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ROUGH PATHS AND 1D SDE WITH A TIME DEPENDENT DISTRIBUTIONAL DRIFT. APPLICATION TO POLYMERS

Motivated by the recent advances in the theory of stochastic partial differential equations involving nonlinear functions of distributions, like the Kardar-Parisi-Zhang (KPZ) equation, we reconsider the unique solvability of one-dimensional stochastic differential equations, the drift of which is a distribution, by means of rough paths theory. Existence and uniqueness are established in the weak sense when the drift reads as the derivative of a α-Hölder continuous function, α ą 1{3. Regularity of the drift part is investigated carefully and a related stochastic calculus is also proposed, which makes the structure of the solutions more explicit than within the earlier framework of Dirichlet processes.

Introduction

Given a family of continuous paths pR Q x Þ Ñ Y t pxqq tě0 with values in R, we are interested in the solvability of the stochastic differential equation [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF] dX t " B x Y t pX t q dt `dB t , t ě 0, with a given initial condition, where B x Y t is understood as the derivative of Y t in the sense of distribution and pB t q tě0 is a standard one-dimensional Wiener process. When B x Y t makes sense as a measurable function, with suitable integrability conditions, pathwise existence and uniqueness are known to hold: See the earlier papers by Zvonkin [START_REF] Zvonkin | A transformation of the phase space of a diffusion process that will remove the drift[END_REF] and Veretennikov [START_REF] Veretennikov | Strong solutions and explicit formulas for solutions of stochastic integral equations[END_REF] when the derivative exists as a bounded function, in which case existence and uniqueness hold globally, together with the more recent result by Krylov and Röckner [START_REF] Krylov | Strong solutions of stochastic equations with singular time dependent drift[END_REF] when B x Y t is in L p loc pp0, `8q ˆRd q for some p ą d `2 -the equation being set over R d instead of R-, in which case existence and uniqueness just hold locally; see also the Saint-Flour Lecture Notes by Flandoli [START_REF] Flandoli | Random perturbation of PDEs and fluid dynamic models[END_REF] for a complete account. In the case when B x Y t only exists as a distribution, existence and uniqueness have been mostly discussed within the restricted time homogeneous framework. When the field Y is independent of time, X indeed reads as a diffusion process with p1{2q expp´2Y pxqqB x pexpp2Y pxqqB x q as generator. Then, solutions to (1) can be proved to be the sum of a Brownian motion and of a process of zero quadratic variation and are thus referred to as Dirichlet processes. In this setting, unique solvability can be proved to hold in the weak or strong sense according to the regularity of Y , see for example the papers by Flandoli, Russo and Wolf [START_REF] Flandoli | Some SDEs with distributional drift[END_REF][START_REF] Flandoli | Some SDEs with distributional drift. II. Lyons-Zheng structure, It's formula and semimartingale characterization[END_REF] on the one hand and the paper by Bass and Chen [START_REF] Bass | Stochastic differential equations for Dirichlet processes[END_REF] on the other hand. We also refer to the more recent work by 1 delarue@unice.fr 2 diel@unice.fr Catellier and Gubinelli [START_REF] Catellier | Averaging along irregular curves and regularisation of ODEs[END_REF] for the case when pB t q tě0 is replaced by a general rough signal, like the trajectory of a fractional Brownian motion with an arbitrary Hurst parameter.

In the current paper, we allow Y to depend upon time, making impossible any factorization of the generator of X under a divergence form and thus requiring a more systematic treatment of the singularity of the drift. In order to limit the technicality of the paper, the analysis is restricted to the case when the diffusion coefficient in (1) is 1, which is already, as explained right below, a really interesting case for practical purposes and which is, anyway, somewhat universal because of the time change property of the Brownian motion. As suggested in the aforementioned paper by Bass and Chen [START_REF] Bass | Stochastic differential equations for Dirichlet processes[END_REF], pathwise existence and uniqueness are then no more expected to hold whenever the path Y t has oscillations of Hölder type with a Hölder exponent strictly less than 1{2. For that reason, we will investigate the unique solvability of (1) in the so-called weak sense by tackling a corresponding formulation of the martingale problem. Indeed, we will consider the case when Y t is Hölder continuous, the Hölder exponent, denoted by α, being strictly greater than 1{3, hence possibly strictly less than 1{2, thus yielding solutions to (1) of weak type only, that is solutions that are not adapted to the underlying noise pB t q tě0 . At this stage of the introduction, it must be stressed that the threshold 1{3 for the Hölder exponent of the path is exactly of the same nature as the one that occurs in the theory of rough paths. It is also worth mentioning that a variant of our set-up has just been considered by Flandoli, Issoglio and Russo [START_REF] Flandoli | Multidimensional stochastic differential equations with distributional drift[END_REF], which handle the same equation, the dimension of the state space being possibly larger than 1 but the Hölder exponent of Y t being (strictly) greater than 1{2.

Actually, the theory of rough paths will play a major role in our analysis. The strategy for solving [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF] is indeed mainly inspired by the papers [START_REF] Zvonkin | A transformation of the phase space of a diffusion process that will remove the drift[END_REF][START_REF] Veretennikov | Strong solutions and explicit formulas for solutions of stochastic integral equations[END_REF][START_REF] Krylov | Strong solutions of stochastic equations with singular time dependent drift[END_REF] we mentioned right above and consists in finding harmonic functions associated with the (formal) generator [START_REF] Andreoletti | Limit law of the local time for Brox's diffusion[END_REF] B t `Lt :" B t `1 2 B 2 xx `Bx Y t pxqB x .

Solving Partial Differential Equations (PDEs) driven by B t `Lt , say in the standard mild formulation, then requires to integrate with respect to B x Y t pxq (in x), which is a non-classical thing. This is precisely the place where the rough paths theory initiated by Lyons (see [START_REF] Lyons | System control and rough paths[END_REF][START_REF] Lyons | Differential equations driven by rough paths[END_REF]) comes in: As recently exposed by Hairer in his seminal paper [START_REF] Hairer | Solving the KPZ equation[END_REF] on the KPZ equation and in the precursor paper [START_REF] Hairer | Rough Stochastic PDEs[END_REF] on rough stochastic PDEs, mild solutions to PDEs driven by B t `Lt may be expanded as rough integrals involving the standard heat kernel on the one hand and the 'rough' increments B x Y t on the other hand. In our case, we are interested in the solutions of the PDE

(3) B t u t pxq `Lt u t pxq " f t pxq, when set on a cylinder r0, T s ˆR, with a terminal boundary condition at time T ą 0, and when driven by a smooth function f . Solutions obtained by letting the source term f vary generates a large enough 'core' in order to apply the standard martingale problem approach by Stroock and Varadhan [START_REF] Stroock | Multidimensional diffusion processes[END_REF] and thus to characterize the laws of the solutions to [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF].

Unfortunately, although such a strategy seems quite clear, some precaution is in fact needed. When α is between 1{3 and 1{2, which is the typical range of application of Lyons' theory, the expansion of mild solutions as rough integrals involving the heat kernel and the increments of B x Y t is not so straightforward. It is indeed not enough to assume that the path R Q x Þ Ñ Y t pxq has a rough path structure for any given time t ě 0. As explained in detail in Section 2, the rough path structures, when taken at different times, also interact, asking for the existence, at any time t ě 0, of a 'lifted' 2-dimensional rough path with Y t as first coordinate. We refrain from detailing the shape of such a lifting right here as it is longly discussed in the sequel. We just mention that, in Hairer [START_REF] Hairer | Solving the KPZ equation[END_REF], the family pY t pxqqq tě0,xPR has a Gaussian structure, which permits to construct the lifting by means of generic results on rough paths for Gaussian processes, see Friz and Victoir [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths[END_REF]. Existence of the lifting under more general assumptions is thus a challenging question, which is (partially) addressed in Section 5: The lifting is proved to exist in other cases, including that when α ą 1{2 and when pY t pxqq tě0,xPR is smooth enough in time (and in particular when it is time homogeneous). Another difficulty is that, contrary to Hairer [START_REF] Hairer | Rough Stochastic PDEs[END_REF][START_REF] Hairer | Solving the KPZ equation[END_REF] in which problems are set on the torus, the PDE is here set on a non-compact domain. This requires an additional analysis of the growth of the solutions in terms of the behavior of pY t pxqq tě0,xPR for large values of |x|, such an analysis being essential to discuss the non-explosion of the solutions to [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF].

Besides existence and uniqueness, it is also of great interest to understand the specific dynamics of the solutions to [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF]. Part of the paper is thus dedicated to a careful analysis of the infinitesimal variation of X, that is of the asymptotic behavior of X t`h ´Xt as h tends to 0. In this perspective, we prove that the increments of X may be split into two pieces: a Brownian increment as suggested by the initial writing of Eq. ( 1) and a sort of drift term, the magnitude of which is of order h p1`βq{2 , for some β ą 0 that is nearly equal to α. Such a decomposition is much stronger than the standard decomposition of a Dirichlet process into the sum of a martingale and of a zero quadratic variation process. Somehow it generalizes the one obtained by Bass and Chen [START_REF] Bass | Stochastic differential equations for Dirichlet processes[END_REF] in the time homogeneous framework when α ě 1{2. As a typical example, p1 `βq{2 is nearly equal to 3{4 when Y t is almost 1{2-Hölder continuous, which fits for instance the framework investigated by Hairer [START_REF] Hairer | Solving the KPZ equation[END_REF]. In particular, except trivial cases when the distribution is a true function, integration with respect to the drift term in (1) cannot be performed as a classical integration with respect to a function of bounded variation. In fact, since the value of p1 `βq{2 is strictly larger than 1{2, it makes sense to understand the integration with respect to the drift term as a kind of Young integral, in the spirit of the earlier paper [START_REF] Young | An inequality of the Hölder type, connected with Stieltjes integration[END_REF]. We here say 'a kind of Young integral' and not 'a Young integral' directly since, as we will see in the analysis, it sounds useful to develop a stochastic version of Young's integration, that is a Young-like integration that takes into account the probabilistic notion of adaptedness as it is the case in Itô's calculus.

In the end, we prove that, under appropriate assumptions on the regularity of the field pY t pxqq tě0,xPR , Eq. ( 1) is uniquely solvable in the weak sense (for a given initial condition) and that the solution reads as [START_REF] Bertini | Stochastic Burgers and KPZ equations from particle systems[END_REF] dX t " bpt, X t , dtq `dB t , where b maps r0, `8q ˆR ˆr0, `8q to R and the integral with respect to bpt, X t , dtq makes sense as a stochastic Young integral, the magnitude of bpt, X t , dtq being of order dt p1`βq{2 . The examples we have in mind are twofold. The first one is the so-called 'Brownian motion in a time-dependent random environment' or 'Brownian motion in a time-dependent random potential'. Indeed, much has been said about the long time behavior of the Brownian motion in a time-independent random potential such as the Brownian motion in a Brownian potential, see for example [START_REF] Andreoletti | Limit law of the local time for Brox's diffusion[END_REF][START_REF] Brox | A One-Dimensional Diffusion Process in a Wiener medium[END_REF][START_REF] Diel | Almost sure asymptotics for the local time of a diffusion in Brownian environment[END_REF][START_REF] Hu | The Limits of Sinai's Simple Random Walk in Random Environment[END_REF][START_REF] Hu | The local time of simple random walk in random environment[END_REF][START_REF] Russo | Some parabolic PDEs whose drift is an irregular random noise in space[END_REF][START_REF] Tanaka | Localization of a diffusion process in a one-dimensional Brownian environment[END_REF]. We expect our paper to be a first step forward toward a more general analysis of one-dimensional diffusions in a time-dependent random potential, even if, in the current paper, nothing is said about the long run behavior of the solutions to [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF], this question being left to further investigations. As already announced, the second example we have in mind is the so-called Kardar-Parisi-Zhang (KPZ) equation (see [START_REF] Kardar | Dynamical scaling of growing interfaces[END_REF]), to which much attention has been paid recently, see among others Bertini and Giacomin [START_REF] Bertini | Stochastic Burgers and KPZ equations from particle systems[END_REF], Hairer [START_REF] Hairer | Solving the KPZ equation[END_REF] and Friz and Hairer [15,Chap. 15] about the well-posedness and Amir, Corwin and Quastel [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF] about the long time behavior. In this framework, Y must be thought as a realization of the time-reversed solution of the KPZ equation, that is Y t pxq " upω, T ´t, xq, T being positive and upω, ¨, ¨q denoting the random solution to the KPZ equation and being defined either as in Bertini and Giacomin by means of the Cole-Hopf transform or as in Hairer by means of rough paths theory. Then, Eq. ( 1) reads as the equation for describing the dynamics of the canonical path pw t q 0ďtďT on the canonical space Cpr0, T s, Rq under the polymer measure exp ˆż T 0 9 ζpt, w t q dt ˙dPpwq, where 9

ζ is a space-time white noise and P is the Wiener measure, the white noise being independent of the realizations of the Wiener process under P. In this perspective, our result provides a quenched description of the infinitesimal dynamics of the polymer.

The paper is organized as follows. We remind the reader of the rough paths theory in Section 2. Main results about the solvability of (1) are also exposed in Section 2. Section 3 is devoted to the analysis of PDEs driven by the operator [START_REF] Andreoletti | Limit law of the local time for Brox's diffusion[END_REF]. In Section 4, we propose a stochastic variant of Young's integral in order to give a rigorous meaning to [START_REF] Bertini | Stochastic Burgers and KPZ equations from particle systems[END_REF]. We discuss in Section 5 the construction of the 'rough' iterated integral that makes the whole construction work. Finally, in Section 6, we explain the connection with the KPZ equation.

General Strategy and Main Results

Our basic strategy to define a solution to the SDE (1) relies on a suitable adaptation of Zvonkin's method for solving SDEs driven by a bounded and measurable drift (see [START_REF] Zvonkin | A transformation of the phase space of a diffusion process that will remove the drift[END_REF]) and of Stroock and Varadhan's martingale problem (see [START_REF] Stroock | Multidimensional diffusion processes[END_REF]). The main point is to transform the original equation into a martingale. For sure such a strategy requires a suitable version of Itô's formula and henceforth a right notion of harmonic functions for the generator of the diffusion process [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF]. This is precisely the point where the rough paths theory comes in, on the same model as it does in Hairer's paper for solving the KPZ equation.

This section is thus devoted to a sketchy presentation of rough paths theory and then to an appropriate reformulation of Zvonkin's method.

2.1. Rough paths on a segment. We start with reminders about rough paths, following Gubinelli's approach in [START_REF] Gubinelli | Controlling rough paths[END_REF]. Given α P p0, 1s, n P Nzt0u and a segment I Ă R, we denote by C α pI, R n q the set of α-Hölder continuous functions f : I Ñ R n and we define the seminorm }f } I α :" sup 

:" }f } I 8 `p1 _ max xPI |x|q ´α 2 }f } I α ,
with }f } I 8 :" sup xPI |f pxq| and a _ b " maxpa, bq. Note that the factor p1 _ max xPI |x|q ´α{2 is somewhat useless and could be replaced by 1 at this stage of the paper. Actually it will really matter in the sequel, when considering paths over the whole line. Similarly, we denote by C α 2 pI, R n q the set of functions R from I 2 to R n such that Rpx, xq " 0 for every x and with finite norm }R} I α :" sup x,yPI,x‰y t|Rpx, yq|{|y ´x| α u. (Functionals defined on the product space R 2 will be denoted by calligraphic letters).

For α P p1{3, 1s, we call α-rough path (on I) a pair pW, W q where W P C α pI, R n q and W P C 2α 2 pI, R n 2 q such that, for any indices i, j P t1, . . . , nu, the following relation holds: W i,j px, zq ´W ij px, yq ´W ij py, zq " pW i pyq ´W i pxqqpW j pzq ´W j pyqq, x ď y ď z. [START_REF] Brox | A One-Dimensional Diffusion Process in a Wiener medium[END_REF] We then denote by R α pI, R n q the set of α-rough paths; we will often only write W for the rough path pW, W q. The quantity W i,j px, yq must be understood as a value for the iterated integral (or cross integral) " ş y x pW i pzq ´W i pxqq dW j pzq" of W with respect to itself (we will also use the tensorial product " ş y x pW pzq ´W pxqq b dW pzq" to denote the product between coordinates). When α " 1, such an integral exists in a standard sense. When α ą 1{2, it exists as well, but in the so-called Young sense (see [START_REF] Young | An inequality of the Hölder type, connected with Stieltjes integration[END_REF][START_REF] Lyons | Differential equations driven by rough paths[END_REF] and Lemma 24 below). When α P p1{3, 1{2s, which is the typical range of values in rough paths theory, there is no more a canonical way to define the cross integral and it must be given a priori in order to define a proper integration theory with respect to dW . In that framework, condition (5) imposes some consistency in the behavior of W when intervals of integration are concatenated. Of course, W plays a role in the range α P p1{3, 1{2s only, but in order to avoid any distinction between the cases α P p1{3, 1{2s and α P p1{2, 1s, we will refer to the pair pW, W q in both cases, even when α ą 1{2, in which case W will be just given by the iterated integral of W .

Given W P R α pI, R n q as above, the point is then to define the integral " ş y x vpzq dW pzq" of some function v (from I into itself) with respect to the coordinates of dW for some rx, ys Ă I. When v belongs to C β pI, Rq, for β ą 1 ´α, Young's theory applies, without any further reference to the second-order structure W of W . When β ď 1 ´α, Young's theory fails, but, in the typical example when v is W ´W pxq itself (or one coordinate of W ´W pxq), the integral is well-defined as it is precisely given by W . In order to benefit from the second-order structure of W for integrating a more general v, the increments of v must actually be structured in a similar fashion to that of W . This motivates the following notion (which holds whatever the sign of α `β ´1 is): For β P p1{3, 1s, a path v is said to be β-controlled by W if v P C β pI, Rq and there is a function B W v P C β pI, R n q such that the remainder term (6) R v px, yq :" vpyq ´vpxq ´BW vpxq `W pyq ´W pxq ˘, x, y P I, is in C 2β 1 2 pI, Rq, with β 1 :" β ^1{2. In the above right-hand side, B W vpxq reads as a row vector -as it is often the case for gradients-and pW pyq´W pxqq as a column vector. Although B W v may not be uniquely defined, we will sometimes write v for pv, B W vq when no confusion is possible on the value of B W v. For instance, any function v P C 2β 1 pI, Rq is β-controlled by W , a possible (but not necessarily unique) choice for the 'derivative' B W v being B W v " 0.

We are then able to define the integral of a function v controlled by W (see [START_REF] Gubinelli | Controlling rough paths[END_REF][START_REF] Hairer | Rough Stochastic PDEs[END_REF][START_REF] Hairer | Solving the KPZ equation[END_REF]):

Theorem 1. Given α, β P p1{3, 1s, let W P R α pI, R n q be a rough path and v P C β pI, Rq be a path β-controlled by W . For two reals x ă y in I, consider the compensated (vectorial) Riemann sum:

Sp∆q :" N ´1 ÿ i"0 ! vpx i q `W px i`1 q ´W px i q ˘`B W vpx i qW px i , x i`1 q )
where ∆ " px " x 0 ă ¨¨¨ă x N " yq is a partition of rx, ys (above B W vpx i q is a row vector and W px i , x i`1 q a matrix). Then, as the step size πp∆q of the partition tends to 0, Sp∆q converges to a limit, denoted by ş y x vpzq dW pzq, independent of the choice of the approximating partitions. Moreover, there is a constant C " Cpn, α, βq such that, ˇˇˇż y x vpzq dW pzq ´vpxq `W pyq ´W pxq ˘´B W vpxqW px, yq ˇˇď

C ´}W } rx,ys 2α }B W v} rx,ys β |y ´x| 2α`β `}W } rx,ys α }R v } rx,ys 2β 1 |y ´x| α`2β 1 ¯. (7) 
Observe that, with our prescribed range of values for α and β, the exponents 2α `β and α `2β 1 are (strictly) greater than 1. This observation is crucial to prove the convergence of Sp∆q as the step size tends to 0. When v is any arbitrary function in C 2β 1 pI, Rq, Definition 1 applies and the integral of ş y x vpzqdW pzq coincides with the Young integral. Notice also that, most of the time, we shall work with β ă α.

We now address the problem of stability of the integral with respect to W . Replacing ppv, B W vq, W q by a sequence of smooth approximations ppv n , B W n v n q, W n q ně1 , a question is to decide whether the (classical) integrals of the pv n q ně1 's with respect to the approximated paths are indeed close to the rough integral of v with respect to W . Actually, it is true if (i) the convergence of W n to W holds in the sense of rough paths, that is vW ´W n w I α }W ´W n } I 2α tends to 0 as n tends to the infinity (W n standing for the true iterated integral of W n ), in which case we say that the rough path W (or pW, W q) is geometric; (ii) the convergence of pv n , B W n v n q to pv, B W vq holds in the sense of controlled paths, that is vv ´vn w

I β `vB W v ´BW n v n w I β `}R v ´Rv n } I 2β 1
tends to 0 as n tends to the infinity.

Time indexed families of rough paths.

It is well-guessed that, in order to handle (1), we have in mind to choose W pxq " Y t pxq, x P R, and to apply rough paths theory at any fixed time t ě 0 (thus requiring to choose I " R and subsequently to extend the notion of rough paths to the whole R, which will be done in the next paragraph). Anyhow a difficult aspect for handling (1) is precisely that pY t pxqq tě0,xPR is time dependent. If it were time homogeneous, part of the analysis we provide here would be useless: we refer for instance to [START_REF] Flandoli | Some SDEs with distributional drift[END_REF][START_REF] Flandoli | Some SDEs with distributional drift. II. Lyons-Zheng structure, It's formula and semimartingale characterization[END_REF][START_REF] Bass | Stochastic differential equations for Dirichlet processes[END_REF]. From the technical point of view, the reason is that, in the homogeneous framework, the analysis of the generator of the process X reduces to the analysis of a standard one-dimensional ordinary differential equation. Whenever coefficients depend on time, the connection with ODEs boils down, thus asking for non-trivial refinements. From the intuitive point of view, time-inhomogeneity makes things much more challenging as the underlying differential structure in space varies at any time: In order to integrate with respect to B x Y t pxq in the rough paths sense, the second-order structure of the rough paths must be defined first and it is well-understood that it is then time-dependent as well. This says that the problem consists of a time-indexed family of rough paths, but, a priori (and unfortunately), it is not clear whether defining the rough paths time by time is enough to handle the problem. Actually, as we explain below, it may not be enough as the rough paths structures interact with one another, thus requiring additional assumptions on pY t pxqq tě0,xPR . As above, we first limit our exposition of time-dependent rough paths to the case when x lives in a segment I. For some time horizon T ą 0, and for α, γ ą 0, we define the following (semi-)norms for continuous functions f : r0, T q ˆI Ñ R n and M : r0, T q ˆI2 Ñ R n : }f } r0,T qˆI γ,α :" sup 

.

