energy ω′∂ on sets that corresponds to ω∂ , by putting

ω′∂(S) = ω∂({S}), A ∈ P(E), {A} ∈ D(E)

with ω′∂(∅) = 0. Then we must match sets and partial partitions in some sense, and
the first rule which comes to the mind is the comparison of a p.p. π with its classes
Tj , 1 ≤ j ≤ p. If we take

ω∂(π) ≤
j=p∑
j=1

ω∂({Tj}), (27)

then the inf-modularity of ω∂ yields inequality

ω′∂(S) = ω∂({S}) ≤ ω∂(π) ≤
j=p∑
j=1

ω∂({Tj}) =

j=p∑
j=1

ω′∂(Tj),

with π ∈ ΠH(S), which is nothing but the sub-modularity of ω′∂ (i.e. the relation
ω′∂(A ∪ B)+ ω′∂(A ∩ B) ≤ ω′∂(A)+ ω′∂(B) with here A ∩ B = ∅). It is as well the sub-
additivity condition. As one can observe, we passed from partial partitions to sets by the
relation (27), which restricts the approach by a sub-linear condition. The way followed
here, based on partial partitions (and no longer on sets) and on the inf-modularity, frees
ourselves from this limitation. Moreover, unlike graph cuts, the method proposed here
is not discrete, and its implementation not combinatorial (in case of h-increasingness, at
least).
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Figure 4: An example of minimization by inf-modularity (P. Soille).

An example of inf-modularity The example which follows was proposed by P.
Soille and J. Grazzini for segmenting air-born and satellite images [22], [23]. They
have indicated several variants, which all rest on a same idea. A family of previ-
ous segmentations of a 2 − D function f led to hierarchy H. One wants to take the
largest classes where function f is constant enough. Each node S is given the energy
ω(S) = max{f(S)} −min{f(S)}. The values of f(S) obviously increase as going up in
the hierarchy. A node S is kept when ω(S) ≤ 20). The minimal cut is then the union of
the largest remaining nodes.

By so doing, we implicitly weight each partial partition by the supremum of the
energies of its classes. Scan top-down the hierarchy. If at class S the energy is ω(S) > 20,
then one goes down to the sons Tk of S and look at sup{ω(Tk)}. If this supremum is ≤ 20,
one stops, and all Tk belong to the minimal cut, if not one continues to go downwards.

Such a use of the suprema is relatively frequent. One may find another example in
[1], and other ones based on combinations by infima in [14].

7 Lagrange optimization on hierarchies of partitions

We now analyze the properties of the minimal cuts for ωλ = ωϕ + λω∂ type energies.

Definition 14 One calls one parameter Lagrange family any family {ωλ = ωϕ+λω∂ , λ ≥
0} where ωλ is singular, ωϕ is h-increasing, and ω∂ is inf-modular and h-increasing.
Moreover, we suppose that the mappings ωϕ and ω∂ , as functions of λ, are right contin-
uous.

Given a hierarchy H, a Lagrange family provides a unique minimal cut π∗λ of H with
each λ, since ωλ is singular. Moreover the inf-modularity of ω∂ shows that these minimal
cuts π∗λ enlarge as λ increases (Proposition 13 and Theorem 6).

7.1 Minimal cuts

The h-increasingness of ωϕ and ω∂ allow us to improve these first results.

Proposition 15 Let {ωλ = ωϕ + λω∂} be a one parameter Lagrange family, and let H
be a hierarchy. The sequence of energies {ω∂(π∗λ)} decreases with λ, and the sequence
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{ωϕ(π∗λ)} increases with λ, with the monotone convergence

π∗µ ↓ π∗λ ⇒ ωϕ(π∗λ) ↑ ωϕ(π∗µ) and ω∂(π∗λ) ↓ ω∂(π∗µ) (28)

Proof. We have to prove that ω∂(π∗λ) is an decreasing function of λ, and that ωϕ(π∗λ)
is an increasing one. Then the right contin uity of these two energies will lead to the
implication (28). Suppose λ < µ and let Sµ be a class of π∗µ. As ω∂ is inf-modular, the
energy ωλ is scale increasing. Theorem 6 applies, and π∗λ ≤ π∗µ. The class Sµ is thus the
support of a p.p. aλ of π∗λ, and we can write

λ < µ ⇒ [either aλ = {Sµ} or ω∂(aλ) > ω∂({Sµ})] ⇒ π∗µ �ω∂ π∗λ,

which leads to ω∂(π∗λ) ≥ ω∂(π∗µ) by h-increasingness of ω∂ . On the other hand, as π∗λ is
minimal cut in the energetic lattice ∧ωλ , we have either aλ = {Sµ}, or

