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ROUGH PATHS AND 1D SDE WITH A TIME DEPENDENT

DISTRIBUTIONAL DRIFT. APPLICATION TO POLYMERS.

FRANÇOIS DELARUE1 AND ROLAND DIEL2

Laboratoire J.-A. Dieudonné,
Université de Nice Sophia-Antipolis and UMR CNRS 7351,

Parc Valrose, 06108 Nice Cedex 02, France.

Abstract. Motivated by the recent advances in the theory of stochastic partial differen-
tial equations involving nonlinear functions of distributions, like the Kardar-Parisi-Zhang
(KPZ) equation, we reconsider the unique solvability of one-dimensional stochastic differen-
tial equations, the drift of which is a distribution, by means of rough paths theory. Existence
and uniqueness are established in the weak sense when the drift reads as the derivative of a
α-Hölder continuous function, α ą 1{3. Regularity of the drift part is investigated carefully
and a related stochastic calculus is also proposed, which makes the structure of the solutions
more explicit than within the earlier framework of Dirichlet processes.

1. Introduction

Given a family of continuous paths pR Q x ÞÑ Ytpxqqtě0 with values in R, we are interested
in the solvability of the stochastic differential equation

(1) dXt “ BxYtpXtq dt` dBt, t ě 0,

with a given initial condition, where BxYt is understood as the derivative of Yt in the sense
of distribution and pBtqtě0 is a standard one-dimensional Wiener process.

When BxYt makes sense as a measurable function in Lp
loc

pRdq, for p ą 1, pathwise existence
and uniqueness are known to hold: See the earlier papers by Zvonkin [27] and Veretennikov
[25] in the case when the derivative exists as a bounded function together with the more
recent result by Krylov and Röckner [18] and the Saint-Flour Lecture Notes by Flandoli
[8]. In the case when BxYt only exists as a distribution, existence and uniqueness have
been only discussed within the restricted time homogeneous framework. When the field Y is
independent of time, X indeed reads as a diffusion process with expp´Y pxqqBxpexppY pxqqBxq
as generator. Then, solutions to (1) can be proved to be the sum of a Brownian motion and
of a process of zero quadratic variation and are thus referred to as Dirichlet processes. In
this setting, unique solvability can be proved to hold in the weak or strong sense according
to the regularity of Y , see for example the papers by Flandoli, Russo and Wolf [9, 10] on the
one hand and the paper by Bass and Chen [3] on the other hand.

In the current paper, we allow Y to depend upon time, making impossible any factorization
of the generator ofX under a divergence form and thus requiring a more systematic treatment
of the singularity of the drift. In order to limit the technicality of the paper, the analysis is
restricted to the case when the diffusion coefficient in (1) is 1, which is already, as explained
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right below, a really interesting case for practical purposes and which is, anyway, somewhat
universal because of the time change property of the Brownian motion. As suggested in the
aforementioned paper by Bass and Chen, pathwise existence and uniqueness are then no more
expected to hold whenever the path Yt has oscillations of Hölder type with a Hölder exponent
strictly less than 1{2. For that reason, we will investigate the unique solvability of (1) in
the so-called weak sense by tackling a corresponding formulation of the martingale problem.
Indeed, we will consider the case when Yt is Hölder continuous, the Hölder exponent, denoted
by α, being strictly greater than 1{3, hence possibly strictly less than 1{2, thus yielding
solutions to (1) of weak type only, that is solutions that are not adapted to the underlying
noise pBtqtě0. At this stage of the introduction, it is worth mentioning that the threshold
1{3 for the Hölder exponent of the path is exactly of the same nature as the one that occurs
in the theory of rough paths.

Actually, the theory of rough paths will play a major role in our analysis. The strategy
for solving (1) is indeed mainly inspired by the papers [27, 25, 18] we mentioned right above
and consists in finding harmonic functions associated with the (formal) generator

(2) Bt ` Lt :“ Bt ` 1

2
B2

x ` BxYtpxqBx.

Solving Partial Differential Equations (PDEs) driven by Bt ` Lt, say in the standard mild
formulation, then requires to integrate with respect to BxYtpxq (in x), which is a non-classical
thing. This is precisely the place where the rough paths theory initiated by Lyons (see
[20, 19]) comes in: As recently exposed by Hairer in his seminal paper [14] on the KPZ
equation, mild solutions to PDEs driven by Bt ` Lt may be expanded as rough integrals
involving the standard heat kernel on the one hand and the ‘rough’ increments BxYt on the
other hand. In our case, we are interested in the solutions of the PDE

(3) Btutpxq ` Ltutpxq “ ftpxq,
when set on a cylinder of the form r0, T s ˆ R (with a terminal boundary condition at time
T ) and when driven by a smooth function f . Solutions obtained by letting the source term
f vary generates a large enough ‘core’ in order to apply the standard martingale problem
approach by Stroock and Varadhan [23] and thus to characterize the laws of the solutions to
(1).