We then define the spaces C γ,α pr0, T q ˆI, R n q and C γ,α 2 pr0, T q ˆI, R n q accordingly. For α P p1{3, 1s, we call time dependent α-rough path a family of rough paths pW t q 0ďtăT " pW t , W t q 0ďtăT where W P Cpr0, T q ˆI, R n q and W P Cpr0, T q ˆI2 , R n 2 q such that, for any t P r0, T q, the pair pW t , W t q is an α-rough path and [START_REF] Diel | Almost sure asymptotics for the local time of a diffusion in Brownian environment[END_REF] }pW, W q} r0,T qˆI 0,α

:" sup tPr0,T q }W t } I α `}W t } I 2α ( ă 8.
We denote by R α pr0, T qˆI, R n q the set of time-dependent α-rough paths endowed with the seminorm } ¨}r0,TqˆI 0,α

. For β P p1{3, 1s, we then say that v P Cpr0, T q ˆI, Rq is β-controlled by the paths pW t q 0ďtăT if v P C β{2,β pr0, T qˆI, Rq and there exists a function B W v P C β{2,β pr0, T qÎ , R n q such that, for any t P r0, T q, the remainder below is in

C 2β 1 2 pI, R n q: (9)
R vt px, yq :" v t pyq ´vt pxq ´BW v t pxq `Wt pyq ´Wt pxq ˘, x, y P I.

2.3.

Rough paths on the whole line. So far, we have only defined rough paths (or time dependent rough paths) on segments. As Eq. ( 1) is set on the whole space, we must extend the definition to R, the point being to specify the behavior at infinity of the underlying (rough) paths and of the corresponding controlled functions. When the family pY t pxqq tě0,xPR is differentiable in x, a sufficient condition to prevent a blow-up in (1) is to require pB x Y t pxqq tě0,xPR to be at most of linear growth in x. In our setting, pY t pxqq tě0,xPR is singular and it makes no sense to discuss the growth of its derivative. The point is thus to control the growth of the local Hölder norm of pY t pxqq tě0,xPR together with (as shown later) the growth of the local Hölder norm of the associated iterated integral.

This motivates the following definition. For α P p1{3, 1s and χ ą 0, we call α-rough path (on R) with rate χ a pair W " pW, W q such that, for any a ě 1, the restriction of pW, W q to r´a, as is in R α pr´a, asq, and [START_REF] Flandoli | Random perturbation of PDEs and fluid dynamic models[END_REF] κ α,χ `W, W q :" sup

aě1 }W } r´a,as α a χ `}W } r´a,as 2α a 2χ ă 8.
We denote by R α,χ pR, R n q the set of all such pW, W q. This definition extends to time-dependent families of rough paths. Given T ą 0, we say that pW t , W t q 0ďtăT belongs to R α,χ pr0, T q ˆR, R n q if [START_REF] Flandoli | Multidimensional stochastic differential equations with distributional drift[END_REF] κ α,χ `pW t , W t q 0ďtăT ˘:" sup tPr0,T q κ α,χ `Wt , W t q ă 8.

In a similar way, we must specify the admissible growth of the functions that are controlled by rough paths on the whole R. A comfortable framework is to require exponential bounds. Given pW, W q P R α,χ pR, R n q and ϑ ě 1, we say that a function v : R Ñ R is in B β,ϑ pR, W q for some β P p1{3, 1s if, for any segment I Ă R, the restriction of v to I is β-controlled by W and [START_REF] Flandoli | Some SDEs with distributional drift[END_REF] Θ ϑ pvq :" sup aě1 " e ´ϑa ´vvw r´a,as β

`1 2 vB W vw r´a,as β `a´β 1 }R v } r´a,as 2β 1 ¯ı ă 8.
Abusively, we omit the dependence upon B W v in Θ ϑ pvq. Similarly, for pW t , W t q 0ďtăT P R α,χ pr0, T q ˆR, R n q, a function v : r0, T q ˆR Ñ R is in B β,ϑ pr0, T q ˆR, W q if, for any a ě 1, its restriction to r0, T q ˆr´a, as is β-controlled by pW t q 0ďtăT and, for some λ ą 0, Θ ϑ,λ T pvq :" sup

aě1 tPr0,T q " vvw rt,T qˆr´a,as β{2,β `1 2 vB W vw rt,T qˆr´a,as β{2,β `λ β´α 8 pa ´β1 ^pT ´tq β 1 {2 q}R vt } r´a,as 2β 1 E ϑ,λ T pt, aq ı ,
is finite, with E ϑ,λ T pt, aq :" exprλpT ´tq `ϑap1 `T ´tqs (it reflects the backward nature of (3)). Note that the set B β,ϑ pr0, T q ˆR, W q does not depend on λ, but that Θ ϑ,λ T pvq does. By Theorem 1, we can easily obtain a control of the integral ş v t dY t by the norm Θ ϑ,λ T pvq: Lemma 2. Assume β ď α. Then, there exists a constant C " Cpn, α, βq, such that, for any ϑ, λ, a ě 1, any v P B β,ϑ pr0, T q ˆR, W q and any pt, x, yq P r0, T q ˆr´a, as 

|z| 2α a 2χ `|z| 2α`β a 2χ`β 2 `|z| α`2β 1 a χ pa β 1 `pT ´tq ´β1 2 q.
2.4. Enlargement of the rough path structure. We now discuss how the time dependent rough path structures of the drift pY t pxqq tě0,xPR interact with one another as time varies.

Formally the generator associated with (1) reads L " B t `Bx pY t pxqqB x `p1{2qB 2 xx . This suggests that, on r0, T q ˆR, harmonic functions (that is zeros of the generator) read as u t pxq "P T ´tu T pxq `ż T t ż R p r´t px ´zqB x u r pzq dY r pzq dr, x P R, where p denotes the standard heat kernel and P the standard heat semi-group (so that P t f pxq " ş R p t px ´yqf pyq dy). In the case when the boundary condition of the function v is given by u T pxq " x, a formal expansion of B x u t pxq in the neighborhood of T gives

B x u t pxq " 1 `ż T t ż R B x p r´t px ´zq dY r pzq dr `ż T t ż R B x p r´t px ´zq "ż T r ż R B
x p s´r pz ´uq dY s puq ds * dY r pzq dr `. . .

In the first order term of the expansion, the space integral makes sense as the singularity can be transferred from Y r onto B x p r´t px ´zq, provided the integration by parts is licit: using the approximation argument discussed above, it is indeed licit when the rough path is geometric. In order to give a sense to this first order term, the point is to check that the resulting singularity in time is integrable, which is addressed in Section 3. Unfortunately, the story is much less simple for the second order term. Any formal integration by parts leads to a term involving a 'cross' integral between the space increments of Y , but taken at different times: This is the place where rough structures, indexed by different times, interact. We refrain from detailing the computations at this stage of the paper and feel more convenient to defer their presentation to Section 3 below. Basically, the point is to give, at any time t P r0, T q, a sense to the integral ş y x Z T t pzq dY t pzq, where, for all t P r0, T q and x P R,

Z T t pxq " ż T t B (13) 
x P r´t Y r pxqdr "

ż T t ż R B 2 
x p r´t px ´zqpY r pzq ´Yr pxqq dz dr.

Assuming that sup 0ďtăT sup x,yPR rp1 `|x| χ `|y| χ q ´1}Y t } rx,ys α s is finite (for some χ ą 0), the above integral is well-defined (see Lemma 19 below). In order to make sure that the cross integral of Z T t with respect to Y t exists, the point is to assume that the pair pY t , Z T t q can be lifted up to a rough path of dimension 2, which is to say that there exists some W T with values in R 4 such that ppY, Z T q, W T q is an α-time dependent rough path, for some α ą 1{3. We will see in Section 5 conditions under which such a lifting W T indeed exists.

2.5. Generator of the diffusion and related Dirichlet problem. We now provide some solvability results for the Dirichlet problem driven by B t `Lt in (2): Definition 3. Given Y P Cpr0, T q ˆR, Rq, assume that there exists W T such that pW T " pY, Z T q, W T q belongs to R α,χ pr0, T q ˆR, R 2 q with α ą 1{3 and χ ą 0. Given f P Cpr0, T s R, Rq, with sup aě1 sup 0ďtďT e ´ϑa }f t } r´a,as 8 ă 8 for some ϑ ě 0, a function u : r0, T s ˆR Ñ R is a mild solution on r0, T s ˆR to the problem PpY, f, T q:

Lv " f, with Lv :" B t v `Lt v,
if u is continuously differentiable with respect to x, with B x u P B β,ϑ pr0, T q ˆR, W T q for some β P p1{3, 1s, and satisfies Finiteness of the integrals over R will be checked in Lemma 11 below. We also emphasize that a notion of weak solution could be given as well, but we won't use it.

Remark 4. When pW T , W T q is geometric, the last term in the right-hand side coincides (by integration by parts, which is made licit by approximation by smooth paths) with ş T t ş R p r´t pxý qB x u r pyq dY r pyq dr, which reads as a more 'natural formulation' of a mild solution and which is, by the way, the formulation used in Sections 3.1 and 3.2 of Hairer [START_REF] Hairer | Solving the KPZ equation[END_REF] for investigating the KPZ equation and in Section 3.1 of Hairer [START_REF] Hairer | Rough Stochastic PDEs[END_REF] for handling rough SPDEs. The formulation (14) seems a bit more tractable as it splits into two well separated parts the rough integration and the regularization effect of the heat kernel. Once again, both are equivalent in the geometric (and in particular smooth) setting.

Here is a crucial result in our analysis (the proof is postponed to Section 3):

Theorem 5. Let Y be as in Definition 3. Then, for any f P Cpr0, T s ˆR, Rq and u T P C 1 pR, Rq, with

m 0 :" sup aě1 " e ´ϑa ´sup 0ďtďT `}f t } r´a,as 8 `}f t } r´a,as γ ˘`}pu T q 1 } r´a,as 8 `}pu T q 1 } r´a,as β ¯ı ă 8, (15) 
for some ϑ ě 1, γ ą 0 and β P p1{3, αq, with β ą 2χ, there is a unique solution, in the space B β,ϑ pr0, T q ˆR, W T q, of the problem PpY, f, T q with u T " u T as terminal condition.

Letting m :" maxr1, T, ϑ, m 0 , κ α,χ pW T , W T qs, we can find C " Cpm, α, β, χq, such that, for any pt, xq P r0, T s ˆR, [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths[END_REF] |u We now address the question of stability of mild solutions under mollification of pW T , W T q. We call a mollification of W T 'physical' if it consists in mollifying Y in x first -the mollification is then smooth in x, the derivatives being continuous in space and time-and then in replacing Y by its mollified version in [START_REF] Flandoli | Some SDEs with distributional drift. II. Lyons-Zheng structure, It's formula and semimartingale characterization[END_REF]. Denoting by Y n the mollified path at the nth step of the mollification, the resulting Z n,T is smooth in x, the derivatives being also continuous in space and time. This permits to define the corresponding pair pW n,T , W n,T q directly. In that specific geometric setting, we claim (once again, the proof is deferred to Section 3): Proposition 6. In the same framework as in Theorem 5, assume that the rough path pW T , W T q is geometric in the sense that there exists a sequence of smooth paths pY n q ně1 such that the corresponding sequence pW n,T " pY n , Z n,T qq ně1 satisfies (1) }pW T ´W n,T , W T ´W n,T q} r0,T qˆI 0,α tends to 0 as n tends to 8 for any segment I Ă R, where W n,T t px, yq " ş y x pW n,T t pzq ´W n,T t pxqq b dW n,T t pzq, for t P r0, T q and x, y P R, (2) sup ně1 κ α,χ ppW n,T t , W n,T t q 0ďtďT q is finite (see [START_REF] Flandoli | Multidimensional stochastic differential equations with distributional drift[END_REF] for the definition of κ χ ).

Then, the associated solutions pu n q ně1 (in the sense of Definition 3) and their gradients pv n " B x u n q ně1 converge towards u and v " B x u uniformly on compact subsets of r0, T s ˆR.

It is worth noting that each u n is actually a classical solution of the PDE (3) driven by Y n instead of Y . The reason is that, in the characterization [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF] of a mild solution (in the rough sense), the rough integral coincides with a standard Riemann integral when W n is smooth. We refer to [START_REF] Hairer | Rough Stochastic PDEs[END_REF]Corollary 3.12] for another use of this (quite standard) observation.

2.6. Martingale problem. We now define the martingale problem associated with (1): Definition 7. Let T 0 ą 0 and x 0 P R. Given Y P Cpr0, T 0 q ˆR, Rq, assume that, for any 0 ď T ď T 0 , there exists W T such that pW T " pY, Z T q, W T q belongs to R α,χ pr0, T q ˆR, R 2 q with α ą 1{3 and χ ă α{2, the supremum sup 0ďT ďT 0 κ α,χ ppW T t , W T t q 0ďtăT q being finite. A probability measure P on Cpr0, T 0 s, Rq (endowed with the canonical filtration pF t q 0ďtďT 0 ) is said to solve the martingale problem related to L starting from x if the canonical process pX t q 0ďtďT 0 satisfies the following two conditions:

(1) PpX 0 " x 0 q " 1, (2) for any T P r0, T 0 s, f P Cpr0, T s ˆR, Rq and u T P C 1 pR, Rq satisfying (15) with respect to some ϑ ě 1, γ ą 0 and β P p2χ, αq, the process pu t pX t q ´şt 0 f r pX r q drq 0ďtďT is a square integrable martingale under P, where u is the solution of PpY, f, T q with u T " u T .

A similar definition holds by letting the canonical process start from x 0 at some time t 0 ‰ 0, in which case we say that the initial condition is pt 0 , x 0 q and (1) is replaced by Pp@s P r0, t 0 s, X s " x 0 q " 1.

Note that we require more in Definition 7 than in Definition 3 as we let the terminal time T vary within the interval r0, T 0 s. In particular, in order to consider a solution to the martingale problem, it is not enough to assume that, at time T 0 , pW T 0 , W T 0 q belongs to R α,χ pr0, T 0 q ˆR, R 2 q. The rough path structure must exist at any 0 ď T ď T 0 , the regularity of the path W T and of its iterated integral W T being uniformly controlled in T P r0, T 0 s.

Our goal is then to prove existence and uniqueness of a solution:

Theorem 8. In addition to the assumption of Definition 7, assume that, at any time 0 ď T ď T 0 , pW T , W T q is geometric (in the sense of Proposition 6), the paths pY n q ně1 used for defining the approximating paths pW n,T , W n,T q ně1 being the same for all the T 's and the supremum sup 0ďT ďT 0 sup ně1 κ α,χ ppW n,T t , W n,T t q 0ďtăT q being finite. Then, for an initial condition pt 0 , x 0 q P r0, T 0 s ˆR, there exists a unique solution to the martingale problem (on r0, T 0 s) with pt 0 , x 0 q as initial condition. It is denoted by P t 0 ,x 0 . The mapping r0, T 0 s ˆR Q pt, xq Þ Ñ P t,x pAq is measurable for any Borel subset A of the canonical space Cpr0, T 0 s, Rq. Moreover, it is strong Markov.

Remark 9. The martingale problem is here set on the finite interval r0, T 0 s. Obviously, existence and uniqueness extend to r0, 8q.

The proof of Theorem 8 is split into two distinct parts: Existence of a solution is discussed in Subsection 2.7 whereas uniqueness is investigated in Subsection 2.8. 2.7. Solvability of the martingale problem. We start with: Proposition 10. Given T 0 ą 0, assume that the assumption of Theorem 8 is in force. For an initial condition pt 0 , x 0 q P r0, T 0 s ˆR, there exists a solution to the martingale problem (on r0, T 0 s) with pt 0 , x 0 q as initial condition.

Proof of Proposition 10. First step. Without any loss of generality, we can assume that t 0 " 0. Considering a sequence of paths pY n q ně1 as in the statement of Proposition 6, we can also assume that Y n has bounded derivatives on the whole space, see Lemma 33 in the appendix. We then notice that, for a given x 0 P R, the following SDE (set on some filtered probability space endowed with a Brownian motion pB t q 0ďtďT 0 ) admits a unique solution:

dX n t " dB t `Bx Y n t pX n t q dt, t P r0, T 0 s ; X 0 " x 0 . ( 18 
)
Second step. Choosing β P p1{3, αq with β ą 2χ and letting u T pxq " exppϑxq for a given T P r0, T 0 s, we denote by pu n t pxqq 0ďtďT,xPR the mild solution to [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF] with f " 0 and Y replaced by Y n . Following the remark after Proposition 6, u n is a classical solution of [START_REF] Hairer | Solving the KPZ equation[END_REF] B t u n t pxq `1 2 B 2 xx u n t pxq `Bx Y n t pxqB x u n t pxq " 0, so that, by Itô's formula, the process pu n t pX n t qq 0ďtďT is a true martingale (since we know, from Theorem 5, that u n is at most of exponential growth). Then, ( 16) yields

E " exp `ϑX n T ˘‰ " E " u n T `Xn T ˘‰ " u 0 px 0 q ď C exppC|x 0 |q,
where C " Cpm, α, β, χq as in Theorem 5. A crucial thing is that m is uniformly bounded in T P r0, T 0 s so that it can be assumed to be independent of T . Replacing u T pxq by u T p´xq, we get the same result with ϑ replaced by ´ϑ in the above inequality, so that

E " exp `ϑ|X n T | ˘‰ ď C exp `C|x 0 | ˘.
Therefore, the exponential moments of X n T are bounded, uniformly in n ě 1. As C is independent of T P r0, T 0 s, we deduce that the marginal exponential moments of pX n t q 0ďtďT 0 are bounded, uniformly in n ě 1.

Third step. Now we change the domain of definition and the terminal condition of the PDE. We consider the PDE on r0, t `hs ˆR with u t`h pxq " x as boundary condition, where 0 ď t ď t `h ď T 0 . To simplify, we still denote by pu n s pxqq 0ďsďt`h,xPR the mild solution to ( 14) with f " 0, Y replaced by Y n and u n t`h " u t`h as terminal condition. By Itô's formula,

X n t`h ´Xn t " u n t`h pX n t`h q ´un t pX n t q `un t pX n t q ´un t`h pX n t q " ż t`h t B x u n s pX n s q dB s `un t pX n t q ´un t`h pX n t q. ( 20 
)
Therefore, by ( 16) and ( 17), we deduce that, for any q ě 2, there exists a constant C q , independent of n, such that

E " |X n t`h ´Xn t | q ‰ 1 q ď C q " E "ˆż t`h t |B x u n s pX n s q| 2 ds ˙q 2 1 q `E" |u n t pX n t q ´un t`h pX n t q| q ‰ 1 q * ď C q h 1 2 ´1 q sup 0ďsďT 0 E " |B x u n s pX n s q| q ‰ 1 q `E" |u n t pX n t q ´un t`h pX n t q| q ‰1 q ( ď C q h 1 2 ´1 q sup 0ďsďT 0 E " exppq|X n s |q ‰1 q `h1`β 2 sup 0ďsďT 0 E " exppq|X n s |q| ‰ 1 q ( .
By the second step (uniform boundedness of the exponential moments) and by Kolmogorov's criterion, we deduce that the processes pX n t q 0ďtďT 0 are tight. Fourth step. It remains to prove that any weak limit pX t q 0ďtďT 0 is a solution to the martingale problem. The basic argument is taken from [9, Lemma 5.1]. Anyhow, it requires a careful adaptation since the test functions u in Definition 7 may be of exponential growth (whereas test functions are assumed to be bounded in [START_REF] Ethier | Characterization and convergence[END_REF]Lemma 5.1]). We thus give the complete proof. For T P r0, T 0 s, we know from Proposition 6 that we can find a sequence pu n q ně1 of classical solutions to the problems PpY n , f, T q such that the sequence pu n , B x u n q ně1 converges towards pu, B x uq, uniformly on compact subsets of r0, T s ˆR. Applying Itô's formula to each pu n t pX n t qq 0ďtďT , n ě 1, we deduce that

u n t pX n t q ´un 0 pX n 0 q ´ż t 0 f s pX n s q ds " ż t 0 B x u n s pX n s q dB s , 0 ď t ď T.
By [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths[END_REF], we know that the functions pB x u n q ně1 are at most of exponential growth, uniformly in n ě 1. Moreover, we recall that the processes ppX n t q 0ďtďT q ně1 have finite marginal exponential moments, uniformly in n ě 1 as well. Therefore, the martingales ppu n t pX n t q ún 0 pX n 0 q ´şt 0 f s pX n s q dsq 0ďtďT q ně1 are bounded in L 2 , uniformly in n ě 1. Letting n tend to the infinity, this completes the proof.

2.8. Proof of Theorem 8. We now complete the proof of Theorem 8. Existence has been already proved in Proposition 10. The point is thus to prove uniqueness and measurability of the solution with respect to the initial point.

We first establish uniqueness of the marginal laws. Assume indeed that P 1 and P 2 are two solutions of the martingale problem with the same initial condition pt 0 , x 0 q. Then, for any f P Cpr0, T s ˆR, Rq satisfying [START_REF] Friz | A Course on Rough Paths (with an Introduction to Regularity Structures)[END_REF], it holds

(21) E 1 ż T 0 t 0 f s pX s q ds " E 2 ż T 0 t 0 f s pX s q ds,
where E 1 and E 2 denote the expectations under P 1 and P 2 (pX t q 0ďtďT 0 denotes the canonical process). Indeed, denoting by u the solution of the PDE PpY, f, T 0 q with 0 as terminal condition at time T 0 , we know from the definition of the martingale problem that, both under P 1 and P 2 , the process pu s pX s q ´şs t 0 f r pX r q drq t 0 ďsďT 0 is a martingale. Therefore, taking the expectation under E 1 and E 2 and noticing that u T 0 pX T 0 q " 0 almost surely under P 1 and P 2 , we deduce that both sides in [START_REF] Hu | The local time of simple random walk in random environment[END_REF] are equal to ´ut 0 px 0 q, which is enough to complete the proof of ( 21) and thus to prove that the marginal laws of the canonical process are the same under P 1 and P 2 .

Following Theorems 4.2 and 4.6 in [START_REF] Ethier | Characterization and convergence[END_REF], we deduce that the martingale problem has a unique solution (note that the results in [START_REF] Ethier | Characterization and convergence[END_REF] hold for time homogeneous martingale problems whereas the martingale problem we are here investigating is time inhomogeneous; adding an additional variable in the state space, the problem we are considering can be easily turned into a time-homogeneous one). Measurability and strong Markov property are proved as in [START_REF] Ethier | Characterization and convergence[END_REF].

Solving the PDE

This section is devoted to the proof of Theorem 5. As the definition of a mild solution in Definition 3 consists in a convolution of a rough integral with the heat kernel, the first step is to investigate the smoothing effect of a Gaussian kernel onto a rough integral. Existence and uniqueness of a mild solution to ( 14) is then proved by means of a contraction argument.

Parts of the results presented here are variations of the ones obtained in Sections 3.1 and 3.2 of Hairer [START_REF] Hairer | Solving the KPZ equation[END_REF] for solving the KPZ equation, but differ slightly in the very construction of a mild solution, see Remark 4. The reader may also have a look at Section 3 in Hairer [START_REF] Hairer | Rough Stochastic PDEs[END_REF] for a quite simpler framework.

