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ROUGH PATHS AND 1D SDE WITH A TIME DEPENDENT
DISTRIBUTIONAL DRIFT. APPLICATION TO POLYMERS.

FRANCOIS DELARUE! AND ROLAND DIEL?

Laboratoire J.-A. Dieudonné,
Université de Nice Sophia-Antipolis and UMR CNRS 7351,

Parc Valrose, 06108 Nice Cedex 02, France.

ABSTRACT. Motivated by the recent advances in the theory of stochastic partial differen-
tial equations involving nonlinear functions of distributions, like the Kardar-Parisi-Zhang
(KPZ) equation, we reconsider the unique solvability of one-dimensional stochastic differen-
tial equations, the drift of which is a distribution, by means of rough paths theory. Existence
and uniqueness are established in the weak sense when the drift reads as the derivative of a
a-Holder continuous function, a > 1/3. Regularity of the drift part is investigated carefully
and a related stochastic calculus is also proposed, which makes the structure of the solutions
more explicit than within the earlier framework of Dirichlet processes.

1. INTRODUCTION

Given a family of continuous paths (R 3 x — Y;(z))=0 with values in R, we are interested
in the solvability of the stochastic differential equation

with a given initial condition, where 0,Y; is understood as the derivative of Y; in the sense
of distribution and (B;)=0 is a standard one-dimensional Wiener process.

When 0, Y; makes sense as a measurable function in LfOC(Rd), for p > 1, pathwise existence
and uniqueness are known to hold: See the earlier papers by Zvonkin [27] and Veretennikov
[25] in the case when the derivative exists as a bounded function together with the more
recent result by Krylov and Rockner [18] and the Saint-Flour Lecture Notes by Flandoli
[8]. In the case when 0,Y; only exists as a distribution, existence and uniqueness have
been only discussed within the restricted time homogeneous framework. When the field Y is
independent of time, X indeed reads as a diffusion process with exp(—Y (x))d,(exp(Y (x))d,)
as generator. Then, solutions to (1) can be proved to be the sum of a Brownian motion and
of a process of zero quadratic variation and are thus referred to as Dirichlet processes. In
this setting, unique solvability can be proved to hold in the weak or strong sense according
to the regularity of Y, see for example the papers by Flandoli, Russo and Wolf [9, 10] on the
one hand and the paper by Bass and Chen [3] on the other hand.

In the current paper, we allow Y to depend upon time, making impossible any factorization
of the generator of X under a divergence form and thus requiring a more systematic treatment
of the singularity of the drift. In order to limit the technicality of the paper, the analysis is
restricted to the case when the diffusion coefficient in (1) is 1, which is already, as explained
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right below, a really interesting case for practical purposes and which is, anyway, somewhat
universal because of the time change property of the Brownian motion. As suggested in the
aforementioned paper by Bass and Chen, pathwise existence and uniqueness are then no more
expected to hold whenever the path Y; has oscillations of Holder type with a Holder exponent
strictly less than 1/2. For that reason, we will investigate the unique solvability of (1) in
the so-called weak sense by tackling a corresponding formulation of the martingale problem.
Indeed, we will consider the case when Y; is Holder continuous, the Holder exponent, denoted
by «, being strictly greater than 1/3, hence possibly strictly less than 1/2; thus yielding
solutions to (1) of weak type only, that is solutions that are not adapted to the underlying
noise (B;)i=o. At this stage of the introduction, it is worth mentioning that the threshold
1/3 for the Holder exponent of the path is exactly of the same nature as the one that occurs
in the theory of rough paths.

Actually, the theory of rough paths will play a major role in our analysis. The strategy
for solving (1) is indeed mainly inspired by the papers [27, 25, 18] we mentioned right above
and consists in finding harmonic functions associated with the (formal) generator

1
(2) at + Et = (3,5 + 5&5 + amY;(.T)(’}x

Solving Partial Differential Equations (PDEs) driven by ¢, + £;, say in the standard mild
formulation, then requires to integrate with respect to 0,Y;(x) (in x), which is a non-classical
thing. This is precisely the place where the rough paths theory initiated by Lyons (see
20, 19]) comes in: As recently exposed by Hairer in his seminal paper [14] on the KPZ
equation, mild solutions to PDEs driven by J; + £; may be expanded as rough integrals
involving the standard heat kernel on the one hand and the ‘rough’ increments 0,Y; on the
other hand. In our case, we are interested in the solutions of the PDE

(3) Orur(w) + Loug(x) = fo(),

when set on a cylinder of the form [0,7] x R (with a terminal boundary condition at time
T') and when driven by a smooth function f. Solutions obtained by letting the source term
f vary generates a large enough ‘core’ in order to apply the standard martingale problem
approach by Stroock and Varadhan [23] and thus to characterize the laws of the solutions to
(1).

Unfortunately, although such a strategy seems quite clear, some precaution is in fact
needed. When « is between 1/3 and 1/2, which is the typical range of application of Lyons’
theory, the expansion of mild solutions as rough integrals involving the heat kernel and the
increments of 0,Y; is not so straightforward. It is indeed not enough to assume that the
path R 5 z — Y;(z) has a rough path structure for any given time ¢ > 0. As explained in
detail in Section 2, the rough path structures, when taken at different times, also interact,
asking for the existence, at any time ¢ > 0, of a ‘lifted” 2-dimensional rough path with Y;
as first coordinate. We refrain from detailing the shape of such a lifting right here as it is
longly discussed in the next section. We just mention that, in Hairer [14], the whole family
(Yi(2)))i=02er has a Gaussian structure, which permits to construct the lifting by means of
generic results on rough paths for Gaussian processes, see Friz and Victoir [12]. Existence
of the lifting under more general assumptions is a thus a challenging question, which is
(partially) addressed in Section 5: The lifting is proved to exist in several cases, including

that when o > 1/2, when (Y;())i=0 zer has some smoothness in time (and in particular when
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it is time homogeneous) or when it satisfies a forward SPDE driven by a space-time white
noise and by a kernel with the same kind of singularities as the Gaussian kernel. Another
difficulty is that, contrary to Hairer [14] in which the problem is set on the torus, the PDE is
here set on a non-compact domain. This requires an additional analysis of the growth of the
solutions in terms of the behavior of (Y;())i=0.er for large values of |z|, such an analysis
being essential for discussing the non-explosion of the solutions to (1).

Besides existence and uniqueness, it is also of great interest to understand the specific
dynamics of the solutions to (1). Part of the paper is thus dedicated to a careful analysis of
the infinitesimal variation of X, that is of the asymptotic behavior of X;,, — X; as h tends
to 0. In this perspective, we prove that the increments of X may be split into two pieces: a
Brownian increment as suggested by the initial writing of Eq. (1) and a sort of drift term,
the magnitude of which is of order h(!*9/2 for some 3 > 0 that is nearly equal to a. Such a
decomposition is much stronger than the standard decomposition of a Dirichlet process into
the sum of a martingale and of a zero quadratic variation process. Somehow it generalizes
the one obtained by Bass and Chen in the time homogeneous framework when o > 1/2. As
a typical example, (1 + /3)/2 is nearly equal to 3/4 when Y; is almost 1/2-Holder continuous,
which fits for instance the framework investigated by Hairer [14]. In particular, except trivial
cases when the distribution is a true function, integration with respect to the drift term in
(1) cannot be performed as a classical integration with respect to a function of bounded
variation. In fact, since the value of (1 + (§)/2 is strictly larger than 1/2; it makes sense to
understand the integration with respect to the drift term as a kind of Young integral, on the
same model as the one developed by Young in the earlier paper [26]. We here say ‘a kind
of Young integral’ and not ‘a Young integral’ directly since, as we will see in the analysis,
it sounds useful to develop a stochastic version of Young’s integration, that is a Young-like
integration that takes into account the probabilistic notion of adaptedness as it is the case
in [to’s calculus.

In the end, we prove that, under appropriate assumptions on the regularity of the field
(Yi(2))t=02er, Eq. (1) is uniquely solvable in the weak sense (for a given initial condition)
and that the solution reads as

(4) dXt - b(t, Xt7 dt) + dBt,

where b(t, x, h) is a function from [0, +o0) x R x [0, +o0) into R and the integral with respect
to b(t, X, dt) makes sense as a stochastic Young integral, the magnitude of b(¢, X;, dt) being
of order dt(!*+9)/2,

The examples we have in mind are twofold. The first one is the so-called ‘Brownian
motion in a time-dependent random environment’ or ‘Brownian motion in a time-dependent
random potential’. Indeed, much has been said about the long time behavior of the Brownian
motion in a time-independent random potential such as the Brownian motion in a Brownian
potential, see for example [2, 5, 6, 15, 16, 22, 24]. We expect our paper to be a first step
forward toward a more general analysis of one-dimensional diffusions in a time-dependent
random potential, even if, in the current paper, nothing is said about the long run behavior of
the solutions to (1), this question being left to further investigations. As already announced,
the second example we have in mind is the so-called Kardar-Parisi-Zhang (KPZ) equation
(see [17]), to which much attention has been paid recently, see among others the seminal
papers by Bertini and Giacomin [4] and Hairer [14] about the well-posedness on the one

hand and by Amir, Corwin and Quastel [1] about the long time behavior on the other hand.
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In this framework, ¥ must be thought as a realization of the time-reversed solution of the
KPZ equation, that is Y;(z) = u(w,T — t,x), T being positive and u(w, -, ) denoting the
random solution to the KPZ equation and being defined either as in Bertini and Giacomin
by means of the Cole-Hopf transform or as in Hairer by means of renormalization arguments.
Then, it is worth noting that, in this framework, Eq. (1) reads as the equation for describing
the dynamics of the canonical path (w;)o<i<r on the canonical space C([0, 7], R) under the
polymer measure

exp [t at) apiu,

where C is a space-time white noise and P is the Wiener measure, the white noise being
independent of the realizations of the Wiener process under P. In this perspective, our
result provides a quenched description of the infinitesimal dynamics of the polymer. As for
the analysis of one-dimensional processes in a random potential, additional results about the
long time behavior would be of great interest. Again, we hope to handle this question in
future works.

The paper is organized as follows. We remind the reader of the rough paths theory in
Section 2. Main results about the solvability of (1) are also exposed in Section 2. Section
3 is devoted to the analysis of partial differential equations driven by the operator (2). In
Section 4, we propose a stochastic variant of Young’s integral in order to give a rigorous
meaning to (4). We discuss in Section 5 the construction of the ‘rough’ iterated integral that
makes the whole construction work. Finally, in Section 6, we explain the connection with
the KPZ equation.

2. GENERAL STRATEGY AND MAIN RESULTS

Our basic strategy to define a solution to the SDE (1) relies on a suitable adaptation of
Zvonkin’s method for solving SDEs driven by a bounded and measurable drift (see [27]) and
of Stroock and Varadhan’s martingale problem (see [23]). The main point is to transform
the original equation into a martingale. For sure such a strategy requires a suitable version
of It6’s formula and henceforth a right notion of harmonic functions for the generator of the
diffusion process (1). This is precisely the point where the rough paths theory comes in, on
the same model as it does in the paper by Hairer for solving the KPZ equation.

This section is thus devoted to a sketchy presentation of rough paths theory and then to
an appropriate reformulation of Zvonkin’s method.

2.1. Rough paths on a segment. In order to introduce elements of rough path theory,
we will use the approach due to Gubinelli in [13].

Given « € (0, 1] and n € N\{0} and given a segment I = R, we denote by C*(I, R™) the set
of a-Holder continuous functions f from I to R™. We then define the seminorm

|f(y) — f(z)]

IFIL == sup “=—""A and the norm [T} := | ] + (1 v max |z]) =2 | f]L,
z,yelx#y |?/ - $| z€l

with | f]% := sup, |f(2)| and @ v b = max(a,b). Note that the factor (1 v max,ey |z|)~*/2

is somewhat useless and could be replaced by 1 at this stage of the paper. Actually it will
really matter in the sequel, when considering paths over the whole line. Similarly, we denote

by C$(I, R™) the set of functions % from 12 to R" such that Z(x,z) = 0 for every z and with
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finite norm | 2|7, := sup, yer.uy (% (2, y)|/ly — 2|*}. (Functionals defined on the product
space R? will be denoted by calligraphic letters).

For a € (1/3,1], we call a-rough path (on I) a pair (W, #’) where W e C*(I,R") and
W e C3(1, R”Q) such that, for any indices i,j € {1,...,n}, the following relation holds:

(5) #H(w,2) =W (w,y) =W (y,2) = (W(y) — W(@) (W (2) =W (), z<y<z

We then denote by R(I, R™) the set of a-rough paths; with a slight abuse of notation, we will
often only write W for the rough path (W, #'). The quantity #’(x,y) must be understood
as a value for the iterated integral (or cross integral) “{*(W?(z) — Wi(x))dW(z)" of W
with respect to itself (we will also use the tensorial product “{’(W(z) — W(z)) @ dW (z)”
to denote the product between coordinates). Whenever a = 1, such an integral exists in
a standard sense. Whenever o« > 1/2; it exists as well, but in the so-called Young’s sense
(see [26, 19]). Whenever « € (1/3,1/2], which is the typical range of values in rough paths
theory, there is no more a canonical way to define the cross integral and it must be given a
priori in order to define a proper integration theory with respect to dW. In that framework,
condition (5) imposes some consistency in the behavior of % when intervals of integration
are concatenated. Of course, # plays a role in the range (1/3,1/2] only, but in order to
avoid any distinction between the cases a € (1/3,1/2] and a € (1/2,1], we will refer to the
pair (W, #') in both cases, even when « > 1/2; in which case # will be just given by the
iterated integral of W.

Given W € R*(I,R") as above, the point is then to define the integral “{? v(z)dW (z)”
of some function v (from I into itself) with respect to the coordinates of dW for some
[2,9] = I. When v belongs to C°(I,R), for 3 > 1 — a, Young’s theory applies, without
any further reference to the second-order structure # of W. Whenever 5 < 1 — «, Young’s
theory fails, but, in the typical example when v is W — W (x) itself (or one coordinate of
W — W (z)), the integral is well-defined as it is precisely given by #. In order to benefit
from the second-order structure of # for integrating a more general v, the increments of v
must actually be structured in a similar fashion to that of WW. This motivates the following
notion: For 3 € (1/3,1 — a], we say that a path v is B-controlled by W if v € C*(I, R) and
there is a function v € C#(I, R™) such that the remainder term

#(x,y) = v(y) —v(@) = dwo(z)(W(y) = W(z)), zyel,

is in C27(I,R) (pay attention that, in the above formula, dyv(z) reads as a row vector -as it
is often the case for gradients- and (W (y) — W (x)) as a column vector). For € (1 — a, 1],
this notion is pretty useless: We then say that a path v is g-controlled by W if v is simply in
CA(I,R), which is to say that the above holds with dyv(x) = 0 and Z°(z,y) = v(y) — v(z).
For 3 € (1/3,1], we denote by B?(I, W) the set of such pairs (v, dyv). We emphasize that
Owv may not be uniquely defined, but, when there is no possible confusion on the value of
Oowv, we will only write v for (v, dwv).

We are then able to define the integral of a function v that is controlled by W (see [14, 13]):

Theorem 1. Given o, € (1/3,1], let W € R*(I,R") be a rough path and v € B (I, W)

be a path controlled by W. For two reals x < y in I, consider the compensated (vectorial)
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Riemann sum:
S(A):= Y, {v(xi)(W(:cHl) — W () + Awola) ¥ (i, xiﬂ)}

where A = (x = x9 < -+ < xy = y) is a partition of [x,y]| (above dwv(x;) reads as a row
vector and W (x;, x;y1) as a matriz). Then, as the step size w(A) of the partition converges to
zero, S(A) converges to a limit denoted by §” v(z) AW (2), the value of which is independent of
the choice of the approximating partitions. Moreover, there exists a constant C' = C'(n, «, [3)
such that

J ’ v(2) AW (2) — v(z) (W (y) — W(z)) — dwv(x)# (=, y)'

xT

< C (I 52 owollsly — a2+ + (w1 5y — o]*2)

Observe in particular that, with our prescribed range of values for a and [, the exponents
2a+ 3 and av+ 20 are (strictly) greater than 1, thus making the right hand side much smaller
than the length of the interval [z, y]. Tt is worth mentioning that this observation is crucial
for proving the convergence of S(A) as the step size tends to 0.

Stability of the integral with respect to W is a crucial question for practical purposes. In
particular, it is really sound to wonder about the stability of the integral by regularization.
Replacing (v, W) by a sequence of smooth approximations (v™, W"),>1, the question is to
decide whether the (classical) integrals of the (v™),>1’s with respect to the approximated
paths are indeed close to the rough integral of v with respect to W. As well-guessed, the
answer turns out to be false in full generality, as it would provide a canonical construction
of the integral if it were true. Actually, it turns out to be true if the convergence holds in
the rough paths sense, that is [W — W™} + |[# — # ™|, also tends to 0 as n tends to the
infinity (#" standing for the true iterated integral of W), in which case we say that the
rough path W (or (W, #)) is geometric, and [v — v} + [dwv — Ownv"]}; + [ZY — 2" |3
also tends to 0 as n tends to the infinity.