ωϕ(aλ) + λω∂(aλ) < ωϕ({Sµ}) + λω∂({Sµ}),

i.e.
ωϕ({Sµ})− ωϕ(aλ) > λ[ω∂(aλ)− ω∂({Sµ})] > 0,

hence

λ < µ ⇒ [either aλ = {Sµ} or ωϕ(aλ) < ωϕ({Sµ})] ⇒ π∗λ �ωϕ π∗µ . (29)

which leads to ωϕ(π∗λ) ≤ ωϕ(π∗µ) by h-increasingness of ωϕ, and achieves the proof.

Hence, the two energies ω∂ and ωϕ vary in opposite sense on the minimal cuts.

7.2 Constrained optimization on Lagrange families

The energies of the minimal cuts in a Lagrange family allow us to solve the problem of
minimizing ωϕ under a cost constraint holding on ω∂ :

Theorem 16 Let {ωλ = ωϕ + λω∂ , λ ≥ 0} be a one parameter Lagrange family acting
on a hierarchy H of partitions of set E. As λ varies, let {π∗λ} be the minimal cuts of
H w.r.t. the ωλ. For a given cost C, when there exists no λ such that ω∂(π∗λ) ≤ C, the
constrained minimization is impossible. When not, then there exists a cut π∗λ0

of minimal
energy ωϕ(π∗λ0

) under the constraint ω∂(π∗λ) ≤ C, with

λ0 = inf{λ | ω∂(π∗λ) ≤ C}. (30)

If ωϕ(π∗λ) > ωϕ(π∗λ0
) for λ > λ0, this cut is unique . If not, all π∗λ, λ0 ≤ λ < λ1 , with

λ1 = sup{λ | ωϕ(π∗λ) = ωϕ(π∗λ0
)}, (31)

are minimal constrained cuts.

Proof. Suppose that there exists a λ such that ω∂(π∗λ) ≤ C. When λ ↓ λ0 the
monotone continuity π∗λ ↓ π∗λ0

(Relation 21) and the monotone decreasingness of ω∂(π∗λ)
(Relation 28) show that ω∂(π∗λ0

) ≤ C, and that for λ < λ0 the constraint ω∂(π∗λ) ≤ C is
not satisfied. Moreover for λ > λ0 we have ωϕ(π∗λ) ≥ ωϕ(π∗λ0

). If ωϕ(π∗λ) = ωϕ(π∗λ0
) with

π∗λ 6= π∗λ0
, then by scale increasingness we have π∗λ > π∗λ0

. This determines the upper
bound λ1 and achieves the proof.

Interestingly, the only property demanded for the energy ωϕ is h-increasingness, al-
ready often required in practice for computational reasons. Note also that the two ener-
gies ωϕ and ω∂ of the Lagrange family may vary in the same sense. The proposition 14
uniquely holds on the senses of variation of ωϕ and ω∂ w.r.t. λ for the optimal cuts.
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Figure 5: Plots of the objective function ωϕ(π∗λ) and of constraint ω∂(π∗λ) in function of λ.

7.3 Discussion

If C stands for a cost, the possible constancy of a sequence of cuts risks to give no solution
to the equation ω∂(π∗λ) = C, which imitates the constraint k of the above Relation (1).

Here is a toy example of this phenomenon. Consider a hierarchy which provides three
minimal cuts only. Take the following values for their energies :

ωϕ(π∗λ) ω∂(π∗λ) ωλ(π∗λ)
0 ≤ λ < 2 5 30 5 + 30λ
2 ≤ λ < 4 15 20 15 + 20λ
4 ≤ λ < 6 25 20 25 + 20λ
6 ≤ λ 25 10 25 + 10λ

This table is plotted in Figure5, both ω∂(π∗λ) and ωϕ(π∗λ) are piecewise constant
functions of λ. If the cost C = 24 for example, the λ0 of equation (30) equals 2, and the
λ domain of the minimal π∗λ cut is [λ0, λ1[= [2, 4[ . If now C = 5 the minimization has
no solution.

This type of plot is general. The pairs ”father/son” in all partial partitions of a
hierarchy H are similar to the two partitions of Figure 5. By h-increasingness, the
function λ → ω∂(π∗λ) is also piecewise constant, with more discontinuities than in case
of Figure 5, so that an impossible cost equation may again occur. This explains why we
must slightly relax the cost condition in Theorem 16 by demanding only constraints like
that of ωϕ or ω∂ , but not θ, in Equations (1). This relaxed constraint is classically called
KKT [8].