3.1. Mild solutions as Picard's fixed points. In this subsection, we fix α, β, χ, ϑ, λ such that 1{3 ă β ă α ď 1, χ ă β{2 and ϑ, λ ě 1. Given Y P Cpr0, T q ˆR, Rq for some final time T ď 1, we assume that there exists W T such that pW T t " pY t , Z T t q, W T t q 0ďtďT is in R α,χ pr0, T q ˆR, R 2 q, pZ T t q 0ďtďT being given by ( 13). We will simply denote by κ the semi norm κ α,χ ppW T t , W T t q tPr0,T q q and we will omit the superscript T in Z T , W T and W T . We also recall the definition of Θ ϑ,λ T pvq for v P B β,ϑ pr0, T q ˆR, W q:

Θ ϑ,λ T pvq :" sup aě1 tPr0,T q " vvw rt,T qˆr´a,as β{2,β `1 2 vB W vw rt,T qˆr´a,as β{2,β `λ β´α 8 pa ´β1 ^pT ´tq β 1 {2 q}R vt } r´a,as 2β 1 E ϑ,λ T pt, aq ı ,
with E ϑ,λ T pt, aq " exprλpT ´tq `ϑap1 `T ´tqs. We start with the following technical lemma, which plays a crucial role in the proof of Theorem 5: Lemma 11. For any γ 1 ď γ 2 ď β{2 and k P N ˚, there is a constant C " Cpα, β, γ 1 , γ 2 , χ, kq (independent of ϑ and λ) such that, for any t, τ P r0, T q, with τ ď T ´t, and any a ě 1, the following bounds hold for any v P B β,ϑ pr0, T q ˆR, W q and any x P r´a, as: 

ż R ż τ 0 |B k x p 1 pyq| s 1`γ 1 ˇˇˇż x´?sy x v t`s pzq dY t`s pzq ˇˇˇd s dy ď Ψλ 3 β´α 8 τ γ 2 ´γ1 a γ 2 , with Ψ " Ce CT ϑ 2 κΘ ϑ,λ T pvqE ϑ,λ T pt, aq. When 2γ 1 ď β 1 , we also have ż R ż τ 0 |B k x p 1 pyq| s 1`2γ
ż τ 0 s ´1´γ 1 ˇˇˇż x 1 ´?sy x 1 v t`s pzq dY t`s pzq ˇˇˇd s ď Cκλ α´β 8 ΘEpt, aqe ϑp1`T q|y| `1 `|y| 3 ˘ż τ 0 e ´pλ`ϑpa`|y|qqs s γ 1 pa `|y|q γ 2 D 1 `t, s, a `|y| ˘ds, (22) 
where

D 1 pt, s, ρq " s α 2 ´1ρ χ `sα´1 ρ 2χ `sα`β 2 ´1ρ 2χ`β 2 `s α 2 `β1 ´1ρ χ ´ρβ 1 `pT ´t ´sq ´β1 2 ¯. ( 23 
)
We thus have to bound integrals of the form ρ b 1 ´γ2 ş τ 0 e ´pλ`ϑρqs s a 1 ´γ1 ´1 ds with a 1 ě α{2 (ě γ 2 ), 0 ă b 1 ď a 1 and ρ ě 1. Bounding s γ 2 ´γ1 by τ γ 2 ´γ1 and noticing that

ρ b 1 ´γ2 pλ `ϑρq a 1 ´γ2 ď ρ b 1 ´γ2 pλ `ρq a 1 ´γ2 ď ρ b 1 ´a1 1 tρěλu `λγ 2 ´a1 1 t1ďρăλ,b 1 ăγ 2 u `λb 1 ´a1 1 tρăλ,b 1 ěγ 2 u ď λ pb 1 _γ 2 q´a 1 , (24) 
we get the following upper bound for the integral (performing a change of variable to pass from the first to the second line and recalling that γ 2 ď β{2 to derive the last inequality):

ρ b 1 ´γ2 ż τ 0 e ´pλ`ϑρqs s a 1 ´γ1 ´1 ds ď τ γ 2 ´γ1 ρ b 1 ´γ2 ż τ 0 e ´pλ`ϑρqs s a 1 ´γ2 ´1 ds ď τ γ 2 ´γ1 ρ b 1 ´γ2 pλ `ϑρq a 1 ´γ2 ż pλ`ϑρqτ 0 e ´ss a 1 ´γ2 ´1 ds ď τ γ 2 ´γ1 λ pb 1 _ β 2 q´a 1 Γpa 1 ´γ2 q. ( 25 
)
Because of the term in pT ´t ´sq in the definition of D 1 , we also have to control

ρ χ´γ 2 ż τ 0 e ´pλ`ϑρqs s 1´α 2 ´β1 `γ1 pT ´t ´sq β 1 2 ds ď τ γ 2 ´γ1 ρ χ´γ 2 ż τ 0 e ´pλ`ϑρqs s 1´α 2 ´β1 `γ2 pT ´t ´sq β 1 2 ds " τ γ 2 ´γ1 ρ χ´γ 2 pλ `ϑρq α 2 ´γ2 τ β 1 2 pT ´tq β 1 2 pλ `ϑρq β 1 2 ż 1 0 pτ pλ `ϑρqq α 2 `β1
2 ´γ2 e ´τ pλ`ϑρqs s 1´α 2 ´β1 `γ2 r1 ´τ s{pT ´tqs β 1 2 ds. [START_REF] Quastel | Introduction to KPZ. Notes from the Saint-Flour summer school 2012[END_REF] In order to bound the integral in the second line, we use the inequality x a 1 e ´xs ď pa 1 q a 1 e ´a1 {s a 1 , which holds for s P p0, 1s and a 1 , x ě 0. Using also the bounds τ ď T ´t and λ `ϑρ ě 1 together with [START_REF] Lyons | Differential equations driven by rough paths[END_REF], we get (for a possibly new value of the constant C):

ρ χ´γ 2 ż τ 0 e ´pλ`ϑρqs s 1´α 2 ´β1 `γ1 pT ´t ´sq β 1 2 ds ď Cτ γ 2 ´γ1 λ pχ_γ 2 q´α 2 ż 1 0 ds s 1´β 1 2 p1 ´sq β 1 2 ď Cτ γ 2 ´γ1 λ β´α 2 . (27) 
A careful inspection of ( 23) shows that we can apply ( 25) and ( 27) with a 1 ě α{2 and b 1 ´a1 ď χ ´α{2 in order to bound ( 22) (a 1 is the part different from ´1 in the exponent of s and b 1 is the exponent of ρ in ( 23)). We obtain

pa `|y|q ´γ2 ż τ 0 s ´1´γ 1 ˇˇˇż x´?sy x v t`s pzq dY t`s pzq ˇˇˇd s ď Cκλ α´β 8 ΘEpt, aqe ϑp1`T q|y| `1 `|y| 3 ˘τ γ 2 ´γ1 λ β´α 2 . (28) 
As a ´γ2 ď p1 `|y|q γ 2 pa `|y|q ´γ2 , we get the first bound of the lemma by integrating (28) against ˇˇB k x p 1 pyq ˇˇ. We now turn to the proof of the second inequality in the statement. We make use of the first inequality in Lemma 2. Replacing v t`s pzq by v t`s pzq ´vt`s pxq in [START_REF] Kardar | Dynamical scaling of growing interfaces[END_REF], we get the same inequality but with a simpler form of D 1 pt, s, a `|y|q, namely the first term in the right-hand side in (23) doesn't appear. This says that we can now apply (25) with a 1 ě α^pα{2`β 1 q ě β 1 and b 1 ´a1 ď χ ´α{2. The value of a 1 being larger than β 1 , this permits to apply [START_REF] Lyons | Differential equations driven by rough paths[END_REF] with γ 2 replaced by β 1 . Then, we can replace γ 1 and γ 2 by 2γ 1 and β 1 in (25) (with

γ 1 ď β 1 {2).
With the prescribed values of a 1 and b 1 , the resulting bound in ( 25) is Cτ β 1 ´2γ 1 λ pb 1 _β 1 q´a 1 . Following [START_REF] Stroock | Multidimensional diffusion processes[END_REF], we see that the contribution of (25) in the second inequality of the statement is λ pα´βq{8 Ψλ pβ´αq{2 τ β 1 ´2γ 1 a β 1 ď Ψλ pβ´αq{8 τ β 1 ´2γ 1 a β 1 , which fits the first part of the inequality. To recover the second part of the inequality, we must discuss the contribution of [START_REF] Quastel | Introduction to KPZ. Notes from the Saint-Flour summer school 2012[END_REF]. Going back to [START_REF] Krylov | Strong solutions of stochastic equations with singular time dependent drift[END_REF], we have to analyze (pay attention that, in comparison with (26), γ 2 is set to 0):

pT ´tq β 1 2 ρ χ ż τ 0 e ´pλ`ϑρqs s 1´α 2 ´β1 `2γ 1 pT ´t ´sq β 1 2 ds ď τ β 1 ´2γ 1 ρ χ ż τ 0 e ´pλ`ϑρqs s 1´α 2 p1 ´s{pT ´tqq β 1 2 ds ď τ β 1 ´2γ 1 τ α{2 ρ χ ż 1 0 e ´τ pλ`ϑρqs s 1´α 2 p1 ´sq β 1 2 ds " τ β 1 ´2γ 1 τ α{2´χ 2 ρ χ pλ `ϑρq α{2`χ 2 ż 1 0 pτ pλ `ϑρqq α{2`χ 2 e ´τ pλ`ϑρqs s 1´α 2 p1 ´sq β 1 2 ds ď Cλ χ´α{2 2 τ β 1 ´2γ 1 , (29) 
the first inequality being valid for 2γ 1 ď β 1 only and the last inequality following from [START_REF] Lyons | Differential equations driven by rough paths[END_REF]. Noting that χ ă β{2, this gives the second part of the second inequality of the statement.

Here is now the key result to prove Theorem 5.

Theorem 12. Keep the notations and assumptions introduced at the beginning of Subsection 3.1. For pv, B W vq P B β,ϑ pr0, T q ˆR, W q, define the function Mpv, B W vq : r0, T q ˆR Ñ R together with its W -derivative by letting, for any t P r0, T q and x P R,

" Mpv, B W vq ‰ t pxq " ż T t ż R B 2
x p s´t px ´yq ż y x v s pzq dY s pzq dy ds.

B W " Mpv, B W vq ‰ t pxq " `0, v t pxq ˘pi.e. B Y Mpv, B W vq t pxq " 0, B Z Mpv, B W vq t pxq " v t pxqq.
(With an abuse of notation, we will just write pMvq t pxq for rMpv, B W vqs t pxq.) Then M defines a bounded operator from B β,ϑ pr0, T q ˆR, W q into itself. Moreover, there exists a positive constant C " Cpα, β, χq such that for every v P B β,ϑ pr0, T q ˆR, W q,

Θ ϑ,λ T pMvq ď `1 2 `Cκ exppCT ϑ 2 qλ ´ǫ˘Θ ϑ,λ
T pvq, with ǫ :" pα ´βq{8.

Proof. As in the proof of Lemma 11, we just denote Θ ϑ,λ T pvq and E ϑ,λ T pt, aq by Θ and Ept, aq. By an obvious change of variable, we get for any a ě 1, x P r´a, as and t P r0, T q,

pMvq t pxq " ż R B 2 x p 1 pyq ż T ´t 0 s ´1 ż x´?sy x v t`s pzq dY t`s pzq ds dy. ( 30 
)
Then the first inequality of Lemma 11 with γ 1 " γ 2 " 0, τ " T ´t and k " 2 leads to `Ept, aq

˘´1 |pMvq t pxq| ď Cκe CT ϑ 2 λ 3 β´α 8 Θ, (31) 
where C " Cpα, β, χq.

We now study the time variations of Mv. For 0 ď t ď s ď T and x P R, we deduce from the identity 

" 1 2 T 1 `T2 .
By the changes of variable pr, uq Þ Ñ ps `r ´u, s ´uq and then y Þ Ñ x ´?rs, we get: Applying Lemma 11 with τ " T ´t, γ 1 " γ 2 " β{2 and k " 4, we obtain

T 1 " ˇˇˇˇż R B 4 x p 1 pyq ż s´t 0 ż T ´s`u u 1 r 2 ż x´?ry x v s`r´u pzq dY s`r´u pzq dr du dy ˇˇˇď ż R ˇˇB 4 x p 1 pyq ˇˇż s´t 0 u β 2 ´1 ż T ´t 0 1 r 1`β 2
a ´β 2 T 1 ď Ce CT ϑ 2 κΘEpt, aqλ 3 β´α 8 ż s´t 0 u β 2 ´1 du ď Ce CT ϑ 2 κΘEpt, aqλ 3 β´α 8 ps ´tq β 2 ,
where C " Cpα, β, χq. In order to handle T 2 , we can directly use Lemma 11 with τ " s ´t, γ 1 " 0, γ 2 " β{2 and k " 2. We then obtain the same bound as for T 1 , so that a ´β 2 `Ept, aq ˘´1 ˇˇpMvq s pxq ´pMvq t pxq ˇˇď Ce CT ϑ 2 κΘλ 3 β´α 8 ps ´tq

β 2 . ( 32 
)
We now investigate the space variations. Fix ´a ď x ă x 1 ď a. If |x 1 ´x| 2 ď T ´t, the space increment between x and x 1 reads: ˇˇpMvq t px 1 q ´pMvq t pxq ˇˇ" ˇˇˇż

T t ż R `B2
x p s´t px 1 ´yq ´B2

x p s´t px ´yq ˘ż y x v s pzq dY s pzq dy ds ˇˇď

I x,x 1 1 pxq `Ix,x 1 1 px 1 q `Ix,x 1 2 , (33) 
with (using the fact that the mapping

R Q z Þ Ñ B 2
x p s pzq is centered)

I x,x 1 1 pξq :" ˇˇˇż |x 1 ´x| 2 0 ż R B 2
x p s pξ ´yq ż y ξ v t`s pzq dY t`s pzq dy ds ˇˇˇ,

I x,x 1 2 :" ˇˇˇż T ´t |x 1 ´x| 2 ż R ż x 1 x B 3
x p s pu ´yq ż y x v t`s pzq dY t`s pzq du dy ds ˇˇˇ.

By Lemma 11 with τ " |x 1 ´x| 2 , γ 1 " 0, γ 2 " β{2 and k " 2, we get

a ´β 2 `Ept, aq ˘´1 `Ix,x 1 1 pxq `Ix,x 1 1 px 1 q ˘ď Ce CT ϑ 2 κΘλ 3 β´α 8 |x 1 ´x| β . ( 34 
)
The term I x,x 1 2 can be bounded in the following way: 

I x,x 1 2 ď ż R ˇˇB 3 x p 1 pyq ˇˇż x 1 x ż T ´t |x 1 ´x| 2 s ´3
Using now Lemma 11 with τ " T ´t, γ 1 " γ 2 " β{2 and k " 3 we obtain:

a ´β 2 `Ept, aq ˘´1 I x,x 1 2
ď Ce CT ϑ 2 κΘλ 3 β´α 8 |x 1 ´x| β . We end up with the following bound for the space increment:

a ´β 2 `Ept, aq ˘´1 ˇˇpMvq t px 1 q ´pMvq t pxq ˇˇď Ce CT ϑ 2 κΘλ 3 β´α 8 |x 1 ´x| β . (36)
Recall that (36) holds true when |x 1 ´x| 2 ď T ´t. When |x 1 ´x| 2 ą T ´t, the argument is obvious as the space increment is smaller than I x,x 1 1 pxq `Ix,x 1 px 1 q, so that (36) holds as well. We study the remainder term in a similar way. Recalling the definition (9), we then make use of the definition of Z T , see [START_REF] Flandoli | Some SDEs with distributional drift. II. Lyons-Zheng structure, It's formula and semimartingale characterization[END_REF]:

R pMvqt px, x 1 q " pMvq t px 1 q ´pMvq t pxq ´vt pxq `ZT t px 1 q ´ZT t pxq " ż T t ż R `B2
x p s´t px 1 ´yq ´B2

x p s´t px ´yq ˘ż y x pv s pzq ´vt pxqq dY s pzq dy ds.

" R t px, x 1 q `R1 t px, x 1 q, (37) 
where

R t px, x 1 q :" J x,x 1 1 px 1 q ´J x,x 1 1 pxq `J x,x 1 2 , R 1 t px, x 1 q :" I x,x 1 ,1 1 px 1 q ´Ix,x 1 ,1 1 pxq `Ix,x 1 ,1 2 , with J x,x 1 1 pξq :" ż |x´x 1 | 2 ^pT ´tq 0 ż R B 2
x p s pξ ´yq ż y ξ `vt`s pξq ´vt pxq ˘dY t`s pzq dy ds,

J x,x 1 2 :" ż T ´t |x´x 1 | 2 ^pT ´tq ż R ż x 1 x B 3
x p s pu ´yq ż y u `vt`s puq ´vt pxq ˘dY t`s pzq du dy ds, and

I x,x 1 ,1 1 pξq :" ż |x´x 1 | 2 ^pT ´tq 0 ż R B 2
x p s pξ ´yq ż y ξ `vt`s pzq ´vt`s pξq ˘dY t`s pzq dy ds,

I x,x 1 ,1 2 :" ż T ´t |x´x 1 | 2 ^pT ´tq ż R ż x 1 x B 3
x p s pu ´yq ż y u `vt`s pzq ´vt`s puq ˘dY t`s pzq du dy ds.

We start with R 1 . The strategy is similar to the one used to prove (36) except that we now apply the second inequality in Lemma 11 and not the first one. In order to handle

I x,x 1 ,1 1 
pξq, with ξ " x or x 1 , we apply the second inequality in Lemma 11 (with k " 2, τ " |x ´x1 | 2 ^pT ´tq and γ 1 " 0) in the spirit of (34). Similarly, we can play the same game as in (35) to tackle I x,x 1 ,1 2 , writing s ´3{2 " s ´1´β 1 s ´1{2`β 1 ď |x 1 ´x| 2β 1 ´1s ´1´β 1 and applying the second inequality in Lemma 11 (with k " 3, τ " T ´t and 2γ 1 " β 1 ). We get `pT ´tq

β 1 2 ^a´β 1 ˘`Ept, aq ˘´1 |R 1 t px, x 1 q| ď Ce CT ϑ 2 κΘλ β´α 8 |x 1 ´x| 2β 1 . (38)
It thus remains to discuss J x,x 1 1 and J x,x 1 2 . We start with the following general bound that holds true for any ξ P rx, x 1 s and s P r0, T ´ts. Since β ď 2β We now handle J x,x 1

1

. Following (34) (but noticing that the integrand is here constant in z), we deduce from (39) with s ď |x 1 ´x| 2 ,

|J x,x 1 1 pxq| `|J x,x 1 1 px 1 q| ď Cκa β 1 ´β 2 `χEpt, aqΘ|x 1 ´x| 2β 1 ´β ż |x 1 ´x| 2 ^pT ´tq 0 s ´1`α 2 ds ď Cκa β 1 Ept, aqΘ|x 1 ´x| 2β 1 ´β ż |x 1 ´x| 2 0 s ´1`β 2 ds ď Cκa β 1 Ept, aqΘ|x 1 ´x| 2β 1 .
Note that there is no decay in λ because |v t`s px 1 q ´vt pxq| is bounded by means of Ept, aq and not of Ept `s, aq. Similarly, using (39) with ξ " u and |u ´x| ď s 1{2 , 

|J x,x 1 2 | ď Cκa β 1 Ept, aqΘ|x 1 ´x| ż T ´t |x´x 1 | 2 ^pT ´tq s ´3 2 `β1 `α´β 2 ds ď Cκa β 1 Ept, aqΘ|x 1 ´x| ż T ´t |x´x 1 | 2 ^pT ´tq s ´3 2 `β1 ds ď Cκa β 1 Ept, aqΘ|x 1 ´x| 2β
2 ^a´β 1 ˘`Ept, aq ˘´1 › › R pMvqt › › r´a,as 2β 1 ď Ce CT ϑ 2 κΘλ β´α 8 .
Finally, as the W -derivative of pMvq t is defined as B W pMvq t " p0, v t q, we have

(41) 1 2 `Ept, aq ˘´1 }B W pMvq t } rt,T qˆr´a,as β{2,β ď 1 2 Θ.
From ( 31), ( 32), ( 36), ( 40) and (41), this completes the proof.

3.2. Proof of Theorem 5. First step. As in the previous subsection, we omit the superscript T in Z T , W T and W T . We also notice that Theorem 12 remains true when T ď T 0 , for some T 0 ě 1, provided that the constant C in the statement is allowed to depend upon T 0 . Now, for f and u T as in [START_REF] Friz | A Course on Rough Paths (with an Introduction to Regularity Structures)[END_REF], we let for pt, xq P r0, T q ˆR:

(42) φ t pxq :" P T ´tu T pxq ´ż T t P s´t f s pxq ds, ψ t pxq " B x φ t pxq, pt, xq P r0, T s ˆR.

By standard regularization properties of the heat kernel, ψ is pβ{2, βq-Hölder continuous on any r0, T s ˆr´a, as, a ě 1, the Hölder norm being less than C exppϑaq. Moreover,

(43) sup 0ďtăT sup aě1 ! pT ´tq β 1 ´β 2 e ´ϑa › › ψ t › › r´a,as 2β 1 
) ă 8,

For v P B β,ϑ pr0, T q ˆR, W q, we then let `x Mv ˘tpxq :" ψ t pxq ``Mv ˘tpxq. (44

)
The point is to check that x Mv can be lifted up into an element of B β,ϑ pr0, T q ˆR, W q. By Theorem 12, the last part of the right-hand side is in B β,ϑ pr0, T q ˆR, W q. Its derivative with respect to W is B W rMvs, as defined in the statement of Theorem 12. By (43), for any t P r0, T q, ψ t is 2β 1 -Hölder continuous (in x) and belongs to B β,ϑ pr0, T q ˆR, W q with a zero derivative with respect to W . Moreover, from (43), x Mv P B β,ϑ pr0, T q ˆR, W q, with rB W p x Mvqs t pxq " rB W pMvqs t pxq " p0, v t pxqq for t P r0, T q. Second step. We construct a solution to ( 14) by a contraction argument when T ď 1 (the same argument applies when T ě 1). We choose λ large enough such that Cκ exppCT ϑ 2 qλ ´ǫ ď 1{4 (with the same C as in Theorem 12) and we note that pB β,ϑ pr0, T q ˆR, W q, Θ ϑ,λ T q is a Banach space. Since x Mu ´x Mv " Mpu ´vq for any u, v P B β,ϑ pr0, T q ˆR, W q (the equality holding true for the lifted versions), we deduce from Theorem 12 and Picard fixed point Theorem that x M admits a unique fixed point v in B β,ϑ pr0, T q ˆR, W q. Letting ūt pxq "

φ t pxq `ż T t ż R B x p s´t px ´yq ż y
x vs pzq dY s pzq dy ds, (45) with φ as in (42), we obtain B x ū " v so that ū is a mild solution, as defined in [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF]. It must be unique as the x-derivative of any other mild solution (when lifted up) is a fixed point of x M. Differentiation under the integral symbol in (45) and in the mild formulation ( 14) can be justified by Lebesgue's Theorem, using bounds in the spirit of Lemma 11.

Third step. We finally prove ( 16) and [START_REF] Gubinelli | Controlling rough paths[END_REF]. We first estimate v. With our choice of λ and by Theorem 12, we have Θ ϑ,λ T pvq ď Θ ϑ,λ T p x M0q `p3{4qΘ ϑ,λ T pvq, where 0 is the null function, so that

(46) Θ ϑ,λ T pvq ď 4Θ ϑ,λ T p x M0q.
As x M0 " ψ P B β,ϑ pr0, T q ˆR, W q, the right-hand side is bounded by some C (which would depend on T 0 if T was less than T 0 for some T 0 ě 1). Since B x ū " v, this gives the exponential bound for v and for the pβ{2, βq-Hölder constant of v in time and space.