2.2. Time indexed families of rough paths. It is well-guessed that, in order to handle
(1), we have in mind to choose W(x) = Yi(z), € R, and to apply rough paths theory
at any fixed time ¢ > 0 (thus requiring to choose I = R and subsequently to extend the
notion of rough paths to the whole R, which will be done in the next paragraph). Anyhow
a difficult aspect for handling (1) is precisely that (Yi(x))i=0zer is time dependent. If it
were time homogeneous, part of the analysis we provide here would be useless: we refer for
instance to [9, 10, 3]. From the technical point of view, the reason is that, in the homogeneous
framework, the analysis of the generator of the process X reduces to the analysis of a standard
one-dimensional ordinary differential equation. Whenever coefficients depend on time, the
connection with ODEs boils down, thus asking for non-trivial refinements. From the intuitive
point of view, time-inhomogeneity makes things much more challenging as the underlying
differential structure in space varies at any time: In order to integrate with respect to 0,Y;(z)
in the rough paths sense, the second-order structure of the rough paths must be defined first
and it is well-understood that it is then time-dependent as well. This says that the problem
consists of a time-indexed family of rough paths, but, a priori (and unfortunately), it is by

no means clear whether defining the rough paths time by time can be enough for handling
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the problem. Actually, as we explain right below, it may not be enough as the rough paths
structures actually interact one with the others, thus requiring an additional assumption on
(}/t(x))tZOJE]R-

As in the previous subsection, we first limit our exposition of time-dependent rough paths
to the case when x lives in a segment I. For some time horizon 7" > 0, and for «a,vy > 0,
we define the following (semi-)norms for continuous functions f : [0,7) x I — R" and
M [0,T) x 2 - R™

X f Y _fs T 1) % %tax7y
R R 7 A
ey =8P+ Iy =l gz W

together with

7100 = 0T (1 mae fo]) % £

We then define the spaces C7*([0,T) x I, R™) and C3**([0,T") x I, R") accordingly.

For a € (1/3,1/2], we call time dependent a-rough path a pair function (W, #;)o<i<r
where W € C([0,T) x I, R") and # € C([0,T) x I2,R™) such that, for any ¢ € [0,T), the
pair (W, #;) is an a-rough path and

0,7)x1I
(6) (W, )| = sup (Wi + [ #4]5a} < oo
te[0,T)

We denote by R*([0,T) x I, R™) the set of time-dependent a-rough paths endowed with
the seminorm | - H([]%T)XH. For 8 € (1/3,1 — a], we then say that v € C([0,T) x I, R) is (-
controlled by the paths (W;)o<i<r if v € C¥*P([0,T) x I,R) and there exists a function
owv € CP%8([0,T) x I, R") such that, for any ¢ € [0,T), the remainder term

(7) K" (2, y) = vi(y) — ve(w) — Owve(z)(Wiy) — Wi(z))

is in C2%(I, R™). For S € (1—a, 1], we always say that v € C#/%8([0,T) x I, R") is -controlled
by the paths (W;)o<i<r. In that case, dyv = 0 and Z°(t,x,y) = v (y) — v(x). For any
B € (1/3,1], we then denote by B?([0,T) x I, (W;)o<s<r) (or simply by B?([0,T) x I, W))
the set of pairs (v, dwv).

2.3. Rough paths on the whole line. So far, we have only defined rough paths (or time
dependent rough paths) on segments. As Eq. (1) is set on the whole R, we must extend the
definition from segments to R. As well-guessed, the point is to specify the behavior at infinity
of the underlying (rough) paths and of the corresponding functions that are controlled by
these paths.

In the case when the family (Y;(x)):>0.er is differentiable in z, the typical assumption for
solving (1) (and in particular to prevent any blow-up) consists in requiring (0,Y;(2))i=0zer
to be at most of linear growth in z. In our setting, (Y;(2))t=0.4er is singular and it makes no
sense to discuss the growth of its derivative. The point is thus to control the growth of the
local Holder norm of (Y;(x))i=0.er together with (as shown later) the growth of the local
Holder norm of the associated iterated integral.

This motivates the following definition. For o € (1/3,1] and x > 0, we call a-rough path
(on R) with rate x a pair (W, #’) such that, for any r > 1, the restriction of (W, #') to

7



[—r, 7] is in R*([—r,7]), and

[=r.7] r,r]
(8) HQ,X (VI/’ W) := sup HWHa HWH2CV < o,

r>1 X r2X

We denote by R*X(R,R™) the set of all such (W, %#).
This definition extends to time-dependent families of rough paths. Given T > 0, we say
that (W, #;)o<i<r belongs to R*X([0,T) x R,R") if

L S A il
9 an (Wi, #; = + = < 0.
(9) Fanx (Wi, #2)osi<r) Sup sup = o

In a similar way, we must specify the admissible growth of the functions that are controlled
by rough paths on the whole real line. As shown later, a quite comfortable framework is
then to require exponential bounds. Given (W, %) € R*X(R,R") and ¥ > 1, we thus say
that a function v : R — R is in B%Y(R, W) for some 8 € (1/3, 1] if, for any segment I = R,
the restriction of v to I is in B?(I, W) and

(10) 0" (v) i=sup [ (o157 + awo)y ™ + P10 ) | < oo

r=1

(With an abuse of notation we omit to specify the dependence upon dyv in ©Y(v).) Similarly,
given (Wi, #;)o<i<r € R*X([0,T) x R, R™), we say that a function v : [0,7) x R — R is in
BAY([0,T) x R, W) if the restriction of v to [0,T) x [—r,7] is in B([0,T) x [—r,r], W) for
any r > 1 and, for some \ > 0,

0 (v)
- [t,T)x[=rr] 5 - vt || [=77]
- ;%ET))[ET M) <[[ Wgan "+ 3lowelg) s (@ =07 +170) 12" 55 >]

is finite, where E2(t,7) := exp[MT'—t)+dr(1+T—t)]. Note that the set B5?([0,T) xR, W)
doesn’t depend on A, but that ©2*(v) does. The reason why we consider [¢, T) and not [0, ¢]
in the above bound follows from the standard connection between stochastic differential
equations (or more generally Markov processes) and backward partial differential equations,
which is exactly the subject of the next paragraph. Put it differently, exponential growth
propagates in a backward direction in the analysis of (3).

By Theorem 1, we can easily obtain a control of the integral §v; dY; by the norm @g’A(v):

Lemma 2. There exists a constant C = C(n,«, ), such that for any 9, \,r = 1, any
ve B*([0,T) x R,W) and for any (t,z,y) € [0,T) x [~r,r]?,

< Chiay (Wi, %) O3 W) EZA L, 1) x D(t,r,y — )

fy (0n(2) — () dWi(2)

xT

< Chay (Wt, %)@g’)‘(v)Eg’)‘(t,r) X [|y —z|*r*+ D(t,r,y — x)],

Jy v (2) dWi(2)

xT

with D(t,7,7) = o222 4 [P E (]2 (o0 4 (T — 1)5),
8



2.4. Enlargement of the rough path structure. As we discussed right above, it is quite
crucial to understand how the time dependent rough path structures of the drift (Y;(x)):>0zer
interact one with the others as time varies.

Formally the generator associated with (1) reads £ = ¢; + 0,(Y;(2))d, + (1/2)02,. This
suggests that, on [0,7") x R, harmonic functions (that is zeros of the generator) read as

u(x) = JPT (x — 2)ur(z dZ+J Jprt 2)0pu,(2)dY,(z)dr, z€eR,

where p denotes the standard heat kernel. In the case when the boundary condition of the
function v is given by urp(x) = z, a formal expansion for d,u;(x) in the neighborhood of T
gives

CRe: ~1+ffaxpm 2)dY, () dr

[ awea=a [ [ ne - v asfav@ar

In the first-order term of the expansion, the space integral makes sense as the singularity can
be transferred from Y, onto 0,p,_(z— z), provided the integration by parts is licit: Using the
approximation argument discussed above, it is indeed licit when the rough path is geometric.
In order to give a sense to this first-order term, the point is then to check that the resulting
singularity in time is integrable: this question is addressed in Section 3. Unfortunately, the
story is much less simple for the second order term. Indeed, any formal integration by parts
leads to a term involving a ‘cross’ integral between the spatial increments of Y, but taken
at different times... This is exactly the place where rough path structures, considered at
different times, interact.

We refrain from detailing the computations as this stage of the paper and feel more
convenient to reject their presentation to Section 3 below. Basically, the point is to give, at
any time ¢ € [0,T), a sense to the integral §¥ Z]'(z) dY;(z), where

(11) vte [0,T), Ve eR, Z!'(z J f 2pr_i(z — 2)(Yo(2) — Vo)) dzdr.

Assuming that supge; g Sup, ,er[(1 + |2[¥ + )1V, ]5¥] is finite (for some x > 0), the
above integral is well-defined (thanks to standard Gaussian estimates, see Section 3). In
order to make sure that the cross integral of Z! with respect to Y; exists, the point is to
assume that the pair (Y3, ZI') can be lifted up to a rough path of dimension 2, which is to say
that there exists some #7 with values in R* such that ((Y, Z7), #7) is an a-time dependent
rough path, for some o > 1/3. We will see in Section 5 conditions under which such a lifting
#T indeed exists.

2.5. Generator of the diffusion and related Dirichlet problem. We now provide some
solvability results for the Dirichlet problem driven by the operator o; + 0,Y (t, )0, + (1/2)02,
n [0,7] x R, for some T > 0.

Definition 3. Given Y € C([0,T) x R, R), assume that there exists #' T such that (W1 =

(Y, Z1), #'T) belongs to R*X([0,T) x R, R?) with o > 1/3 and x < (/2. Given an exponent

v =1, areal 5 € (1/3,) and a function f € L*((0,T) x R), we say that a continuous
9



function u : [0,T] x R — R, continuously differentiable with respect to x, such that the
restriction of d,u to [0,T) x R is in BV ([0,T) x R,W7T), is a mild solution on [0,T] x R
to the problem P(Y, f,T):

Ly =f —with Lv:=0dv+ Lw,
if, for any (t,x) € [0,T) x R,

12) u(r) = JR Pit(:c —y)ur(y) dy —y LT Lprt(x — ) f(y) dydr

T

We emphasize that a notion of weak solution could be given as well, but we won’t use it.

Remark 4. When (WT #'T) is geometric, the last term in the right-hand side coincides (by
integration by parts, which is made licit by approximation by smooth paths and by exponential
growth of d,u and polynomial growth of the rough path norm of (W' = (Y, Z1), #'T)) with

LT JR pri(w = y)atin(y) AV, (y) dr,

which reads as a more ‘natural formulation’ of a mild solution and which is, by the way, the
formulation used in Sections 3.1 and 3.2 of Hairer [14] in the analysis of the KPZ equation.
The point is that the formulation (12) seems a bit more tractable as it splits into two well
separated parts the rough integration and the regularization effect of the heat kernel. Once
again, both are equivalent in the geometric (and in particular smooth) setting.

Here is a crucial result in our analysis (the proof is postponed to Section 3):

Theorem 5. Suppose that Y wverifies the conditions of the previous definition. Then for any

fe L*((0,T) x R) and any u” € C'(R,R) such that sup,-, e‘ﬁr[[(uT)’ﬂ[ﬂ_r’r] < o, there

exists a unique mild solution to the problem P(Y, f,T) with the terminal condition up = u®.

Moreover, letting p = max |1, T, 9, | f|le, Sup,=, e*ﬁ”[[(uT)’ﬂ[ﬁ_r’r], Fax(WT, #T)], we can find
a constant C' = C(p, «, B, x), such that, for any (t,x) € [0,T] x R,

(13) ()| + [Oue(2)] < Cexp(Cla]).
and for any (s,t,z,y) € [0,T]* x R?,
lus(x) — uy(x)| < Cexp(Cla|)|t —s| 2,
10, () — Q)| < Cexp(Cllz| v [y]) (|t = 5|7 + |z —y[?).

As already explained, it is then quite natural to wonder about the stability of mild solutions
under mollification of (WZ, #7T). In that framework, it is worth specifying the mollification
strategy. A ‘physical’ way for mollifying W7 consists indeed in mollifying Y in z first -
the mollification is then infinitely differentiable in z, the derivatives being continuous in
space and time- and then in replacing Y by its mollified version in (11). Denoting by Y™
the mollified path at the nth step of the mollified sequence, the resulting Z™7 is smooth
in z, the derivatives being also continuous in space and time. This permits to define the
corresponding pair (W™, %/ ™T) directly. In that specific geometric setting, we claim (once
again, the proof is deferred to Section 3):

(14)

10



Proposition 6. In the same framework as in Theorem 5, assume that the rough path
(WT 7T is geometric in the sense that there exists a sequence of smooth paths (Y™)p=1
such that the corresponding sequence (W™T = (Y™, Z™T)),>1 satisfies

(1) |[(WT —wnT T — Dy OT)XH tends to 0 as n tends to oo for any segment I < R,
where %"T(:c y) = §( W"T ) Wnl(z)) @ dW™T(2), fort e [0,T) and z,y € R,
(2) sup,=y Kan (W, # Vocier) is finite (see (9) for the definition of k).

Then, the associated solutions (u"),=1 (in the sense of Definition 3) and their gradients in

space (V" = 0,u"),=1 converge towards u and v = Jyu uniformly on compact subsets of

[0, 7] x R.

2.6. Martingale problem. We can now give a rigorous definition of the martingale problem
associated with (1):

Definition 7. Let Ty > 0 and xy € R. Given Y € C([0,Tp) x R, R), assume that, for any
0 < T < Ty, there exists W1 such that (WT = (Y, ZT), #'T) belongs to R*X([0,T) x R, R?)
with o > 1/3 and x < /2, the supremum supycr<r, Kax (WL, W, )o<i<r) being finite.

A probability measure P on C([0, Ty, R) (endowed with the canonical filtration (Fi)o<i<t,)
s said to solve the martingale problem related to L starting from x if the canonical process
(Xt)o<t<t, Satisfies the following two conditions:

(1) P(XO = SU(]) = 1,

(2) foranyT € [0,Ty] and any locally Hélder continuous and bounded function f : (0,T")x
R — R, the process (uy(X;) — So [r(X,) dr)o<i<r 1S a square integrable martingale
under P, where u is a mild solution of P(Y, f,T) (with a given value for ur).

A similar definition holds by letting the canonical process start from xy at some time ty = 0,

in which case we say that the initial condition is (to,xo) and (1) is replaced by P(Vs €
[O,to], XS = l‘o) =1.

Pay attention that we require more in Definition 7 than in Definition 3 as we let the
terminal time 7" vary within the interval [0, Tp]. In particular, for considering a solution to
the martingale problem, it is not enough to assume that, at terminal time Ty, (W7o, #/T0)
belongs to RX([0, Ty) x R, R?). The rough path structure must also exist at any 0 < T' < Ty,
the regularity of the path W7 and of its iterated integral W’ being uniformly controlled in
Te [0, TQ]

Our goal is then to prove existence and uniqueness of a solution:

Theorem 8. In addition to the assumption of Definition 7, assume that, at any time 0 <
T < Ty, WT, #7T) is geometric (in the sense of Proposition 6), the paths (Y™),>1 used
for defining the approzimating paths (W™T #™1),o1 being the same for all the T’s and
the supremum supg<p<r, SUP,>1 Fan (W W ) o<ier) being finite. Then, given an initial
condition xq, the martingale problem has a unique solution.

Remark 9. The martingale problem is here set on the finite interval [0,Ty]. Obviously,
existence and uniqueness extend to [0,00). Notice also that 3 doesn’t play any role in the
existence and uniqueness of a solution. It will play a role when discussing the dynamics of
the solution in Section 4.

11



2.7. Proof of the solvability of the martingale problem. First step. We consider a
sequence of paths (Y™),>1 as in the statement of Proposition 6. Replacing (Y;"*(x))o<t<r,zer
by (©"(Y,"(2)))o<t<rzer (and modifying accordingly the definition of (W™T w™T),_,, for
0 < T < 1Ty), for some suitable compactly supported smooth mapping ¢™ that converges
toward the identity on compact subsets of R as n tends to oo, we can assume (without any
loss of generality) that Y has bounded derivatives on the whole space.

We then notice that, for a given z € R, the SDE (set on some filtered probability space
endowed with a Brownian motion (By)o<i<r,)

(15) AX] = dB, + &,V (X dt, te€[0,Ty] ; Xo= o,

admits a unique solution.

Second step. Choosing 3 € (1/3,a) with 3 > 2y and letting u”(z) = exp(Jz) for a given
T € [0,Tp], we denote by (u}(x))o<t<rwer the mild solution to (12) with f = 0 and Y
replaced by Y. It is well-known that u" is a classical solution of

(16) Opuy (x) + 305,uf () + 0., () dpuf () = 0,

(Eq. (12), with u replaced by u", can be differentiated twice in x by transferring one
derivative from the heat kernel onto the integral driven by dY™; then, the second order
derivative can be proved to be continuous in space and time), so that, by It6’s formula, the
process (uy(X}"))o<t<r is a true martingale (since we know, from Theorem 5, that u" is at
most of exponential growth). Then, (13) yields

Elexp(9X7) | = Eluf (Xf) | = () < C exp(Clao]),

where C' = C'(a, B, x, p) as in Theorem 5. A crucial thing is that p is uniformly bounded in
T € [0, Tp] so that it can be assumed to be independent of T'. Replacing u” (z) by v’ (—=z),
we get the same result with ¢ replaced by —1 in the above inequality, so that

E[exp(9]X7])] < Cexp(C|ol).

Therefore, the exponential moments of X7} are bounded, uniformly in n > 1. As C is
independent of T" € [0, Tp], we deduce that the marginal exponential moments of (X]")o<i<r,
are bounded, uniformly in n > 1.