Unfortunately, although such a strategy seems quite clear, some precaution is in fact
needed. When α is between 1{3 and 1{2, which is the typical range of application of Lyons’
theory, the expansion of mild solutions as rough integrals involving the heat kernel and the
increments of BxYt is not so straightforward. It is indeed not enough to assume that the
path R Q x ÞÑ Ytpxq has a rough path structure for any given time t ě 0. As explained in
detail in Section 2, the rough path structures, when taken at different times, also interact,
asking for the existence, at any time t ě 0, of a ‘lifted’ 2-dimensional rough path with Yt
as first coordinate. We refrain from detailing the shape of such a lifting right here as it is
longly discussed in the next section. We just mention that, in Hairer [14], the whole family
pYtpxqqqtě0,xPR has a Gaussian structure, which permits to construct the lifting by means of
generic results on rough paths for Gaussian processes, see Friz and Victoir [12]. Existence
of the lifting under more general assumptions is a thus a challenging question, which is
(partially) addressed in Section 5: The lifting is proved to exist in several cases, including
that when α ą 1{2, when pYtpxqqtě0,xPR has some smoothness in time (and in particular when
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it is time homogeneous) or when it satisfies a forward SPDE driven by a space-time white
noise and by a kernel with the same kind of singularities as the Gaussian kernel. Another
difficulty is that, contrary to Hairer [14] in which the problem is set on the torus, the PDE is
here set on a non-compact domain. This requires an additional analysis of the growth of the
solutions in terms of the behavior of pYtpxqqtě0,xPR for large values of |x|, such an analysis
being essential for discussing the non-explosion of the solutions to (1).

Besides existence and uniqueness, it is also of great interest to understand the specific
dynamics of the solutions to (1). Part of the paper is thus dedicated to a careful analysis of
the infinitesimal variation of X , that is of the asymptotic behavior of Xt`h ´ Xt as h tends
to 0. In this perspective, we prove that the increments of X may be split into two pieces: a
Brownian increment as suggested by the initial writing of Eq. (1) and a sort of drift term,
the magnitude of which is of order hp1`βq{2, for some β ą 0 that is nearly equal to α. Such a
decomposition is much stronger than the standard decomposition of a Dirichlet process into
the sum of a martingale and of a zero quadratic variation process. Somehow it generalizes
the one obtained by Bass and Chen in the time homogeneous framework when α ě 1{2. As
a typical example, p1` βq{2 is nearly equal to 3{4 when Yt is almost 1{2-Hölder continuous,
which fits for instance the framework investigated by Hairer [14]. In particular, except trivial
cases when the distribution is a true function, integration with respect to the drift term in
(1) cannot be performed as a classical integration with respect to a function of bounded
variation. In fact, since the value of p1 ` βq{2 is strictly larger than 1{2, it makes sense to
understand the integration with respect to the drift term as a kind of Young integral, on the
same model as the one developed by Young in the earlier paper [26]. We here say ‘a kind
of Young integral’ and not ‘a Young integral’ directly since, as we will see in the analysis,
it sounds useful to develop a stochastic version of Young’s integration, that is a Young-like
integration that takes into account the probabilistic notion of adaptedness as it is the case
in Itô’s calculus.

In the end, we prove that, under appropriate assumptions on the regularity of the field
pYtpxqqtě0,xPR, Eq. (1) is uniquely solvable in the weak sense (for a given initial condition)
and that the solution reads as

(4) dXt “ bpt, Xt, dtq ` dBt,

where bpt, x, hq is a function from r0,`8q ˆRˆ r0,`8q into R and the integral with respect
to bpt, Xt, dtq makes sense as a stochastic Young integral, the magnitude of bpt, Xt, dtq being
of order dtp1`βq{2.

The examples we have in mind are twofold. The first one is the so-called ‘Brownian
motion in a time-dependent random environment’ or ‘Brownian motion in a time-dependent
random potential’. Indeed, much has been said about the long time behavior of the Brownian
motion in a time-independent random potential such as the Brownian motion in a Brownian
potential, see for example [2, 5, 6, 15, 16, 22, 24]. We expect our paper to be a first step
forward toward a more general analysis of one-dimensional diffusions in a time-dependent
random potential, even if, in the current paper, nothing is said about the long run behavior of
the solutions to (1), this question being left to further investigations. As already announced,
the second example we have in mind is the so-called Kardar-Parisi-Zhang (KPZ) equation
(see [17]), to which much attention has been paid recently, see among others the seminal
papers by Bertini and Giacomin [4] and Hairer [14] about the well-posedness on the one
hand and by Amir, Corwin and Quastel [1] about the long time behavior on the other hand.

3



In this framework, Y must be thought as a realization of the time-reversed solution of the
KPZ equation, that is Ytpxq “ upω, T ´ t, xq, T being positive and upω, ¨, ¨q denoting the
random solution to the KPZ equation and being defined either as in Bertini and Giacomin
by means of the Cole-Hopf transform or as in Hairer by means of renormalization arguments.
Then, it is worth noting that, in this framework, Eq. (1) reads as the equation for describing
the dynamics of the canonical path pwtq0ďtďT on the canonical space Cpr0, T s,Rq under the
polymer measure

exp

ˆż T

0

9ζpt, wtq dt
˙
dPpwq,

where 9ζ is a space-time white noise and P is the Wiener measure, the white noise being
independent of the realizations of the Wiener process under P. In this perspective, our
result provides a quenched description of the infinitesimal dynamics of the polymer. As for
the analysis of one-dimensional processes in a random potential, additional results about the
long time behavior would be of great interest. Again, we hope to handle this question in
future works.

The paper is organized as follows. We remind the reader of the rough paths theory in
Section 2. Main results about the solvability of (1) are also exposed in Section 2. Section
3 is devoted to the analysis of partial differential equations driven by the operator (2). In
Section 4, we propose a stochastic variant of Young’s integral in order to give a rigorous
meaning to (4). We discuss in Section 5 the construction of the ‘rough’ iterated integral that
makes the whole construction work. Finally, in Section 6, we explain the connection with
the KPZ equation.