In order to get the same estimate for ū, we go back to (45). The function φ can be estimated by standard properties of the heat kernel: it is at most of exponential growth and it is locally p1 `βq{2-Hölder continuous in time, the Hölder constant growing at most exponentially fast in the space variable. The second term can be handled by repeating the analysis of Mv in the proof of Theorem 12: Following ( 31) and [START_REF] Zvonkin | A transformation of the phase space of a diffusion process that will remove the drift[END_REF], it is at most of exponential growth and it is locally p1 `βq{2-Hölder continuous in time, the Hölder constant growing at most exponentially fast in the space variable (in comparison with [START_REF] Zvonkin | A transformation of the phase space of a diffusion process that will remove the drift[END_REF], the additional 1{2 comes from the fact there is one derivative less in the heat kernel).

3.3.

Proof of Proposition 6. As above, we omit the superscript T in Z n,T , W n,T and W n,T . Stability of solutions under mollification of the input follows from a classical compactness argument. Given a sequence pW n , W n q ně1 as in the statement, we can solve [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF] for any n ě 1: The solution is denoted by u n and its gradient by v n :" B x u n . By (2) in Proposition 6 and by (46), it is well-checked that (47) sup ně1 Θ ϑ,λ T pv n q ă 8,

where rB W n pv n qs t " p0, v n t q. As a consequence, the sequence pv n q ně1 is uniformly continuous on compact subsets of r0, T s ˆR. In the same way, the sequence pu n q ně1 is also uniformly continuous on compact subsets. Moreover, u n and v n are at most of exponential growth (in x), uniformly in n ě 1. By Arzelà-Ascoli Theorem, we can extract subsequences (still indexed by n) that converge uniformly on compact subsets of r0, T s ˆR. Limits of pu n q ně1 and pv n q ně1 are respectively denoted by û and v. In order to complete the proof, we must prove that pû, vq is a mild solution of [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF].

Writing [START_REF] Ethier | Characterization and convergence[END_REF] for each of the pv n q ně1 , exploiting (47) to control the remainders pR v n t q ně1 uniformly in n ě 1 and then letting n tend to 8, we deduce that the pair pv, p0, vqq belongs to B β,ϑ pr0, T q, Rq, the remainder at any time t P r0, T q being denoted by Rt . By [START_REF] Ethier | Characterization and convergence[END_REF], lim n } Rt ´Rv n t } r´a,as 8

" 0 for any a ě 1. By (47), it holds as well in β 2 -Hölder norm, for any

β 2 P p1{3, β 1 q, that is lim n } Rt ´Rv n t } r´a,as 2β 2 
" 0. Replacing β 1 by β 2 in [START_REF] Davie | Uniqueness of solutions of stochastic differential equations[END_REF], this suffices to pass to the limit in the rough integrals appearing in the mild formulation [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF] of the PDE satisfied by each of the pv n q ně1 's. To pass to the limit in the whole formulation, we can invoke Lebesgue's Theorem, using bounds in the spirit of Lemma 11. Thus the pair pv, p0, vqq satisfies v " x Mv in B β,ϑ pr0, T q ˆR, W q, which is enough to conclude by uniqueness of the solution.

Stochastic Calculus for the Solution

In Theorem 8, we proved existence and uniqueness of a solution to the martingale problem associated with (1), but we said nothing about the dynamics of the solution. In this section, we answer to this question and give a sense to the formulation (4).

4.1.

Recovering the Brownian part. Equation (4) suggests that the dynamics of the solution to (1) indeed involves some Brownian part. The point we discuss here is thus twofold: (i) We recover in a quite canonical way the Brownian part in the dynamics of the solution; (ii) we discuss the structure of the remainder.

Theorem 13. Under the assumption of Theorem 8, for any given initial condition x 0 , we can find a probability measure (still denoted by P) on the enlarged canonical space Cpr0, T 0 s, R 2 q (endowed with the canonical filtration pF t q 0ďtďT 0 ) such that, under P, the canonical process, denoted by pX t , B t q 0ďtďT 0 , satisfies the followings:

piq The law of pX t q 0ďtďT 0 under P is a solution to the martingale problem with x 0 as initial condition at time 0 and the law of pB t q 0ďtďT 0 under P is a Brownian motion.

piiq For any q ě 1 and any β ă α, there is a constant C " Cpα, β, χ, κ α,χ pW, W q, q, T 0 q such that, for any 0 ď t ď t `h ď T 0 ,

(48) E "ˇˇX t`h ´Xt ´pB t`h ´Bt q ˇˇq ‰ 1 q ď Ch p1`βq{2 .
piiiq For any 0 ď t ď t `h ď T 0 ,

E " X t`h ´Xt |F t ‰ (49) 
" bpt, X t , hq :" u t`h t pX t q ´Xt , where the mapping u t`h : r0, t`hsˆR Q ps, xq Þ Ñ u t`h ps, xq is the mild solution of PpY, 0, t`hq with u t`h t`h pxq " x as terminal condition. Proof. The point is to come back to the proof of the solvability of the martingale problem in Subsection 2.7. For free and with the same notations, we have the tightness of the family pX n t , B t q 0ďtďT 0 , which is sufficient to extract a converging subsequence. The (weak) limit is the pair pX t , B t q 0ďtďT 0 in piq. (Pay attention that we do not claim that the 'B' at the limit is the same as the 'B' in the regularized problems but, for convenience, we use the same letter.) We then repeat the proof of (20) which writes:

X n t`h ´Xn t " ż t`h t B x u n s pX n s q dB s `un t pX n t q ´un t`h pX n t q " B t`h ´Bt `ż t`h t " B x u n s pX n s q ´1‰ dB s `"u n t pX n t q ´un t`h pX n t q ‰ .
Repeating the analysis of the the third step in Subsection 2.7, we know that the third term in the right hand side satisfies the bound (48). The point is thus to prove that the second term also satisfies this bound. Recalling that u n t`h pxq " x, we notice that B x u n s pX n s q ´1 " B x u n s pX n s q´B x u n t`h pX n s q. The bound then follows from the fact that B x u n is locally β{2-Hölder continuous in time, the Hölder constant being at most of exponential growth, as ensured by Theorem 5. Letting n tend to 8, this completes the proof of piiq.

The last assertion piiiq is easily checked for with X replaced by X n and u t`h replaced by u n (and for sure with F t replaced by the σ-field generated by pX n s , B s q 0ďsďt ). It is quite standard to pass to the limit in n.

4.2.

Expansion of the drift. The next proposition gives a more explicit insight into the shape of the function b in (49): Proposition 14. Given T 0 ą 0, there exist a constant C and an exponent ε ą 0 such that bpt, x, hq " bpt, x, hq `O`h . The proof right below shows that it is of order h 1{2`α , thus proving that it can be 'hidden' in the remainder Oph 1`ǫ q when α ą 1{2. This requirement α ą 1{2 fits the standard threshold in rough paths above which Young's theory applies.

Proof. From ( 14), we know that u t`h t pxq expands as

u t`h t pxq " x `ż t`h t ż R B x p s´t px ´yq ż y x vt`h s pzq dY s pzq dy ds,
where vt`h s pyq " B x u t`h s pyq. Here, the function φ in ( 14) is equal to φ t pxq " x for any t P r0, t `hs and x P R, and thus B x φ " 1. By Theorem 12, vt`h P B β,ϑ pr0, t `hq ˆR, W t`h q and solves the equation v " 1 `Mv. In particular, B Y vt pxq " 0 and B Z t`h vt pxq " vt pxq. Therefore, we can write vt`h s pzq " vt`h s pxq `v t`h s pxq `Zt`h s pzq ´Zt`h s pxq ˘`R vs px, zq, which we can plug into the expression for u t`h t pxq by means of Theorem 1: 

u t`
Above, the exponential factor permits to handle the polynomial growth of W t`h , with W t`h " pY, Z t`h q, and the exponential growth of vt`h (see the definition of Θ ϑ,λ T pvq in the statement of Theorem 12), the exponent in the exponential factor being arbitrarily chosen as 1 (which leaves 'some space' to handle additional polynomial growth and which is possible since the terminal condition u t`h t`h is of polynomial growth). We now investigate the second term in the right hand side of (50). We recall that, by assumption, there exists a constant C, independent of h, such that By [START_REF] Flandoli | Some SDEs with distributional drift. II. Lyons-Zheng structure, It's formula and semimartingale characterization[END_REF], it is plain to see that Z t`h s pxq " Opexpp2|x|qh α{2 q. Then, the above term must at most of order Opexpp2|x|qh 1{2`α q, from which the proof of the proposition is easily completed.

(
In order to complete the proof of Remark We already have a bound when Z t`h s pzq is replaced by Z t`h s pxq. By (52), we also have a bound when Z t`h r pzq is replaced by Z t`h r pzq ´Zt`h r pxq.

4.3.

Purpose. The goal is now to prove that Theorem 13 and Proposition 14 are sufficient to define a differential calculus for which the infinitesimal variation dX t reads (56) dX t " dB t `bpt, X t , dtq, t P r0, T q, or, in a macroscopic way, X t " X 0 `Bt `şt 0 bps, X s , dsq, which gives a sense to [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF]. In that framework, Proposition 14 and Remark 15 give some insight into the shape of the drift.

As explained below, we are able to define a stochastic calculus in such a way that the process p ş t 0 bps, X s , dsqq 0ďtďT has a Hölder continuous version, with p1 `αq{2 ´ǫ as Hölder exponent, for ǫ ą 0 as small as desired, thus making pX t q 0ďtďT a Dirichlet process. More generally, we manage to give a sense to the integrals ş T 0 ψ t dX t and ş T 0 ψ t bpt, X t , dtq for a large class of integrands pψ t q 0ďtďT , thus making meaningful the identity ż T 0

ψ t dX t " ż T 0 ψ t dB t `ż T 0 ψ t bpt, X t , dtq.
The above integrals will be constructed with respect to processes pψ t q 0ďtďT that are progressi--vely-measurable and p1 ´αq{2 `ǫ Hölder continuous in L p for some p ą 2 and some ǫ ą 0. The construction of the integral consists of a mixture of Young's and Itô's integrals. Precisely, the progressive-measurability of pψ t q 0ďtďT permits to 'get rid of' the martingale increments in X that are different from the Brownian ones and thus to focus on the function b only in order to define the non-Brownian part of the dynamics. Then, the Hölder property of pψ t q 0ďtďT permits to integrate with respect to pbpt, X t , dtqq 0ďtďT in a Young sense. For that reason, the resulting integral is called a stochastic Young integral. It is worth mentioning that it permits to consider within the same framework integrals defined with respect to the martingale part of X and integrals defined with respect to the zero quadratic variation part of X. Following the terminology used in [START_REF] Catellier | Averaging along irregular curves and regularisation of ODEs[END_REF], in which the authors address a related problem (see Remark 18 below for a precise comparison), the Young integral with respect to pbpt, X t , dtqq 0ďtďT may be called 'nonlinear'. The construction we provide below is given in a larger set-up. In the whole section, we thus use the following notation: pΩ, pF t q tě0 , Pq denotes a filtered probability space satisfying the usual conditions; moreover, for any 0 ď s ď t, Sps, tq denotes the set ts 1 P r0, ss, t 1 P r0, ts, s 1 ď t 1 u. The application to (48) is discussed in Subsection 4.6.

L p Construction of the Integral.

4.4.1. Materials. We are given a real T ą 0 and a continuous progressively-measurable process pAps, tqq 0ďsďtďT in the sense that, for any 0 ď s ď t, the mapping Ω ˆSps, tq Q pω, s 1 , t 1 q Þ Ñ Aps 1 , t 1 q is measurable for the product σ-field F t b BpSps, tqq and the mapping SpT, T q Q ps, tq Þ Ñ Aps, tq is continuous. We assume that there exist a constant Γ ě 0, three exponents ε 0 P p0, 1{2s, ε 1 , ε 1 1 ą 0 and a real q ě 1 such that, for any 0 ď t ď t `h ď t `h1 ď T ,

E "ˇˇE" Apt, t `hq|F t ‰ˇˇq‰ 1 q ď Γh 1 2 `ε0 , E " |Apt, t `hq| q ‰ 1 q ď Γh 1 2 , E "ˇˇE" Apt, t `hq `Apt `h, t `h1 q ´Apt, t `h1 q|F t ‰ˇˇq‰ 1 q ď Γph 1 q 1`ε 1 , E " |Apt, t `hq `Apt `h, t `h1 q ´Apt, t `h1 q| q ‰ 1 q ď Γph 1 q 1 2 p1`ε 1 1 q . ( 57 
)
In the framework of (56), we have in mind to choose Apt, t `hq " X t`h ´Xt or Apt, t `hq " B t`h ´Bt , in which cases A has an additive structure and ε 1 and ε 1 1 can be chosen as large as desired, or Apt, t `hq " bpt, X t , hq, in which case A is not additive. The precise application to (56) is detailed in Subsection 4.6. Generally speaking, we call Apt, t `hq a pseudo-increment. Considering pseudo-increments instead of increments (that enjoy, in comparison with, an additive property) allows more flexibility and permits, as just said, to give a precise meaning to bpt, X t , dtq in (56). The strategy is then to split Apt, t `hq into two pieces:

Rpt, t `hq :" E " Apt, t `hq|F t ‰ , Mpt, t `hq :" Apt, t `hq ´E" Apt, t `hq|F t ‰ , (58) 
Mpt, t `hq being seen as a sort of martingale increment and Rpt, t `hq as a sort of drift.

We are also given a continuous progressively-measurable process pψ t q 0ďtďT and we assume that, for an exponent ε 2 ă ε 0 and for any 0 ď t ď t `h ď T , (59)

E " |ψ t | q 1 ‰ 1 q 1 ď Γ, E " ψ t`h ´ψt | q 1 ‰ 1 q 1 ď Γh 1 2 ´ε2
, for some q 1 ě 1. We then let p " qq 1 {pq `q1 q so that 1{p " 1{q `1{q 1 . 4.4.2. Objective. The aim of the subsection is to define the stochastic integral ş T 0 ψ t Apt, t`dtq as an L p pΩ, Pq version of the Young integral. In comparison with the standard version of the Young integral, the L p pΩ, Pq construction will benefit from the martingale structure of the pseudo-increments pMpt, t `hqq 0ďtďt`hďT , the integral being defined as the L p pΩ, Pq limit of Riemann sums as the step size of the underlying subdivision tends to 0. Given a subdivision ∆ " t0 " t 0 ă t 1 ă ¨¨¨ă t N " T u, we thus define the ∆-Riemann sum (60)

Sp∆q :"

N ´1 ÿ i"0 ψ t i Apt i , t i`1 q.
We emphasize that this definition is exactly the same as the one used to define Itô's integral: on the step rt i , t i`1 s, the process ψ is approximated by the value at the initial point t i . For that reason, we will say that the Riemann sum is adapted. In that framework, we claim:

Theorem 16. There exists a constant C " Cpq, q 1 , Γ, ε 0 , ε 1 , ε 2 q, such that, given two subdivisions ∆ Ă ∆ 1 , with πp∆q ď 1,

(61) E " |Sp∆q ´Sp∆ 1 q| p ‰ 1{p ď C 1 maxpT 1{2 , T q `πp∆q ˘η,
where πp∆q denotes the step size of the subdivision ∆, that is πp∆q :" max 1ďiďN rt i ´ti´1 s, and with η :" minpε 0 ´ε2 , ε 1 , ε 1 1 {2q. For general partitions ∆ and ∆ 1 (without any inclusion requirement), Theorem 16 applies to the pairs p∆, ∆ Y ∆ 1 q and p∆ 1 , ∆ Y ∆ 1 q, so that (61) holds in that case as well provided πp∆q in the right-hand side is replaced by maxpπp∆q, πp∆ 1 qq. We deduce that Sp∆q has a limit in L p pΩ, Pq as πp∆q tends to 0. We call it the stochastic Young integral of ψ with respect to the pseudo-increments of A. Theorem 16. First Step. First, we consider the case where the two subdivisions ∆ and ∆ 1 , ∆ being included in ∆ 1 , are not so different one from each other. Precisely, given ∆ " t0 " t 0 ă t 1 ă ¨¨¨ă t N " T u and ∆ 1 " ∆ Y tt 1 1 ă ¨¨¨ă t 1 L u (L ě 1), the pt i q 1ďiďN 's and the pt 1 j q 1ďjďL 's being pairwise distinct, we assume that, between two consecutive points in ∆, there is at most one point in ∆ 1 . For any j P t1, . . . , Lu, we then denote by s j and s j the largest and smallest points in ∆ such that s j ă t 1 j ă s j . We have t 1 j ă s j ď s j`1 ă t 1 j`1 for 1 ď j ď L ´1. We then claim: Lemma 17. Under the above assumption, the estimate (61) holds with πp∆q replaced by ρp∆ 1 z∆q, where ρp∆ 1 z∆q :" sup 1ďjďL rs j ´sj s. of Lemma 17. (i) As a first step, we compute the difference Sp∆ 1 q ´Sp∆q. We write Sp∆ 1 q ´Sp∆q " L ÿ j"1 " Sp∆ j q ´Sp∆ j´1 q ‰ , with ∆ j " ∆ Y tt 1 1 , . . . , t 1 j u, for 1 ď j ď L, and ∆ 0 " ∆. Then, Sp∆ j q " Sp∆ j´1 q `ψs j Aps j , t 1 j q `ψt 1 j Apt 1 j , s j q ´ψs j Aps j , s j q " Sp∆ j´1 q ``ψ t 1 j ´ψs j ˘Apt 1 j , s j q `ψs j `Aps j , t 1 j q `Apt 1 j , s j q ´Aps j , s j q ˘.

Proof of

Therefore,

Sp∆ 1 q ´Sp∆q " L ÿ j"1 `ψt 1 j ´ψs j ˘Mpt 1 j , s j q `L ÿ j"1
`ψt 1 j ´ψs j ˘Rpt 1 j , s j q `L ÿ j"1 ψ s j `Aps j , t 1 j q `Apt 1 j , s j q ´Aps j , s j q :"

δ 1 Sp∆, ∆ 1 , Mq `δ1 Sp∆, ∆ 1 , Rq `δ2 Sp∆, ∆ 1 q. ( 62 
)
(ii) We first investigate δ 1 Sp∆, ∆ 1 , Mq. The process p ř ℓ j"1 pψ t 1 j ´ψs j qMpt 1 j , s j qq 0ďℓďL is a discrete stochastic integral and thus a martingale with respect to the filtration pF s l q 0ďℓďL , with the convention that s 0 " s 0 " 0. The sum of the squares of the increments is given by ř L j"1 pψ t 1 j ´ψs j q 2 pMpt 1 j , s j qq 2 . By the second line in (57) and by (59), we observe from Minkowski's inequality first and then from Hölder's inequality (recalling 1{p " 1{q `1{q 1 ) that there exists a constant C such that

E "ˇˇˇˇL ÿ j"1 `ψt 1 j ´ψs j ˘2`M pt 1 j , s j q ˘2ˇˇˇˇp 2  2 p ď L ÿ j"1 E " `ψt 1 j ´ψs j ˘pE " `Mpt 1 j , s j q ˘p|F t 1 j ıı 2 p ď C L ÿ j"1
`t1 j ´sj ˘p1´2ε 2 q `sj ´t1 j ˘ď CT `ρp∆ 1 z∆q ˘η1 , with η 1 :" 1 ´2ε 2 ě 2pε 0 ´ε2 q, where we have used s j ă t 1 j ă s j . By discrete Burkholder-Davis-Gundy inequalities, we deduce that Er|δ 1 Sp∆, ∆ 1 , Mq| p s 1{p ď CT 1{2 pρp∆ 1 z∆qq η 1 {2 .

(iii) We now turn to δ 1 Sp∆, ∆ 1 , Rq. In the same way, by the first line in (57) and by (59),

E "ˇˇδ 1 Sp∆, ∆ 1 , Rq ˇˇp ‰ 1 p ď L ÿ j"1 E "ˇˇ| ψ t 1 j ´ψs j | p |Rpt 1 j , s j q| p ‰ 1 p ď C L ÿ j"1 `t1 j ´sj ˘1{2´ε 2 `sj ´t1 j ˘1{2`ε 0 ď CT `ρp∆ 1 z∆q ˘η2 , with η 2 :" ε 0 ´ε2 . Therefore, Er|δ 1 Sp∆, ∆ 1 , Rq| p s 1{p ď CT `ρp∆ 1 z∆q ˘η2 .
(iv) We finally investigate δ 2 Sp∆, ∆ 1 q. We split it into two pieces:

δ 2 Sp∆, ∆ 1 q " L ÿ j"1 ψ s j R 1 ps j , t 1 j , s j q `L ÿ j"1 ψ s j M 1 ps j , t 1 j , s j q, :" δ 2 Sp∆, ∆ 1 , R 1 q `δ2 Sp∆, ∆ 1 , M 1 q, (63) 
with R 1 ps j , t 1 j , s j q :" E " Aps j , t 1 j q `Apt 1 j , s j q ´Aps j , s j q ˇˇF s j ‰ , M 1 ps j , t 1 j , s j q :" Aps j , t 1 j q `Apt 1 j , s j q ´Aps j , s j q ´R1 ps j , t 1 j , s j q. By the third line in (57) and by (59), we have, with η 3 :" ε 1 , Er|δ 2 Sp∆, ∆ 1 , R 1 q| p s 1{p ď CT pρp∆ 1 z∆qq η 3 .

We finally tackle δ 2 Sp∆, ∆ 1 , M 1 q. We notice that it generates a discrete time martingale with respect to the filtration pF s l q 0ďℓďL . As in the second step, we compute the L p{2 pΩ, Pq norm of the sum of the squares of the increments. By the last line in (57), it is given by

E "ˇˇˇˇL ÿ j"1 ψ 2 s j `M1 ps j , t 1 j , s j q ˘2ˇˇˇˇp 2  2 p ď L ÿ j"1 E " ψ p s j E
" `M1 ps j , t 1 j , s j q ˘p|F s j´1 ıı 2 p ď CT `ρp∆ 1 z∆q ˘η4 , with η 4 :" ε 1 1 . By discrete Burkholder-Davis-Gundy inequality, Er|δ 2 Sp∆, ∆ 1 , M 1 q| p s 1{p ď CT 1{2 pρp∆ 1 z∆qq η 4 {2 . Putting piq, piiq, piiiq and pivq together, this completes the proof. 4.4.4. Proof of Theorem 16. Second Step. We now consider the general case when ∆ Ă ∆ 1 (∆ 1 " ∆) without any further assumption on the difference ∆ 1 z∆.