Third step. Now we change the domain of definition and the terminal condition of the
PDE. We consider the PDE on [0, ¢+ h] x R with u/*"(x) = 2 as boundary condition, where
0<t<t+h<Ty Tosimplify, we still denote by (u?(z))o<s<t+nzer the mild solution to
(12) with f = 0, Y replaced by Y™ and u?,, = u'*" as terminal condition. By Itd’s formula,

X, — X' = u?+h(X?+h) —u (X{) +uf (X}) — u?+h(th)

— | e aB. ) - (7).
t
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Therefore, by (13) and (14), we deduce that, for any ¢ > 1, there exists a constant C,,
independent of n, such that

Q=

Q|
Q=

t+h i
llxt, - 1) < ([ ancenpas) |+ Bl — ol
t

< Cyfhr sup E[|0ul(XD)|']* + E[|uf (X7) — uf\ (7))}
0<s<Tp

<Cq{h%ﬁ sup E[exp(q|X§|)]%+h# sup E[exp(q|X§|)|]%}.
0<s<Tp 0<s<Tp

By the second step (uniform boundedness of the exponential moments) and by Kolmogorov’s
criterion, we deduce that the processes (X[")o<i<7, are tight.

Fourth step. It remains to prove that any weak limit (X;)o<i<r, is a solution to the
martingale problem. For a given T € [0, 7], we know from Proposition 6 that we can find
a sequence (u"),>1 of classical solutions to the problems P(Y™, f,T') such that the sequence
(u™, 0zu™)p=1 converges towards (u, d,u), uniformly on compact subsets of [0,7] x R. Note
that the solutions are ‘classical’ as f is locally Holder continuous (the argument is the same
as for (16): Eq. (12), with u replaced by u", can be differentiated twice in x). Applying
[t6’s formula to each (u}(X['))o<t<r, n = 1, we deduce that

t t
WH(XP) — ul (X — L F(XT)ds = L o (X")dB,, 0<t<T.

By (13), we know that the functions (0,u"),>1 are at most of exponential growth, uniformly
in n > 1. Moreover, we recall that the processes ((X]")o<t<r)n>1 have finite marginal ex-
ponential moments, uniformly in n > 1 as well. Therefore, the martingales ((uj(X}") —
ug(Xy) — Sé fs(X™) ds)o<t<T)n>1 are bounded in L? uniformly in n > 1. Letting n tend to
the infinity, we complete the proof.

2.8. Well-posedness of the martingale problem. Here is the uniqueness part in Theo-
rem 8:

Theorem 10. Given Ty > 0, assume that the assumption of Theorem § is in force. For
an initial condition (to, x¢) € [0,To] x R, there exists a unique solution to the martingale
problem (on [0,Ty]) with (to, o) as initial condition. It is denoted by Py, ,,. The mapping
[0,T0] x R 3 (t,2) — P, .(A) is measurable for any Borel subset A of the canonical space
C([0,Tp],R). Moreover, it is strong Markov.

Proof. Existence has been already proven in Theorem 8.

First Step. We first establish uniqueness of the marginal laws. Assume indeed that Py
and Py are two solutions of the martingale problem with the same initial condition (g, zo).
Then, for any bounded and locally Holder continuous function f : [0,7) x R — R, it holds

To TO
(18) Vi =ty, E4 [s(Xs)ds = Ey fs(Xs)ds,

to to
where E; and E, denote the expectations under P; and Py ((X;)o<i<7, denotes the canonical
process). Indeed, denoting by w the solution of the PDE P(Y, f,Ty) with 0 as terminal

condition at time T, we know from the definition of the martingale problem that, both
13



under P; and Py, the process (us(X5) St fr(X;) dr),<s<r, is a martingale. Therefore,
taking the expectation under E; and E, and notlcmg that ur, (X7,) = 0 almost surely under
P; and Py, we deduce that both sides in (18) are equal to —uy, (), which is enough to
complete the proof of (18) and thus to prove that the marginal laws of the canonical process
are the same under P; and P,.

By Theorems 4.2 and 4.6 in [7], we deduce that the martingale problem has a unique so-
lution (note that the results in [7] hold for time homogeneous martingale problems whereas
the martingale problem we are here investigating is time inhomogeneous; adding an addi-
tional variable in the state space, the problem we are considering can be easily turned into a
time-homogeneous one). Measurability and strong Markov property are proved as in [7]. O

3. SOLVING THE PDE

This section is devoted to the proof of Theorem 5. As the definition of a mild solution in
Definition 3 consists in a convolution of a rough integral with the heat kernel, the first step
is to investigate the smoothing effect of a Gaussian kernel onto a rough integral. Existence
and uniqueness of a mild solution to (12) is then proved by means of a contraction argument.

Parts of the results presented here are variations of the ones obtained in Sections 3.1 and
3.2 of Hairer [14] for solving the KPZ equation, but differ slightly in the very construction
of a mild solution, see Remark 4.

3.1. Mild solutions as Picard’s fixed points. In this subsection, we fix o, 3, x, 9, A such
that 1/3 < f <a <1, x < 8/2and 9, = 1. Given Y € C([0,T) x R, R) for some final
time T" < 1, we assume that there exists #7 such that (W = (V;, ZD), #,7)o<i<r is in
RX([0,T) x R,R?), (Z] )o<t<r being given by (11). We will simply denote by x to the semi
norm K, (W, #,")iefor)) and we will omit the superscript 7' in Z7, W7 and #7. We also
recall the definition of ©2*(v) for v e BS?([0,T) x R, W):

09 (v)

= sup [ s (BT 4 a7+ (@ = )i )

te[O T)

with BV (¢, 1) = exp[MT —t) + 9r(1 +T —t)]. We start with the following technical lemma,
which plays a crucial role in the proof of Theorem 5:

Lemma 11. For any v, < 72 < /2 and k € N*| there is a constant C = C(«, 5,71, 72, X, k)
(independent of ¥ and \) such that for any t,7 € [0,T), with 7 <T —t, and any r > 1, the
following bounds hold for any v e B>?([0,T) x R,W) and any x € [—r,7]:

|aa:p1
$1+w1

|(/ pl
gl+2m

with U = CeCT? k@I v) BN (L, r).

T—+/sy
J Vs (2) dYips(2)| dsdy < \Il)\ 7 2 Y2

J v (Ut+s(z) - Ut+s($)) dYi,(2)

14



Proof. Tn the whole proof, we just denote ©2(v) and EV (¢, r) by © and E(t,r). We start
with the proof of the first inequality. The point is to apply the second inequality in Lemma
2 with y replaced by x — /sy and thus r replaced by r + |y|. We get

T—1/5Y
f Vers(2) AYiy5(2)] < OROE(t + 5,7+ [y))[s2 y[* (r + [y[)* + 2(t + 5,7 + [yl, V's)],

xT

where C' = C(«, 3). Noting that E(t+s,7+|y|) < exp[—(A+9(r+y|))s+0(1+T)|y|)]|E(t,r)
and that Z(t + s,r + |y|,+/sy) < C(L + |[y|>)2(t + s, + |yl,/s), we deduce that

T

i

0

z'—/sy
f Vprs(2) dYiys(2)] ds

:B/

(19)

T ef()\+19(r+\y|))s

< CROB(t, r)e” D1 4 |y[?) f

!
) ey T P 9 (t, s, T+ |y|) ds,

where
(20)  D'(t,s,p) = 5% pX + 541 p2X 4 T pctE g FHA X <pﬁ + (T —t— 3)_§> :

We thus have to bound integrals of the form pP=72 {7 e~ H90)sga= 1=l ds with a = a/2 (= 72),
0 <b<aand p=>1. Bounding s>~ by 77277 and noticing that

pb_’YQ - pb—’Y2
(21)  (A+dp)e (A p)e

<P Upony + AT LagpanLpan) + A Lpan Lz < AC27

we get the following upper bound for the integral (performing a change of variable to pass
from the first to the second line and recalling that v, < /2 to derive the last inequality):

T

-
pb*"/Q J e*()\Jrﬂp)sSaf’ylfl ds < 71 pb*"/Q J ef()\Jrﬁp)sSaf’yzfl ds

0 0
(22) 72=M pb*’Yz

< —"nr
(A -+ dp)ee
Because of the term in (7' — ¢ — s) in the definition of 2’, we also have to control
T 67()\+19p)s G 6*(>\+79P)3
(23) 0 YT —t — )2 0 s ATR(T —t —5)2
S | A+ 9p)) BT
= T rey =
A+9p)2 ™ (T — )5 (N +9p)% Jo s1=5F+n[1 — r5/(T — 1)]%

In order to bound the integral in the second line, we make use of the inequality z%e™"* <
a”e”*/s*, which holds for s € (0,1] and a,z > 0. Using also the bounds 7 < T — ¢ and
A+ Up = 1 together with (21), we get (for a possibly new value of the constant C'):

T 6—()\+19p)s
pX*’YQ J 3 ds
0 sITETAN(T —t —5)2

1
< O )\vae)—% J T T ds -
0 s'72(1—5)2
15
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f e—ssaf’yzfl ds < 772 m )\(bV 5)*“1"(61 — 72).
0

ds.

(24)

_ B=a
S OX A ED



A careful inspection of (20) shows that we can apply (22) and (24) with a > «/2 and
b—a < x —«a/2 in order to bound (19) (a is the part different from —1 in the exponent of s
and b is the exponent of p). We obtain

RN

0
< CROB(t )T (1 4 [y 7\ "5,

As r=2 < (1 + |y[)™(r + |y|) 772, we get the first bound of the lemma by integrating (25)
against |0%p; (y)|.

We now turn to the proof of the second inequality in the statement. We make use of the
first inequality in Lemma 2. Replacing vy, s(2) by vy s(2) — v s(x) in (19), we get the same
inequality but with a simpler form of D'(¢, s, r + |y|), namely the first term in the right-hand
side in (20) doesn’t appear. This says that we can now apply (22) witha > an (a/2+5) =
and b — a < y — /2. The value of a being larger than g, this permits to apply (21) with
72 replaced by 2v,. Then, we can replace v; and ~, by 2v; and 27, in (22). With the
prescribed values of a and b, the resulting bound in (22) is C722~21\vA)=e  Choosing

= /2 and following (25) we see that the contribution of (22) in the second inequality
of the statement is WAB=)/278-2mp8 < YAB=)/418-208  which fits the first part of the
inequality. To recover the second part of the inequality, we must discuss the contribution of
(23). Going back to (20), we are to analyze (pay attention that, in comparison with (23), v,
is set to 0):

T—1/5Y
J Ve s(2) AViys(2)| ds

T

(25)

s T 67()\+79p)s
-0 | - ds
0 s'T2TATIN(T —t —5)2
T —(A+p)s 1 —7(A+9p)s
(26) < 7-5—271pr ~ e . ds < 7_5—2717_04/2pr € - - ds
0 s'T2(1—s/(T—1))> 0 51_5(1—5)5
a/o— X 1 4 a/2+X *T()\‘i”ﬂp)s
N A T
O+ 09 o 1)
the last inequality following from (21). Noticing that y < [3/2, this gives the second part of
the second inequality of the statement. O

Here is now the key result to prove Theorem 5.

Theorem 12. Keep the notations and assumptions introduced at the beginning of Subsection
3.1. For (v,owv) € B*?([0,T) x R,W), define the function M(v,dyv) : [0,T) x R — R
together with its W -derivative by letting, for any t € [0,T) and x € R,

[M(v, dwo)], f f O2ps—i(x —y f o(2) dYs(z) dy ds.

5W[M(v,é’wv)]t(x) = (0,v(z))  (i-e. Ay M(v,dwv)i(z) =0, dzM(v, dwv)i(z) = vy()).
(With an abuse of notation, we will just write (Muv)i(z) for [M(v,dwv)]i(z).) Then M
defines a bounded operator from B>?([0,T) x R, W) into itself. Moreover, there exists a
positive constant C = C(«, B,x) such that for every v e B#Y([0,T) x R, W),
QUM M) < (3 + Crexp(CTY)N™) O (v), with € .= (o — ) /4.
16



Proof. As in the proof of Lemma 11, we just denote ©2*(v) and EZ (¢, 7) by © and E(t,r).
By an obvious change of variable, we get for any r > 1, x € [—r,r] and t € [0,T),

(Mo)la) = | Emlo) | | Y ee(2) AVian(2) dsdy.

0 T

Then the first inequality of Lemma 11 with 74 = v =0, 7 =T —t and k = 2 leads to
(27) (E(t,7) " [(Mu)(x)] < CreT” 1> 0,

where C' = C(a, 3, X).
We now study the time variations of Mv. For 0 <t < s <T and x € R, we deduce from
the identity 102p = O;p:

(M) (2) — (Mo [ st [ v v ayaudy

S Y
Eppta =) [ w2 ¥, () dy dp'
t R T
—ineT
= 5 1 2.

By the changes of variable (p, u) — (s + p —u,s — u) and then y — x — ,/ps, we get:

T—s+u 1 T—/PY
7= || atp f f Urspa(2) Vs pu(2) dpdudy'

f’afpl f gf 1

Applying Lemma 11 with 7 =T — ¢, 71 = 79 = /2 and k = 4, we obtain

N
J Vst pu(2) AYss p—u(2)| dp du dy.

s—t
5T < CeCT” LOE(t, r))\% J wrdu < C’eczﬂﬁ,‘{@E(t,7“))\6g (s—1t)2,
0

8
2

where C' = C(a, 3, x). In order to handle 75, we can directly use Lemma 11 with 7 = s — ¢,
v =0, 72 = /2 and k = 2. We then obtain the same bound as for 77, so that

B
2

(28) r 2 (Bt 7)) [(Mu)y(z) — (Mo)(2)] < CeT" k0N (s — 1)3.

We now investigate the space variations. Fix —r <z < 2/ <r. If |2/ — 2> < T — ¢, the
space increment between x and 2’ reads:

(M)~ (M)
(20) (pes(a’ —y) — Ppasle — ) fyvs<z>dn<z>dyds
<T )+Z”( )+I2 ,
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with (using the fact that the mapping R 3 z — 0%p,(2) is centered)

|2’ —=|?

" (§)

xps f 'Ut+s(z) d}/t+s(z) dy dS )

Y
JI QJ J ps(u — J Uprs(2) dYyys(2) dudy ds|.
x’'—x R JIx =

By Lemma 11 with 7 = |2/ — x]?, 71 = 0, 72 = 3/2 and k = 2, we get
(30) P2 (Bt ) (T () + I () < CeCTRONT |2 — 2.

IJBJB .

The term Z; ’x/ can be bounded in the following way:

z—:v:v J‘ ‘(/xpl }J‘ J
x’ J:|2

o [ [
R |’ :1:\2

Using now Lemma 11 with 7 =T — ¢, 73 = 7, = /2 and k = 3 we obtain:
P2 (E(t, r))flff’xl < CeCTﬁ2m@)\6_Ta|x' —z°.

We end up with the following bound for the space increment:

(32) P2 (Bt ) [(Mo)(@) — (Mo)(2)] < Ce“T koA |2 — 2|/

Recall that (32) holds true when |2/ — z|> < T —t. When |2/ — x|*> > T — t, the argument is

straightforward as the space increment is smaller Z9* () and Z""(2'), so that (32) holds as
well.

We study ZM¥)¢ in a similar way. Recalling the definition (7) for ZM¥)¢| we then make
use of the very definition of Z7, see (11):

RN (2,2) = (Mo)i(a') = (M)i(x) = v() (2] (2') - 2] (@)

f [ @pstar =0 - 2 t<x—y>)f<vs<z>—vt<x>>dm<z>dyds.

The strategy consists of the same decomposition as the one used to prove (32) except that
we now apply the second inequality in Lemma 11 and not the first one. This leads to

new definitions of Z5* and Z3', the term vy,4(z) being subtracted to vy,4(2). If, instead
of viys(x), viys(§) was subtracted to vyy4(2) in the definition of Z7"* () and vy 4(u) was
subtracted to vy, ¢(2) in the definition of Z;"* | Lemma 11 would give

(33) (T - t)g ~r P) (B, r))71|92(Mv)t(:E, )| < CeCT? o\ |z’ — z|?.

l\.')\w

u—/sy
f Vp15(2) dYiis(2)| ds dudy

u—/sy
f Ures(2) AYips(2)| ds dudy.

Therefore, we must discuss the fact that the centering term in both Z5 (z/) and Z3 is
Vi (). For handling Z7* (2), we must investigate

|2’ —z|2 A(T—t)
f f 2pu(el —y f (vrssla') = vera(@)) Vi (2) dy ds|.
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Letting 0,(2) = vs(2’) — vs(x), we see that ©2(3) < rP/2|a’ — /?©. Then, we are led back to
the original definition of Z7 ’36/(30’ ) but with v, replaced by the constant function o5. Following
(30), we then get that the above term is less than C exp(CTY?)kOAP~=)/2p8 5" — 7|28,

The strategy for handling the correction in Zj s completely similar and leads to the
same bound. We deduce that (33) holds true.

Finally, as the W-derivative of (Mwv), is defined as é’W(./\/lv)t = (0,v;), we have

1 -1 1
(34) L(B() oMo < Te.
From (27), (28), (32), (33) and (34), we complete the proof. O

3.2. Proof of Theorem 5. First step. As in the previous subsection, we omit the super-
script T in Z%, WT and #7. We then start with a technical remark. For any 7' < 1 and
any v e B4Y([0,T) x R, W), Muv is always in B*?([0,T) x R, W) by Theorem 12. Actually,
this result remains true when 7" > 1. It is indeed well-checked that the bound 7" < 1 in
the statement of Theorem 12 is only useful to get a resulting constant C' that depends on
a minimal number of parameters and that a similar result holds when 7" < Ty, for some
Ty = 1, provided the constant C' is allowed to depend upon Tj.