2. General Strategy and Main Results

Our basic strategy to define a solution to the SDE (1) relies on a suitable adaptation of
Zvonkin’s method for solving SDEs driven by a bounded and measurable drift (see [27]) and
of Stroock and Varadhan’s martingale problem (see [23]). The main point is to transform
the original equation into a martingale. For sure such a strategy requires a suitable version
of Itô’s formula and henceforth a right notion of harmonic functions for the generator of the
diffusion process (1). This is precisely the point where the rough paths theory comes in, on
the same model as it does in the paper by Hairer for solving the KPZ equation.

This section is thus devoted to a sketchy presentation of rough paths theory and then to
an appropriate reformulation of Zvonkin’s method.

2.1. Rough paths on a segment. In order to introduce elements of rough path theory,
we will use the approach due to Gubinelli in [13].

Given α P p0, 1s and n P Nzt0u and given a segment I Ă R, we denote by CαpI,Rnq the set
of α-Hölder continuous functions f from I to Rn. We then define the seminorm

}f}Iα :“ sup
x,yPI,x‰y

|fpyq ´ fpxq|
|y ´ x|α and the norm vfwIα :“ }f}I8 ` p1 _ max

xPI
|x|q´α

2 }f}Iα,

with }f}I8 :“ supxPI |fpxq| and a _ b “ maxpa, bq. Note that the factor p1 _ maxxPI |x|q´α{2

is somewhat useless and could be replaced by 1 at this stage of the paper. Actually it will
really matter in the sequel, when considering paths over the whole line. Similarly, we denote
by Cα

2
pI,Rnq the set of functions R from I2 to Rn such that Rpx, xq “ 0 for every x and with
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finite norm }R}Iα :“ supx,yPI,x‰yt|Rpx, yq|{|y ´ x|αu. (Functionals defined on the product
space R2 will be denoted by calligraphic letters).

For α P p1{3, 1s, we call α-rough path (on I) a pair pW,W q where W P CαpI,Rnq and

W P C2α
2 pI,Rn2q such that, for any indices i, j P t1, . . . , nu, the following relation holds:

W
i,jpx, zq ´ W

ijpx, yq ´ W
ijpy, zq “ pW ipyq ´ W ipxqqpW jpzq ´ W jpyqq, x ď y ď z.(5)

We then denote byRαpI,Rnq the set of α-rough paths; with a slight abuse of notation, we will
often only write W for the rough path pW,W q. The quantity W i,jpx, yq must be understood
as a value for the iterated integral (or cross integral) “

şy
x
pW ipzq ´ W ipxqq dW jpzq” of W

with respect to itself (we will also use the tensorial product “
şy
x
pW pzq ´ W pxqq b dW pzq”

to denote the product between coordinates). Whenever α “ 1, such an integral exists in
a standard sense. Whenever α ą 1{2, it exists as well, but in the so-called Young’s sense
(see [26, 19]). Whenever α P p1{3, 1{2s, which is the typical range of values in rough paths
theory, there is no more a canonical way to define the cross integral and it must be given a
priori in order to define a proper integration theory with respect to dW . In that framework,
condition (5) imposes some consistency in the behavior of W when intervals of integration
are concatenated. Of course, W plays a role in the range p1{3, 1{2s only, but in order to
avoid any distinction between the cases α P p1{3, 1{2s and α P p1{2, 1s, we will refer to the
pair pW,W q in both cases, even when α ą 1{2, in which case W will be just given by the
iterated integral of W .

Given W P RαpI,Rnq as above, the point is then to define the integral “
şy
x
vpzq dW pzq”

of some function v (from I into itself) with respect to the coordinates of dW for some
rx, ys Ă I. When v belongs to CβpI,Rq, for β ą 1 ´ α, Young’s theory applies, without
any further reference to the second-order structure W of W . Whenever β ď 1 ´ α, Young’s
theory fails, but, in the typical example when v is W ´ W pxq itself (or one coordinate of
W ´ W pxq), the integral is well-defined as it is precisely given by W . In order to benefit
from the second-order structure of W for integrating a more general v, the increments of v
must actually be structured in a similar fashion to that of W . This motivates the following
notion: For β P p1{3, 1 ´ αs, we say that a path v is β-controlled by W if v P CβpI,Rq and
there is a function BWv P CβpI,Rnq such that the remainder term

R
vpx, yq :“ vpyq ´ vpxq ´ BWvpxqpW pyq ´ W pxqq, x, y P I,

is in C
2β
2 pI,Rq (pay attention that, in the above formula, BWvpxq reads as a row vector -as it

is often the case for gradients- and pW pyq ´ W pxqq as a column vector). For β P p1 ´ α, 1s,
this notion is pretty useless: We then say that a path v is β-controlled by W if v is simply in
CβpI,Rq, which is to say that the above holds with BWvpxq “ 0 and Rvpx, yq “ vpyq ´ vpxq.
For β P p1{3, 1s, we denote by BβpI,W q the set of such pairs pv, BWvq. We emphasize that
BWv may not be uniquely defined, but, when there is no possible confusion on the value of
BWv, we will only write v for pv, BWvq.