As above, we denote the points in ∆ by t 1 , . . . , t N . The points in the difference ∆ 1 z∆ are denoted in the following way. For i " 1, . . . , N, we denote by t 1 1,i , . . . , t 1 L i ,i the points in the intersection p∆ 1 z∆q X pt i´1 , t i q, where L i denotes the number of points in p∆ 1 z∆q X pt i´1 , t i q. Each L i may be written as L i " 2ℓ i `εi where ℓ i P N and ε i P t0, 1u. We then define ∆ 1 1 as the subdivision made of the points that are in ∆ together with the points

tt 1 2ℓ,i , ℓ " 1, . . . , ℓ i u Y tt 2ℓ i `1 if ε i " 1u ( whenever ℓ i ě 1, for i " 1, . . . , N.
This says that, to construct ∆ 1 1 , we delete, for any i " 1, . . . , N, the point t 1 1,i if L i " 1 and the points that are in p∆ 1 z∆q X pt i´1 , t i q and that have an odd index 2ℓ ´1 with 1 ď ℓ ď ℓ i if L i ą 1 (so that the last point is kept even if labelled by an odd integer when ℓ i ě 1). By construction, ∆ 1 1 and ∆ 1 satisfy the assumption of Subsection 4.4.3, so that › › Sp∆ 1 1 q ´Sp∆ 1 q › › L p pΩ,P q ď C maxpT 1{2 , T q

" ρp∆ 1 z∆ 1 1 q ‰ η . It holds ∆ 1 1 Ą ∆. If ∆ 1
1 " ∆, we then build a new subdivision ∆ 1 2 as the subdivision associated with ∆ 1 1 in the same manner as ∆ 1 1 is associated with ∆ 1 . We then obtain (64)

› › Sp∆ 1 2 q ´Sp∆ 1 1 q › › L p pΩ,Pq ď C maxpT 1{2 , T q " ρp∆ 1 1 z∆ 1 2 q ‰ η .
We then carry on the construction up until we reach ∆ 1 M " ∆ for some integer M ě 1. We notice that such an M does exist: by construction each ∆ 1 j contains ∆ and 7r∆ 1 j s ă 7r∆ 1 j´1 s (with the convention ∆ 1 0 " ∆ 1 ). We now make an additional assumption: We assume that ∆ 1 is a dyadic subdivision, that is ∆ 1 " t2 ´P kT, 0 ď k ď 2 P u for some P ě 1. This says that ∆ is also made of dyadic points of order P . We denote by Q the unique integer such that maxpL i , 1 ď i ď Nq " 2 Q `r with 0 ď r ď 2 Q ´1, and by i Q some index such that L i Q " 2 Q `r. At the first step, the 2 Q first points in p∆ 1 z∆q X pt i Q ´1, t i Q q are reduced into 2 Q´1 points. At the second step, they are reduced into 2 Q´2 points and so on... Therefore, it takes Q steps to reduce the 2 Q first points in p∆ 1 z∆q X pt i Q ´1, t i Q q into a single one. Meanwhile, it takes at most Q steps to reduce the r remaining points in p∆ 1 z∆q X pt i Q ´1, t i Q q into a single one (without any interferences between the two reductions). We deduce that, after the Qth step, there are at most two operations to perform to reduce ∆ 1 Q into ∆. This says that M is either Q `1 or Q `2 and that, at each step j P t1, . . . , Qu of the induction, we are doubling the step size ρp∆ 1 j´1 z∆ 1 j q, that is ρp∆ 1 j´1 z∆ 1 j q " 2 j´1 ρp∆ 1 z∆ 1 1 q, j " 1, . . . , Q, so that ρp∆ 1 z∆ 1 1 q ď 2 ´pQ´1q πp∆q, and ρp∆ 1 j´1 z∆ 1 j q ď 2 j´Q πp∆q, j " 1, . . . , Q.

Therefore, ρp∆ 1 j´1 z∆ 1 j q ď 2 j´M `2πp∆q, j " 1, . . . , M. By extending (64) to each of the steps of the induction, we get (up to a new value of C)

(65) › › Sp∆ 1 q ´Sp∆q › › L p pΩ,Pq ď C maxpT 1{2 , T q " πp∆q ‰ η M ÿ j"0 2 ηpj´M q ď C maxpT 1{2 , T q " πp∆q ‰ η .
When ∆ and ∆ 1 contain non-dyadic points (so that they are different from t0, T u), we can argue as follows. We can find a dyadic subdivision, denoted by D 2 , such that, in any open interval delimited by two consecutive points in D 2 , there is at most one element of ∆. Then, we remove points from D 2 to obtain a minimal subdivision D 1 , made of dyadic points, such that, in any open interval delimited by two consecutive points in D 1 , there is exactly one element of ∆. In such way, in any open interval delimited by two consecutive points in ∆, there is at most one point in D 1 . Therefore, we can apply Lemma 17 to pD 1 , D 1 Y ∆q and p∆, D 1 Y ∆q. We get

› › SpD 1 q ´Sp∆q › › L p pΩ,Pq ď C maxpT 1{2 , T q " max `πpD 1 q, πp∆q ˘‰η ď C 1 maxpT 1{2 , T q " πp∆q ‰ η ,
since πpD 1 q ď 2πp∆q. By the same argument, we can find a dyadic subdivision D 1 1 for which the above inequality applies with pD 1 , ∆q replaced by pD 1 1 , ∆ 1 q. Then, we can find a dyadic subdivision D such that both D 1 Ă D and D 1 1 Ă D. Applying (65) to pD 1 , Dq and to pD 1 1 , Dq, we can bound the difference between SpD 1 1 q and SpD 1 q. The result follows.

4.5. Further Properties of the Integral.

Extension of the Integral.

Given the decomposition (58), it is worth noting that both the integrals ş T 0 ψ t Mpt, t `dtq and ş T 0 ψ t Rpt, t `dtq are also defined as L p limits of the associated adapted Riemann sums. The main point is to check that Lemma 17 applies to S M and S R , where, with the same notation as in (60), S M p∆q " ř N ´1 i"0 ψ t i Mpt i , t i`1 q and S R p∆q " ř N ´1 i"0 ψ t i Rpt i , t i`1 q. A careful inspection of the proof of Lemma 17 shows that the non-trivial point is to control the quantities δ 2 Sp∆, ∆ 1 , Mq and δ 2 Sp∆, ∆ 1 , Rq, obtained by replacing A by M and R respectively in the definition of δ 2 Sp∆, ∆ 1 q in (62). Actually, since we already have a control of the sum of the two terms (as it coincides with δ 2 Sp∆, ∆ 1 q in the proof of Lemma 17), it is sufficient to control one of them only. Clearly,

› › δ 2 Sp∆, ∆ 1 , Rq › › L p pΩ,Pq ď › › › L ÿ j"1 ψ s j `Rps j , t 1 j q `E`R pt 1 j , s j q|F s j ˘´Rps j , s j q ˘› › › L p pΩ,Pq `› › › L ÿ j"1 ψ s j `Rpt 1 j , s j q ´E`R pt 1 j , s j q|F s j ˘˘› › › L p pΩ,Pq
.

We emphasize that the first term above is nothing but δ 2 Sp∆, ∆ 1 , R 1 q in (63), for which we already have a bound. Therefore, the only remaining point is to control the second term above. Again, we notice that it has a martingale structure, which can be estimated by Burkholder-Davis-Gundy inequality. By the first line in (57) and by ( 59), An important question in practice is the regularity property of the process r0, T q Q t Þ Ñ ş t 0 ψ s Aps, s `dsq, which is not well-defined for the moment. At this stage of the procedure, each of the integrals is uniquely defined up to an event of zero probability which depends on t. A continuity argument is thus needed in order to give a sense to all the integrals at the same time. By Theorem 16, we know that, for h P p0, 1q, (66)

E " ˇˇL ÿ j"1 ψ 2 s j ´Rpt 1 j , s j q ´E`R pt 1 j , s j q|F s j ˘¯2 ˇˇp 2  2 p ď C L ÿ j"1 E " ψ p s j `Rpt 1 j , s j q ˘pı 2 p ď C 1 L ÿ j"1 `sj ´sj ˘1`2ε 0 ď C 2 T `ρp∆
› › › › ż t`h t ψ s Aps, s `dsq ´ψt Apt, t `hq › › › › L p pΩ,Pq ď Ch 1 2 `η,
for η ą 0 as in the statement of Theorem 16, so that, by the two first lines in (57), } ş t`h t ψ s Aps, s `dsq} L p pΩ,Pq ď Ch 1{2 , for possibly new values of C. By Kolmogorov's continuity criterion, this says that there exists a Hölder continuous version of the process p ş t 0 ψ s Aps, s `dsqq 0ďtďT , with 1{2 ´1{p ´ǫ as pathwise Hölder exponent, for any ǫ ą 0. By the same argument, we notice that there exist Hölder continuous versions of the processes p ş t 0 ψ s Mps, s `dsqq 0ďtďT and p ş t 0 ψ s Rps, s `dsqq 0ďtďT . The Hölder exponent of the second one is actually better. Indeed, noticing that (66) also holds for R and taking advantage of the first line in (57), we deduce that } ş t`h t ψ s Rps, s `dsq} L p pΩ,Pq ď Ch p1`ηq{2 , so that the pathwise Hölder exponent can be chosen as p1 `ηq{2 ´1{p ´ǫ for any ǫ ą 0. 4.5.3. Dirichlet decomposition. It is well-checked that the process p ş t 0 ψ s Mps, s `dsqq 0ďtďT is a martingale, thus showing that the integral of ψ with respect to the pseudo-increments of A can be split into two terms: a martingale and a drift. We expect that, in practical cases, the exponent p can be choose as large as desired: In this setting, the martingale part has p1{2 ´ǫq-Hölder continuous paths, for ǫ ą 0 as small as desired, and the drift part has p1{2 `η ´ǫq-Hölder continuous paths, also for ǫ ą 0 as small as desired, thus proving that the integral is a Dirichlet process. 4.6. Application to diffusion processes driven by a distributional drift. We now explain how the stochastic Young integral applies to [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions[END_REF]. First, we can choose Apt, t `hq " X t`h ´Xt , for 0 ď t ď t `h ď T 0 . Then the process A is additive. In particular, the two last lines in (57) are automatically satisfied with ε 1 and ε 1 1 as large as needed. By (48), the second line in (57) is also satisfied. Finally, we notice that

E " X t`h ´Xt |F t ‰ " E " X t`h ´Xt ´`B t`h ´Bt ˘|F t ‰ ,
so that, by (48) again, the first line in ( 57) is satisfied with ε 0 " β{2.

With our construction, this permits to define p ş t 0 ψ s dX s q 0ďtďT 0 for any progressively measurable process pψ t q 0ďtďT 0 satisfying (59) with ε 2 ă β{2. It also permits to define the integrals p ş t 0 ψ s Mps, s `dsqq 0ďtďT 0 and p ş t 0 ψ s Rps, s `dsqq 0ďtďT 0 , where Mpt, t `hq " X t`h ´Xt ´E"

X t`h ´Xt |F t ‰ , Rpt, t `hq " E " X t`h ´Xt |F t ‰ .
By (49), we have Rpt, t `hq " bpt, X t , hq, so that p ş t 0 ψ s bps, X s , dsqq 0ďtďT 0 is well-defined. Moreover, by Proposition 14 and by boundedness of the exponential moments of pX t q 0ďtďT 0 (see the proof of Theorem 8), we know that Rpt, t `hq " pb ´bqpt, X t , hq also satisfies (57), from which we deduce that p ş t 0 ψ s pb ´bqps, X s , dsqq 0ďtďT 0 and so p ş t 0 ψ s bps, X s , dsqq 0ďtďT 0 are well-defined. Actually the exponent in the power of h appearing in the difference pb bqpt, X t , hq being strictly greater than 1, the integral process p ş t 0 ψ s pb ´bqps, X s , dsqq 0ďtďT 0 must be 0. We deduce that p ş t 0 ψ s bps, X s , dsq " ş t 0 ψ s bps, X s , dsqq 0ďtďT 0 . We finally discuss the integral p ş t 0 ψ s Mps, s `dsqq 0ďtďT . We let M pt, t `hq "

X t`h ´Xt ´`B t`h ´Bt ˘´E " X t`h ´Xt |F t ‰ " X t`h ´Xt ´`B t`h ´Bt ˘´E " X t`h ´Xt ´`B t`h ´Bt ˘|F t ‰ .
By (48), Er| M pt, t `hq| q |s 1{q ď C 1 q h p1`βq{2 for some C 1 q ě 0, which reads as a super-diffusive bound for the pseudo-increments of M . It is then well-checked that p Mpt, t `hqq 0ďtďt`hďT 0 fulfills all the requirements in (57). Therefore, the integral p ş t 0 ψ s Mps, s `dsqq 0ďtďT 0 makes sense. By Subsection 4.5, it is a martingale but by the super-diffusive bound of the pseudoincrements it must be the null process. Put it differently, only the Brownian part really matters in M and we can justify (56) thanks to the equality ż t 0 ψ s dX s "

ż t 0 ψ s dB s `ż t 0 ψ s bps, X s , dsq.
Remark 18. In [START_REF] Catellier | Averaging along irregular curves and regularisation of ODEs[END_REF], the authors already introduced a 'nonlinear' version of the Young integral. The motivation was similar to ours as the underlying objective was to solve singular differential equations driven by a distributional (but time-homogeneous) velocity field and perturbed by a rough signal. The construction suggested therein also consists of an approximation by means of Riemann sums, but the convergence is shown pathwise. The proof relies on a suitable control on the default of additivity of the nonlinear integrator, on the model of the third line in (57), but expressed in a pathwise (instead of L p ) form. We refer to [START_REF] Catellier | Averaging along irregular curves and regularisation of ODEs[END_REF]Theorem 2.4] for the main statement: Therein, the pseudo-increment reads G t i ,t i`1 pf t i q instead of Apt i , t i`1 q and the condition γ `ρν ą 1 corresponds to the condition 1 `ε1 ą 1 in the third line of (57). In the specific framework of singular differential equations driven by a distributional drift and a Brownian path, the Young integral is used in order to give a meaning to the drift part, exactly as we do here. Anyhow, the construction by Catellier and Gubinelli relies on a path by path time averaging principle, which goes back to Davie's work [START_REF] Davie | Uniqueness of solutions of stochastic differential equations[END_REF]. Our construction is different as it relies on a space averaging principle, inspired by Zvonkin's method [START_REF] Zvonkin | A transformation of the phase space of a diffusion process that will remove the drift[END_REF]. We indeed make use of the statistical behavior of the Brownian motion (and its connection with the heat equation) in order to define explicitly the effective drift bpt, x, dtq. This explains why our approach is of stochastic nature.

5.

Construction of the integral of Z w.r.t. Y . Examples.

We here address the existence of a rough path structure pW T t " pW T t , W T t qq 0ďtďT for the pair W T t " pY t , Z T t q, for T running in some interval r0, T 0 s, T 0 ą 0, the process pZ T t q 0ďtďT being given by ( 13). The process W T is intended to encapsulate the iterated integrals of W T , namely ş y x pW i,T t pzq ´W i,T t pxqq dW j,T pzq, for i, j P t1, 2u and x, y P R. Here W i,T t and W j,T t denote the coordinates of W T t , namely W 1,T t pxq " Y t pxq and W 2,T t pxq " Z T t pxq. As we are seeking a 'geometric' rough structure, the iterated integrals are expected to be the limits of iterated integrals computed along smooth approximations of the paths pY t q 0ďtďT and pZ T t q 0ďtďT , see ( 1) and ( 2) in Proposition 6. In particular, if it exists, W T must share some of the properties satisfied by iterated integrals of smooth paths, among which the integration by parts. This means that W 1,1,T t and W 2,2,T t must be given by W 1,1,T t px, x 1 q :" 1 2 `Yt px 1 q ´Yt pxq ˘2, W 2,2,T t px, x 1 q :" 1 2 `ZT t px 1 q ´ZT t pxq ˘2, (67) and that W 1,2,T t and W 2,1,T t must be connected through

`W 1,2,T t `W 2,1,T t ˘px, x 1 q " `Yt px 1 q ´Yt pxq ˘`Z T t px 1 q ´ZT t pxq ˘. ( 68 
)
To sum up, the only challenge for constructing W T is to define the 'cross-integral' (69)

I T t px, x 1 q :" W 2,1,T t px, x 1 q " ż x 1
x pZ T t pyq ´ZT t pxqq dY t pyq.

5.1.

Overview of the results. We are given pY t pxqq 0ďtďT 0 ,xPR satisfying for some α P p1{3, 1q and χ, κ ą 0:

(70) κ α,χ ppY t q 0ďtďT 0 q :" sup aě1,0ďtďT 0 `}Y t } r´a,as α {a χ ˘ď κ ă 8.

Below, we often write κ α,χ pY q for κ α,χ ppY t q 0ďtďT 0 q. As a first remark, we note that, for T P r0, T 0 s, the process pZ T t q 0ďtďT in (13) has the same regularity as Y , uniformly in T : Lemma 19. Given T P r0, T 0 s, recall the definition of Z T t in [START_REF] Flandoli | Some SDEs with distributional drift. II. Lyons-Zheng structure, It's formula and semimartingale characterization[END_REF]. There exists a constant C only depending on T 0 , α and χ such that κ α,χ ppZ T t q 0ďtďT q ď Cκ.

Proof. To prove κ α,χ ppZ T t q 0ďtďT q ď Cκ, we go back to (33), noticing that pMvq t therein is equal to Z T t when v " 1 and recalling that the analysis is split into two parts: |x 1 ´x| 2 ď T ´t and T ´t ă |x 1 ´x| 2 , the first case only being challenging. It is then plain to check that, for x, x 1 , ξ P r´a, as, with a ě 1, I x,x 1 1 pξq ď Cκa χ ş |x 1 ´x| 2 0 s ´1`α{2 ds ď Cκa χ |x 1 ´x| α . Moreover, following (35) with β " 1, we also have

I x,x 1 2 ď Cκa χ ş x 1 x ş T
|x 1 ´x| 2 s ´p3´αq{2 ds du ď Cκa χ |x 1 ´x| α , for x, x 1 P r´a, as, which completes the proof.

In order to construct I t,T px, yq in (69) as a geometric integral, we must specify what an approximation of Y is. We shall say that a sequence pY n q ně0 is a smooth approximation of Y on r0, T 0 s if, for each t P r0, T 0 s, the function Y n t : R Q x Þ Ñ Y n t pxq is a smooth function such that sup ně0 κ α,χ ppY n t q 0ďtďT 0 q ă 8 and, for any a ě 1, lim nÑ8 }Y n ´Y } r0,T 0 sˆr´a,as 0,α 1 " 0 for any α 1 P p0, αq. Below, we shall often use the following trick, that holds true for any a ě 1 and any α 1 P p0, αq,

(71) sup ně0 }Y n } r0,T 0 sˆr´a,as 0,α ă 8 lim nÑ8 }Y n ´Y } r0,T 0 sˆr´a,as 8 " 0 + ñ lim nÑ8 }Y n ´Y } r0,T 0 sˆr´a,as 0,α 1 " 0.
In particular, a typical example for Y n is to let

(72) Y n t pxq :" n ż R Y t px ´yqρpnyq dy,
where ρ is a smooth density, ρ and its derivatives being at most of polynomial decay, in which case the smooth approximation is said to be constructed by spatial convolution. Given a smooth approximation pY n q ně1 of Y , we may define, for any T P r0, T 0 s, the process Z n,T by replacing Y by Y n in (13), and then, following (69), we may let

I n,T t px, x 1 q :" ż x 1 x pZ n,T
t pyq ´Zn,T t pxqqB x Y n t pyq dy, which permits to define the structure pW n,T t " pW n,T t , W n,T t qq 0ďtďT accordingly. The following lemma then provides a general principle for constructing I T t px, x 1 q: Lemma 20. Suppose that, for any T P r0, T 0 s, there exists a function I T : r0, T s ˆR2 Ñ R and a smooth approximation pY n q ně1 of Y such that, for some α 1 P p1{3, αq and χ 1 ą χ,

sup 0ďT ďT 0 sup tPr0,T s sup ně1 sup aě1 `}I n,T t } r´a,as 2α 1 {a 2χ 1 ˘ă 8, @T P r0, T 0 s, @a ě 1, lim nÑ8 sup 0ďtďT }I T t ´I n,T t } r´a,as 2α 1 " 0. 
(73)

Assume without any loss of generality that χ 1 ą χ `α ´α1 . Then, for any T P r0, T 0 s, there exists W T P Cpr0, T s ˆR2 , R 4 q such that the pair process pW T t " pW T t , W T t qq 0ďtďT is a time dependent geometric rough path with indices pα 1 , χ 1 q in the sense that (1) sup 0ďT ďT 0 κ α 1 ,χ 1 pW T q ă 8 and sup ně1 sup 0ďT ďT 0 κ α 1 ,χ 1 pW n,T " pW n,T , W n,T qq ă 8;

(2) for any T P r0, T 0 s and any segment

I Ă R, }W T ´W n,T } r0,T sˆI 0,α 1 " }pW T ´W n,T , W T ´W n,T q} r0,T sˆI 0,α 1
tends to 0 as n tends to 8.

Proof. The cross integral I T being given, the definition of W T follows from (67) and (68). The point is thus to prove the geometric nature of the rough path W T .

By (71), we have, for any a ě 1, lim nÑ8 }Y n ´Y } r0,T 0 sˆr´a,as 0,α 1 " 0. Moreover, }Y n t } r´a,as α 1 ď p2aq α´α 1 }Y n t } r´a,as α ď Ca α´α 1 `χκ α,χ pY n q, proving that sup ně1 κ α 1 ,χ 1 pY n q ă 8 if χ 1 ě α´α 1 `χ. Applying Lemma 19 to pY n , Z n,T q, we get sup ně0 sup 0ďT ďT 0 κ α 1 ,χ 1 ppZ n,T t q 0ďtďT q ă 8. Now, it is quite standard to see that, for any T P r0, T 0 s and a ě 1, sup 0ďtďT sup xPr´a,as |Z n,T t pxq ŹT t pxq| tends to 0 as n Ñ 8. By Lemma 19 again, for a ě 1 and T P r0, T 0 s, the functions pr´a, as Q x Þ Ñ Z n,T t pxq P Rq 0ďtďT,ně1 are uniformly α-Hölder continuous. By the same trick as in (71), we easily deduce that }Z n,T ´ZT } r0,T sˆr´a,as 0,α 1 tends to 0. In order to complete the proof, it suffices to handle the iterated integrals, which follows from (73) and (69) (applied to the pair pY n , Z n,T q instead of pY, Zq).

Here is the first main statement of this section: Theorem 21. Given α P p1{3, 1s and χ ą 0, let Y P Cpr0, T 0 sˆR, Rq satisfy κ α,χ ppY t q 0ďtďT 0 q ă 8 (see (70) for the notation) and

(74) ˇˇY s pxq ´Yt pxq ´`Y s pyq ´Yt pyq ˘ˇď κa χ |s ´t| ν |x ´y| µ , ps, tq P r0, T 0 s, x, y P R, for some κ ě 0 and µ, ν ě 0 with 2ν `µ P p1 ´α, 1s. Then, Y satisfies the assumptions of Lemma 20 with respect to any pα 1 , χ 1 q with α 1 ă α and χ 1 ą χ `α ´α1 `p1{2 ´αq `. In particular, for any T P r0, T 0 s, the pair W T " pY, Z T q, with Z T given by (13), may be lifted into a geometric rough path W T " pW T , W T q satisfying the conclusions of Lemma 20.

Moreover, when the smooth approximation used in Lemma 20 is constructed by spatial convolution, W T does not depend upon the kernel ρ in (72). When α ą 1{2, W T is always well-defined and remains the same whatever the smooth approximation is (even if not constructed by convolution).