Now, for a function f € L*((0,T) x R), a continuously differentiable function u” from R

into itself such that sup,-, e*ﬂr[[(uT)’]][B_r’r] < o0 and a function v € BA?([0,T) x R, W), we
let for (t,x) € [0,7) xR

(Mo) (2) == | upr—ilz —y)u"(y) dy — Oubst(z — y) fuly) dy ds + (M) (x)
G [

JPT () (W) (z —y) dy — J f eDs—t( y) fs(y) dy ds + (./\/lv)t(x)

The point is to check that Mo can be lifted up into an element of B#Y([0,T) x R, W).
By Theorem 12, the last part of the right-hand side is in B#?([0,T) x R, W). Its derivative
with respect to W is dw[Muv], as defined in the statement of Theorem 12. Moreover, by
standard regularization properties of the heat kernel, the second term in the right-hand side
is in C27([0, T] x R, R) for any ~ € (0, 1), with a finite Holder norm on the whole [0, 7] x R
(and not on compact subsets only). In particular, it can be lifted up into an element of
B*?([0,T) x R, W) with a zero derivative with respect to W. Finally, the first term is at
most of exponential growth in = (with exponent ). By standard regularization properties
of the heat kernel, it is smooth on [0,7T) x R. And investigating carefully the regularization
effect of the heat kernel, it can be shown that

é —9r 77’77']
sup sup { (7= 03| [ o=y} <
0<t<T r=1 R 28
thus proving that supg<, 7 sup,-{(T" — t)ﬁ/Qe_ﬁr|\,@SR”T*t('_y)(“T)/(y)dyHg;r’r]} < 0, so that

Mo e B*([0,T) x R, W), with [ow(Muv)]s(z) = [ow(Mv)]e(z) = (0,(Mv)y(z)) for ¢ €
[0,7).

Second step. Now we construct a solution on [0, 7] by a contraction argument when 7" < 1
(the same argument applies when 7" > 1 thanks to the remark made at the beginning of the

first step). We choose )\ large enough such that Crexp(CTY*)A~¢ < 1/4 (with the same
19



constant C' as in the statement of Theorem 12) and we remark that (B%7([0, T') xR, W) !

is a Banach space. We then notice that, for any u,v € B%?([0,T) x R, W), Mu — Mo =
M(u — v) (the equality holding true for the lifted versions), so that, by Theorem 12 and

Picard’s theorem, the mapping M admits a unique fixed point v in B*?([0,T) x R, W).
Letting

(o) = | prale = y)urty) dy - fjp fu(y) dyds

jj e f () dY,(2) dyds,

we obtain a mild solution, as defined in (12). It must be unique as the z-derivative of any

(36)

other mild solution (when lifted up) is a fixed point of M. Differentiation under the integral
symbol in the mild formulation (12) can be justified by Lemma 11, making use of a standard
uniform integrability argument.

Third step. We finally prove (13) and (14). We start with estimating v. With our choice
of A and by Theorem 12, we have

—~ 3
02 (1) < 02 (M0) + 203 (0),
where 0 stands for the null function, so that
(37) 02 (1) < 407 (MO).

As MO has a zero derivative with respect to W, it is well checked that @gﬂ’/\(./\//YO) <

C(sup,=, e*”r[[(uT)’ﬂ[ﬂ_r’r] + | flls) for a universal constant C' (which would depend on Tj
if T was assumed to be less than Tj for some Ty > 1). This gives the exponential bound for
v and for the (8/2, f)-Holder constant of v in time and space.

In order to get the same estimate for u, we go back to the original formulation (12):

@) = [ prte = ppuryay = [ [ e - wrwavas

+ LT JR OaDs—t(z — y) Ly Oxus(2) dYy(2) dy ds.

Again, the two first terms can be estimated by standard properties of the heat kernel: the
first term is at most of exponential growth and it is differentiable in time, the time derivative
being also at most of exponential growth; the second term is bounded and it is y-Holder
continuous on the whole space for any v € (0,1). Finally the third term can be handled by
repeating the analysis of Muv in the proof of Theorem 12: Following (27) and (28), it is at
most of exponential growth and it is locally (14 3)/2-Ho6lder continuous in time, the Holder
constant growing at most exponentially fast in the space variable (in comparison with (28),
the additional 1/2 comes from the fact there is one derivative less in the heat kernel).

(38)

3.3. Proof of Proposition 6. As above, we omit the superscript 7" in Z™*, W™T and #™7.
Stability of solutions under mollification of the input follows from a classical compactness

argument. Given a sequence (W™ #™),>; as in the statement, we can solve (12) for any
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n = 1: The solution is denoted by u" and its gradient by v" = J,u". By (2) in Proposition
6 and by the previous subsection, it is well-checked that

(39) sup O ") < o0,
Therefore, by Theorem 12,
(40) sup QUM M™™) < w0,

where M"™ is obtained by replacing Y by Y™ in the definition of M. It is worth mention-
ing that, contrary to the convention we have used so far, we must use [Jyn(M"0"™)], =
(0, (M™"™);) as choice of the derivative and not [dy»(M™0™)], = 0 (which was the conven-
tion for smooth functions).

As a consequence of (39) and (40), we deduce that the sequences (v"),>; and (M"™v")
are uniformly continuous on compact subsets of [0, 7] x R. In the same way, the sequence
(u"),>1 is also uniformly continuous on compact subsets. Moreover, u”, v" and M"v"™ are at
most of exponential growth, uniformly in n > 1. By Arzela-Ascoli Theorem, we can extract
subsequences (still indexed by n) that converge uniformly on compact subsets of [0, 7] x R.
Limits of (u"),>1, (v")n=1 and (M"v™),>1 are respectively denoted by 4, v and 7. In order
to complete the proof, we must prove that (@, v) is a mild solution of (12).

By (39), the sequence (#"'),~; is uniformly bounded on compact subsets of [0,T) x R.
Writing (7) for each of the v™ and letting n tend to o, this says that the pair (v, (0,m))
belongs to B?([0,T), R), the remainder at any time ¢ € [0, T) being denoted by Z*. At this
stage of the proof, we know that, for any t € [0,7) and any r > 1, [0, — vfﬂgr’r] + [ —

5ant"]][5_r’r] tends to 0 as n tends to the infinity. We wish we also had lim,,[%2!— 2" ]]ggm] =0
in order to pass to the limit in the rough integrals involved in the mild formulation, as the
convergence of the remainders is required to do so (see Subsection 2.1). Actually, we cannot
prove it. Anyhow, by (7), the convergence holds in L*([—r,r]) so that, by (39), it holds as
well in Holder norm, but with 8 replaced by any ' < 3, that is lim,, [#' — 2 ]]gg,“” = 0.
Replacing 5 by /', we can pass to the limit in the rough integrals appearing in the mild
formulation (12) of the PDE satisfied by each of the (v"),>1’s. To pass to the limit in
the whole formulation, we can invoke some uniform integrability argument as we did to
differentiate the mild formulation after Eq. (36). Thus the pair (0, (0,7)) satisfies 0 = M
in BY7([0,T) x R, W), which is enough to identify with the solution in B%?([0,T) x R, W).

4. STOCHASTIC CALCULUS FOR THE SOLUTION

In Theorem 8, we proved existence and uniqueness of a solution to the martingale problem
associated with (1), but we said nothing about the dynamics of the solution. In this section,
we answer to this question and give a sense to the formulation (4).

4.1. Recovering the Brownian part. Equation (4) suggests that the dynamics of the
solution to (1) indeed involves some Brownian part. The point we discuss here is thus
twofold: (i) We recover in a quite canonical way the Brownian part in the dynamics of the
solution; (ii) we discuss the structure of the remainder.

Theorem 13. Under the assumption of Theorem 8, for any given initial condition xq, we can

find a probability measure (still denoted by P) on the enlarged canonical space C([0,Tp], R?)
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(endowed with the canonical filtration (F;)o<i<t,) Such that, under P, the canonical process,
denoted by (Xy, By)o<i<t,, Satisfies the followings:

(1) The law of (Xy)o<i<t, under P is a solution to the martingale problem with xy as initial
condition at time 0 and the law of (By)o<i<t, under P is a Brownian motion.

(it) For any q = 1 and any B < a, there is a constant C = C(o, B, X, kax(W, #'), ¢, 1))
such that, for any 0 <t <t+ h <Tj,

(41) E[|Xein — Xi = (B — B[]
(1ii) For any 0 <t <t -+ h <Tp,

(42) E[Xein — Xi|Fe] = b(t, Xi, h) == uf™"(Xy) — X,

where the mapping u't" : [0,t+h] xR 3 (s, z) — u!*"(s, ) is the mild solution of P(Y,0,t+h)

with ult}(x) = = as terminal condition.

< Cp+B)2

Proof. The point is to come back to the proof of the solvability of the martingale problem
in Subsection 2.7. For free and with the same notations, we have the tightness of the family
(X[, Bt)o<t<t,, Which is sufficient to extract a converging subsequence. The (weak) limit is
the pair (Xy, By)o<i<t, in (7). (Pay attention that we do not claim that the ‘B’ at the limit
is the same as the ‘B’ in the regularized problems but, for convenience, we use the same
letter.) We then repeat the proof of (17) which writes:

t+h
Xp, - Xt"=f oo (X7 dB, + ul(XT) — uf (XT)
t

t+h
= Bin — By + J [0.ul(X7) — 1] dBs + [u (X)) — uf n(X])].

t
Repeating the analysis of the the third step in Subsection 2.7, we know that the third term
in the right hand side satisfies the bound (41). The point is thus to prove that the second
term also satisfies this bound. Recalling that u} ,(z) = x, we notice that d,ul(X?) — 1 =
O,ul (X7) —0yuy, ,(X7). The bound then follows from the fact that d,u™ is locally //2-Holder
continuous in time, the Holder constant being at most of exponential growth, as ensured by
Theorem 5. Letting n tend to co, we complete the proof of (7).

The last assertion (i4i) is easily checked for with X replaced by X™ and u'*" replaced by

u™ (and for sure with F; replaced by the o-field generated by (X7, Bs)o<s<t). It is quite
standard to pass to the limit in n. O

4.2. Expansion of the drift. The next proposition gives a more explicit insight into the
shape of the function b in (42):

Proposition 14. Given Ty > 0, there exist a constant C' and an exponent € > 0 such that
b(t,z,h) = b(t,z, h) + O(h'** exp(2|z])),

bt 1) jj Pt — ) (Yaly) — Vi) dy ds
f [[emste—n [ 2z ave)apas

O(+) standing for the Landau notation (the underlying constant in the Landau notation being

uniform in 0 <t <t+ h <Tj).
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Remark 15. The first term in the definition of b(t,x,h) reads as a mollification (in x) of
the gradient (in x) of (Yi(x))i<s<t+nzer by means of the transition density of (By)i=o (which
is the martingale process driving the dynamics of X ). It is (locally in ) of order h'/?+e/2.
The second term reads as a correction in the mollification of (Ys(2))i<s<t+haer. It keeps
track of the rough path structure of (Yy(2))i<s<t+hazer- The proof right below shows that it is
of order h'/?*% thus proving that it can be ‘hidden’ in the remainder O(h'*) when a > 1/2.
This requirement o > 1/2 fits the standard threshold in the rough paths theory above which
Young’s theory applies.

Proof. From (12), we know that u!™"(x) expands as

t+h y
ut(z) = 2 + J J OuDs—t(x —y) f Vit (2) dY,(2) dy ds,
t R x

t+h t+h

S = 1 and follow-

t+h —

ing (35), the equation for v can be reformulated into (Muv)(z) = 1 + (Mwv)(x), with the
same notations as in Theorem 12 (with 7" =t + h). By Theorem 12, (v, dye+1v) belongs to
BAO([0,t + h) x R, W), with

Oy M (v, Oyrernv)i(x) = 0, Ogesn M (v, Qpprernv)i(x) = vy().
Therefore, we can write

v (2) = oM @) oM (@) (207 (2) = 250 (@) + R (2, 2),

where v (y) = 0,ut"(y). Taking into account the terminal condition v

which we can plug into the expression for u!™(z) by means of Theorem 1:

W (z) — = j o (z) f Bupes( — ) (Valy) — Ya()) dy ds

Y

(43) 3l ) | oesta =) | (200) = 2 @) avie) ayas

t+h
+ J J axps—t(l‘ - y)%t-i-h(x’ y) dy dS,
t R

where %!*"(x,y) in a remainder term that derives from the approximation of the rough
integral of v/*" with respect to Y. By Theorem 1, there exist a constant C' and an exponent

e > 0 such that

t+h
J‘ f aa:ps—t(x - y)%“_h(x) y) dy ds
t R

(44) t+h 1 Lie
< Cexp(2]a]) f (s— 1) f petl — y) expllz — yl)|z — y|+= dy ds
t R

< Cexp(2|z|)h! e,

Above, the exponential factor permits to handle the polynomial growth of Wt = (Y, Zt+h)
and the exponential growth of v*" (see the definition of @f}’)‘(v) in the statement of Theorem
12), the exponent in the exponential factor being arbitrarily chosen as 1 (which leaves ‘some
space’ to handle additional polynomial growth and which is possible since the terminal

condition uiiz is of polynomial growth).
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We now investigate the second term in the right hand side of (43). We recall that, by
assumption, there exists a constant C, independent of h, such that

(45)

fy(Zﬁ”L(z) = ZM(2)) dYo(2)| < [# (@) < COL A+ ] v [y e — ™.

We also recall from Theorem 5 that v is (o — €)/2-Holder continuous in time, locally in
space (the rate of growth of the Holder constant being at most exponential and Theorem 12
allowing to choose 1 as exponent in the exponential), so that [vi(y)—1| < Ch@=92 exp(|y|),
for s € [t,t + h] and for a possibly new value of the constant C'. Therefore,

t+h Y
| [ ameda =) (240 - 27 @) v dyas
t+h :
f J Oups (T — J (25 (2) =z (2)) dYi(z) dy ds
t+h
+ J oIt (x J OxPs—t(T — J (25 (2) — ZE (@) dYs(z) dy ds,
t
the last term being less than
t+h
(46)  Cexp(2|z|)hlo=/2 J (s —t)"V2r dr < Cexp(2]x|)h/2H3927¢ < C exp(2]2|)h T,
¢

the last inequality holding true since « is strictly larger than 1/3 and e can be chosen
arbitrarily small. Therefore, from (43), (44) and (45), we deduce that

utth(z) - x=f 0a) | Bupala = ) (V(0) ~ Vila)) dys
t+h
J J OzPs—1( J (2 () — 2 (2)) dYs(2) dy ds + O (exp(2|z|)h' ).

Using (45) once more and following the proof of (46), we also have

u M (z) — @ = ﬁ ) v (@) L 0ups—t(x — ) (Ya(y) — Ys(z)) dy ds + O (exp(2|z|)h/2F).

It then remains to look at the first term in the right-hand side of (43). The point is to
expand v/™"(z) on the same model as u!™"(z) right above. Basically, the same expansion
holds but, because of the derivative in the definition of v} " ( ) = d,ul™(x), we loose 1/2 in
the power of h in the Landau notation. Therefore, for t < s < t + h, the above expansion
turns into

v (@) — 1= f v (@) JR app-t(r — y) (Ya(y) — Ys(@)) dy dp + O(exp(2]z|)h®).
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Using once again the fact that v'™" is (a — €)/2-Hdlder continuous in time (locally in space,
the Holder constant being at most of exponential growth), we obtain

Vi (z) — 1 = JHhJ P — y) (Yaly) — Yi(2)) dy dp

# [ =) [ e = ) ()~ Vi) duddp + Ofesplelel i)

S

t+h
=£“m+0@mmwﬁ+MHWf<ww*W%4)

s

The last term can be bounded by O(exp(2|x|)h®~%?). Now, by (47),

u ™ (w) —w = f+ (1+ 2 "(x)) f Oups—t(x — ) (Ya(y) — Yo(2)) dy ds

R

(48) 7 oo [ - 2@ v g
L0 <exp(2\x\> [ha€/2 L o

It thus remains to bound

t+h
| 2@ | 2t = () ~ Vi) ayass.

By (11), it is plain to see that Z/*"(z) = O(exp(2|x|)h*/?). Then, the above term must at
most of order O(exp(2|z|)hY?%), from which the proof of the proposition is easily completed.
In order to complete the proof of Remark 15, it remains to show the announced bound for

t+h
f f OuDs—t(T — Yy J Z1h(2) dY,(2) dy ds.

We already have a bound when Z!*"(z) is replaced by Z!*"(x). By (45), we also have a
bound when Z!™"(2) is replaced by Z!*h(2) — Zt+h(x). O

(S . t)71/2+a/2d8 + hlJre]) )

4.3. Purpose. The goal is now to prove that Theorem 13 and Proposition 14 are sufficient
to define a differential calculus for which the infinitesimal variation d.X; reads

(49) dXt - dBt + b(t Xt; dt), t € [0, T),

or, in a macroscopic way, X; = Xg + B; + So s, Xs,ds), which gives a sense to (1). In that
framework, Proposition 14 and Remark 15 give some insight into the shape of the drift.

As explained below, we are able to define a stochastic calculus in such a way that the
process (Sé b(s, Xs,ds))o<i<r has a Holder continuous version, with (1 + «))/2 — € as Holder
exponent, for € > 0 as small as desired, thus making (X;)o<;<r a Dirichlet process.

In order to give a meaning to (49), the point is to give a sense to SOT ¥, dX; and possibly

to SOT b(t, Xy, dt) for a sufficiently large class of integrands: We construct the integral with
respect to processes (1;)o<i<r that are progressively-measurable and (1 — «)/2 + ¢ Holder
continuous in L? for some p > 2 and some € > 0. The construction of the integral consists of
a mixture of Young’s and Itd’s integrals. Precisely, the progressive-measurability of (¢;)o<i<r

permits to ‘get rid of” the martingale increments in X that are different from the Brownian
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ones and thus to focus on the function b only in order to define the non-Brownian part of
the dynamics. Then, the Holder property of (¢y)o<i<r permits to integrate with respect
to (b(t, Xi,dt))o<i<r in a Young sense. For that reason, the resulting integral is called a
stochastic Young integral. It is worth mentioning that it permits to consider within the
same framework integrals defined with respect to the martingale part of X and integrals
defined with respect to the zero quadratic variation part of X.