We are then able to define the integral of a function v that is controlled byW (see [14, 13]):

Theorem 1. Given α, β P p1{3, 1s, let W P RαpI,Rnq be a rough path and v P BβpI,W q
be a path controlled by W . For two reals x ă y in I, consider the compensated (vectorial)
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Riemann sum:

Sp∆q :“
N´1ÿ

i“0

!
vpxiq

`
W pxi`1q ´ W pxiq

˘
` BWvpxiqW pxi, xi`1q

)

where ∆ “ px “ x0 ă ¨ ¨ ¨ ă xN “ yq is a partition of rx, ys (above BWvpxiq reads as a row
vector and W pxi, xi`1q as a matrix). Then, as the step size πp∆q of the partition converges to
zero, Sp∆q converges to a limit denoted by

şy
x
vpzq dW pzq, the value of which is independent of

the choice of the approximating partitions. Moreover, there exists a constant C “ Cpn, α, βq
such that ˇ̌

ˇ̌
ż y

x

vpzq dW pzq ´ vpxq
`
W pyq ´ W pxq

˘
´ BWvpxqW px, yq

ˇ̌
ˇ̌

ď C
´

}W }rx,ys
2α }BWv}rx,ys

β |y ´ x|2α`β ` }W }rx,ys
α }Rv}rx,ys

2β |y ´ x|α`2β
¯
.

Observe in particular that, with our prescribed range of values for α and β, the exponents
2α`β and α`2β are (strictly) greater than 1, thus making the right hand side much smaller
than the length of the interval rx, ys. It is worth mentioning that this observation is crucial
for proving the convergence of Sp∆q as the step size tends to 0.

Stability of the integral with respect to W is a crucial question for practical purposes. In
particular, it is really sound to wonder about the stability of the integral by regularization.
Replacing pv,W q by a sequence of smooth approximations pvn,W nqně1, the question is to
decide whether the (classical) integrals of the pvnqně1’s with respect to the approximated
paths are indeed close to the rough integral of v with respect to W . As well-guessed, the
answer turns out to be false in full generality, as it would provide a canonical construction
of the integral if it were true. Actually, it turns out to be true if the convergence holds in
the rough paths sense, that is vW ´ W nwIα ` }W ´ W n}I2α also tends to 0 as n tends to the
infinity (W n standing for the true iterated integral of W n), in which case we say that the
rough path W (or pW,W q) is geometric, and vv ´ vnwIβ ` vBWv ´ BWnvnwIβ ` vRv ´ RvnwI

2β

also tends to 0 as n tends to the infinity.

2.2. Time indexed families of rough paths. It is well-guessed that, in order to handle
(1), we have in mind to choose W pxq “ Ytpxq, x P R, and to apply rough paths theory
at any fixed time t ě 0 (thus requiring to choose I “ R and subsequently to extend the
notion of rough paths to the whole R, which will be done in the next paragraph). Anyhow
a difficult aspect for handling (1) is precisely that pYtpxqqtě0,xPR is time dependent. If it
were time homogeneous, part of the analysis we provide here would be useless: we refer for
instance to [9, 10, 3]. From the technical point of view, the reason is that, in the homogeneous
framework, the analysis of the generator of the processX reduces to the analysis of a standard
one-dimensional ordinary differential equation. Whenever coefficients depend on time, the
connection with ODEs boils down, thus asking for non-trivial refinements. From the intuitive
point of view, time-inhomogeneity makes things much more challenging as the underlying
differential structure in space varies at any time: In order to integrate with respect to BxYtpxq
in the rough paths sense, the second-order structure of the rough paths must be defined first
and it is well-understood that it is then time-dependent as well. This says that the problem
consists of a time-indexed family of rough paths, but, a priori (and unfortunately), it is by
no means clear whether defining the rough paths time by time can be enough for handling
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the problem. Actually, as we explain right below, it may not be enough as the rough paths
structures actually interact one with the others, thus requiring an additional assumption on
pYtpxqqtě0,xPR.

As in the previous subsection, we first limit our exposition of time-dependent rough paths
to the case when x lives in a segment I. For some time horizon T ą 0, and for α, γ ą 0,
we define the following (semi-)norms for continuous functions f : r0, T q ˆ I Ñ Rn and
M : r0, T q ˆ I2 Ñ Rn:

}f}r0,T qˆI
γ,α :“ sup

x,yPI,x‰y,
0ďsătăT

|ftpyq ´ fspxq|
|t´ s|γ ` |y ´ x|α and }M }r0,T qˆI

0,α :“ sup
x,yPI,x‰y
0ďtăT

|M pt, x, yq|
|y ´ x|α ,

together with

vfwr0,T qˆI
γ,α :“ }f}r0,T qˆI

8 ` p1 _ max
xPI

|x|q´α
2 }f}r0,T qˆI

γ,α .

We then define the spaces Cγ,αpr0, T q ˆ I,Rnq and C
γ,α
2

pr0, T q ˆ I,Rnq accordingly.
For α P p1{3, 1{2s, we call time dependent α-rough path a pair function pWt,Wtq0ďtăT

where W P Cpr0, T q ˆ I,Rnq and W P Cpr0, T q ˆ I2,Rn2q such that, for any t P r0, T q, the
pair pWt,Wtq is an α-rough path and

(6) }pW,W q}r0,T qˆI

0,α :“ sup
tPr0,T q

 
}Wt}Iα ` }Wt}I2α

(
ă 8.