Theorem 21 guarantees that W T exists for any T P r0, T 0 s under some condition on the time-space structure of the environment pY t q 0ďtďT 0 . When Y is time homogeneous, (74) is automotically satisfied, and the iterated integral in (69) always exists and is geometric under the simple assumption that κ α,χ pY q ă 8. In that case, the cross integral I T t px, x 1 q in (69) can be expressed explicitly, see (78) in Lemma 23 below. Moreover, a careful inspection of the proof shows that the constraint χ 1 ą χ `α ´α1 `p1{2 ´αq `can be relaxed into χ 1 ą χ `α ´α1 . When Y is time dependent, the additional condition (74) is imposed. It is inspired from the construction of the so-called Young integral between a Hölder continuous function and the increments of another Hölder continuous function, see [START_REF] Young | An inequality of the Hölder type, connected with Stieltjes integration[END_REF] and Lemma 24 below. For instance, if α ą 1{2, (74) is always satisfied with µ " α and ν " 0 and the constraint on χ 1 reduces to χ 1 ą χ `α ´α1 . When α ď 1{2, a sufficient condition to imply (74) is that Y has some β-Hölder regularity in time: |Y s pyq ´Yt pyq| ď κ 1 `1 `|y| χ ˘|s ´t| β with β ą p1 ´αq{2. The bound (74) is then satisfied with µ " 0 and ν " β ^p1{2q. A more specific case is when Y t pyq can be expanded as Y t pyq " f t Y pyq, with f β-Hölder continuous, for β ą 1{2 ´α, and Y P CpR, Rq with sup aě1 ra ´χ}Y } r´a,as α s ă 8, in which case (74) holds with µ " α and ν " β ^p1{2 ´α{2q. Notice finally that the constraint 2ν `µ ď 1 can be easily overcome: When 2ν `µ ą 1, the value of ν can be decreased for free so that 2ν `µ " 1.

As mentioned in Introduction, existence of the cross-integral has been also proved within the framework of the KPZ equation by means of general results on rough paths theory applied to Gaussian processes, see [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths[END_REF], [START_REF] Hairer | Rough Stochastic PDEs[END_REF]Section 3] and [START_REF] Hairer | Solving the KPZ equation[END_REF]Section 7]. Theorem 22 below is a refinement: Theorem 22. Let pΞ, G, Pq be a probability space with a Brownian sheet pζpt, xqq tě0,xPR . Let Y T pt, xq :" ş T t ş R p s´t px ´yq dζps, yq, for t0 ď t ď T, x P Ru. For a smooth density ρ, ρ and its derivatives being at most of polynomial decay, define in the same way Y ρ,T pt, xq :" ş T t ş R p s´t px ´yq dζ ρ ps, yq, with ζ ρ pt, xq :"

ş t 0 ş R ρpx ´yq dζps, yq.
Then, for any T 0 ą 0, we can find an event Ξ ‹ P G, with PpΞ ‹ q " 1, such that, for any realization in Ξ ‹ , for any Y pbq P Cpr0, T 0 s ˆR, Rq, with κ α b ,χ b pY pbq q ă 8 for some α b ą 1{2 and χ b ą 0, for any approximation sequence pY n,pbq q ně1 of Y pbq , the function Y pt, xq " Y T 0 pt, xq `Y pbq pt, xq, pt, xq P r0, T 0 s ˆR, satisfies the assumption of Lemma 20 with respect to any α P p0, 1{2q and any χ ą χ b `αb ´α, and with respect to the smooth approximation pY n " Y nρpn¨q,T 0 `Y n,pbq q ně1 . Theorem 22 is specifically designed to handle the KPZ equation and to construct, in the next section, the related polymer measure. In this perspective, an important point is to control the time-dependent rough paths pW T t q 0ďtďT , uniformly in T P r0, T 0 s, which is one of the reason why we revisit the argument given in [19, Section 7]. Instead of making use of general results on rough paths theory for Gaussian processes, we benefit from the fact that Y T 0 solves the backward stochastic heat equation to identify the cross-integral I T t px, x 1 q in (69) with a stochastic integral. Such a construction can be extended to non-Gaussian cases when Y T 0 solves a stochastic PDE of a more general form (with possibly random coefficients).

Proof of Theorem 21.

Following the decomposition of Y introduced in the statement of Theorem 21, it makes sense to split Z T t pxq into Z T t pxq " Z

T t ż R B p1q,T t pxq `Zp2q,T t pxq, with Z p1q,T t pxq :" ż 
x p s´t px ´yq `Yt pyq ´Yt pxq ˘dy ds, Z p2q,T t pxq :"

ż T t ż R B 2 
x p s´t px ´yq `Ys pyq ´Ys pxq ´pY t pyq ´Yt pxq ˘dy ds.

(75)

Accordingly, we can split, at least formally, the iterated integral I T t px, x 1 q in (69) into

I T t px, x 1 q " I p1q,T t px, x 1 q `I p2q,T t px, x 1 q, with (76) 
I piq,T t px, x 1 q :" ż x 1 x `Zpiq,T t pyq ´Zpiq,T t pxq ˘dY t pyq, i " 1, 2.
The analysis of I p1q,T t relies on Lemma 23. Given α, χ, κ ą 0, there is a constant C, such that, for any Y P Cpr0, T 0 sˆR, Rq with κ α,χ pY q ď κ, the map x Þ Ñ Y t pxq being differentiable for any t P r0, T 0 s, it holds that (77) @T P r0, T 0 s, @t P r0, T s, @a ě 1, @x, x 1 P r´a, as, ˇˇI p1q,T t px, x 1 q ˇˇď Ca 2χ |x 1 ´x| 2α .

Moreover,

I p1q,T t px, x 1 q " `Zp1q,T t px 1 q ´Zp1q,T t pxq ˘`Y t px 1 q ´Yt pxq ˘``Y t px 1 q ´Yt pxq ˘2 ´2 ż x 1 x ż R B x p T ´tpy ´zqY t pzq `Yt pyq ´Yt pxq ˘dz dy. (78)
In the framework of Lemma 20, (78) remains true when Y is not differentiable in x, by passing to the limit along a smooth approximation. When Y is time-homogeneous, I T t px, x 1 q and I p1q,T t px, x 1 q coincide, and we have an explicit formula for the cross integral in (69).

Proof. Taking benefit of the heat equation satisfied by p s´t , we have

Z p1q,T t pxq " 2 ż R ż T t B s p s´t px ´yq `Yt pyq ´Yt pxq ˘dy ds " 2 ż R p T ´tpx ´yqY t pyq dy ´2Y t pxq.
Recalling that, under the assumption of Lemma 23, Y is smooth in space, we get from (68):

I p1q,T t px, x 1 q " `Zp1q,T t px 1 q ´Zp1q,T t pxq ˘`Y t px 1 q ´Yt pxq ˘´ż x 1 x `Yt pyq ´Yt pxq ˘Bx Z p1q,T t pyq dy.
Plugging the formula for Z p1q,T t into the above relationship, we get (78). By Lemma 19, κ α,χ pZ p1q,T q ď Cκ. It is then clear that, for x, x 1 P r´a, as, the two first terms in the right hand side of (78) satisfy (77). In order to prove that the third one satisfies it as well, we notice that it may be rewritten under the form (up to the factor ´2)

J T ´tpx, x 1 q :" ż x 1 x ż R B x p T ´tpy ´zq `Yt pzq ´Yt pxq ˘`Y t pyq ´Yt pxq ˘dz dy.
Splitting the increment Y t pzq ´Yt pxq into Y t pzq ´Yt pyq plus Y t pyq ´Yt pxq, we deduce from the bound

|B x p T ´t| ď cpT ´tq ´1{2 p cpT ´tq that |J T ´tpx, x 1 q| ď Ca 2χ rpT ´tq ´p1´αq{2 |x 1 ´x| 1`α pT ´tq ´1{2 |x 1 ´x| 1`2α s, so that, for T ´t ě |x 1 ´x| 2 , |J T ´tpx, x 1 q| ď Ca 2χ |x 1 ´x| 2α .
In order to handle the case T ´t ď |x 1 ´x| 2 , we first notice, by antisymmetry, that, for

x ă x 1 , J T ´tpx, x 1 q " J p´8,xs T ´t px, x 1 q `J rx 1 ,`8q T ´t px, x 1 q, that is J rx,x 1 s
T ´t px, x 1 q " 0, where

J I T ´tpx, x 1 q :" ż x 1 x ż I B x p T ´tpy ´zq " Y t pzq ´Yt pxq ‰" Y t pyq ´Yt pxq ‰ dz dy.
We start with J p´8,xs T ´t px, x 1 q (the other one may be handled in the same way). We have

ˇˇJ p´8,xs T ´t px, x 1 q ˇˇď Ca χ ż x 1 x ż x
´8 |B x p T ´tpy ´zq|pa χ `|z| χ q|x ´z| α |y ´x| α dz dy. Bounding |y ´x| by |x 1 ´x|, the result follows from the following bound applied with γ " 0 or χ and h " T ´t, ż x ´8ˆż 8

x

|z| γ |x ´z| α ˇˇB x p h py ´zq ˇˇdy ˙dz " ´ż x ´8 |z| γ |x ´z| α ˆż 8 x B x p h py ´zq dy ˙dz " ż x ´8 |z| γ |x ´z| α p h px ´zq dz ď Ca γ h α{2 .
In order to handle I p2q,T t , we will make use of a famous result by Young [START_REF] Young | An inequality of the Hölder type, connected with Stieltjes integration[END_REF]:

Lemma 24. Given two exponents α, α 1 ą 0 with α `α1 ą 1, there exists a universal constant c ą 0 such that, for any α 1 -Hölder function f and any α-Hölder function g on the interval rx, x 1 s, the Stieltjes integral

ş x 1
x f pzq dgpzq is well defined and it holds (79)

ˇˇˇż x 1 x f pzq dgpzq ´f pxq `gpx 1 q ´gpxq ˘ˇˇˇď c}f } α 1 }g} α |x 1 ´x| α`α 1
where }f } α 1 (resp. }g} α ) is the Hölder semi-norm of f (resp. g).

Young's result gives directly the existence of I p2q,T :

Lemma 25. Consider Y P Cpr0, T 0 s ˆR, Rq satisfying both κ α,χ pY q ď κ and (74). Then, for any

0 ď t ď T ď T 0 , the map R Q x Þ Ñ Z p2q,T t
is locally 2ν `µ-Hölder in space and there exists a constant C, independent of t and T , such that κ 2ν`µ,χ pZ p2q,T q ď Cκ. As a consequence of Young's theory, the integral I p2q,T is well defined and, for a ě 1, x, x 1 P r´a, as, ˇˇI p2q,T t px, x 1 q ˇˇď Ca 2χ κ 2 |x 1 ´x| α`2ν`µ .

Proof. Let a ě 1 and x ď x 1 P r´a, as. As in the proof of Lemma Given Lemmas 23 and 25, we now turn to Proof of Theorem 21. Consider a smooth approximation pY n q ně1 of Y constructed by spatial convolution, as in (72). Following (75) and (76), we may split I n,T accordingly, into I n,T " I n,p1q,T `I n,p2q,T . We then notice that each Y n satisfies κ α,χ pY n q ď cκ and satisfies (74) with κ replaced by cκ, for c independent of n. If α ą 1{2, we can always choose ν " 0 and µ " α in (74), in which case, by Lemmas 23 and 25, the first line in (73) is satisfied with χ 1 " χ. If α ď 1{2, we must have 2ν `µ ą 1 ´α ě α so that α `2ν `µ ě 2α. By Lemmas 23 and 25, the first line in (73) is satisfied with 2χ 1 " 2χ `p2ν `µ ´αq. Since the value of ν can be arbitrarily decreased provided that 2ν `µ ą 1 ´α still holds true, we deduce that the first line in (73) is satisfied for any χ 1 ą χ `p1 ´α{2q `.

It thus remains to check the second line in (73). We first notice that we can pass to the limit in the formula (78) for I n,p1q,T , replacing therein Z p1q,T by Z n,p1q,T and Y by Y n . Obviously, the limit is I p1q,T (whatever the choice of the smooth approximation is). Following the proof of Lemma 20, the convergence is uniform on any r0, T s ˆr´a, as, a ě 1, which means that (80) lim nÑ8 sup 0ďtďT sup

x,x 1 Pr´a,as ˇˇI p1q,T t px, x 1 q ´I n,p1q,T t px, x 1 q ˇˇ" 0.

Passing to the limit in (77), I p1q,T satisfies (77). Combining with (80), we deduce, as in (71), that the second line in (73) holds with I T ´I n,T replaced by I p1q,T ´I n,p1q,T .

In order to complete the proof, we must prove the second line in (73), but with I T ´I n,T replaced by I p2q,T ´I n,p2q,T . We have the decomposition I p2q,T ´I n,p2q,T " We start with the second term in the right-hand side. For any α 1 ă α, we know that, locally, the α 1 -Hölder norm of Y ´Y n in space tends to 0. Repeating the proof of Lemma 25, we deduce that, locally, the 2α 1 -Hölder semi-norm of the last term tends to 0. In order to prove the same result for the first term, it suffices to notice that, for any pair pν 1 , µ 1 q with ν 1 ď ν and µ 1 ď µ, one of the two inequalities being strict, the difference Y n ´Y satisfies (74) with a constant κ that may depend on a but that tends to 0 as n tends to 8. Therefore, the p2ν 1 `µ1 q-Hölder norm of the integrand in the first term tends to 0 If p Ỹ n q ně1 is another approximation, also constructed by convolution, we can prove in the same way that the difference I n,p2q,T ´Ĩ n,p2q,T tends to 0, where Ĩ n,p2q,T is associated with Ỹ n . Therefore, pI n,p2q,T q ně1 and p Ĩ n,p2q,T q ně1 have the same limit. Things are the same when α ą 1{2 (with ν " 0 and µ " α) and the construction of p Ỹ n q ně1 is arbitrary, since, in that case, p Ỹ n q ně1 necessarily satisfies (74), uniformly in n ě 1.

ż

Proof of Theorem 22.

The proof is divided in several steps. The first one is to prove a generalization of the well-known Kolmogorov's Hölder continuity criterion.

Theorem 26. Let Q be a countable set and pR L : r´1, 1s 2 ˆΞ Q px, y, ξq Þ Ñ R L px, yqpξq P Rq LPQ be a family of random fields on the space pΞ, G, Pq, satisfying, for some p ě 1, some C, β, γ, γ 1 , γ 2 ą 0, some random variable ζ, all a ě 1 and all x, y, z P r´a, as, x ă y ă z,

E

" sup LPQ |R L px, yq| p ‰ ď Ca pγ |x ´y| 1`β , @L P Q, |R L px, yq `RL py, zq ´RL px, zq| ď ζa γ |x ´y| γ 1 |y ´z| γ 2 .

(81)

Then, for any L P Q and x, y P R, we can redefine R L px, yq on a P null event, and, for any χ ą 1{p and 0 ă ς ă minpγ 1 `γ2 , β{pq, we can find a constant c :" cpς, χ, γ 1 , γ 2 , β, pq and a non-negative random variable ζ 1 , with Er|ζ 1 | p s ă cC, such that, for all a ě 1, (82) @L P Q, x, y P r´a, as, |R L px, yq| ď c `ζ1 a χ`p1`βq{p `ζa γ 1 `γ2 ˘aγ´ς |x ´y| ς

The result remains true when Q is a separable metric space and, for any x, y P R, the mapping

Q Q L Þ Ñ R L px, yq is almost-surely continuous.
Proof. In the case a " 1, (82) can be proved by adapting the proof of the standard version of Kolmogorov's criterion. In order to get the result for any a ě 1, we can fix a P Nzt0u and then apply the result on r´1, 1s 2 to the family pR L : r´1, 1s 2 ˆΞ Q px, y, ξq Þ Ñ R L pax, ayqpξqq LPQ . It satisfies (81) with Ca pγ replaced by Ca 1`β`pγ in the first line and ζa γ replaced by ζa γ 1 `γ2 `γ in the second line. Therefore, for any ς P p0, minpγ 1 `γ2 , β{pqq, we can find a constant C 1 , independent of a, and a variable ζ 1 a (which may depend on a), such that (up to a redefinition of each R L pax, ayq on a P null event)

@L P Q, @x, y P r´1, 1s, |R L `ax, ay ˘| ď C 1 a γ `ap1`βq{p ζ 1 a `aγ 1 `γ2 ζ ˘|x ´y| ς , with Er|ζ 1 a | p s ď C 1 .
Choose χ ą 1{p and let Γ :" sup aPNzt0u ra ´χζ 1 a s. Then, for another constant C 2 ą 0, Er|Γ| p s ď C 1 ř aě1 a ´pχ ď C 2 . We have @L P Q, @x, y P r´1, 1s, |R L pax, ayq| ď C 1 a γ´ς `aχ`p1`βq{p Γ `aγ 1 `γ2 ζ ˘|ax ´ay| ς .

When Q is a separable metric space, we consider a countable dense subset Q. For any realization in an event of probability one, for any x, y P Q, the map Q Q L Þ Ñ R L px, yq is continuous, and, by the first part, the maps pR 2 Q px, yq Þ Ñ R L px, yqq LP Q satisfy (82) and are thus uniformly continuous on compact sets. With probability one, we can extend Q ˆQ2 Q pL, x, yq Þ Ñ R L px, yq into a continuous mapping on Q ˆR2 , which satisfies (82). 5.3.1. Regularity of Y T 0 . We start with: Lemma 27. There exists Ξ ‹ P G, with PpΞ ‹ q " 1, such that, on Ξ ‹ , for all α ă 1{2, χ ą 0, the map r0,

T 0 s ˆR Q pt, xq Þ Ñ Y T 0
t pxq is continuous and satisfy κ α,χ pY T 0 q ă 8. Moreover, Erpκ α,χ pY T 0 qq p s ă 8 for all α ă 1{2, χ ą 0 and p ě 1.

Continuity of Y T 0 is a well-known fact, which follows from Kolmogorov's criterion. Letting D T 0 " tpt, sq P r0, T 0 s 2 : t ă su, the almost sure finiteness of κ α,χ pY q is a consequence of the following result: Lemma 28. Let K : D T 0 ˆR ˆΞ Q ppt, sq, y, ξq Þ Ñ K t ps, yqpξq P R be a random function, continuous in pt, s, yq for any ξ and differentiable in t for any ps, y, ξq, such that K t ps, yq is measurable with respect to the sigma-field G T 0 s :" σpζpu, yq ´ζpu, xq ´ζps, yq `ζps, xq, s ď u ď T 0 , x, y P Rq. Assume that there exist a constant ǫ ą 0 and a non negative random variable κ, with Erκ q s ă 8 for any q ě 1, such that, P-almost surely, for any t ď s ď T 0 , ż 

R |K t ps
ˇˇI T t ´IT t 1 ˇˇp ‰ 1{p ď Erκ p{2 s 1{p `cp |t 1 ´t| 1{2 δ ´1{2`ε{2 `|t 1 ´t `δ| ǫ{2 `δǫ{2 ˘.
Choosing δ " t 1 ´t and modifying c p if necessary, we can bound the right-hand side by c p Erκ p{2 s 1{p |t 1 ´t| ǫ{2 . We easily get a similar bound when the supremum is taken over T P rt, pt 1 `δq ^T0 s, with the convention that I T t 1 " 0 when t 1 ą T . We deduce that E "ˇˇs up

tďT ďT 0 |I T t | ´sup t 1 ďT ďT 0 |I T t 1 | ˇˇp ‰ 1{p ď c p Erκ p{2 s 1{p |t 1 ´t| ǫ{2 .
The result follows from Kolmogorov's criterion.

Proof of Lemma 27. Lemma 28 applies to the proof of Lemma 27 with K t ps, yq " p s´t px ýq ´ps´t px 1 ´yq and thus I T t " Y T t pxq ´Y T t px 1 q, for x, x The conclusion follows now from Theorem 26. We apply it with R t,T px, yq " Y T t pyq ´Y T t pxq, p as large as desired, β " pα ´1, ζ " 0, γ " 0, γ 1 " γ 2 " 1, L " pt, T q and Q " D T 0 . We get that, for any χ ą 0, α P p0, 1{2q and p ě 1, Erpsup T ďT 0 κ α,χ pY T qq p s ă 8 and there is an event Ξ χ,α,‹ , of probability 1, on which sup T ďT 0 κ α,χ pY T q ă 8. Letting Ξ ‹ " X χ,αPQ,χą0,αPp0,1{2q Ξ χ,α,‹ , this completes the proof. (Note that the result is actually stronger than the claim in the statement. The reason why we included a supremum over T in the statement of Lemma 28 will become clear in the last part of the proof of Theorem 22.) 5.3.2. Reducing the proof to the case Y pbq " 0. The next step is to show: Lemma 29. In order to prove Theorem 22, we can assume Y pbq " 0.

Proof. First step. If Y pbq ı 0, we consider Ξ ‹ and then χ P p0, χ b s and α P p1 ´αb , 1{2q as in Lemma 27. For a realization in Ξ ‹ and for a smooth kernel ρ, ρ and its derivatives being at most of polynomial decay, we let, for every integer n ě 1, Y n,T 0 be the nth approximation of Y T 0 constructed by convolution, see (72). Clearly, Y n,T 0 t pxq " ş T 0 t ş R p s´t px ´yq dζ n ps, yq, where ζ n ps, yq " n ş s 0 ş R ρpnpy ´uqq dζpr, uq, proving that Y n,T 0 " Y nρpn¨q,T 0 . By Lemma 27, (71) holds true (with pY, Y n q replaced by pY T 0 , Y n,T 0 q). Given a realization in Ξ ‹ and the path Y pbq , we consider an arbitrary smooth approximation pY n,pbq q ně1 of Y pbq , so that pY n :" Y n,T 0 `Y n,pbq q ně1 is a smooth approximation of Y .

Second step. Letting (84) Z i,T t pxq :"

ż T t ż R B 2 
x p s´t px ´yq `Y i s pyq ´Y i s pxq ˘dy ds, i P tT 0 , pbqu, we may split, at least formally, I T t px, x 1 q into I T t px, x 1 q " I pT 0 ,T 0 q,T t px, x 1 q `I pT 0 ,pbqq,T t px, x 1 q `I ppbq,T 0 q,T t px, x 1 q `I ppbq,pbqq,T t px, x 1 q, where (85) I pi,jq,T t px, x 1 q :" ż x 1

x `Zi,T t pyq ´Zi,T t pxq ˘dY j t pyq, pi, jq P tT 0 , pbqu 2 .