The construction we provide below is given in a larger set-up. In the whole section, we
thus use the following notation: (2, (F;)¢=0,P) denotes a filtered probability space satisfying
the usual conditions; moreover, for any 0 < s < t, S(s,t) denotes the set {s' € [0,s],t €
[0,¢],s" < ¢'}. The application to (41) is discussed in Subsection 4.6.

4.4. [P Construction of the Integral.

4.4.1. Materials. We are given a real T > (0 and a continuous progressively-measurable
process (A(s,t))o<s<t<r in the sense that, for any 0 < s < ¢, the mapping 2 x S(s,t)
(w, s, t") — A(s,t') is measurable for the product o-field F; ® B(S(s,t)) and the mapping
S(T,T) > (s,t) — A(s,t) is continuous. We assume that there exist a constant I' > 0, three
exponents &g € (0,1/2], e1,¢] > 0 and areal ¢ > 1 such that, forany 0 <t <t+h <t+h <

-

E[|E[A(t,t + h)|F]|"]* < Thz*=,

-
NI

Q[

[[E]AC

E[|A(t, t + h)|?]* < Thz,
E[|E[A(t,t + h) + A(t + h,t + 1) — A(t, t + )| FR]|"]* <T(R)"*,
E[JA(t+h) + At + ot + b)) — A(t, £+ 1)[7]7 < T(R)F0+D).

In the framework of (49), we have in mind to choose A(t,t+h) = Xy, — Xy or A(t,t+h) =
By — By, in which cases A has an additive structure and e; and €| can be chosen as
large as desired, or A(t,t + h) = b(t, Xy, h), in which case A is not additive. The precise
application to (49) is detailed in Subsection 4.6. Generally speaking, we call A(t,t + h)
a pseudo-increment. Considering pseudo-increments instead of increments (that enjoy, in
comparison with, an additive property) allows more flexibility and permits, as just said, to
give a precise meaning to b(t, Xy, dt) in (49). The strategy is then to split A(¢,¢ + h) into
two pieces:

(51)  R(t,t+h):=E[A(t,t + h)|F], Mt t+h):=A(tt+h)—E[A(t, ¢+ h)|F],

M(t,t + h) being understood as a sort of martingale increment and R(t,t + h) as a sort of
drift.

We are also given a continuous progressively-measurable process (1;)o<;<7 and we assume
that, for an exponent 9 < &g and forany 0 <t <t+h<T

(52) E[[¢l]" <T, E[¢rn - l?]¥ <Thi—=,

for some ¢’ = 1. We then let p = q¢'/(q¢ + ¢') so that 1/p =1/q + 1/¢'.
26
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4.4.2. Objective. The aim of the subsection is to define the stochastic integral SOT U A(t, t+dt)
as an LP(£2,P) version of the Young integral. In comparison with the standard version of the
Young integral, the LP(€),P) construction will benefit from the martingale structure of the
pseudo-increments (M (t,t + h))o<t<t+n<r, the integral being defined as the LP(€2, P) limit of
Riemann sums as the step size of the underlying subdivision tends to 0. Given a subdivision
A={0=ty<t; <-- <ty =T}, we thus define the A-Riemann sum

(53) Z o Altisti).

We emphasize that this definition is exactly the same as the one used to define 1t6’s integral:
on the step [¢;,t;11], the process 1 is approximated by the value at the initial point ¢;. For
that reason, we will say that the Riemann sum is adapted. In that framework, we claim:

Theorem 16. There exists a constant C = C(q,q',T',eq,€1,€2), such that, given two subdi-
visions A < A, with 7(A) < 1,

(54) E[|S(A) — S(A)P]Y" < ¢ max(T"?, T) (x(A))",

where w(A) denotes the step size of the subdivision A, that is m(A) := maxi<;<n|t; — ti_1],
and with 1 := min(gy — €2, €1,€7/2).

For general partitions A and A’ (without any inclusion requirement), Theorem 16 applies
to the pairs (A, A U A’) and (A, A U A'), so that (54) holds in that case as well provided
m(A) in the right-hand side is replaced by max(mw(A), 7(A’)). We deduce that S(A) has a
limit in LP(2,P) as w(A) tends to 0. We call it the stochastic Young integral of ¢ with
respect to the pseudo-increments of A.

4.4.3. Proof of Theorem 16. First Step. First, we consider the case where the two subdivi-
sions A and A’, A being included in A’, are not so different one from each other. Precisely,
given A = {0 =t <t; < - <ty=Trand A = Au{t) < - <t} (L >=1), the
(ti)1<i<n’s and the (t})1<j<r’s being pairwise distinct, we assume that, between two con-
secutive points in A, there is at most one point in A’. For any j € {1,..., L}, we then
denote by s; and S;F the largest and smallest points in A such that s; <. < s;r. We have
th <s <s; <tj, for1<j<L—1 We then claim:

Lemma 17. Under the above assumption, the estimate (54) holds with w(A) replaced by
p(ANA), where p(A"\A) := sup, ;< [s] — 57 ].

Proof of Lemma 17. (i) As a first step, we compute the difference S(A’) —S(A). We write
L
S(A) = S(A) = 2 [S(A) = S,
j=1
with A/ = AU {t),...,t}}, for 1 <j <L, and A” = A. Then,

S(Aj):S(Aj—1)+wsj—A(s;,t;)+wt/, (th,sF) — V- A(s; sT)

3077 J77)

:S(AJ*1)+(1/;25;—¢8J__)A( J7 J)+w ( (J’ J)+A(t]’sj) A(s;,s})).



Therefore,

55
( ) —1-27/’ 37] +A(t]’8]> A(SJ’S;F))

= 515(A,A’, M) + 5,S(A, A, R) + 6,S(A, A').

(i) We first investigate d;.S(A, A’, M). The process (ZJ (Y —1,- )M(t;, o<e<z s a
discrete stochastic integral and thus a martingale with respect to the filtration (.Fsz—)oggg L,

with the convention that s; = s§ = 0. The sum of the squares of the increments is given

by Zfﬂ(wt; — - )?(M(t},s]))? By the second line in (50) and by (52), we observe from
Minkowski’s inequality first and then from Hélder’s inequality (recalling 1/p = 1/q + 1/¢)

that there exists a constant C' such that

L
g
J

p 2

| 2 [y — 0. )"B[ (M6, 50)17 ||

() —s) 7 (s7 — ) < OT(p(ANA))™

J

2

wsj) (;’ J

with 7y := 1 — 269 = 2(gp — &3), where we have used s; < t’ < s . By discrete Burkholder-
Davis-Gundy inequalities, we deduce that E[|d;S(A, A/, M )|p]1/p < OTY2(p(ANA))™/2.
(111) We now turn to 6;.5(A, A’, R). In the same way, by the first line in (50) and by (52),

E[|0.S(A, A, R[] < ZEHW— IR, sTIP]
L 1/2 g9 1\ 1/2+e0 / 2
Z (s7 — 1) < CT(p(AN\A))

with 7, 1= g9 — £5. Therefore, E[|6;S(A, A, R)[P]'? < CT (p(A\A))™
(iv) We finally investigate d25(A, A’). We split it into two pieces:

S(A,A) Zw -R(s7,15,57) +Z¢ M'(s7, 1, s7),

(56)
- (525(A, AR + (525(A, A’, M),
with
R'(sj,t5,57) = B[A(s;, £) + A(t), 57) = Alsy,s7)| 7 ],
M'(s;,t5,87) := A(sy, t;) + A(t;, ) — A(s;,s;) — R (s5, ], 5]).

By the third line in (50) and by (52), we have, with 03 := &1, E[|025(A, A/, R))|P]VP <
CT(p(A\A))™.
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We finally tackle §5S(A, A’, M’). We notice that it generates a discrete time martingale
with respect to the filtration (FSZ)OSKL- As in the second step, we compute the LP/?(Q), P)

norm of the sum of the squares of the increments. By the last line in (50), it is given by

£
j=1

i@z@j_( (s7,,5)) 25F<j1@[¢§11@[( M'(s7,t,,s7)) |]-"+1”’27<CT(/)(A’\A))"4,

with 1y := €,. By discrete Burkholder-Davis-Gundy inequality, E[|6:S(A, A/, M")[P]V/P <
CT2(p( A\ Ay,
Putting (7), (4i), (¢i7) and (iv) together, this completes the proof. O

4.4.4. Proof of Theorem 16. Second Step. We now consider the general case when A < A’
(A" = A) without any further assumption on the difference A"\ A.

As above, we denote the points in A by ¢,...,ty. The points in the difference A"\A are
denoted in the following way. For i =1,..., N, we denote by t) ...t} ; the points in the
intersection (A"\A) n (t;_1,;), where L; denotes the number of points in ( NA) N (ti1, ;).
Each L; may be written as L; = 2¢; + ¢; where ¢; € N and ¢; € {0,1}. We then define A as
the subdivision made of the points that are in A together with the points

{{thes, € =1,..., 6} U {tag, 41 if &, = 1}} whenever ;> 1, fori=1,...,N.

This says that, to construct A/, we delete, for any ¢ = 1,..., N, the point ¢} ; if L; = 1 and
the points that are in (A"\A) n (t;_1,%;) and that have an odd index 20 — 1 with 1<i<y;
if L; > 1 (so that the last point is kept even if labelled by an odd integer when ¢; > 1). By
construction, A} and A’ satisfy the assumption of Subsection 4.4.3, so that

|S(AL) — S(A)] i py < Cmax(T2, T)[p(ANA)]"
(,P)

It holds A} o A. If Al = A, we then build a new subdivision A} as the subdivision
associated with A} in the same manner as A} is associated with A’. We then obtain

(57) |S(AY) — S(A] < Cmax(T"2,T)[p(A1\AS)]".

1 HLP(Q,]P)

We then carry on the construction up until we reach A}, = A for some integer M > 1. We
notice that such an M does exist: by construction each A’ contains A and f[A] < §[A] ]
(with the convention Aj = A').

We now make an additional assumption: We assume that A’ is a dyadic subdivision, that
is A’ = {27PkT,0 < k < 27} for some P > 1. This says that A is also made of dyadic points
of order P. We denote by @ the unique integer such that

max(L;, 1 <i<N)=29+7r with0<r <291,

and by i some index such that L;, = 2@ + r. At the first step, the 2% first points in
(AN\A) N (tig—1,ti,) are reduced into 297" points. At the second step, they are reduced
into 2972 points and so on... Therefore, it takes steps to reduce the 2% first points in
(A"\A) N (tiy-1,ti,) into a single one. Meanwhile, it takes at most () steps to reduce the r
remaining points in (A"\A) N (¢;,-1, %) into a single one (without any interferences between

the two reductions). We deduce that, after the Qth step, there are at most two operations
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to perform to reduce A, into A. This says that M is either @ + 1 or @ + 2 and that, at
each step j € {1,...,Q} of the induction, we are doubling the step size p(A}_\A}), that is
p(AT\A)) =277 p(ANAY), j=1,...,0Q,
so that
P(ANAY) < 27@Dr(A), and p(A)_\A)) < 279r(A), j-1,....Q.

Therefore, p(A j_l\A;) < 27M+2x(A), j=1,..., M. By extending (57) to each of the steps
of the induction, we get (up to a new value of C')

< Cmax(T2,T)[x(A)]" i 210~ M) < Cmax (T2, T)[x(A)]".

j=0

(58) HS(A/) o )HLP(Q,P)

When A and A’ contain non-dyadic points (so that they are different from {0, 7'}), we can
argue as follows. We can find a dyadic subdivision, denoted by Ds, such that, in any open
interval delimited by two consecutive points in Ds, there is at most one element of A. Then,
we remove points from Dy to obtain a minimal subdivision D;, made of dyadic points, such
that, in any open interval delimited by two consecutive points in D, there is exactly one
element of A. In such way, in any open interval delimited by two consecutive points in A,

there is at most one point in D;y. Therefore, we can apply Lemma 17 to (D;, D; U A) and
(A, Dy U A). We get

|s(p

since m(D;) < 2w(A). By the same argument, we can find a dyadic subdivision D for
which the above inequality applies with (Dy, A) replaced by (D}, A’). Then, we can find a
dyadic subdivision D such that both D; < D and D} < D. Applying (58) to (Dy, D) and
to (D}, D), we can bound the difference between S(D}) and S(D;). The result follows.

A)HLP(Q,P) < Cmax(TY?,T) [max(w(Dy), 7(A)]" < C' max (T2, T) [m(A)]",

4.5. Further Properties of the Integral.

4.5.1. Extension of the Integral. Given the decomposition (51), it is worth noting that both
the integrals Sg e M(t,t + dt) and Sg Y R(t,t + dt) are also defined as LP limits of the
associated adapted Riemann sums. The main point is to check that Lemma 17 applies to
Sy and Sg, where, with the same notation as in (53), Sy(A) = Zij\fol Wy, M (t;,t;41) and
Sr(A) = 3V Papy, R(ti, tinr). A careful inspection of the proof of Lemma 17 shows that the
non-trivial point is to control the quantities d5S(A, A’, M) and §,S(A, A, R), obtained by
replacing A by M and R respectively in the definition of 95S(A,; A’) in (55). Actually, since
we already have a control of the sum of the two terms (as it coincides with d25(A, A’) in the
proof of Lemma 17), it is sufficient to control one of them only. Clearly,

L
”52S<A7A/7R)HLP(Q,1P’) < ”Z ws; (R J ) j> + E(R( J’ J )|'7: ) R(SJ’S;F» LP(Q,P)

HZw (1), 57) — E(R(;, 57)|F,-))

We emphasize that the first term above is nothing but §,5(A, A’, R') in (56), for which we

already have a bound. Therefore, the only remaining point is to control the second term
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above. Again, we notice that it has a martingale structure, which can be estimated by
Burkholder-Davis-Gundy inequality. By the first line in (50) and by (52),

“é; < (t5,57) = E(R@wsjﬂf>))2s}i

< L 1+2 2
DG "< CUT(p(A\A)*,

<CYE[v (R, <

J=1

2
p

which is enough to conclude that Theorem 16 is also valid when replacing A by R or M in
§4.4.4. Therefore, we are allowed to split the integral of v as S(? YAt t+dt) = SOT e M (t, t+
dt) + SOT Y R(t,t+dt). The reader must pay attention to the fact that neither M nor R must
satisfy (50) even if A does. The extension of the integral to the case when they are driven
by M or R is thus a consequence of the proof of Theorem 16 itself.

4.5.2. Continuity in Time. It is plain to see that the integral is additive in the sense that,
forany 0 < S<S+95<T,

S+5’ S S+5’
f wﬂ@m@ﬂ:f¢ﬁ@m@@+] G AL £+ dt).
0 0 S

An important question in practice is the regularity property of the process [0,7T) 3 ¢ —
Sé s A(s, s + ds), which is not well-defined for the moment. At this stage of the procedure,
each of the integrals is uniquely defined up to an event of zero probability which depends on
t. A continuity argument is thus needed in order to give a sense to all the integrals at the
same time. By Theorem 16, we know that, for h € (0, 1),

1
< Ch2,
LP(Q,P)

t+h
(59) L Vs A(s, s + ds) — AL, t + h)

for n > O as in the statement of Theorem 16, so that, by the two first lines in (50),

| SHh (s,s + ds)|rp) < ChY?, for possibly new values of C. By Kolmogorov’s con-

tinuity crlterlon this says that there exists a Holder continuous version of the process
(Sé Vs A(s, s + ds))o<t<r, With 1/2 — 1/p — € as pathwise Holder exponent, for any € > 0.

By the same argument, we notice that there exist Holder continuous versions of the pro-
cesses (Sé s M(s,s + ds))o<t<r and (Sé Vs R(s,s + ds))o<t<r. The Holder exponent of the
second one is actually better. Indeed, noticing that (59) also holds for R and taking advan-

tage of the first line in (50), we deduce that | SHh R(s, s+ ds)|r@p) < CRUT/2 5o that
the pathwise Holder exponent can be chosen as (1 +7)/2—1/p—¢ for any € > 0.

4.5.3. Dirichlet decomposition. It is well-checked that the process (Sé s M (s,s + ds))o<t<r
is a martingale, thus showing that the integral of 1) with respect to the pseudo-increments
of A can be split into two terms: a martingale and a drift. We expect that, in practical
cases, the exponent p can be choose as large as desired: In this setting, the martingale part
has (1/2 — €)-Hoélder continuous paths, for € > 0 as small as desired, and the drift part has
(1/2 + n — €)-Holder continuous paths, also for € > 0 as small as desired, thus proving that

the integral is a Dirichlet process.
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4.6. Application to diffusion processes driven by a distributional drift. We now
explain how the stochastic Young integral applies to (1). First, we can choose A(t,t + h) =
Xiin — Xg, for 0 <t <t+ h <Ty. Then the process A is additive. In particular, the two
last lines in (50) are automatically satisfied with ; and €/ as large as needed. By (41), the
second line in (50) is also satisfied. Finally, we notice that

E[Xt+h — Xt|.7:t] = E[Xt+h — X — (Bt+h - Bt) |-7:t]v

so that, by (41) again, the first line in (50) is satisfied with g = /3/2.
With our construction, this permits to define (Sé s dX)o<t<r, for any progressively mea-
surable process (¢ )o<i<1, satisfying (52) with 5 < (/2. It also permits to define the integrals

(Sé s M(s, s + ds))o<i<r, and (Sé Vs R(s, s + ds))o<i<t,, Where
M(t,t+h) = Xppn — Xy — E[Xpwp — Xe| F], R(tt+ h) = E[ Xy, — X 7.
By (42), we have R(t,t + h) = b(t, X4, h), so that (Sé b (s, Xs, ds))o<i<r, is well-defined.