We denote by Rαpr0, T q ˆ I,Rnq the set of time-dependent α-rough paths endowed with

the seminorm } ¨ }r0,T qˆI

0,α . For β P p1{3, 1 ´ αs, we then say that v P Cpr0, T q ˆ I,Rq is β-

controlled by the paths pWtq0ďtăT if v P Cβ{2,βpr0, T q ˆ I,Rq and there exists a function
BWv P Cβ{2,βpr0, T q ˆ I,Rnq such that, for any t P r0, T q, the remainder term

(7) R
vtpx, yq :“ vtpyq ´ vtpxq ´ BWvtpxqpWtpyq ´ Wtpxqq

is in C
2β
2 pI,Rnq. For β P p1´α, 1s, we always say that v P Cβ{2,βpr0, T qˆI,Rnq is β-controlled

by the paths pWtq0ďtăT . In that case, BWv “ 0 and Rvpt, x, yq “ vtpyq ´ vtpxq. For any
β P p1{3, 1s, we then denote by Bβpr0, T q ˆ I, pWtq0ďtăT q (or simply by Bβpr0, T q ˆ I,W q)
the set of pairs pv, BWvq.

2.3. Rough paths on the whole line. So far, we have only defined rough paths (or time
dependent rough paths) on segments. As Eq. (1) is set on the whole R, we must extend the
definition from segments to R. As well-guessed, the point is to specify the behavior at infinity
of the underlying (rough) paths and of the corresponding functions that are controlled by
these paths.

In the case when the family pYtpxqqtě0,xPR is differentiable in x, the typical assumption for
solving (1) (and in particular to prevent any blow-up) consists in requiring pBxYtpxqqtě0,xPR
to be at most of linear growth in x. In our setting, pYtpxqqtě0,xPR is singular and it makes no
sense to discuss the growth of its derivative. The point is thus to control the growth of the
local Hölder norm of pYtpxqqtě0,xPR together with (as shown later) the growth of the local
Hölder norm of the associated iterated integral.

This motivates the following definition. For α P p1{3, 1s and χ ą 0, we call α-rough path
(on R) with rate χ a pair pW,W q such that, for any r ě 1, the restriction of pW,W q to
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r´r, rs is in Rαpr´r, rsq, and

(8) κα,χ
`
W,W q :“ sup

rě1

}W }r´r,rs
α

rχ
` }W }r´r,rs

2α

r2χ
ă 8.

We denote by Rα,χpR,Rnq the set of all such pW,W q.
This definition extends to time-dependent families of rough paths. Given T ą 0, we say

that pWt,Wtq0ďtăT belongs to Rα,χpr0, T q ˆ R,Rnq if

(9) κα,χ
`
pWt,Wtq0ďtăT

˘
:“ sup

tPr0,T q
sup
rě1

}W }r0,T qˆr´r,rs
α

rχ
` }W }r0,T qˆr´r,rs

2α

r2χ
ă 8.

In a similar way, we must specify the admissible growth of the functions that are controlled
by rough paths on the whole real line. As shown later, a quite comfortable framework is
then to require exponential bounds. Given pW,W q P Rα,χpR,Rnq and ϑ ě 1, we thus say
that a function v : R Ñ R is in Bβ,ϑpR,W q for some β P p1{3, 1s if, for any segment I Ă R,
the restriction of v to I is in BβpI,W q and

(10) Θϑpvq :“ sup
rě1

”
e´ϑr

´
vvwr´r,rs

β ` 1

2
vBWvwr´r,rs

β ` r´β}Rv}r´r,rs
2β

¯ı
ă 8.

(With an abuse of notation we omit to specify the dependence upon BWv in Θϑpvq.) Similarly,
given pWt,Wtq0ďtăT P Rα,χpr0, T q ˆ R,Rnq, we say that a function v : r0, T q ˆ R Ñ R is in
Bβ,ϑpr0, T q ˆ R,W q if the restriction of v to r0, T q ˆ r´r, rs is in Bβpr0, T q ˆ r´r, rs,W q for
any r ě 1 and, for some λ ě 0,

Θϑ,λ
T pvq

:“ sup
rě1

tPr0,T q

” 1

E
ϑ,λ
T pt, rq

´
vvwrt,T qˆr´r,rs

β{2,β ` 1

2
vBWvwrt,T qˆr´r,rs

β{2,β `
`
pT ´ tq

β
2 ` r´β

˘
}Rvt}r´r,rs

2β

¯ı

is finite, where Eϑ,λ
T pt, rq :“ exprλpT´tq`ϑrp1`T´tqs. Note that the set Bβ,ϑpr0, T qˆR,W q

doesn’t depend on λ, but that Θϑ,λ
T pvq does. The reason why we consider rt, T q and not r0, ts

in the above bound follows from the standard connection between stochastic differential
equations (or more generally Markov processes) and backward partial differential equations,
which is exactly the subject of the next paragraph. Put it differently, exponential growth
propagates in a backward direction in the analysis of (3).

By Theorem 1, we can easily obtain a control of the integral
ş
vt dYt by the norm Θϑ,λ

T pvq:

Lemma 2. There exists a constant C “ Cpn, α, βq, such that for any ϑ, λ, r ě 1, any
v P Bβ,ϑpr0, T q ˆ R,W q and for any pt, x, yq P r0, T q ˆ r´r, rs2,

ˇ̌
ˇ̌
ż y

x

`
vtpzq ´ vtpxq

˘
dWtpzq

ˇ̌
ˇ̌ ď Cκα,χ

`
Wt,Wt

˘
Θϑ,λ

T pvqEϑ,λ
T pt, rq ˆ Dpt, r, y ´ xq

ˇ̌
ˇ̌
ż y

x

vtpzq dWtpzq
ˇ̌
ˇ̌ ď Cκα,χ

`
Wt,Wt

˘
Θϑ,λ

T pvqEϑ,λ
T pt, rq ˆ

“
|y ´ x|αrχ ` Dpt, r, y ´ xq

‰
,

with Dpt, r, zq :“ |z|2αr2χ ` |z|2α`βr2χ`β

2 ` |z|α`2βrχprβ ` pT ´ tq´β

2 q.
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2.4. Enlargement of the rough path structure. As we discussed right above, it is quite
crucial to understand how the time dependent rough path structures of the drift pYtpxqqtě0,xPR
interact one with the others as time varies.