When pi, jq " pT 0 , T 0 q, the cross-integrals I pi,jq,T t px, x 1 q can be constructed as Young integrals by means of Lemma 24. Indeed, when i " pbq, the path Z pbq,T t has the same regularity as Y pbq , see Lemma 19, so that the sum of the Hölder exponents of the two curves involved in the definition of the integral is always greater than α `αb ą 1 when at least one of the two indices i or j is equal to pbq. Lemmas 24 and 25 directly say that |I pi,jq,T t px, x 1 q| ď Ca 2pχ b `αb ´αq |x 1 ´x| 2α when x, x 1 P r´a, as with a ě 1, the constant C being random (as it depends upon the realization of κ α,χ pY q). Denoting by Z n,i,T and I n,pi,jq,T the quantities associated with the smooth approximation Y n , I n,pi,jq,T t px, x 1 q satisfies a similar bound, with the same C. By bilinearity of Young's integral in pf, gq, see Lemma 24, it is clear that, for all T P r0, T 0 s and a ě 1, sup 0ďtďT }I pi,jq,T t ´I n,pi,jq,T t } r´a,as 2α 1 tends to 0 as n tends to 8, when pi, jq " pT 0 , T 0 q and α 1 ă α. Proof. First step. The point is to construct I T which is equal to I pT 0 ,T 0 q,T as Y pbq " 0. With ρ as in the statement, recall Y ρ,T t pxq " ş T t ş R p s´t px ´yq dζ ρ ps, yq " ş T t P s´t ρpx ´uq dζps, uq. With these notations, the smooth approximation Y n,T 0 considered in the first step of the proof of Lemma 29 is obtained by replacing ρ by nρpn¨q and Y T 0 by replacing ρ by the Dirac mass δ 0 at 0. With Y ρ,T 0 , we associate a cross-integral as in (69). We let Z ρ,T t pxq :" ş T t B 2

x P s´t Y ρ,T 0 s pxq ds and

I ρ,T t px, x 1 q " ż x 1 x `Zρ,T t pyq ´Zρ,T t pxq ˘dY ρ,T 0 t pyq " ż x 1 x "ż T t `B2 x P s´t Y ρ,T 0 s pyq ´B2 x P s´t Y ρ,T 0 s pxq ˘ds  dY ρ,T 0 t pyq. (86) 
Using the identity Y ρ,T 0

t " P s´t Y ρ,T 0 s `Y ρ,s t , for 0 ď t ď s ď T 0 , this leads to I ρ,T t px, x 1 q " I ρ,p1q,T t px, x 1 q `I ρ,p2q,T t px, x 1 q, with I ρ,p1q,T t px, x 1 q :" ż T t "ż x 1 x `B2 x P s´t Y ρ,T 0 s pyq ´B2 x P s´t Y ρ,T 0 s pxq ˘Bx P s´t Y ρ,T 0 s pyq dy  ds I ρ,p2q,T t px, x 1 q :" ż T t "ż x 1 x `B2 x P s´t Y ρ,T 0 s pyq ´B2 x P s´t Y ρ,T 0 s pxq ˘dY ρ,s t pyq  ds. ( 87 
)
With these notations, I n,T t px, x 1 q, the cross integral corresponding to Y n,T 0 , is obtained by replacing ρ by nρpn¨q and I T t px, x 1 q by replacing (at least at a formal level) ρ by δ 0 .

Second step. Direct integration yields

I ρ,p1q,T t px, x 1 q " ż T t 1 2 ´`B x P s´t Y ρ,T 0 s px 1 q ˘2 ´`B x P s´t Y ρ,T 0 s pxq ˘2¯d s ´ż T t B 2 x P s´t Y ρ,T 0 s pxq `Ps´t Y ρ,T 0 s px 1 q ´Ps´t Y ρ,T 0 s pxq ˘ds.
Imitating the proof of Lemma 19, it is now easy to see that, for x, x 1 P r´a, as, with a ě 1, |I ρ,p1q,T t px, x 1 q| ď Cκ 2 ρ a 2χ |x ´x1 | 2α , for a deterministic constant C, independent of ρ, and with κ ρ :" κ pα`1{2q{2,χ pY ρ,0 q (the reason why we use pα`1{2q{2 will be explained below). The computations also apply when ρ is replaced by δ 0 . Since Y ρ,0 is constructed by convolution of Y T 0 with respect to ρ, we can bound κ ρ by c ρ κ, where c ρ is a deterministic constant that may depend on the decay of ρ. When ρ is replaced by nρpn¨q, the constants c nρpn¨q can be uniformly bounded in n, so that, for any n ě 1, |I nρpn¨q,p1q,T t px, x 1 q| ď C ρ κ 2 a 2χ |x ´x1 | 2α . The bilinearity of the cross-integral shows that sup 0ďtďT ďT 0 sup x,x 1 Pr´a,as |I nρpn¨q,p1q,T t px, x 1 qÍ δ 0 ,p1q,T t px, x 1 q| tends to 0 as n tends to 8. By (71), the convergence holds in Hölder norm. Third step. We now study I ρ,p2q,T t px, x 1 q for x, x 1 P r´a, as, a ě 1. It is equal to The analysis of K 1 may be handled in the same way. It is actually much easier since ş T r rB 2

ż T t "ż x 1 x `B2 x P s´t Y ρ,T 0 s pyq ´B2 x P s´t Y ρ,T 0 s pxq ˘ˆż s t ż R B x P r´t ρpy ´zq dζpr, zq ˙dy  ds " ż T t ż R "ż x 1 x ˆż T r `B2 x P s´t Y ρ,T 0 s pyq ´B2 x P s´t Y ρ,
x P s´t Y ρ,T 0 s px 1 q ´B2

x P s´t Y ρ,T 0 s pxqs ds has the same structure as Z ρ,T t px 1 q ´Zρ,T t pxq and can be bounded by Cκ ρ a χ |x 1 ´x| α . We thus deduce that (90) and (91) hold true with K 2 replaced by K 1 ´K2 . By Lemma 28 with ǫ " p1{2 ´αq{2,

(92) E " sup 0ďtďT ďT 0 |I ρ,p2q,T t px, x 1 q| p ‰ 1{p ď c p Er|κ ρ | p s 1{p a 2χ |x 1 ´x| 1{2`α ,
where c p is a constant independent of ρ. Repeating the analysis, (92) also holds when ρ is replaced by δ 0 . Fourth step. The goal is to prove an analog of (92), but for the difference I ρ,p2q,T t px, x 1 q Í δ 0 ,p2q,T t px, x 1 q. Letting κ ρ,δ 0 :" κ p1{2`αq{2,χ pY ρ,T 0 ´Y T 0 q and }ρ} 1 :"

ş R |v|ρpvq dv, we claim E " sup 0ďtďT ďT 0 |I ρ,p2q,T t px, x 1 q ´I δ 0 ,p2q,T t px, x 1 q| p ‰ 1{p ď c p a 2χ ´Er|κ ρ,δ 0 | p s 1{p `}ρ} p1{2´αq{2 1 Er|κ| p s 1{p ¯|x 1 ´x| 1{2`α . ( 93 
)
The proof is as follows. By bilinearity of the cross-integral, I ρ,p2q,T ´I δ 0 ,p2q,T reads as the sum of two terms of the same type as I ρ,p2q,T t but each involving a modification in the definition (88) of K 1 t pr, uq and K 2 t pr, uq. The first modification consists in replacing Y ρ,T 0 by Y ρ,T 0 ´Y T 0 and the second one in replacing Y ρ,T 0 by Y T 0 and then P r´t ρ by P r´t ρ ´pr´t (or equivalently ρ by ρ ´δ0 ). The first modification contributes for c p a 2χ Er|κ ρ,δ 0 | p s 1{p |x 1 ´x| 1{2`α in (93) (compare with (92)). Concerning the second modification, when ρ is replaced by ρ ´δ0 in (89), the quintuple integral becomes (after convolution in u) ż

R ż R ż x 1 x ż x 1
x ´p2pr´tq `y ´y1 ´pv ´v1 q ˘´p 2pr´tq `y ´y1 ´v1 ˘¯dy dy 1 ρpvqρpv 1 q dv dv 1

`żR

ż x 1 x ż x 1 x
´p2pr´tq `y ´y1 ˘´p 2pr´tq `y ´y1 ´v˘¯d y dy 1 ρpvq dv.

Since |B x p r´t pyq| ď cpr ´tq ´1{2 p cpr´tq pyq, the integrals on the square rx, x 1 s ˆrx, x 1 s are bounded by pr ´tq ´α|x 1 ´x| 1`2α as in the proof of (90) and by Cpr ´tq ´α´1{2 |x 1 ´x| 1`2α |v|. By interpolation, it is less than Cpr ´tq ´α´η{2 |x 1 ´x| 1`2α |v| η , for any η P p0, 1q. Choosing η " p1{2´αq{2, the right-hand side in (90) becomes Cκ 2 a 2χ |x 1 ´x| 1`2α pr´tq ´1`p1{2´αq{4 }ρ} p1{2´αq{2 1 (with κ :" κ p1{2`αq{2,χ pY T 0 q). Similarly, the right-hand side in (91) becomes Cκ 2 a 2χ pr tq ´3`p1{2´αq{4 |x 1 ´x| 1`2α }ρ} p1{2´αq{2 1

. Playing the same game with K 1 , we get (93). Fifth step. We now replace ρ by nρpn¨q. From the second step, we know that we can find a constant c 1 ρ such that κ nρpn¨q ď c 1 ρ κ for any n ě 1. Similarly, for any α 1 ą p1{2 `αq{2, we can find a deterministic constant c such that κ ρ,δ 0 ď c " κ α 1 ,χ pY ρ,T 0 q `κα 1 ,χ pY T 0 q ‰ p1{2`αq{p2α 1 q " sup aě1 `}Y ρ,T 0 ´Y T 0 } r´a,as 8 {a χ ˘‰1´p1{2`αq{p2α 1 q . Now, sup aě1 p}Y ρ,T 0 ´Y T 0 } r´a,as 8

{a χ q ď c 1 ρ κ}ρ} p1{2`αq{2 1 
, for a possibly new value of the constant c 1 ρ . It remains true with the same constant c 1 ρ when ρ is replaced by nρpn¨q, so that Er|κ nρpn¨q,δ 0 | p s 1{p ď C p }nρpn¨q} η 1 " C p n ´η }ρ} η 1 , for some η ą 0. Modifying if necessary the value of η, we deduce from (93) that

E " sup 0ďtďT ďT 0 |I nρpn¨q,p2q,T t px, x 1 q ´I δ 0 ,p2q,T t px, x 1 q| p ‰ 1{p ď C p a 2χ n ´η|x 1 ´x| 1{2`α .
Conclusion. We let Γ " sup ně1 rn η{2 sup 0ďtďT ďT 0 |I nρpn¨q,p2q,T t px, x 1 q ´I δ 0 ,p2q,T t px, x 1 q|s. We have Er|Γ| p s ď ř ně1 n pη{2 Er|I nρpn¨q,p2q,T t px, x 1 q ´I δ 0 ,p2q,T t px, x 1 q| p s, which is less than

C p p a 2pχ |x 1 ´x| pp1{2`αq ÿ ně1 n ´ηp{2 " C 1 p a 2pχ |x 1 ´x| pp1{2`αq
when ηp ą 2. We deduce, for x, x 1 P r´a, as,

E " sup ně1 sup 0ďtďT ďT 0 `nη{2 |I nρpn¨q,p2q,T t px, x 1 q ´I δ 0 ,p2q,T t px, x 1 q| ˘p‰ 1{p ď C p a 2χ |x 1 ´x| 1{2`α .
We aim at applying Theorem 26 with L " pn, t, T q and R L px, x 1 q " n η{2 pI nρpn¨q,p2q,T t px, x 1 q Í δ 0 ,p2q,T t px, x 1 qq, the issue being to control R L px, x 1 q `RL px 1 , x 2 q ´RL px, x 2 q. From (87),

I nρpn¨q,p2q,T t px, x 1 q `I nρpn¨q,p2q,T t px 1 , x 2 q ´I nρpn¨q,p2q,T t px, x 2 q " ż T t `B2 x P s´t Y nρpn¨q,T 0 s px 1 q ´B2 x P s´t Y nρpn¨q,T 0 s pxq ˘´Y nρpn¨q,s t px 2 q ´Y nρpn¨q,s t px 1 q ¯ds.
All the terms converge in L p and the same relationship holds with nρpn¨q replaced by δ 0 . Making the difference between the relationships with nρpn¨q and δ 0 , we get an explicit expression for R L px, x 1 q`R L px 1 , x 2 q´R L px, x 2 q. All the terms involved are explicitly controlled. By the same method as in the second step, |R L px, x 1 q`R L px [START_REF] Kardar | Dynamical scaling of growing interfaces[END_REF] in order to model the growth of a random surface subjected to three phenomena: a diffusion effect, a lateral growth and a random deposit. It has the formal shape:

(94) B t h t pxq " 1 2 B 2 x h t pxq `1 2 |B x h t pxq| 2 `9 ζpt, xq, with 0 as initial condition, where 9

ζ is a time-space white noise (that is the time-space derivative of a Brownian sheet, defined on pΞ, G, Pq as discussed in Theorem 22). Unfortunately, it is ill-posed since the gradient does not exist as a true function, but as a distribution only.

Two strategies have been developed so far to give a sense to (94). The first one goes back to [START_REF] Bertini | Stochastic Burgers and KPZ equations from particle systems[END_REF] and consists in linearizing the equation by means of the so-called Hopf-Cole exponential transformation. The second approach is due to Hairer [START_REF] Hairer | Solving the KPZ equation[END_REF] in the case when x is restricted to the torus (in which case ζ is defined accordingly). Therein, the key point is to solve secondorder PDEs driven by a distributional first-order term by means of rough paths theory, which is precisely the strategy we used in Section 3 to solve [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF]. The two interpretations coincide but the resulting solution solves a renormalized version of (94), which writes (in a formal sense) as (94) with an additional '´8' in the right-hand side. The normalization must be understood as follows: When mollifying the noise (say 9

ζ into 9 ζ n q, Eq. (94) admits a solution, denoted by h n , but the sequence ph n q ně1 is not expected to converge. To make it converge to the solution of (94), some 'counterterm' must be subtracted to the right-hand side of (94): This counterterm is a constant γ n depending upon n, which tends to 8 with n, thus explaining the additional '´8'.

6.1. Polymer measure on the torus. Below, we make use of the framework defined in [START_REF] Hairer | Solving the KPZ equation[END_REF]. This imposes two restrictions. The first one is that ζ has to be defined on r0, 8q ˆS1 , where S 1 is the 1d torus, which means that 9

ζ is a cylindrical Wiener process on L 2 pS 1 q. The second one is that the Fourier transform ρ of the kernel ρ used to mollify the noise has to be even, compactly supported, smooth and non-decreasing on r0, 8q, in which case ρ is defined from its Fourier transform. In particular, ρ has polynomial decay of any order, but may not be positive. ´spB s q| 2 ds, proving, by Girsanov Theorem, that, P a.s., the dynamics of pB t q 0ďtďT 0 under Q ζ n satisfy the SDE (1) with Y t pxq " h n T 0 ´tpxq (h n T 0 p0q and γ n are unnoticeable in the definition of the polymer measure as they are hidden in the normalization constant of the right-hand side).

The main challenging question is to define the limit of Q ζ n rigorously. The following theorem provides a new result in that direction: Theorem 31. Consider the solution to the (normalized) KPZ equation (94) with 0 as initial solution and let Y t pxq :" h T 0 ´tpxq, for pt, xq P r0, T 0 sˆT. Then, we can find an event Ξ ‹ , with PpΞ ‹ q " 1, such that, for any realization in Ξ ‹ and any T P r0, T 0 s, the pair W T " pY, Z T q, with Z T given by [START_REF] Flandoli | Some SDEs with distributional drift. II. Lyons-Zheng structure, It's formula and semimartingale characterization[END_REF], may be lifted into a geometric rough path W T " pW T , W T q satisfying the conclusions of Lemma 20, with pY n t pxq :" h n T 0 ´tpxqq ně1 , for pt, xq P r0, T 0 s ˆT, as approximation sequence.

Moreover, for any realization ξ P Ξ ‹ , Q ζ n converges towards the law (on Ω) of the solution pX t q 0ďtďT 0 to (1) when driven by the trajectory Y associated with ξ. The limit law is independent of the choice of ρ in the construction of h n and reads as a rigorous interpretation of the (a priori ill-defined) polymer measure Q ζ " expp ş T 0 0 9 ζpT 0 ´t, B t q dtq ¨P on the canonical space Cpr0, T 0 s, Tq.

Proof. It suffices to check the assumption of Lemma 20. To this end, recall from [19, Theorem 1.10] that, P a.s., h expands as Y ' `hb , where Y ' solves the stochastic heat equation for some initial condition Y ' 0 P X εą0 C 1{2´ε pS 1 q and h b is a continuous remainder satisfying h b t P X εą0 C 1´ε pS 1 q for any t ą 0 (the associated Hölder constant being uniform on any closed interval of p0, T 0 s). The point is thus to apply Theorem 22 (which easily extends to S 1 ) with Y T 0 t pxq :" Y ' T 0 ´tpxq ´"P T 0 ´tY ' ‰ pxq, Y pbq pt, xq :" h b T 0 ´tpxq `"P T 0 ´tY ' ‰ pxq.

The fact that ρ may not be positive is not a problem as we can split it into ρ " ρ `´ρ ´and then check that the results of Section 5 still apply with such a decomposition. Clearly, Y T 0 solves the backward stochastic heat equation with zero as terminal condition. Moreover, for any T ă T 0 and any α b ă 1, [19, Theorem 1.10] ensures that, for P a.e. realization in Ξ ‹ , κ α b ,0 ppY pbq t q 0ďtďT q is finite (here we can choose χ b " 0 as we work on S 1 ). Then, with the same notation as above, we know from [START_REF] Hairer | Solving the KPZ equation[END_REF] that, almost surely on Ξ ‹ , }h n T 0 ´¨´Y nρpn¨q,T 0 Ý pbq } r0,T sˆS 1 0,α b converges to 0 as n tends to 8. By Theorems 8 (and its proof) and 22, we deduce that, a.s. on Ξ ‹ , the solution to the SDE (1) on r0, T s, when driven by h n T 0 ´¨, converges to the solution of (1) driven by Y . This completes the proof on any r0, T s Ă r0, T 0 q.

In order to get the convergence on the entire r0, T 0 s, we must revisit [START_REF] Hairer | Solving the KPZ equation[END_REF] in order to control the Hölder norm (in x) of Y pbq t uniformly in t P r0, T 0 s. The technical issue is that, in [START_REF] Hairer | Solving the KPZ equation[END_REF], the KPZ equation is solved by means of a fixed point argument that allows for irregular initial conditions. As the initial condition may be irregular, solutions exhibit a strong blow-up at the boundary, see [START_REF] Hairer | Solving the KPZ equation[END_REF]Proposition 4.3]. In [START_REF] Hairer | Solving the KPZ equation[END_REF], h is split into h t pxq " u t pxq `h‹ t pxq, where h ‹ t pxq " ř τ P T Y τ t pxq, T denoting a finite collection of trees containing the root tree '. For τ P T zt'u, Y τ is continuous and, for any ε ą 0, }Y τ t } 1´ε is finite, uniformly in t P r0, T 0 s. The remainder u is investigated through its derivative v : r0, T 0 s ˆS1 Q pt, xq Þ Ñ v t pxq " B x u t pxq, defined as solution of (see [START_REF] Hairer | Solving the KPZ equation[END_REF]Section 4] for some functionals M, G and F . Our goal here is to expand h t as h t " ru t ´Pt u 0 s `rh ‹ t Pt u 0 s and to investigate the regularity of u t ´Pt u 0 directly by taking benefit of the fact that h 0 " 0. Letting t " 0, we notice that u 0 " ´h‹ 0 so that h t " ru t ´Pt u 0 s `rh ‹ t ´Pt h ‹ 0 s. We also notice that h ‹ t ´Pt h ‹ 0 may be written

Y ' t ´Pt Y ' 0 `řτP T zt'u Y τ t ´Pt Y τ 0 . Here, Y ' ´Pt Y ' 0 is our Y T 0 T 0
´¨and, for any small ε ą 0, ř τ P T zt'u Y τ t ´Pt Y τ 0 has a finite norm in C 1´ε pS 1 q, uniformly in t P r0, T 0 s, so that h ‹ t ´Pt h ‹ 0 has the right decomposition to apply Theorems 8 and 22. It thus suffices to focus on u t ´Pt u 0 or, equivalently, on v t ´Pt v 0 " B x ru t ´Pt u 0 s in (95). The main idea is to see vt :" v t ´Pt v 0 as the solution of vt " M " G `v ¨`P ¨v0 , ¨˘‰ `Bx ż t 0 P t´s F pv s , sqds, towards W n,T t in norm }¨} α , uniformly in t P r0, T q. Using the same notation as in Proposition 6, p}pW n,N,T ´W n,T , W n,N,T ´W n,T q} r0,T qˆI 0,α q N ě1 tends to 0 as N tends to 8. Therefore, we can find a sequence pN n q ně1 such that }pW n,Nn,T ´W n,T , W n,Nn,T ´W n,T q} r0,T qˆI 0,α , and thus }pW n,Nn,T ´W T , W n,Nn,T ´W T q} r0,T qˆI 0,α , tend to 0 as n tends to 8, which fits (1) in Proposition 6.

We now discuss (2) in Proposition 6. We start with the Hölder estimate of Y n,N t . For 0 ď x ď y ď a, with a ě 1, the second mean-value theorem yields Y n,N t pyq ´Y n,N t pxq " ϕ N pxqrY n t py 1 q ´Y n t pxqs, for y 1 P rx, ys. We deduce that |Y n,N t pyq ´Y n,N t pxq| ď κa χ |y ´x| α . The same holds true when ´a ď y ď x ď 0. Changing κ into 2κ, we get the same result for any x, y P r´a, as. By Lemma 19, the bound |Z n,N t pxq ´Zn,N t pyq| ď κa χ |x ´y| α follows. We finally discuss the regularity of the second-order integrals. As discussed in Section 5, it suffices to focus on the cross-integral ş y x rZ 

) 96 
The aim is to differentiate both sides of the equality in order to estimate the derivative of the left-hand side. In order to bound the derivative of the right-hand side, we discuss the Hölder constant of the integrands right above. We have |ϕ 1 N pyqY n t pyq ´ϕ1 N pxqY n t pxq| ď c 2 |Y n t pxq||y ´x|{N 2 `pc 1 κ{Nqa χ |y ´x| α , for x, y P r´a, as, a ě 1. Modifying κ if necessary |Y n t pxq| ď κa 1`χ . Therefore, we can find a constant C ě 0 such that |ϕ 1 N pyqY n t pyq ´ϕ1 N pxqY n t pxq| ď Ca 1`χ |y ´x|{N 2 `Ca χ |y ´x| α {N.

Since ϕ 1 N " 0 outside r´2N, 2Ns, we can always assume that x, y P r´2N, 2Ns (by projecting x and y onto r´2N, 2Nsq and thus that a ď 2N. Then, the left-hand side is less than Ca χ |y ´x| α {N. Using a similar argument for all the other terms of the same type in the right-hand side of (96), we deduce that the left-hand side in (96) is differentiable and that |B x rZ n,N,T t ´ϕN Z n,T t spxq| ď Ca χ {N, when x P r´a, as, a ě 1. By integration by parts, ˇˇˇż Since B x Y n,N t pzq " 0 when |z| ě 2N, we can always assume that x, y P r´2N, 2Ns and a ď 2N. We deduce that the term in the first line is less than Ca 2χ |x ´y| 2α {N α . To end up the analysis, it thus suffices to prove that ˇˇˇż y x `ϕN pzqZ n,T t pzq ´ϕN pxqZ 

uRB x p r´t px ´yq ż y x B

 x t pxq " P T ´tu T pxq ´ż T t P s´t f s pxq ds `ż T t ż x u r pzq dY r pzq dy dr.[START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF] 

  r´u pzq dY s`r´u pzq ˇˇˇd r du dy.

5. 3 . 3 .