Moreover, by Proposition 14 and by boundedness of the exponential moments of (X;)o<t<T,
(see the proof of Theorem 8), we know that R(t,t + h) = (b— b)(t, X;, h) also satisfies (50),
from which we deduce that (§; 1(b— b)(s, Xy, ds))o<i<r, and so (§g 1sb(s, X, ds))oi<r, ave
well-defined. Actually the exponent in the power of h appearing in the difference (b —
b)(t, X;, h) being strictly greater than 1, the integral process ( Sé Ys(b— b)(s, X, ds))o<i<ny
must be 0. We deduce that (Sé Psb(s, X, ds) = So s, X, ds))o<i<ty-

We finally discuss the integral (Sé Y M(s, s + ds))o<t<r. We let

M(t,t +h) = Xeon = Xo = (Bion = Br) = E[Xppn — Xi|F]
= Xosn — Xi — (Bexn — By) — E[Xin — Xy — (Bisn — By) | R

By (41), E[|M (¢, ¢ + h)|7[]"¢ < C!h(+5)/2 for some Cy > 0, which reads as a super-diffusive
bound for the pseudo-increments of M. It is then well-checked that (M(t,t + h))o<i<trn<n,
fulfills all the requirements in (50). Therefore, the integral (Sé YoM (s, s + ds))o<i<r, makes
sense. By Subsection 4.5, it is a martingale but by the super-diffusive bound of the pseudo-
increments it must be the null process. Put it differently, only the Brownian part really
matters in M and we can justify (49) thanks to the equality

¢ ¢ t
f Y dX, = J s d By +f »sb(s, X, ds).
0 0 0

5. CONSTRUCTION OF THE INTEGRAL OF Z W.R.T. Y. EXAMPLES.

As a final discussion, we address the existence of a rough path structure (W[, #,7)o<i<r
for the pair W' = (Y;, Z]'), for T running in some interval [0, Tp], Tp > 0. In this framework
we emphasize that the only challenge is to define the ‘cross-integral’ Z; r(z, 2’) := S (Z]'(y)—
ZI(x))dY;(y). Indeed, as we are seeking a geometric rough structure, it makes sense to let
(imitating the integration by parts) S;/(Y}(y) —Yi(2))dYi(y) := (1/2)(Yi(x') — Yi(x))?, with
a similar identity with Y; replaced by Z!', and

(60) f (Yily) = Yi(w)) dZ] (y) := (Yil2') = Ye(@))(Z] (2") — Z/ (2)) = Ly r ().

T
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5.1. Overview of the results. We are given (Y;(z))o<t<r, zer satisfying for some x, x > 0:

Fax((Y)ost<ny) :=  sup T(HEH([JT’T]/TX) S K <00,
together with supy<,<q, |Y:(0)] < & (since only the variations of (Y(2))o<t<ry,zcr matter in
(1), we could even assume that Y;(0) = 0, for ¢ € [0,Tp]). With the same notation as
in (9), we then have rq\((Y:, % )o<t<r,) < Ck, for some universal constant C, where %;
denotes the (geometric) iterated integral of Y; as just defined right above. Recalling the
definition (11) of Z}, it can be proved that, for any 7" € [0, Ty], supy<,<r |Z{ (0)] < Ck and
Kax((Z])o<t<r) < Ck, the constant C' now depending upon T, but not on 7', thus proving
that ra((Z], 27 )o<t<r) < Ck. The proof of supy,<r |Z] (0)] < Ck is quite straightfor-
ward: Taking benefit of the Holder regularity of (Yi(x))o<i<ryzer in x, the singularity of
the second-order derivative of the heat kernel appearing in the definition of Z7 can be in-
tegrated. More generally, it can be proved, using the same strategy, that, for any » > 1,
SUDg<rr SUP, =1 SUD,e[ ., |27 ()] < CrrX. The proof of ke ((Z])o<t<r) < Ck is slightly
more subtle. The idea is to go back to (29), with v = 1 therein, recalling that the analysis
is split into two parts: |2/ — x> < T —t and T —t < |2/ — z|?, the first case only being
challenging. It is then quite straightforward to check that |Z;(z,2’)(§)| < CrrX|a’ — x|*,
for x,2',& € [—r,r] with » > 1. Moreover, following (31) with 8 = 1, we also have

Ty(z,2') < Crrx Sf S‘xﬂ,'Q s~ B2 ds < CkrX|z’ — x|*, for x,2' € [—r,r], which completes
the proof.
The point is thus to prove that the cross-integral is well-defined and satisfies

(61) [Tor(w.a')| < O(1+ o + 2]’ — .

the constant C' possibly depending upon 7 but not on 7.

As we already said in Introduction, existence of the cross-integral has been proved within
the framework of the KPZ equation by means of general results on rough paths theory
applied to Gaussian processes, see [14, Section 7] and [12]. Anyhow, it is a natural question
to wonder about the existence for more general classes of ‘environments’. In this section, we
thus exhibit several sufficient conditions under which (61) is indeed satisfied, the examples
we provide being of the following types:

(1) As a first example, we recover the case when the family (Y;(2))i=0er is constant in
time, see Proposition 18.

(2) When the family (Y;(2))t=0.er does depend on time, we prove that the cross-integral
is well-defined under some additional time-space regularity. Basically, if the sum of
the Holder exponent in space and twice the Holder exponent in time is greater than
1 — a, then the cross-integral is well-defined, see Proposition 19. As an application,
we deduce that the cross-integral is always well-defined when o > 1/2; which fits the
standard regime for Young’s integration.

(3) In Proposition 20, we pay a special attention to the case when Y(x) reads, for some
s = 0 and z € R, as a space convolution of (Y;(z)).cg with respect to some heat
kernel, for some ¢ < s. Such a situation occurs when the dynamics of Y satisfy a
parabolic equation.

(4) The final example we give is of a different nature. We assume that the structure of
(Yi(2))t=0.2er relies on an additional Brownian sheet so that the cross-integral exists

as a stochastic integral. As a basic application, we discuss the case when (Y;())i=0 zer
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is a forward solution to the stochastic heat equation. The case when (Y;(2))i>0er
solves a backward SPDE will be discussed in the next section within the framework
of the application to KPZ equation.

It is worth mentioning that the cross-integral is also well-defined when (Y3())i=0..cr reads
as a combination of some of the examples given above.

5.2. Principle of the analysis. The construction of the cross-integral may be achieved in
two different ways. A first one is to go back to Riemann sums, or possibly compensated
Riemann sums as in rough paths theory, and to prove the convergence as the step size of the
underlying mesh tends to 0. Another way consists in mollifying the inputs and in proving
uniform estimates of the cross-integrals driven by the mollified inputs, the cross-integrals
being for sure well-defined in the regular setting. Below, we implement the second strategy
as it ensures, for free, the ‘geometric’ property of the limit cross-integral and as it provides,
in some quite interesting cases, explicit expressions of such a limit cross-integral.

We first notice that there is no real difficulty in mollifying the inputs. It is indeed sufficient
to mollify first the paths (Y;(2))i=0.er in space and then to plug the mollified version of
(Yi())t=02er in the definition (11) of ZT( ). Below, we consider, as a mollification of
(Yi())ger, for a given t = 0, the path Y"(z) = { pi/n(z — y)Yi(y) dy. Then, we define zmT
accordingly, by replacing Y; by Y;" in (11)

It is worth mentioning that 7' is here a given terminal time, which is assumed to live in
the compact set [0,7p]. For making the whole machinery work in the previous sections,
it is a crucial point to obtain estimates like (61) for the mollified cross-integral that are
uniform in n > 1 and but also in t and T, for 0 <t <T < Tp. A ﬁrst step forward in that
direction is to give a sense, for each s > ¢, to the cross integral I7} (s = S SR ps_i(y —

2)Y(2)0, Y (y)dydz and to bound it independently of n. In that perspectlve a famous
result by Young [26] states that, given an exponent [ > 0, there exists a universal constant
¢ > 0 such that, for any two smooth functions f and ¢ on the interval [z, 2] satisfying

(62) 1£(2) = )] g() = g(y)| < Clz = 2/|"7,

for some constant C and for any r < z < y < 2/ < 2/, it holds

(63) 2)dz — f(z)(g9(2") — g(2))| < Cla’ — z["*7.

Letting f(y) = SR “ps—t(y — z)Y”( )dz and g(y) = Y/*(y), we notice that f is o/-Holder
contmuous on [z,2'], for 0 < o’ < 1, with a Hélder constant of order (s — ¢)~(1+e'/2)+a/2
(independently of n). Equation (62) then holds with 1 + 5 = o/ + a and C of order (s —
t)~(+e/2)+e/2 (independently of n). Asking 8 > 0 requires o’ + a > 1 and asking the Holder
constant to be integrable (uniformly in n) requires o/ < a. In the end, for defining the
cross-integral, Young’s theory only applies if a > 1/2.

Below, we go back to Young’s framework in a more detailed, but generally speaking, the
objective is to go further into the analysis and to discuss several cases when the cross-integral
exists even if a < 1/2 (« being larger than 1/3).

5.3. Time homogeneous environment. The first step is to discuss the case when Y is

constant in time or, equivalently, to focus, in the time-dependent framework, on the mollified
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cross-integral Sf 2 (1)0,Y; () dy, with

27 (y) - f ) j Oupsily — 2)Y7'(2) dzds = f proaly — 2V (2) dz — Y (y).

Here Z"" reads as a modified version of Z", in which Y™ has been replaced by Y;" (see
(11)). In comparison with (11), the second order derivative 0?p,_; has been also replaced by

Osps—t, by taking benefit (up to a factor 2) of the heat equation satisfied by ps_;.
In such a case, the cross-integral § (Z/' T ()= 2" (2)) dY;"(y) can be expressed explicitly,
without any reference to the derivative of Y;™:

!

j (ET () — 27T (@) AV ()

xT

[ [ rsto ==t e ase

(64) - [ 0w - vrE)errw

xT

= V(@) — 2 () 4 V) Y @) — 5[ - ¥ @)’]

- f f Oprily — 2)Y ()Y (y) dz dy,
x R

the passage from the second to the third line following from an integration by parts. It
is quite straightforward to see that the cross-integrals converge as n tends to the infinity,
the limit cross-integral satisfying a similar formula. A crucial point is that it satisfies (61),
uniformly in ¢t < T in [0, Tp]:

Proposition 18. Under the assumptions and notations specified in Subsection 5.1, let
Zl(y) = StT $o O2ps—i(y — 2)Yi(2) dzds. Then, the integral Sil(ZtT(y) — 2ZI'(x))dYi(y) may
be defined as a ‘geometric integral’ obtained by replacing (Y™, Z™T) by (Y, Z1) in (64). It
satisfies (61), the constant C' therein being uniform with respect to t < T in [0, Tp].

Proof. By the mollification argument, it is sufficient to prove that the bound (61) holds for
Y smooth, provided the resulting constant C' in (61) only depends on x and Tj. Replacing
Y (y) by Yi(y) — Yi(z) in (64) (which doesn’t change the definition of Z/"") and subtracting
ZT (@) — Vilw)], we get

T,r(r, ') = (Vi) — Yila)) (27 () — 3] (@) + Yila!) — Yilw)) — 5 (%) ~ Yi(a))’

[ oty = 00 = Vi) (Vi) - Vi) =y

The terms in the first line are easily tackled. Indeed, the term ZI has the same regularity
in space as Z] (the proof is the same, replacing Y; by Y;). The point is thus to investigate
the last term in the definition of Z; p(x,2’). We put things in a more general framework

that will be reused in the sequel. Letting h = T — ¢ in the definition of Z, r(z,2'), we
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replace 0,pn(y — z) by another antisymmetric function Gp(y, z) (in the sense that G (z,y) =
—Gh(y, 2)) satisfying, for any 5 > 0,

(65) f ly — 2|°|Gi(y, 2)| dz < Czh 12,
R

and, for any a € R,

(66) Jaoo <J+w ly — 2|°|Gh(y, 2)] dZ) dy + Loo (Jaoo ly — 2|°|Giuly, 2)| dZ) dy < Csh”?,

the constant C possibly depending on Tj. It is standard to check that Gy (y, z) = d.pn(y—2)
satisfies (65). The verification of (66) is a bit more involved. Since d,pp(y—2) = 0fory > =
we have (the value of Cj varying from line to line)

[ ([ = splonts=alas)an= [ ([ 09" n () ) o

< Cﬁhmf <J Wy — z)p2(yh1/2 ) dz) dy

a —00

B/2 . —12, (Y —a
< Cgh J h pg( i )dy.

a

We then consider:

(67 Ziea)i= | [ Gty 2)[Vite) = V)] [Yi(o) — ica)] d

with —r < < a’ <r, for some r > 1. Splitting Y;(z) — Yi(z) into Y;(2) — Yi(y) plus Yi(y) —
Y;(z), we deduce from (65) that [Zp,(z, )| < C(14+rP)[R~ 2|2/ — x|t 20 4 = (1=0)/2| g —p|1+e],
so that, for h > |2/ — z|?,

Zh(z, 2')| < C(1 4 r*) |2’ — x>

In order to handle the case h < |2’ — z|?, we first deduce from the antisymmetry property
that

f f Gy 2)[¥i(2) — Vi) [Vilw) — Vi(a)] dzdy =
Therefore, Z,(z, 2') = Z} (z, 2") + T} (z, 2'), with
Ziea) = | f Guly. 2)[Yi(2) — Yi(@)][Yily) - Yi(a)] d=dy,
Ziea)= | f Guly, 2)[¥i(2) — Yi@)] [Yily) — Vil)] d=dy.
We start with Z} (z,2'). We write Z} (z,2') = I, (x,2') + Z* (z,2'), with

7 (wal) = | f Guly, [¥(2) = Yiw)] [Yily) — Yila)] d= d,
1) = | f Gl Vi)~ Vi) dzdy.
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By (66), we have |Z,"(z,2")] < C(1 + r*)h*?|z — 2/|*. Similarly, |Z,”(z,2")] < C(1 +
r?X)|x — 2/|>** Therefore,
7} (2, 2")| < O (1 + r®) (h*|z — 2/|* + |z — 2/]*).
Notice that Z7(x, 2) can be bounded in a similar way. Therefore,
|Zn(z,2")| < C(1+ r™) (b |z — 2/|* + |2 — &),
which is less than C'(1 + r*¥)|z — 2/|** if h < |z — 2/~
U

5.4. Time space regularity. From the practical point of view, the previous paragraph is of
real interest as its scope goes beyond the time homogeneous framework. Indeed, it says that,
in the analysis of the mollified cross-integrals —see Subsection 5.2 —, one can limit ourselves
to the investigation of S;/(Zt"’T(y) — 2"(2))0,Y,"(y) dy, with a new of definition of Z;" (y)
(which, we feel, yields no confusion with the one introduced in the previous subsection):

(68) zZMT(y J J@Cps Wy —2)(Y2(2) = Y"(2)) dz ds.

Put it differently, one can distinguish the Y™ appearing in the cross-integral from the Y™

appearing in the definition of Z;" T Below, we investigate several cases of a more general
kind:

T
(69) Zt"’T(y) = J J 2ps_i(y — 2)Vi(2) dz ds,
¢ Jr

that covers (68), (V' (¥))o<t<s<tpyer denoting a family of paths indexed by two-dimensional
time indices.

5.4.1. Young’s theory. Making use of Young’s theory, we are then able to prove:

Proposition 19. Let the assumptions and notations specified in Subsection 5.1 be in force.
Consider also a time-space family (Vys(y))o<t<s<tyyer Such that, for some p, 1’ = 0 satisfying
2u' + > 1—a and for some constant k' > 0, it holds

(70)  Vse[t,To), Vy,ze R, |Vis(2) = Ves)l < &/ (L+ [y[* + [2[¥)[s — ¢y — 2|
For0<t<T<Ty, let

(1) ff 2o iy — 2)Va(z) dzds,

and define, on the same model as in Subsection 5.2, a mollified version V', of Vs by convolu-

tion with the heat kernel and then consider Z1°" as in (69). Then, for any o' € (1—a, p+241'),
there exists a constant C' = C'(d, k, k', Ty) such that, for any 0 <t < T < Ty, the ‘geometric
integral’ of ZI with respect to Y; makes sense and satisfies (61) with respect to C' and 2«
replaced by o + o/

The reader might worry about the fact that (61) holds with respect to a larger exponent
than 2a. The resulting effect can be read in Theorem 1, in which the regularity of #
explicitly appears. As a consequence, it affects Lemma 2 as it generates a new term in the
definition of D, which writes (with the same notation as therein) |z|2@+a)+8p2x+5/2  This

new definition of D must be injected in the proof of Lemma 11. Basically, a new term must
37



be added to the definition of D’ in (20): It is of the form s*+®*8/2=1px+8/2  The important
point is that the power of p is not changed in comparison with the original case when o/ = 0.
Thus, the final result remains true.

A typical example of application is V; s(y) = Ys(y) — Yi(y). In the specific case when Y;(y)
may be expanded as Y;(y) = fiY (y), f being more than (1/2 — «)-Hélder continuous, (70)
holds with ¢ = o and y/ > 1/2 — . Another example of application is YV, (y) = Yi(y).
In that framework, (70) is satisfied with g > 1/2 and ¢/ = 0 if @ > 1/2, in which case the
cross-integral fits the Young theory discussed in Subsection 5.2.