8 Multi-constrained Lagrange optimization

The above minimization extends to situations when several constraints interact. For
avoiding heavy notation, we restrict the number of parameters to two, and consider the
families {ωλ,ν , λ ≥ 0, µ ≥ 0} such that

λ ≤ µ, ν ≤ ρ, and ωλ,ν({S}) ≤ ωλ,ν(π) ⇒ ωµ,ρ({S}) ≤ ωµ,ρ(π), π ∈ ΠH(S), (32)
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a relation which generalizes the scale increasingness. For such multi scale families the
theorem 6 becomes:

Theorem 17 When a family {ωλ,ν , λ ≥ 0, µ ≥ 0} of singular energies satisfies the axiom
(32) of scale increasingness, then the minimal cuts of any hierarchy H enlarge as λ and
µ increase:

λ ≤ µ , ν ≤ ρ ⇒ π∗λ,ν ≤ π∗µ,ρ λ, µ ≥ 0. (33)

Proof. Fix the parameter ν. By applying Theorem 6 to the variation in λ, we obtain
λ ≤ µ ⇒ π∗λ,ν ≤ π∗µ,ν . Fix now the first parameter at the value µ and apply again
Theorem 6. We finally get ν ≤ ρ ⇒ π∗µ,ν ≤ π∗µ,ρ, and thus Rel. (33) by composing the
two inequalities.

Similarly, the corollary 8 is re-written ”all families {ωλ,ν} which increase with (λ, ν)
are scale increasing”. It is in particular the case for the families {ωλ,ν = ωϕ+λω∂+νωκ},
{ωλ,ν = ωϕ + (λω∂ ∨ νωκ)}, {ωλ,ν = ωϕ + (λω∂ ∧ νωκ)}, {ωλ,ν = ωϕ ∨ (λω∂ + νωκ)},
{ωλ,ν = ωϕ ∧ (λω∂ + νωκ)}, etc..

We now focus the two-parameters families of the type

{ωλ,ν = ωϕ + λω∂ + νωκ, λ, ν ≥ 0}.

One easily verify that the axiom (32) of twofold scale increasingness is equivalent to the
inf-modularities of both ω∂ and ωκ. A two-parameters family is said to be Lagrange when
ωλ,ν is singular, ωϕ, ω∂ and ωκ are h-increasing, and when the axiom (32) is satisfied. In
this case the proposition 15 becomes:

Proposition 18 Let {ωλ,ν} be a two-parameters Lagrange family of energies acting on a
hierarchy H. The energy and ωϕ(π∗λ,ν) increase with (λ, ν) whereas the energies ω∂(π∗λ,ν)
and ωκ(π∗λ,ν) decrease with (λ, ν).

Proof. The two energies ω∂(π∗λ,ν) and ωκ(π∗λ,ν) decrease with (λ, ν) because they are
inf-modular. Il follows that

λ ≤ µ and ν ≤ ρ ⇒ λ[ω∂(aλ,ν)− ω∂({S}µ,ρ)] + ν[ωκ(aλ,µ)− ωκ({S}µ,ρ)] > 0 (34)

We can also write by scale increasingness of ωλ,ν

ωϕ(aλ,ν) + λω∂(aλ,ν) + νω(aλ,ν) ≤ ωϕ({S}µ,ρ) + λω∂({S}µ,ρ) + νωκ({S}µ,ρ).

By taking Rel. (34) into account, we finally obtain:

ωϕ({S}µ,ρ)− ωϕ(aλ,ν) > 0.

The proof is achieved as for Proposition 15.

Introduce now two costs C and D, for the two conditions ω∂(π∗λ,ν) ≤ C and ωκ(π∗λ,ν) ≤
D, and the two infima

λ0 = inf{λ | ω∂(π∗λ,ν) ≤ C} and ν0 = inf{ν | ωκ(π∗λ,ν) ≤ D}. (35)

As the number of cuts of H is finite, so is the number of labels (λ, ν) of minimal cuts.
There exists thus a minimal cut π∗λ0,ν0

. It is unique because the ωλ,ν are singular, and
this gives the solution of the multi constrained minimization:
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Theorem 19 Let ωλ,ν = ωϕ +λω∂ + νωκ, λ, ν ≥ 0 be a two parameters Lagrange family,
let C and D be two costs, and H a finite hierarchy of partitions of set E. As λ varies, let
{π∗λ} be the minimal cuts of H w.r.t. the ωλ. Then there exist two doublets (λ0, ν0) and
(λ1, ν1) which generate respectively the smallest and the largest cuts of minimal energy
ωϕ(π∗λ) under the two constraints ω∂(π∗λ,ν) ≤ C and ω∂k(π∗λ,ν) ≤ D.