Formally the generator associated with (1) reads L “ Bt ` BxpYtpxqqBx ` p1{2qB2
xx. This

suggests that, on r0, T q ˆ R, harmonic functions (that is zeros of the generator) read as

utpxq “
ż

R

pT´tpx´ zquT pzq dz `
ż T

t

ż

R

pr´tpx ´ zqBxurpzq dYrpzq dr, x P R,

where p denotes the standard heat kernel. In the case when the boundary condition of the
function v is given by uT pxq “ x, a formal expansion for Bxutpxq in the neighborhood of T
gives

Bxutpxq „ 1 `
ż T

t

ż

R

Bxpr´tpx ´ zq dYrpzq dr

`
ż T

t

ż

R

Bxpr´tpx´ zq
"ż T

r

ż

R

Bxps´rpz ´ uq dYspuq ds
*
dYrpzq dr ` . . .

In the first-order term of the expansion, the space integral makes sense as the singularity can
be transferred from Yr onto Bxpr´tpx´zq, provided the integration by parts is licit: Using the
approximation argument discussed above, it is indeed licit when the rough path is geometric.
In order to give a sense to this first-order term, the point is then to check that the resulting
singularity in time is integrable: this question is addressed in Section 3. Unfortunately, the
story is much less simple for the second order term. Indeed, any formal integration by parts
leads to a term involving a ‘cross’ integral between the spatial increments of Y , but taken
at different times... This is exactly the place where rough path structures, considered at
different times, interact.

We refrain from detailing the computations as this stage of the paper and feel more
convenient to reject their presentation to Section 3 below. Basically, the point is to give, at
any time t P r0, T q, a sense to the integral

şy
x
ZT

t pzq dYtpzq, where

(11) @t P r0, T q, @x P R, ZT
t pxq “

ż T

t

ż

R

B2

xpr´tpx ´ zqpYrpzq ´ Yrpxqq dz dr.

Assuming that sup0ďtăT supx,yPRrp1 ` |x|χ ` |y|χq´1vYtwrx,ys
α s is finite (for some χ ą 0), the

above integral is well-defined (thanks to standard Gaussian estimates, see Section 3). In
order to make sure that the cross integral of ZT

t with respect to Yt exists, the point is to
assume that the pair pYt, ZT

t q can be lifted up to a rough path of dimension 2, which is to say
that there exists some W T with values in R4 such that ppY, ZT q,W T q is an α-time dependent
rough path, for some α ą 1{3. We will see in Section 5 conditions under which such a lifting
W T indeed exists.

2.5. Generator of the diffusion and related Dirichlet problem. We now provide some
solvability results for the Dirichlet problem driven by the operator Bt ` BxY pt, ¨qBx ` p1{2qB2

xx

on r0, T s ˆ R, for some T ą 0.

Definition 3. Given Y P Cpr0, T q ˆ R,Rq, assume that there exists W T such that pW T “
pY, ZT q,W T q belongs to Rα,χpr0, T q ˆ R,R2q with α ą 1{3 and χ ă β{2. Given an exponent
ϑ ě 1, a real β P p1{3, αq and a function f P L8pp0, T q ˆ Rq, we say that a continuous
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function u : r0, T s ˆ R Ñ R, continuously differentiable with respect to x, such that the
restriction of Bxu to r0, T q ˆ R is in Bβ,ϑpr0, T q ˆ R,W T q, is a mild solution on r0, T s ˆ R

to the problem PpY, f, T q:
Lv “ f, with Lv :“ Btv ` Ltv,

if, for any pt, xq P r0, T q ˆ R,

utpxq “
ż

R

pT´tpx ´ yquT pyq dy ´
ż T

t

ż

R

pr´tpx ´ yqfrpyq dy dr

`
ż T

t

ż

R

Bxpr´tpx ´ yq
ż y

x

Bxurpzq dYrpzq dy dr.
(12)

We emphasize that a notion of weak solution could be given as well, but we won’t use it.

Remark 4. When pW T ,W T q is geometric, the last term in the right-hand side coincides (by
integration by parts, which is made licit by approximation by smooth paths and by exponential
growth of Bxu and polynomial growth of the rough path norm of pW T “ pY, ZT q,W T q) with

ż T

t

ż

R

pr´tpx ´ yqBxurpyq dYrpyq dr,

which reads as a more ‘natural formulation’ of a mild solution and which is, by the way, the
formulation used in Sections 3.1 and 3.2 of Hairer [14] in the analysis of the KPZ equation.
The point is that the formulation (12) seems a bit more tractable as it splits into two well
separated parts the rough integration and the regularization effect of the heat kernel. Once
again, both are equivalent in the geometric (and in particular smooth) setting.

Here is a crucial result in our analysis (the proof is postponed to Section 3):

Theorem 5. Suppose that Y verifies the conditions of the previous definition. Then for any

f P L8pp0, T q ˆ Rq and any uT P C1pR,Rq such that suprě1 e
´ϑrvpuT q1wr´r,rs

β ă 8 , there

exists a unique mild solution to the problem PpY, f, T q with the terminal condition uT “ uT .