Proof. As in the proof of Proposition 18, we can assume that the mappings Y; and (V;s)i<s<r
are smooth in space. The proof is then an application of Young estimates (62) and (63), with
) = $z 2ps—i(y — 2)Vis(2) dz and g(y) = Yi(y). We notice that f is o/-Holder continuous
on [z,2'], for 0 < o < 1, with a Hélder constant of the form C'(1 + |z[¥ + |2/|X)(s —
t)~ A+ 240241 (O depending upon o). Eq. (62) then holds with 1+ 8 = o/ + « and C' of
the form C’(s — t)~(0+"/2+/241"  Agking 3 > 0 requires o/ + o > 1 and asking the Holder
constant to be integrable requires o/ < u + 2u’. Young’s theory applies if p + 2u' + o > 1,
in which case (61) holds with 2« replaced by o + o > 1.

O

5.4.2. Space convolution. As another important example for practical applications, we con-
sider the case when ), 5 is given as a convolution (in space) of the increment Y, — Y

Proposition 20. Let the assumptions and notations specified in Subsection 5.1 be in force.
Consider also a family of kernels (qs(z,u))oct<s<ty.-uer (that is a family of non-negative
functions with mass 1 in u) satisfying:

(72) |ges(z,u) —p(s_t)ag(z)(z — u)) < C(s = t)'pers—y(z —u), 0<t<s<Ty, =zuek,

with p > 1/2 —a and C' = 1, 04(-) being a C-Lipschitz continuous function with values in
[1/C,C). Letting Yis(2) = §z u.s(2,w)(Ye(u)—Yi(2)) du and defining YJ',(z) by mollifying Yy s
with a kernel of variance 1/n, consider Z1 (y) given by (71) and Z"" (y) given by (69). Then,
there exist a constant C' = C'(u, k, C,Ty) and an exponent € = e(a, ) > max(2c — 1,0)
such that, for any 0 <t < T < Ty, the ‘geometric integral’ of ZI with respect to Y; makes
sense and satisfies (61) with C'r*|z" — z|** replaced by C'r*X(|x’ — z|** + |2/ — z|'+°).

As emphasized right after Proposition 19, the reader must not worry about the additional
|z — x|1Te.

Example 21. An exzample for q is the transition density of a second-order operator L; =
bi(-)0x + (1/2)02(-)0%, where b is a bounded function and o s, in addition to the assumption
specified in the statement of Proposition 20, 1/2-Hélder continuous in time, uniformly in
space. The proof of (72) follows from the ‘parametriz’ method in [11, Chapter 1].

Proof of Proposition 20. First step. The first step of the proof consists in showing that V',
can be chosen as the integral with respect to ¢ of the mollified version Y, of Y;. With the
definition given in the statement (which is the right one for defining a ‘geometric integral’),

VD) = [ e = 000 o = [ e () = V7 (2)
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with ¢,(z,u) = {3 p1n(2 — v)qus(v,u) dz. The point is then to estimate ¢, (z,u) by taking
benefit of (72) and of a Gaussian convolution. The argument is based on the fact that, for
oe|l/C,Cland 0 < s —t < Tp,

Z—U
C/ )’

for some constant C” > 0. This says that, in (72), we can replace o;(z) by o,(u) up to a
modification of the value of the constant C' in the right-hand side. Indeed, the distance
lo1(u) — 04(2)| is less than C|u — z|, which is of order (s — ¢)*/? when multiplied by the heat
kernel of variance s — t.

Recalling the very basic formula §; p;, ( y 2)psy (2) dz = ps, 45, (y), for y € R and s1, 59 > 0,
we then deduce from the new version of (72) that

(73) 0[Py (2 = w)]| = [0 [0 pacs (= — I < Cpee(

}Qty?s(z7u> — P1/n+(s— t)o? (u) Z —u ‘ = ‘J p1/n qts(v U) Ps— t)o? (u)(U — u)] dv
C(s = t)!'Dinrc2(s—t)(z —u).

Following (73) and modifying the constant C' if necessary, the same holds true with o?(u)
replaced by o?(z), that is

}%{fs(’% u) - pl/nJr(sft)o?(z) (Z - u)} < C(S - t)'upl/nJrCQ(sft) (Z - U)
We then notice that

JR Pl/n+(s—t)a§(z)(z —u) (YQ(U) - Ytn(z)) du = JRp(s—t)af(z)(Z - U)(Ytn(v) - Ytn(z)) dv,

prl/nJrC?(st)(Z —u) (Y;(u) - Y;”(z)) du = J Dbz (s— t)(z —v) (Yn( ) — Y;tn(z)) dv,

R

from which we deduce that
(74) V() = meS_t) oy (2 — ) (Y () — Y(2)) du + €7, (2),

where € (2) denotes a remainder, bounded by C"(1 +[z[X)(s — t)*/2+1 the constant C’ being
independent of n. The integral with respect to the remainder can be estimated by means of
Proposition 19 since a/2 + p > (1 — «)/2. This says that we can forget the remainder €,
and do as if it was 0.

Below, we thus focus on the cross-integral driven by the first term only in the right-hand
side in (74). This permits to do the same as in the previous proofs: We can directly assume
that Y; is smooth in space and forget the superscript n in the notations. Regardless the
restriction €7, = 0, the cross-integral is still denoted by Sf(ZtT (y) — Zl'(x)) dYi(y).

Second step. The point is to prove (61) for —r < 2 < 2’ < r, with r = 1. By integra-
tion by parts (see the introduction of the section), it is equivalent to focus on Sj(Yt(y) -

Yy(z))dZ! (y), which reads

f f JR Opps—t(y = 2) ( fR Pls—tyo2(») (2 — ) (Ye(u) = Yi(2)) (Ye(y) — Yi(x)) du) dz dy ds.
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By (73), we can replace o4(z) by o,(y). Indeed, the function o; being Lipschitz in space, the
difference between the two terms can be bounded by (for a new value of C”)

1+ T2X f f 3/2+1/2+a/4|y x|a dy dS,

which is less than C”(1 + 72X)(T — t)*/4|x — 2/|'**. Actually, it is even sufficient to focus on

LT f JR OoPs—iy = 2) JR Pls—tyo2 () (2 — w)Yi(u) (YVi(y) — Yi(2)) dudz dy ds,

as the remainder, which reads Sf Sj $e Ppsi(y — 2)Yi(2) (Yi(y) — Yi(2)) dz dy ds, has been
already tackled within the framework of time-homogeneous environments.

Third step. We denote by J;r(z,2") the term in (75). The good point is that, by convo-
lution in z, the expression can be reduced to

J J J A3 oyt ™ D42 ) (W — w)Ye(w) (Yi(y) — Yi(z)) ds dy du.

Noting that 02p(s_s) () = 205[ps—t), we get that J,r(z,2’) is equal to

f f f 1t 02 )] 200esa (g ) V) (Vi) = Vi) dudy ds.

which, by integration by parts in u, also matches

f f f1+a 1200 () 2¥i0) (Yi(0) = i) dudy s

Integrating in time, we finally get

Frtwa) =2 [ [ [+ ) () i) (5(0) = io) dudy

9 f [+ 02(y)] " 2Yi(y) (Yily) — Yile)) dy.

The second term in the right-hand side writes

/

. f s 03@)]—1%[(54@) ~Yi(@))*] dy,

xT

and easily tackled by integration by parts, taking benefit of the Lipschitz property of o. It
is less than Cr2X(|z" — x[** + |2/ — z|'T29).
Fourth step. Tt thus remains to discuss

i 2 -3/2 y—u
QL JR[l +0;(y)] / pT_t(W)ath(U) (Yt(?/) - Yt(:ﬂ)) du dy.

Performing an integration by parts in u and using the Lipschitz property of o, it is equal to

2| f 1+ 0] Ot () (Vi) = Yia)) (V) = Yi))
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Using the analogue (73) for d,0,ps_; (which consists in adding a constant (s —¢)~"/2 in front

of the right-hand side), we can replace o2(y) by o;(y)o:(u). The resulting difference is indeed
less than Cr*X(|z’ — z|'T® + |2/ — z|'72*). We are thus left with

. 2 v u — Yz — Yy(r))du
2 [ 1+ o] 2o () (V) = i) (V) = Vi) dudy.

It can be put in the same form as in (67), with

It is thus sufficient to check (65) and (66), which is not very difficult since, for y > z (and
similarly for z < y), 0 < Gi(y, 2) < C'0,pu[(y — 2)/C"], for some constant C".

In order to complete the proof, we notice that all the exhibited bounds are of the form
CrX|z" — x|7, for v varying between i, = 2a and some Y., > 1. By standard Young’s
inequality, we can bound any |z’ — z|7 by C(|z' — x|Tmin + |2/ — z[Tmex). O

5.5. Decorrelation of the increments. Another strategy is to assume that ) is random,
with suitable decorrelation properties, so that the cross-integral can be constructed as a
stochastic integral. Denoting by (Z, G, P) the corresponding probability space (which models
some random ‘environment’ and which is given apart from the space (€2, 4, P) used to build
the solution to (1)), we claim:

Proposition 22. Let (¢(t,))o<t<r, zcr be a Brownian sheet with respect to some filtration
(Gi)o<t<t, 0n (2,G,P), such that, for anyt € [0, Ty|, the mapping Y, (seen as a random func-
tion) is G-measurable. Assume also that, for any T € [0,Ty], there exists a Gr-measurable
random variable Ky, with supgcr<q, Bl|kr|P] < 40 for all p = 1, such that, for all r > 1,

Vte [0,T], Yo, 2" € [-r,r], |Yi(z) = Yi(2)| < kprX|ae — 2'|%,
with o € (1/3,1/2), and
Vi, t' € [0,T], Ve e [—rr], |Yi(zx)—Yy(2)| < rprX|t’ —t|",

with x € (0,0/2) and x',n > 0. In addition let (kis(x, y)o<t<s<Typwyer be @ progressively-
measurable process, in the sense that the mapping Arg, x R? 3 (t,s,2,y) — kis(z,y) € R
is Gr @ B(Ar 1, x R?) measurable, where Arq, := {(t,s) € [0,T] x [0,Tp] : t < s}. Assume
that it satisfies

— T _ — T
()] < Cpaci (o), ks y)] < Cls =07 s (F57),

Letting Yys(2) = §; $z kp.s(z,u) dC(p, w) and defining Vi',(2) in a similar way by mollification,
consider ZF (y) given by (71) and 2" (y) given by (69). Then, for any o’ € (0,a), there
exist an exponent x' = x'(/,a,n,x), with X' — x as &’ — «, and a random variable K’,
with finite moments of any order, such that, almost surely, for any 0 < t < T < Ty, the
‘geometric integral’ of ZI' with respect to Y; makes sense and satisfies (61) with respect to
C replaced by ', a replaced by o and x replaced by x'.

Proof. First step. We first assume that Z! (y) and Y;(y) are regular in the variable y. By
(60), it is enough to focus on the cross-integral J, r(z,2’) := {7 [Vi(y) — Yi(2)]0. 2] (y) dy

instead of Z, p(z,2") = Sj [Z1(y) — 2] (x)]0,Yi(y) dy.
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By stochastic Fubini’s theorem and by a change of variable, we can write J,r(z,2") =

§ My o(w,2") ds, with

1) Htes) = [ e [ ([ "yl — 2 ) [Vil) - o) ) (o) | a:

Clearly, we can bound |J; r(x, 2')| by Ki(z,2') := St |H:s(z,2")| ds. The strategy is then to
bound the moments of I;(z, 2’) and thus to compute the bracket of the stochastic integral
in (76). The bracket reads

f f f f oy = 2 W)k = 2,0) (Yi(y) = Yo(w)) (Yily) = Ye(w)) dpdudy dy’.

Assuming that —r < x < 2/ < r, for some r > 1, and recalling that there exists a G;-
measurable random variable r, Wlth SUPg<i<T, [|/<Jt|p] < +oo for any p > 1, such that
Yi(2") — Yi(x)| < kyrX|a — x|a we can bound Ag(z), P almost surely, by

|A(2)] < C'Rir*X|a’ — :UI%‘J f fp(s pe(y—y)dy' dydp < C'kjr*X(s — t) |’ — 2.

Recalling, for a given p > 1, the standard inequality

7o [ o2 >\E[(f [([ ot it v ay) actom ) 1]
<G, [ et BL(A2) 6]

for a universal constant C,, and using the bound |03p,_4(2)| < C'(s — )73 p(s_p)/c(2), We
deduce that (the value of C, being allowed to increase from line to line) Ty < CprprX|x —
2'|V¥e (s — )71 so that

(77) E[|7'lt,s(:c,a:')\p]1/p < CpE[mf]l/p'f’X(S — 1) — a2

Since the singularity is non-integrable, we must provide another bound for the left-hand side.
By integration by parts in z, we write:

(78) o) = [ 20 >[ ['[ ( [ " okyuly — 2 ) [Yly) — ila)] dy) dc<p,u>] az

which may be split into Hy ((z,2") = H; , + H7,, with

= [ | [ ] (f 0okl = 2. 0)[Yi(0) = Vi + )] dy ) ()| 0z
’Htszf(/xpst UJ(J ok, (y —z,u)[Y;(z—i—u)—Y;(:c)]dy)dg“(p,u)]dz.

Repeating the proof of (77), but using in addition the bound for d,k and the fact that
Yi(y) = Yi(z +u)| < |y — (2 + u)|*, we obtain

E[[#H "] < CB[lrf]"r¥(s — £)M|a' — af (j
t

< CpE[|/{t|p]1/er(s — )2 — .
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(The basic argument is as follows: when computing the bracket of the stochastic integral,
the square of gradient of the kernel gives (r —s)~! and the square of |Y;(y) — Y;(z + u)| gives
(r—s)")

In order to handle %7, we notice that

’His = J 2ps_4(2) [J J [kpvs(x' —z,u) — k,s(r — 2, u)] [Y}(z + u) — Yt(x)] d¢(p, u)] dz.
R t Jr
Now, the bracket is less than C'kr?X(1 + |2/ — z|*) § (s — p)~"/*dp, so that

(80) E[|H§,S|p]1/” < CpE[|/<;t|p]1/er(s — )7+ |2 — x]v?).

From (77), (79) and (80) and from a standard interpolation argument, we deduce that, for
any € € (0,1/2 — «), we can find £1(¢) > 0 and e4(€) > 0, both converging to 0 with €, such
that

B[[H: "] < CE[|m[r]Frt (s — )71 O — ]t 2reme

(81) / p1Y/P, x+1/2—a+tea(e) —1+e1(e) |,/ 2a
< CIE[[r "] "r (s —1t) |z’ — x|,

Recalling that o > 1/3, we have 1/2 — a < /2. This says that we can assume without any
loss of generality that x > 1/2 — a. Then, rX*1/2-ate2() < p2x+e2(9) By integration from ¢
to Ty, we get

(2) B[ sw |Tr(z,a)"]"" < B[Ki(z, )] < CyB[|ro] o=@’ — af,
t<T<Ty
Second step. Eq. (82) is the basic step for applying, for a given 0 < t < Tj, Kolmogorov’s
continuity criterion. Anyhow, standard Kolmogorov’s criterion doesn’t apply since J; r(x, ')
is not additive in the variables x,2z’. To bypass this difficulty, we use Theorem 23 below,
which is a refined version of Kolmogorov’s criterion. It applies in the current framework
because

Jer(@,y) + Ty, o) — Ter(w,2') = = (2 (') = Z2{' () (Yely) — Yel)).

Indeed, assume for the moment that, for any o/ € (0, «), there exists e(’), with (a/) — ()
as o — a, such that supycrcr, Ko y+e(a) (2 )ost<r) is in any LP for any p = 1. Then (87)
holds with 71 = «, 72 = o’ and ¢ = 2+’ where &’ is a random variable with finite
moments of any order. The index T here plays the role of the index L in (87): As L is
assumed to be in N in (87), T can be chosen first in a countable dense subset of [t,Tp];
as Y; is assumed to be smooth, cross-integrals can be explicitly defined and there is indeed
no difficulty to replace in (82) the supremum over T € [t,Ty] by a supremum over T in a
countable dense subset of [t, Tp].

Applying Theorem 23, we deduce that, for any o/ € (0, «), any r > 0 and any 0 < ¢t < Tj,
there exists a random variable F;"’“', with finite moments of any order, the bounds being
uniform in ¢ € [0, Ty], such that sup,cpop, |Fo (2, 2')] < I |z — 2/ |2 for any z, 2’ € [—r, r].
Pay attention that F:’a’ depends on r as Kolmogorov’s criterion applies on segments. To
get the explicit dependence of the moments of F;”O" upon the variable r, we can apply

Kolmogorov’s criterion to J;r(ra,ra’), with x,a’ € [—1,1]. We can find £(a’) (possibly
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different from the previous one), with (/) — 0 as o — a, such that

sup sup {rPFCIE] sup [T7P]} < oo,
r>1 0<t<Ty I<T<Tp

Letting T = sup, s {r 12X F2@ITY we have, for any p > 1/e(c)

sup E[(T¢)"] < Z {T—p[2x+2a(0/)] sup E[(F;,a’)p]} .

0<t<Ty et 0<t<Tp
which shows that, for any ¢ € [0, Tp], it holds P-almost surely, for all z, 2" € [—r,r],

(83) sup | (r,o!)| < TP Oa! g
t<T<T)
the random variable I'? having finite moments of any order, the bounds being uniform in
te [0, TQ]
Third step. The last point of the proof is to ‘exchange’ the ‘Vt € [0, Tp]” and the ‘P-almost
surely’ in (83). The argument consists of another application of Kolmogorov’s criterion. We

thus investigate Jyr(z,2") — Jp r(z, o) for t <t < T. It can be split into Sf Hyis(z,2')ds +
StT,["Ht,s(a:, x') — Hy s(x, 2")] ds. By (81), it is quite straightforward to see that

t/
E[ f Hey(z,a) ds
t

The point is thus to bound E[(SZ:O [Hyo(z,2") — Hy s(2,2')| ds)P]¥P. To this end, we notice
that H; s(z,2’) in (76) depends upon ¢ through three quantities: the derivative of the heat
kernel, the initial time in the stochastic integral and the increment of Y. Therefore, we must
investigate the regularity of each of these three quantities upon t.