 33 Proof of Theorem 22 when Y pbq " 0. Lemma 30. Theorem 22 is true when Y pbq " 0.

T 0 0 9 ζT 0 0 9 ζ 0 B x h n T 0 ´spB s q dB s ´1 2 ż T 0 |B x h n T 0

 9900200 T 0 ´t ´yq ˘dζps, yq ˙, where pB t q 0ďtďT 0 is a Brownian motion under P (pΩ, A, Pq being distinct of pΞ, G, Pq), the symbol " indicating that the right-hand side is normalized in such a way that Q ζ n is a probability. The polymer measure describes the law of a continuous random walk evolving in the periodic random environment ζ n . The factor ş T 0 0 ş R nρpnpB T 0 ´t ´yqq dζps, yq is sometimes written ş n pt, B T 0 ´tq dt or ş n pT 0 ´t, B t q dt. By applying Itô-Wentzell formula to ph n T 0 ´tpB t qq 0ďtďT , we obtain, P b P a.s.,h n T 0 p0q `ż T 0 0 9ζ n pT 0 ´t, B t qdt ´γn " ż T

  N pyq ´Y n,N pzq ‰ B x rZ n,N,T t ´ϕN Z n,T t spzq dz ˇˇˇď C a 2χ |x ´y| 1`α N .

  ,yPI,x‰y, 0ďsătăT |f t pyq ´fs pxq| |t ´s| γ `|y ´x| α and }M }

					r0,T qˆI 0,α	:" sup x,yPI,x‰y 0ďtăT	|M pt, x, yq| |y ´x| α ,
	with the convention that }f }	r0,T qˆI 0,α	" sup 0ďtăT }f } I α , together with
	vf w r0,T qˆI γ,α	:" }f } r0,T qˆI 8	`p1 _ max xPI	|x|q ´α 2 }f } r0,T qˆI γ,α

x

  t pxq| `|B x u t pxq| ď C exp `C|x| ˘,

	and for any ps, t, x, yq P r0, T s 2 ˆR2 , |u t pxq ´us pxq| ď C exp `C|x| ˘|t ´s| |B x u t pxq ´Bx u s pyq| ď C exp `Cr|x| _ |y|s ˘`|t ´s| 1`β 2 , (17)	β 2 `|x ´y| β	˘.

  Proof. In the whole proof, we just denote Θ ϑ,λ T pvq and E ϑ,λ T pt, aq by Θ and Ept, aq. We start with the proof of the first inequality. The point is to apply the second inequality in Lemma 2 with y replaced by x ´?sy and thus a replaced by a `|y|. We get ˇˇˇż

	1	ˇˇˇż	x´?sy	2 ´β1	¯.
	x´?sy				

x `vt`s pzq ´vt`s pxq ˘dY t`s pzq ˇˇˇd s dy ď Ψλ β´α 8 τ β 1 ´2γ 1 ´aβ 1 `pT ´tq x v t`s pzq dY t`s pzq ˇˇˇď Cκλ α´β 8 ΘEpt`s, a`|y|q " s α 2 |y| α `a`|y| ˘χ `D`t `s, a`|y|, ? sy ˘‰, where C " Cpα, βq. Noting that Ept`s, a`|y|q ď expr´pλ`ϑpa`|y|qqs`ϑp1`T q|y|qsEpt, aq and that Dpt `s, a `|y|, ? syq ď Cp1 `|y| 3 qDpt `s, a `|y|, ? sq, we deduce that pa `|y|q ´γ2

  aq ˘´1 |R t px, x 1 q| ď Ce CT ϑ 2 κΘλ β´α 8 |x 1 ´x| 2β 1 .

	from which we deduce that
			λ	β´α 8 a
	Together with (38), we get
	(40)	λ	β´α 8 `pT ´tq	β 1
					1 ,

´β1

`Ept,

  Op¨q standing for the Landau notation (the underlying constant in the Landau notation being uniform in 0 ď t ď t `h ď T 0 ).Remark 15. The first term in the definition of bpt, x, hq reads as a mollification (in x) of the gradient (in x) of pY t pxqq tďsďt`h,xPR by means of the transition density of pB t q tě0 (which is the martingale process driving X). It is (locally in x) of order h 1{2`α{2 . The second term reads as a correction in the mollification of pY s pxqq tďsďt`h,xPR . It keeps track of the rough path structure of pY s pxqq tďsďt`h,xPR

	bpt, x, hq "	ż t`h t `ż t`h ż R t	˘, B x p s´t px ´yq `Ys pyq ´Ys pxq ˘dy ds 1`ε expp2|x|q ż ż y R B x p s´t px ´yq x Z t`h s pzq dY s pzq dy ds,

  Cp1 `|x| _ |y|q 2χ |x ´y| 2α .We also recall from Theorem 5 that v is pα ´ǫq{2-Hölder continuous in time, locally in space (the rate of growth of the Hölder constant being at most exponential and Theorem 12 allowing to choose 1 as exponent in the exponential), so that |v t`h s pyq´1| ď Ch pα´ǫq{2 expp|y|q, for s P rt, t `hs and for a possibly new value of the constant C. Therefore, It then remains to look at the first term in the right-hand side of (50). The point is to expand v t`h t pxq on the same model as u t`h t pxq right above. Basically, the same expansion holds but, because of the derivative in the definition of v t`h Using once again the fact that v t`h is pα ´ǫq{2-Hölder continuous in time (locally in space, the Hölder constant being at most of exponential growth), we obtain

	vt`h s pxq ´1 "	ż t`h s	ż R	B 2 x p r´t px ´yq `Yr pyq ´Yr pxq ˘dy dr
	52)	ˇˇˇż	y x	s pzq ´Zt`h Z t`h s pxq `Oˆe xpp2|x|q `Zt`h `ż t`h s `v t`h r pxq ´1˘ż R " B 2 h α `hpα´ǫq{2 x p r´t px ´yq `Yr pyq ´Yr pxq ˘dy dr s pρ ´tq ´1`α{2 dρ ż t`h ˙. `O`e xpp2|x|qh α	"
	ż t`h t " ż t`h vt`h s pxq t ż R B x p s´t px ´yq ż R B x p s´t px ´yq The last term can be bounded by Opexpp2|x|qh α´ǫ{2 q. Now, by (54), ż y x `Zt`h s pzq ´Zt`h s pxq ˘dY s pzq dy ds u t`h t pxq ´x " ż t`h t `1 `Zt`h s pxq ˘żR B x p s´t px ´yq `Ys pyq ´Ys pxq ˘dy ds `ż t`h t ż R B x p s´t px ´yq ż y x `Zt`h s pzq ´Zt`h (55) s pxq ˘dY s pzq dy dr " ż t`h ˙. ż y x `Zt`h s pzq ´Zt`h `Oˆe xpp2|x|q h α´ǫ{2 t ps ´tq ´1{2`α{2 ds `h1`ǫ s pxq ˘dY s pzq dy ds `ż t`h t `v t`h s pxq t Z t`h s pxq ´1˘ż It thus remains to bound ż t`h ż
							ż t`h	ż
	(54)	u t`h t pxq ´x "	t	vt`h s pxq ż y x	`Zt`h s pzq ´Zt`h s	pxq ˘dY s pzq dy ds	`O`e xpp2|x|qh 1`ǫ	˘.
	Using (52) once more and following the proof of (53), we also have
	u t`h t pxq ´x "	ż t`h t	vt`h s pxq	ż	`O`e xpp2|x|qh 1{2`α	˘.
	t the power of h in the Landau notation. Therefore, for t ď s ď t `h, the above expansion pxq " B x u t`h t pxq, we loose 1{2 in turns into vt`h s pxq ´1 " ż t`h s vt`h r pxq ż R B 2 x p r´t px ´yq `Yr pyq ´Yr pxq ˘dy dr `O`e xpp2|x|qh α ˘.

s pxq ˘dY s pzq ˇˇˇď ˇˇW t`h s px, yq ˇˇď R B x p s´t px ´yq ż y x `Zt`h s pzq ´Zt`h s pxq ˘dY s pzq dy ds, the last term being less than (53) C expp2|x|qh pα´ǫq{2 ż t`h t ps ´tq ´1{2`α dr ď C expp2|x|qh 1{2`3α{2´ǫ ď C expp2|x|qh 1`ǫ , the last inequality holding true since α is strictly larger than 1{3 and ǫ can be chosen arbitrarily small. Therefore, from (50), (51) and (52), we deduce that R B x p s´t px ´yq `Ys pyq ´Ys pxq ˘dy ds `ż t`h t ż R B x p s´t px ´yq R B x p s´t px ´yq `Ys pyq ´Ys pxq ˘dy ds R B x p s´t px ´yq `Ys pyq ´Ys pxq ˘dy ds.

  1 z∆q ˘2ε 0 , which is enough to conclude that Theorem 16 is also valid when replacing A by R or M in §4.4.4. Therefore, we are allowed to split the integral of ψ as ş T 0 ψ t Apt, t `dtq " Rpt, t `dtq. The reader must pay attention to the fact that neither M nor R must satisfy (57) even if A does. The extension of the integral to the case when they are driven by M or R is thus a consequence of the proof of Theorem 16 itself. 4.5.2. Continuity in Time. It is plain to see that the integral is additive in the sense that, for any 0 ď S ď S `S1 ď T ,

	`şT 0 ψ t ż S`S 1 0	ψ t Apt, t `dtq "	ż S 0	ψ t Apt, t `dtq	`ż S`S 1	ş T 0 ψ t Mpt, t	dtq

S

ψ t Apt, t `dtq.

  19, we have to bound |Z We split the analysis into two cases: |x 1 ´x| 2 ď T ´t and |x 1 ´x| 2 ą T ´t, only the case |x 1 ´x| 2 ď T ´t being challenging. To handle it, we go back to (33), letting v " 1 therein and replacing Y s pzq by Y s pzq ´Yt pzq. By (74), we can repeat the computations of Lemma 19, replacing s ´α{2 by s ´ν´µ{2 . We deduce that |Z Cκa χ |x 1 x| 2ν`µ . Since the sum of the Hölder exponents of Z p2q,T t and Y t is larger than 1, the existence of and the bound for I p2q,T are direct consequences of Lemma 24.

	p2q,T t	px 1 q	´Zp2q,T	
			p2q,T t	px 1 q´Z	p2q,T t	pxq| ď

t pxq|.

  , yq| 2 dy ď κ |s ´t| ´1`ǫ and ż R |B t K t ps, yq| 2 dy ď κ |s ´t| ´3`ǫ . K t pr, uq dζpr, uq, the quantity sup 0ďtďT ďT 0 |I T t | is a random variable and, for any p ě 1, we can find a constant c p , only depending upon p and T 0 , such that Ersup 0ďtďT ďT 0 |I T t | p s 1{p ď c p Erκ p{2 s 1{p . Proof of Lemma 28. For any t ď t 1 ď t 1 `δ ď T ď T 0 , I T By square integrability of K in ps, yq, I T t is continuous in T , and we can take the supremum over T P rt 1 `δ, T 0 s. Writing K t 1 ´Kt " ş t 1 t B t K r dr, we get that, for any p ě 1,

	(83)		
	Then, letting I T t be the backward stochastic Itô integral R t ş T ş t ´IT t 1 is equal to ż T t 1 `δ ż R " K t ps, yq ´Kt 1 ps, yq ‰ dζps, yq `ż t 1 `δ t ż R K t ps, yq dζps, yq t 1 ´ż t 1 `δ ż
	E "	sup t 1 `δďT ďT 0 `E"ˆż t 1 `δ ˇˇI T t ´IT t 1 t ż R |K t ps, yq| 2 dy ds ˇˇp ‰ 1{p ď c p |t 1 ´t| 1{2 E "ˆż T 0 t 1 `δ ż t 1 t ˙p{2  1{p `E"ˆż t 1 `δ ż R t 1	˙p{2  1{p ˙p{2  1{p |B t K r ps, yq| 2 dy dr ds ż R |K t 1 ps, yq| 2 dy ds ,
	the first term in the right-hand side being obtained by the Burkhölder-Davies-Gundy in-
	equality and the constant c p only depending upon p. Using the bounds (83), we get E " sup
		t 1 `δďT ďT 0	

R

K t 1 ps, yq dζps, yq.

  1 P R. We have two bounds for ş R |K t ps, yq| 2 dy. The first one is ş R |K t ps, yq| 2 dy ď Cps ´tq ´1{2 and the second one is ş R |K t ps, yq| 2 dy ď Cps ´tq ´3{2 |x 1 ´x| 2 . By interpolation, we have, for any α P p0, 1q, ş R |K t ps, yq| 2 dy ď Cps ´tq ´p1{2`αq |x 1 ´x| 2α . A similar argument applies to ş R |B t K t ps, yq| 2 dy. We can bound it by Cps ´tq ´5{2 and by Cps ´tq ´7{2 |x 1 ´x| 2 , and thus by Cps ´tq ´p5{2`αq |x 1 x| 2α . The bound in the statement of Lemma 28 holds true with κ " C|x 1 ´x| 2α and ǫ " p1{2 ´αq. Therefore, for p ě 1 and α P p0, 1{2q, we can find a constant C p such that |Y T t pxq ´Y T t px 1 q| p ‰ 1{p ď C p |x 1 ´x| α .

	E "	sup
		0ďtďT ďT 0

R

  T 0 Cκ ρ a χ pr ´tq ´1{2`α{2 , so that ż P 2pr´tq ρpy ´y1 `vq dy dy 1 dv. It is bounded by |x 1 ´x| or by pr ´tq ´1{2 |x 1 ´x| 2 . By interpolation, it is less than pr tq Cκ 2 ρ a 2χ |x 1 ´x| 1`2α pr ´tq ´1`p1{2´αq{2 .We now reproduce the same analysis, with B t K 2 t pr, uq instead of K 2 t pr, uq. Since |B t p r´t pxq| ď cpr ´tq ´1p cpr´tq pxq, this amounts to replace pr ´tq ´1`pα`1{2q{2 by pr ´tq ´3`pα`1{2q{2 in the above computation, so that, for t ď t 1 , |B t K 2 t pr, uq| 2 du ď Cκ 2 ρ a 2χ |x 1 ´x| 1`2α pr ´tq ´3`p1{2´αq{2 .

	ż
	By integration by parts, I K 2 t pr, uq " ż x 1 ρ,p2q,T t x P r´t ρpy ´uq px, x 1 q " ż T r "ż T ş T t ş `B2 x P s´t Y ρ,T 0 R rK 1 s r B 3 x P s´t Y ρ,T 0 px 1 q ´B2 x P s´t Y ρ,T 0 s s pyq ds  dy. (88) We start with K 2 . For x, x 1 P r´a, as, ˇˇş T r B 3 x P s´t Y ρ,T 0 R |K 2 t pr, uq| 2 du ď Cκ 2 ρ a 2χ pr ´tq ´1`α ˆżR "ż R ż R ˆż x 1 x ż x 1 x p r´t `y ´v ´u˘p r´t `y1 ´v1 ´u˘d y dy 1 ˙ρpvqρpv 1 q dv dv 1 pxq ˘ds (89) By Gaussian convolution, the integral is equal to ş R ρpvq ş x 1 x ş x 1 ´α|x 1 ´x| 1`2α . Replacing α by pα`1{2q{2 in (89) and only in (89) (which is always possible  du. since α can be chosen as close as 1{2 as needed), we deduce that (90) ż R |K 2 t pr, uq| 2 du ď (91)

s pxq ˘ds ˙Bx P r´t ρpy ´zq dy  dζpr, zq. t ´K2 t spr, uq dζpr, uq with K 1 t pr, uq " P r´t ρpx 1 ´uq s pyq ds ˇˇď Cκ ρ a χ ş T r ps ´tq ´3{2`α{2 ds ď x

  1 , x 2 q´R L px, x 2 q| ď ζa 2χ |x 1 ´x| 1{2`α , for a random variable ζ. By Theorem 26, for any χ 1 ą χ and α 1 P p0, p1{2`αq{2q, we can find a random variable ζ 1 such that |I q| ď ζ 1 n ´η{2 a 2χ 1 |x 1 ´x| α 1 , for all x, x 1 P r´a, as, a ě 1. As I n,T

	nρpn¨q,p2q,T t px, x 1 t px, x 1 q ´I δ 0 ,p2q,T t " I nρpn¨q,p1q,T t `I nρpn¨q,p2q,T t and I T t " I this last bound combined with the conclusion of the second step prove that the assumptions δ 0 ,p1q,T t t , `I δ 0 ,p2q,T
	of Lemma 20 are satisfied.
	6. Connection with the KPZ equation
	KPZ equation was introduced by Kardar, Parisi and Zhang in

  The mollified version ζ n of ζ is given by ζ n pt, xq " ş t `kq| 2 ds dy ă 8. Given T 0 ą 0 and n ě 1, we introduce the (random) polymer measure:

	ş t 0	ş	dζps, yq, with the convention that S 1 | ř kPZ ϕps, y	ş t 0	ş	R ϕps, yq dζps, yq "	ř	kPZ	ş t 0	ş	0 S 1 ϕps, y `kq dζps, yq if ş R nρpnpx ýqq

  for the notations):

						ż t	
	(95)	v t pxq " P t v 0 pxq	`M" Gpv ¨,	¨q‰	t `Bx	0	P

t´s F pv s , sqds,

  Therefore, integrating against p s´t and then integrating by parts,

	n,N t pxq " ´B2 pzq ´Zn,N t x rY n,N t spxq " ´Bx rϕ N B x Y n pxqs dY n,N t pzq. t spxq. Similarly, t spxq. Therefore, x Z n,N,T pxq `p1{2qB 2 t x Z n,T By (13), B t Z n,N,T t B t Z n,T t pxq `p1{2qB 2 t pxq " ´B2 x rY n B t " Z n,N,T t ´ϕN Z n,T t ‰ `1 2 B 2 x " Z n,N,T t ´ϕN Z n,T t ‰ " ´ϕ1 N B x " Y n t `Zn,T t ‰ ´1 2 ϕ 2 N Z n,T t ,
	with Z n,N,T T Z n,N,T ´Zn,T t pxq ´ϕN pxqZ n,T t pxq " t ´ż T ż	ż T t	ż R	B x p s´t px ´yqϕ 1 N pyq	" Y n t	`Zn,T t	‰	pyq dy ds

T " 0. R p s´t px ´yqϕ 2 N pyq ´"Y n t `Zn,T t ‰ pyq `1 2

Z n,T t pyq ¯dy ds.

(

  n,T t pxq ˘dY n,N t pzq ˇˇˇď Ca 2χ |x ´y| 2α . Since B x Y n,N t pzq " ϕ N pzqB x Y n t pzq, we can use again the second mean-value theorem to handle ş y x ϕ N pzqrZ n,T t pzq ´Zn,T q 1 pzq dz ˇˇˇ, which is less than Ca 2χ |y ´x| 1`α {N (following Lemma 19, Z n,T t satisfies |Z n,T t pxq| ď Ca χ -better than the elementary but rough bound |Z n,T t pxq| ď Ca 1`χ -). Limiting the analysis to the case a ď 2N, we conclude as above.

	t suffices to focus on Z n,T pxqs dY n,N t t pxq ş y x rϕ N pzq ´ϕN pxqs dY n,N pzq " ş y x pϕ N pzqq 2 rZ n,T t pzq ´Zn,T t pxqs dY n t pzq. Therefore, it t pzq. By integration by parts, ˇˇˇZ n,T t pxq ż y x rϕ N pzq ´ϕN pxqs dY n,N t pzq ˇˇˇ" ˇˇˇZ n,T t pxq ż y x " Y n,N t pyq ´Y n,N t pzq ‰ pϕ

N 

with v0 " 0. (Note that, in the second term in the right-hand side, the value of v is fixed.) We then make use of the norm } ¨}‹,T defined in [19, p.597], but with different parameters κ, δ, α, β and γ. We choose κ " ε small enough, δ " 2ε, α " 1{2 `2ε, β " 1{4 `ε and γ " α, which satisfy all the prescriptions [19, Eqs. (76a)-(76g)]. Following [START_REF] Hairer | Solving the KPZ equation[END_REF]Eqs.(83a),(83b),(83c),(85)], we get, for C, θ ą 0, }v} ‹,T ď C `CT θ p}v} ‹,T `}P ¨v0 } ‹,T q, where the derivative of P ¨v0 with respect to the rough path structure is 0. Here v 0 " ´Bx h ‹ 0 is a distribution in C ´1{2´ε 1 pS 1 q, for ε 1 ą 0 as small as desired. Following [START_REF] Hairer | Solving the KPZ equation[END_REF]Eq.(82)], }P ¨v0 } ‹,T ă 8. We deduce that, for T small enough, }v} ‹,T ă 8. By [19, Eq.( 73)], we get }v t } 8 ď Ct ´3ε . Working at the level of the primitive, we obtain }u t ´Pt u 0 } 1´3ε ă 8, uniformly in t P r0, T s. The fact that T has to be small is not a problem since we are interested in the behavior of h near the origin. Therefore,

´Y ' 0 qs, fits the assumptions in Theorems 8 and 22. The convergence to 0 of }h n

(on the whole r0, T 0 s ˆS1 ) is handled in the same way.

We end up with:

Theorem 32. For P almost every realization of the environment ζ, under the polymer measure Q ζ defined in Theorem 31, the canonical path has dynamics of the form dX t " dB t `bpt, X t , dtq, t P r0, T 0 s, in the sense of (56), where bpt, X t , dtq is of order Opdt 3{4´ε q, for ε as small as desired, the constant in the Landau notation being random but uniform in t P r0, T 0 s. Moreover, in the expression of b in Proposition 14, the second term can be computed by replacing pY, Z t`h q by pY T 0 , Z T 0 ,t`h q, where Y T 0 is the solution of the stochastic heat equation as in Theorem 22 and Z 0,t`h is computed accordingly as in (84).

Proof. The proof is a consequence of Proposition 14. The reason why the second term in the decomposition of b can be simplified follows from the proof of Theorem 31. Indeed, we know that Y may be split into Y T 0 `Y pbq , with κ α b ,0 pY pbq q ă 8 for α b close to 1. The game is then the same as in (85): for pi, jq " p0, 0q, the cross-integrals I i,j,t`h in (85) give a contribution of order Oph 3{2´ε q in the computation of b, which can be forgotten at the macroscopic level.

Appendix

Lemma 33. Given a sequence of smooth paths pY n q ně1 such that, for some T 0 ą 0 and any T P r0, T 0 s, the sequence pW n,T " pY n , Z n,T qq ně1 satisfies the assumption of Proposition 6, with κ " sup 0ďT ďT 0 sup ně1 κ α,χ ppW n,T t , W n,T t q 0ďtăT q ă 8, then, we can assume that, for any n ě 1, Y n has bounded derivatives on the whole space.

Proof. For N P Nzt0u, we consider a smooth function ϕ N : R Ñ r0, 1s, symmetric, equal to 1 on r0, Ns and to 0 on r2N, `8q, non-increasing on rN, 2Ns, satisfying } d p ϕ N { dx p } 8 ď c p {N p for some c p ě 1, independent of N, for any integer p ě 1. Then, we let Y n,N t pxq " Y n t p0q şx 0 ϕ N pyqB x Y n t pyq dy and, for a given T ą 0, we define Z n,N,T , W n,N,T and W n,N,T accordingly. For a given n, pY n,N q N ě1 (resp. B p x Y n,N for an integer p ě 1) converges towards Y n (resp. B p x Y n ) as N tends to 8, uniformly in x in compact sets and in t P r0, T q. Using the representations of Z n,N,T t and Z n,T t , see [START_REF] Flandoli | Some SDEs with distributional drift. II. Lyons-Zheng structure, It's formula and semimartingale characterization[END_REF], the same holds true for the sequence pZ n,N,T q N ě1 (resp. pW n,N,T q N ě1 ) with Z n,T (resp. W n,T ) as limit path. Hence, pW n,N,T t q N ě1 converges