Moreover, letting ρ “ max
“
1, T, ϑ, }f}8, suprě1 e

´ϑrvpuT q1wr´r,rs
β , κα,χpW T ,W T q

‰
, we can find

a constant C “ Cpρ, α, β, χq, such that, for any pt, xq P r0, T s ˆ R,

(13) |utpxq| ` |Bxutpxq| ď C exp
`
C|x|

˘
.

and for any ps, t, x, yq P r0, T s2 ˆ R2,

|utpxq ´ uspxq| ď C exp
`
C|x|

˘
|t´ s| 1`β

2 ,

|Bxutpxq ´ Bxuspyq| ď C exp
`
Cr|x| _ |y|s

˘`
|t´ s|β2 ` |x´ y|β

˘
.

(14)

As already explained, it is then quite natural to wonder about the stability of mild solutions
under mollification of pW T ,W T q. In that framework, it is worth specifying the mollification
strategy. A ‘physical’ way for mollifying W T consists indeed in mollifying Y in x first -
the mollification is then infinitely differentiable in x, the derivatives being continuous in
space and time- and then in replacing Y by its mollified version in (11). Denoting by Y n

the mollified path at the nth step of the mollified sequence, the resulting Zn,T is smooth
in x, the derivatives being also continuous in space and time. This permits to define the
corresponding pair pW n,T ,W n,T q directly. In that specific geometric setting, we claim (once
again, the proof is deferred to Section 3):

10



Proposition 6. In the same framework as in Theorem 5, assume that the rough path
pW T ,W T q is geometric in the sense that there exists a sequence of smooth paths pY nqně1

such that the corresponding sequence pW n,T “ pY n, Zn,T qqně1 satisfies

(1) }pW T ´W n,T ,W T ´ W n,T q}r0,T qˆI

0,α tends to 0 as n tends to 8 for any segment I Ă R,

where W
n,T
t px, yq “

şy
x
pW n,T pzq ´ W n,T pxqq b dW n,T pzq, for t P r0, T q and x, y P R,

(2) supně1 κα,χppW n,T
t ,W

n,T
t q0ďtďT q is finite (see (9) for the definition of κχ).

Then, the associated solutions punqně1 (in the sense of Definition 3) and their gradients in
space pvn “ Bxu

nqně1 converge towards u and v “ Bxu uniformly on compact subsets of
r0, T s ˆ R.

2.6. Martingale problem. We can now give a rigorous definition of the martingale problem
associated with (1):

Definition 7. Let T0 ą 0 and x0 P R. Given Y P Cpr0, T0q ˆ R,Rq, assume that, for any
0 ď T ď T0, there exists W T such that pW T “ pY, ZT q,W T q belongs to Rα,χpr0, T q ˆ R,R2q
with α ą 1{3 and χ ă α{2, the supremum sup0ďTďT0

κα,χppW T
t ,W

T
t q0ďtăT q being finite.

A probability measure P on Cpr0, T0s,Rq (endowed with the canonical filtration pFtq0ďtďT0
)

is said to solve the martingale problem related to L starting from x if the canonical process
pXtq0ďtďT0

satisfies the following two conditions:

(1) PpX0 “ x0q “ 1,
(2) for any T P r0, T0s and any locally Hölder continuous and bounded function f : p0, T qˆ

R Ñ R, the process putpXtq ´
şt
0
frpXrq drq0ďtďT is a square integrable martingale

under P, where u is a mild solution of PpY, f, T q (with a given value for uT ).

A similar definition holds by letting the canonical process start from x0 at some time t0 �“ 0,
in which case we say that the initial condition is pt0, x0q and (1) is replaced by Pp@s P
r0, t0s, Xs “ x0q “ 1.

Pay attention that we require more in Definition 7 than in Definition 3 as we let the
terminal time T vary within the interval r0, T0s. In particular, for considering a solution to
the martingale problem, it is not enough to assume that, at terminal time T0, pW T0 ,W T0q
belongs to Rα,χpr0, T0qˆR,R2q. The rough path structure must also exist at any 0 ď T ă T0,
the regularity of the path W T and of its iterated integral WT being uniformly controlled in
T P r0, T0s.

Our goal is then to prove existence and uniqueness of a solution:

Theorem 8. In addition to the assumption of Definition 7, assume that, at any time 0 ď
T ď T0, pW T ,W T q is geometric (in the sense of Proposition 6), the paths pY nqně1 used
for defining the approximating paths pW n,T ,W n,T qně1 being the same for all the T ’s and

the supremum sup0ďTďT0
supně1 κα,χppW n,T

t ,W
n,T
t q0ďtăT q being finite. Then, given an initial

condition x0, the martingale problem has a unique solution.

Remark 9. The martingale problem is here set on the finite interval r0, T0s. Obviously,
existence and uniqueness extend to r0,8q. Notice also that β doesn’t play any role in the
existence and uniqueness of a solution. It will play a role when discussing the dynamics of
the solution in Section 4.
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2.7. Proof of the solvability of the martingale problem. First step. We consider a
sequence of paths pY nqně1 as in the statement of Proposition 6. Replacing pY n

t pxqq0ďtďT,xPR
by pϕnpY n

t pxqqq0ďtďT,xPR (and modifying accordingly the definition of pW n,T ,W n,T qně1, for
0 ď T ď T0), for some suitable compactly supported smooth mapping ϕn that converges
toward the identity on compact subsets of R as n tends to 8, we can assume (without any
loss of generality) that Y n has bounded derivatives on the whole space.