We start with the derivative of the heat kernel. Above, we just used the bound |02p,_(2)| <
C'(s — t)~*?p(s_py)cr(2). Noting that we also have |0;02ps_(2)] < C'(s — )™ 2p(s_s)cr (2),
we deduce by interpolation that {, [03p,_i(z) — 02ps_p(2)|dz < C'(s — /)32 (¢ — t)“.
This says that, when estimating E[|H, ,(z, 7") — Hy o(z, 2')[P]"/?, the dependence of the heat
kernel upon the time parameter t leads to a slightly modified form of (81), with a new factor
(' — 1) and with e5(€) replaced by e5(e) + €.

We now discuss what happens when the initial time varies in the stochastic integral ap-
pearing in the definition of H; s(x,2’). In (77), (79), (80), the interval of integration of the
variable p is [t,s]. This leads to the following singularities: (s —¢)~! in (77), (s — t)~'+/2
in (79) and (s —¢)~** in (80). When s > t' and p lives in [t,#], the length (s —t) can be
replaced by (¢’ —t). This leads, for an arbitrary € € (0, 1), to the following new singularities:
(' =) (s —t)< in (77), (' =) (s — )71 =+/2in (79) and (¢’ — ) (s — )4+ in (80).
Again, this says that, when estimating E[|H(z,2") — Hy o(x,2/)[P]"/7, the dependence of
the stochastic integral upon the time parameter ¢ leads to a slightly modified form of (81),
with a new factor (¢’ —¢)¢ and with £5(¢) replaced by e5(€) + €.

We finally discuss what happens when the time parameter varies in the increment of Y.
We recall that

1
’ /p<C'(t'—t)€1(E)E[|/<;|p]1/p 2x+e2(e)| ) _ |20
<C, ¢ r |z — z[*.

Yy (x) = Yi()| < mprX' [t — 8",
so that (modifying the random variable k),

Yu(2') = Yy(x) — (Ya(2') = Yi(2))| < morX [t —t]".
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Since
Yy (2') = Yy (z) = (Ya(2) = Yi(@))| < (e + ) r¥|2’ — 2|,
we get by interpolation (with a new definition of )
[Yola') = Yolw) = (&) = Yil@)| < mor X | — 1]’ — |10

This leads to a new version of (77), replacing therein x by x + € x/, @ by (1 —€¢)a and adding
the factor [t/ —t|<". For our purpose, there is no need to change (79) and (80) (it is enough to
split Yy (2') = Yy (x) — (Yi(2') = Yy(z)) into Yy (2') — Yy (x) and Yy (2') — Yy (x) and to reproduce
the analysis for both terms). This says that, when estimating E[|H; (v, 2') —Hy o (z, 2)|P]V?,
the dependence of Y upon the time parameter ¢ leads to a slightly modified form of (81),
with a new factor (¢’ — )" and with e5(¢) replaced by e5(€) 4+ €X' (up to modification of \’)
and with « replaced by o — €.

Collecting the estimates in the three different cases, we end up with
(84) E[ sup |$,T($,$,) . \Zyj(l‘, x/)|p]1/p < C;T2X+€2(e)|t, o t|€3(5)|ZL‘/ . x|2a—e’

v<T<Ty

with e5(€),e3(e) — 0 as € — 0. The notations in the above inequality are a bit ambiguous:
the times t and t' are fixed so that, in the supremum 7" varies from t’ to Ty. In order to
avoid such an ambiguity, we let Jyr(x,2’) = 0 if T < t. In particular, for ¢t < T < t/,
\Ter(x,2') — Jpr(z,2')] < Sf |H:s(x,2")|ds. Reproducing the analysis we just performed,
we deduce that the bound right above also holds with sup, <7, replaced by sup;cr<y and
thus by supg<r<p, (as Jpr and Jy r vanish when T' < t). It says that supg<r<r, | Jr (@, 2) —
Jvr(z,2’)| is a random variable, the moments of which are bounded in any L” in a similar
fashion as in the increments in (84). By standard version of Kolmogorov’s theorem (applied
in the variable t), we deduce that

(85) E[ sup sup |Jir(z, x’)|p] e < C;r2X+52(E)|x' — z|?E,

0<t<T 0<T<To
Now, we can apply the extended version of Kolmogorov’s theorem, see Theorem 23 once
again, and then complete the proof in the mollified setting.

Fourth step. We now proceed with the last step of the proof. We are to show that the
mollified cross-integrals converge almost surely. In that framework, we must recall that the
mollification is obtained by a joint mollification of Y;(z) (in the variable z) and Y; (x) (in
the variable x as well) by convolution with the heat kernel. We denote by (J/%(z,2'))n>1 the
corresponding sequence of cross-integrals, for given values of t < T in [0, Tp] and z, 2’ € R.

The strategy is to discuss the regularity of the sequence (J%(7,2))n=>1 With respect to the
mollification parameter n (or more precisely 1/n, which is the variance of the kernel at rank
n). The principle is exactly the same as the one used, in the previous step, for investigating
the time regularity. On the same model as (84), we can prove that, for 1 < m < n,

B[ swp |[(7 = Ti) = (T = T2}
0<T<Th
< C;)m_83(e)T2X+82(E)|t/ o t‘ag,(e)‘x/ o x|1/2+a—e’
with a possibly new value of €3(€). It is plain to deduce that
Efsup sup |(F7p = i) (@.2)']" < GO — 450 |af — aft2eee,

n=1 0<T<To
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which is enough to complete the proof.

Final step. To finish with, it remains to check that (Z!(r)).cr satisfies the required
regularity assumption, uniformly in 0 < ¢t < T < 7. The argument is similar to the one
used in the previous step. Indeed, it is quite straightforward to see that

J J 2pe_i(z — 2 (JJ 0.s(2, 1) dC(p, ))dsdz
so that

zl () - f f 2ps_y( )l £ ) JR[kp,s(x’ — z,u) — k,o(2' — z,u)] d¢(p, u)] dsdz
=£‘k@m%@LfL<f%w@—%wd®ddmwkhw-

The above formula must be compared with (76). It is of the same type but Y;(y) — Y;(z) has
been replaced by 1. Basically, it says that the above analysis holds but with 2« replaced by
a and 2y replaced by y. O

5.6. The environment as the solution of a forward SPDE. As a concrete application
of Propositions 20 and 22, we consider the case when (Y;(x))o<t<1y2er is the solution of a
forward SPDE of the form

d:Yi(z) = LYy () dt + fi(w) dC(t, @),

where (((t, z))o<t<t, 2er is @ Brownian sheet with respect to some filtration (G;)o<t<1, on some
(Z,G,P), (L; = by(-)0r + (1/2)02(-)0%)o<t<T, is a family of second-order differential operators
driven by bounded smooth coefficients with bounded derivatives, the coefficient (0y(-))o<i<t;
being bounded from below by a positive constant, and (fi(x))o<i<ry zer IS @ progressively-
measurable random field, uniformly bounded by a deterministic constant (independent of
the randomness). The initial condition (Yy(x)).er is collection of Gy-measurable random
variables such that |Yy(z) — Yo(2')| < korX|z — 2/|%, for all z,2" € [—r,r], with r > 1,
where a € (1/3,1/2), x € [0,a/2) and k¢ is a Gy-measurable random variable such that
E[|ko[?] < 400 for all p > 1.

Then, for any 0 < t < s < Ty, we can express Y, in terms of the fundamental solu-
tion (qis(z,Y))o<t<szyer Of (Lt)o<t<t,, which, together with its derivatives, behave as the
Gaussian heat kernel and its derivatives (see [11]). We write

(36) m@:mw+Lm@—nmmwnw@+fkn@%mwmmw>

Choosing t = 0, we derive a mild representation of Y;(x) in terms of the initial condition
Ys. Up to a modification of x, this permits to prove that (Y;(z)).er satisfies the continuity
assumption in Proposition 22. The continuity of the second term in the right-hand side
above is easily tackled. The third term can be handled on the same model as Z! in the
proof of Proposition 22.

Then, we can define (Z] (2))4er for any 0 <t < T < Ty. By the previous results, we can
prove that the cross-integral is well-defined. According to the decomposition (86), we can
indeed split ZI into three terms: The first one coincides with ZI' in Proposition 18; the

second one with Z] in Proposition 20 and the last one with Z! in Proposition 22. In each
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case, the cross-integral of Z' with respect to Y; is well-defined, proving that the cross-integral
of ZI' with respect to Y; is also well-defined.

5.7. Refined Kolmogorov Theorem. The following theorem is an adaptation of the Kolo-
morogov continuity theorem, the proof of which is left to the reader:

Theorem 23. Let (Rr, : [-1,1]* 3 (z,y) — Rp(x,y) € R) ey be a family of random fields
such that, for some p = 1, there exist a constant C' > 0, three exponents 3,7v1,7 > 0 and a
random variable (, satisfying,

V$’, ye [_]-7 1]27 E[Sup |RL(x7 y)|p] < C|ZL‘ - y|1+57
(87) LeN
VL € N,V.T <y<ze [_17 1]7 |RL(x7y) + RL(y,Z> - RL('rv Z)| < C|.§L’ - y|71|y - Z|A{2'

Then, for 0 < ¢ < min(y; + e, 5/p), there exist constants C' := C'(y1,7v2, 5,p) and C" :=
C"(C, 1,72, 8,p) and a non-negative random variable (', with E[|C'[P] < C”, such that,

VLeN, v <ye[-L1], |Rp(z,y)|<C' (¢ + )|z -yl

6. CONNECTION WITH THE KPZ EQUATION

KPZ equation was introduced by Kardar, Parisi and Zhang in [17] in order to model the
growth of a random surface subjected to three phenomena: a diffusion effect, a lateral growth
and a random deposit. It has the formal (normalized) shape:

(88) Owu(t, ) = L%u(t, x) + | du(t, x)|* + {(t, x),

with 0 as initial condition, where Q is a time-space white noise (that is the time-space deriva-
tive of a Brownian sheet, defined on (Z, G, P) as discussed in Proposition 22). Unfortunately,
it is ill-posed. The basic reason is that the gradient is not expected to exist as a true func-
tion, thus making the term |d,u(t,z)[* ill-defined. Formally, such a term must be seen as
the square of a distribution.

Two strategies have been developed so far to give a sense to (88). The first one goes back
to [4]. It consists in taking benefit of the so-called Hopf-Cole exponential transformation,
originally used within the framework of Hamilton-Jacobi-Bellman equations. Basically, u
is defined as the exponential of the solution of the stochastic multiplicative heat equation.
The second approach is due to Hairer [14] in the case when x is restricted to the torus (in
which case ( is defined accordingly). Therein, the basic point is to solve second-order PDEs
driven by a distributional first-order term by means of rough paths theory, which is precisely
the strategy we used in Section 3 to solve (12). The two notions coincide but the resulting
solution solves a renormalized version of (88), which writes (again in a formal sense) as (88)
with an additional ‘—c0” in the right-hand side. The normalization must be understood as
follows: When mollifying the noise (say ¢ into ("), Eq. (88) admits a solution, denoted
by u™, but the sequence (u"),>1 is not expected to converge. To make it converge to the
solution of (88), some ‘counterterm’ must be subtracted to the right-hand side of (88): This
counterterm is a constant v depending upon n, which tends to co with n, thus explaining

the additional ‘—o0’.
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6.1. Polymer measure. For a given 7; > 0 and for any n > 1, we can introduce the
(random) polymer measure associated with the noise (™:

dQC" 7o n
P ~exp( ) C(t,Bt)dt),

where (By)o<i<1, is @ Brownian motion under P (independent of ¢), the symbol ~ indicating
that the right-hand side is normalized in such a way that Q¢ is a probability measure.
By Girsanov’s transformation and Feynman-Kac formula, the dynamics of (B;)o<t<r, is the
solution of the SDE (1) with Y;(z) = w™(Ty — ¢, x) (the definition of u" involves 4™, but 7"
is unnoticeable in the definition of the polymer measure as it is hidden in the normalization
constant of the right-hand side). In that framework, our result says that, as n tends to oo, the
law of (Bt)o<t<t, under Q¢ converges towards the law of the solution (X¢)o<i<z, to (1) with
Yi(z) = uw(Ty—t, z), provided the underlying geometric rough path structure exists, which is
checked below in the periodic setting. By [14], the Holder exponent « in our assumption (see
Definition 3) can be chosen as a = 1/2 — ¢, € being as small as desired, and the exponent x
can be chosen as 0 as the solution is periodic. Therefore, the law of (X;)o<i<r,, as defined in
Theorem 8, reads as a rigorous interpretation of the (a priori ill-defined) polymer measure
Q¢ on the canonical space C([0, 7], R), which is a new result.

6.2. Construction of the rough path. Generally speaking, the main lines for proving the
existence of a geometric cross-integral between (Y;(z) = u(Ty —t,x)).er and the correspond-
ing (ZF'(2))per, for given 0 < t < T < Ty, are explained in [14, Subsection 7.1]. Anyhow, the
result in [14] doesn’t exactly fit our requirements since the version of Z!" which is considered
therein reads as a stationary version of the one we have been using so far and thus slightly
differs from it.

In [14], the rough path structure is shown to exist by means of general results connecting
Gaussian processes to rough paths. Actually, our results in Section 5 permit to recover
the construction. It is indeed proved in [14, Theorem 1.10] that u expands as the sum of
the stationary mean-zero solution u! of the stochastic additive heat equation and a Holder
continuous remainder u? with a Holder exponent arbitrarily close to 1. By Proposition 19,
the construction of the cross-integral of ZI' (with the right definition in (11)) with respect
to the remainder u?(Ty — t, -) is easily handled. As u can be split into two parts, ZI can be
split into two parts as well: One part, denoted by ZtT 1 involves u'(Ty — t,-) and another
one, denoted by Z*, involves u?(Ty — t,-). Since the part involving u?(Ty — t,-) has the
same regularity as u?(Ty — t,-), we can apply Proposition 19 again in order to define the
cross-integral of Z/ with respect to u!(Ty —t,-).

The only remaining point is thus to construct the cross-integral of u!(Ty—t, -) with respect
to Z"'. Unfortunately, u!(Ty — -, -) is the solution of a backward SPDE whereas results in
Subsection 5.6 apply to forward SPDESs, the time reversal affecting the notion of adaptedness.
This asks for a rewriting of the argument. The fact that u! is required to be of zero-mean (on
the torus) doesn’t play a role for investigating the existence of the cross-integral as only the
space increments of u' matter for deﬁning the integral Therefore, forgetting the zero-mean
constraint, we can write, with Y;'(z) = u! (T, — ¢, )

Y (x) = Llpst(ﬂf— dy+f J Po—t(x —y) dC(p, y),



for 0 <t < s <Tpand x,y € S', where S! is the unit circle and (ps_¢())o<i<s, reR denotes
the heat kernel on S'. This permits to express the cross integral ItlT (r,2") = S
2! (z)) dYy(y) as (at least in a formal way)

f f f 2Dst(y — 2) — Oapsi(z — 2))Y, U Oups—t(y — W)Y, (w )dw> dzdsdy
J J Ll 2ps—i(y — 2) — O2ps— t(x—Z) (J . Oupp—t(y — w) d¢(p, )) dzdsdy.

As in the proof of Proposition 22, the second term can be tackled by integration by parts.
Transferring the derivative in y from p,_; to ps_, applying stochastic Fubini’s theorem
(paying attention to the fact that the notion of adaptedness is reversed because of the time-
reversal) and then making a change of variable, it reads (up to the boundary terms)

[ L[ ([ et w0202 - i) ) actoan] aas,

which is very close to (76). The proof is then similar to the one of Proposition 22.

The first term in the decompomtwn of I&T(x, x') can be split itself into two pieces, ac-
cording to the symbol ‘minus’ in the difference ?p, ;(y — z) — 2ps_s(x — z). The first part
can be integrated directly. It reads

: ﬁ ' [ <L Bupe i’ — 2)Y(2) dz> o UR Oupe iz — 2)V(2) dz> 2} ds.

The second piece can be also computed explicitly. It reads

LT( 2ps_i(x — 2)Y} (2 )dz) (Ll (ps—i(z' = 2) — ps—i(x — 2)) Y (2) dz) ds.

By standard bounds on p,_, both terms are bounded by C|a’ — 2|7 (§/ (s — t)*~'=7/2 ds), for
any v < 2a, which permits to define a ‘geometric’ cross-integral satlsfymg (61).

6.3. Structure of the drift and further prospect. Decomposition (49) applies and says
that the ‘drift’ part in the dynamics under the polymer measure is almost 3/4-Holder contin-
uous, which is a new result as well (we refer to [21] for a survey on the connection between
KPZ equation and polymers). Actually, as the remainder u? in the decomposition of the
solution of the KPZ equation has a Holder exponent close to 1, it can be proved, on the
same model as the proof of Remark 15, that only the cross- mtegral of u (Ty —t,-) with 2!
matters for computing the cross- mtegral part in the definition of b in Deﬁnltlon 14.

A challenging question is to investigate the long run behavior of X as T tends to the
infinity. Surely, this is connected with the long-run behavior of the solution to the KPZ
equation, which is a highly non-trivial question, see again [21] for a survey. This requires a
more systematic analysis of the long-run behavior of the solution to (1), which is left as a
research program for the future.
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