9 The model ωλ = ωϕ ∨ λω∂
We started from energies of the type of Equation 3 because it is the relation between
the objective function ωϕ and its constraint ω∂ which appears in the classical Lagrange
formalism. And hopefully this model also worked for minimizing partitions. Are there
others such nice starting points ?

Consider the family
{ωλ = ωϕ ∨ λω∂ , λ > 0} (36)

and suppose that ωλ and ω∂ fulfill the same conditions as in a Lagrange family (Definition
14).

Proposition 7, about the hierarchy of minimal cuts, is now one way (∧-modularity
=> scale increasingness). For showing that, it suffices to use

ωλ({S}) = ωϕ({S}) ∨ λω∂({S}) ≤ ωϕ(π) ∨ λω∂(π) π ∈ ΠH(S)

and
µω∂({S}) ≤ µω∂(π)

and to take the supremum of these new inequalities.

10 From hierarchies to lattices of partitions

One easily imagine, between the lattice L of all partitions of a finite set E of leaves, and
a chain, or hierarchy H in L, many other intermediary families in L which borrow their
features to both structures. They all range from the leaves π0 to the root E, but when
one labels their elements by real numbers i ∈ I, the inequality i ≤ j does not imply
πi ≤ πj , as in hierarchies. Mathematically speaking, they constitute the set L′ of the sub
lattices of L, since they share with L the same ≤, ∨, and ∧ of the refinement, and the
same extremal elements. Among others, they include the hierarchies of leaves π0, and
one can wonder if the previous analysis, for hierarchies, can extend to L′ and how.

We will adopt the finite model here, though it is probably not necessary, because
the question involves interweaving sequences of labels, which can become inextricable
when their number is infinite. For the same sake of simplicity, we suppose the energies ω
singular, scale increasing and h-increasing.

Consider a sub-lattice K ∈ L′, such as Figure 6. It deviates from a hierarchy on
account of a leakage effect. The two braces that contain point x designate two p.p.
whose t is the class S1. The same occurs with the two classes of π2 and π3 at point y
whose t gives the class S′1. But S1 and S′1, which intersect, cannot be taken as classes
of some underlying hierarchy, and we must go up by one more level, etc..This leakage
weakens the hierarchical properties of K, and thus the relevance of the above method
for describing it. But this also suggests a typology of the sub-lattices K ∈ L′. Start
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Figure 6: An example of leakage effect.

from a sub-lattices K whose the even levels form a hierarchy. Several p.p. compose the
intermediary odd levels, but if the class S at level i+ 2 is the support of the p.p. π(S) at
level i, then {S} is the supremum of all the p.p. candidates for occupying the level i+ 1
below S:

π(S) ≤ {πj ...πr} ≤ ∨{πj ...πr} = S

Figure 7 depicts the situation at two the places of S and S′. We call wavering hierarchy
of order one such a sub-lattices K.

The order two is depicted in Figure 6. In this case, the underlying hierarchy corre-
sponds to the levels which are a multiple of three. If i is the level of π0 and i+ 3 that of
π5, then S1 in π3 and S′1 in π4 are intermediary suprema of p.p.. But they overlap, which
requires to go up once more for getting the convenient class S = S1 ∪ S′1.

Let us find the minimal cut of a wavering hierarchy of order one w.r.t. a singular
energy ω. An additional assumption is required here, for choosing among the intermediary
{πj ...πr}. Their energies must be different form ω({S}), which is the singularity, but we
assume also that, if some are smaller than ω({S}) then they cannot be equal. With this
condition, which generalizes the singularity, the cuts of K become a partial ordered set
for the ω-energetic ordering of Proposition 3, and an ω-energetic lattice in the sense of
Theorem 4. As the ω-energetic ordering is a piecewise relation, each class of level i + 2
can be studied individually. One take for p.p. at level i+ 1 below S the less energetic of
the {πj ...πr} when ∧{ω(πj)...ω(πr)} < ω(S), and {S} when not. An example is given in
Figure 8.

By applying the same local minimization to all father classes, we obtain a hierarchy
H(K) with odd and even levels. The minimal cuts of K and H(K) are the same, and
therefore if {ωλ} is a scale increasing family, the minimal cuts of K increase with λ.
Moreover, if the family {ωλ = ωϕ + λω∂} of energies is Lagrange, then the constrained
optimization of Theorem 19 still applies.

The approach and these results extend to the wavering hierarchy of order two or more,
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Figure 7: An example of a wavering hierarchy.

Figure 8: Hierarchy derived from that of Figure 7.

but they become more and more combinatorial.

11 Conclusion

This report presented the topologically continuous hierarchy of partitions, which does
not assume any finite leaves any more [13]. It further generalized the concepts of scale-
increasingness to define Inf-Modularity, which provides the axiomatic on the constraint
in Lagrangian optimization problems, so that one can obtain a unique minimum in the
energetic lattice. The scale-increasingness was further generalized for multi-constraint
Lagrangian optimization, by introducing an order on the Lagrangian multipliers.
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[2] Laurent Guigues and. Modéles multi-échelles pour la segmentation d’images. Thése
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ANNEX
(Extract from [13])

Theorem 20 Given a hierarchy H, an energy ω induces an energetic ordering on the
set Π(E) of all cuts of H, if and only if ω is singular. In this ordering, cut π ∈ Π(E) is
less energetic than cut π′ ∈ Π(E) w.r.t. ω, and one writes π ≤ω π′, when in each class
S of the supremum by refinement π ∨ π′ the p.p. of π inside S has an energy smaller or
equal to that of π inside S. Equivalently, for each leaf x ∈ E

a) either the class S(x) of π is the support of a p.p. χ′ of π′ and ω({S} ≤ ω(χ′),
b) or the class S′(x) of π′ is the support of a p.p. χ of π and ω(χ) ≤ ω({S′}).

Proof. The equivalence of the two formulations is a consequence of Rel. 9, which
shows that each class of π∨π′ is either a class of π or of π′. The reflexivity, in statements
a) and b) is obvious. For the transitivity, consider π1, π2, π3 ∈ Π, with π1 ≤ω π2 and
π2 ≤ω π3. At leaf x, their three classes are S1, S2, and S3 respectively. If S1 = S2 or
S2 = S3, the theorem is locally satisfied. If not, one cannot have S1 ∪S3 ⊆ S2. Indeed, if
S3 ⊆ S2, there exists a p.p. χ with {S3}tχ = {S2}, and the assumption π2 ≤ω π3 implies,
by a), that ω({S2} ≤ ω({S3} t χ). If in addition S1 ⊆ S2, i.e. {S1} t χ′ = {S2}, we see
similarly that ω({S1} t χ′) ≤ ω({S2}), which contradicts the singularity. Therefore, the
three classes S1, S2, and S3 can be ordered in two ways only, namely

i) S1 ⊆ S3 and S2 ⊆ S3,

ii) S3 ⊆ S1 and S2 ⊆ S1.

In case i), there exist two p.p. ζ and ζ ′ with {S1}t ζ} = {S3} and {S2}t ζ ′} = {S3}.
As π2 ≤ω π3, we have, by a), ω({S2} t ζ ′) ≤ ω({S3}). Therefore, by singularity, all p.p.
of {S3} have energies ≤ ω({S3}). In particular ω({S1} t ζ) ≤ ω({S3}), which shows that
transitivity is fulfilled at leave x. In case ii), a similar proof yields the same conclusion,
so that finally π1 ≤ω π3.

For the anti-symmetry, we must prove that π ≤ω π′ and π′ ≤ω π imply that π = π′.
Suppose that the class S′(x) of π′ is the support of a p.p. χ made of more than one
class of π. By applying the case b) of the theorem to the inequality π ≤ω π′, we have
ω(χ) ≤ ω({S′}). But we are also in case a) for π′ ≤ω π, hence ω(χ) ≥ ω({S′}), which
implies the equality of the two members. But this contradicts the singularity of ω, so
that S′ is partitioned into a unique class of π, namely S. If we reverse the roles of π and
π′, we obtain the same result, which is also independent of the choice of the leave x in
E. This achieves the proof of anti-symmetry.

Conversely, consider an ordering ≤ωwhose energy would be non singular, and two cuts
π and π′ identical everywhere except in the class S′(x) of π, where π is locally the p.p. χ.
Supposed that ω(χ) = ω(S′(x)). This implies π ≤ω π′ and also π′ ≤ω π. However we do
not have π′ = π since χ 6= S′(x). Thus singularity is needed, which achieves the proof.
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