We then notice that, for a given x0 P R, the SDE (set on some filtered probability space
endowed with a Brownian motion pBtq0ďtďT0

)

dXn
t “ dBt ` BxY

n
t pXn

t q dt, t P r0, T0s ; X0 “ x0,(15)

admits a unique solution.

Second step. Choosing β P p1{3, αq with β ą 2χ and letting uT pxq “ exppϑxq for a given
T P r0, T0s, we denote by punt pxqq0ďtďT,xPR the mild solution to (12) with f “ 0 and Y

replaced by Y n. It is well-known that un is a classical solution of

(16) Btu
n
t pxq ` 1

2
B2

xxu
n
t pxq ` BxY

n
t pxqBxu

n
t pxq “ 0,

(Eq. (12), with u replaced by un, can be differentiated twice in x by transferring one
derivative from the heat kernel onto the integral driven by dY n; then, the second order
derivative can be proved to be continuous in space and time), so that, by Itô’s formula, the
process punt pXn

t qq0ďtďT is a true martingale (since we know, from Theorem 5, that un is at
most of exponential growth). Then, (13) yields

E
“
exp

`
ϑXn

T

˘‰
“ E

“
unT

`
Xn

T

˘‰
“ u0px0q ď C exppC|x0|q,

where C “ Cpα, β, χ, ρq as in Theorem 5. A crucial thing is that ρ is uniformly bounded in
T P r0, T0s so that it can be assumed to be independent of T . Replacing uT pxq by uT p´xq,
we get the same result with ϑ replaced by ´ϑ in the above inequality, so that

E
“
exp

`
ϑ|Xn

T |
˘‰

ď C exp
`
C|x0|

˘
.

Therefore, the exponential moments of Xn
T are bounded, uniformly in n ě 1. As C is

independent of T P r0, T0s, we deduce that the marginal exponential moments of pXn
t q0ďtďT0

are bounded, uniformly in n ě 1.

Third step. Now we change the domain of definition and the terminal condition of the
PDE. We consider the PDE on r0, t`hs ˆR with ut`hpxq “ x as boundary condition, where
0 ď t ď t ` h ď T0. To simplify, we still denote by puns pxqq0ďsďt`h,xPR the mild solution to
(12) with f “ 0, Y replaced by Y n and unt`h “ ut`h as terminal condition. By Itô’s formula,

Xn
t`h ´ Xn

t “ unt`hpXn
t`hq ´ unt pXn

t q ` unt pXn
t q ´ unt`hpXn

t q

“
ż t`h

t

Bxu
n
s pXn

s q dBs ` unt pXn
t q ´ unt`hpXn

t q.
(17)
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Therefore, by (13) and (14), we deduce that, for any q ě 1, there exists a constant Cq,
independent of n, such that

E
“
|Xn

t`h ´ Xn
t |q

‰ 1

q ď Cq

"
E

„ˆż t`h

t

|Bxu
n
s pXn

s q|2 ds
˙ q

2

 1

q

` E
“
|unt pXn

t q ´ unt`hpXn
t q|q

‰ 1

q

*

ď Cq

 
h

1

2
´ 1

q sup
0ďsďT0

E
“
|Bxu

n
s pXn

s q|q
‰ 1

q ` E
“
|unt pXn

t q ´ unt`hpXn
t q|q

‰1

q
(

ď Cq

 
h

1

2
´ 1

q sup
0ďsďT0

E
“
exppq|Xn

s |q
‰1

q ` h
1`β

2 sup
0ďsďT0

E
“
exppq|Xn

s |q|
‰ 1

q
(
.

By the second step (uniform boundedness of the exponential moments) and by Kolmogorov’s
criterion, we deduce that the processes pXn

t q0ďtďT0
are tight.

Fourth step. It remains to prove that any weak limit pXtq0ďtďT0
is a solution to the

martingale problem. For a given T P r0, T0s, we know from Proposition 6 that we can find
a sequence punqně1 of classical solutions to the problems PpY n, f, T q such that the sequence
pun, Bxu

nqně1 converges towards pu, Bxuq, uniformly on compact subsets of r0, T s ˆ R. Note
that the solutions are ‘classical’ as f is locally Hölder continuous (the argument is the same
as for (16): Eq. (12), with u replaced by un, can be differentiated twice in x). Applying
Itô’s formula to each punt pXn

t qq0ďtďT , n ě 1, we deduce that

unt pXn
t q ´ un

0
pXn

0
q ´

ż t

0

fspXn
s q ds “

ż t

0

Bxu
n
s pXn

s q dBs, 0 ď t ď T.

By (13), we know that the functions pBxu
nqně1 are at most of exponential growth, uniformly

in n ě 1. Moreover, we recall that the processes ppXn
t q0ďtďT qně1 have finite marginal ex-

ponential moments, uniformly in n ě 1 as well. Therefore, the martingales ppunt pXn
t q ´

un
0
pXn

0
q ´

şt
0
fspXn

s q dsq0ďtďT qně1 are bounded in L2, uniformly in n ě 1. Letting n tend to
the infinity, we complete the proof.

2.8. Well-posedness of the martingale problem. Here is the uniqueness part in Theo-
rem 8:

Theorem 10. Given T0 ą 0, assume that the assumption of Theorem 8 is in force. For
an initial condition pt0, x0q P r0, T0s ˆ R, there exists a unique solution to the martingale
problem (on r0, T0s) with pt0, x0q as initial condition. It is denoted by Pt0,x0

. The mapping
r0, T0s ˆ R Q pt, xq ÞÑ Pt,xpAq is measurable for any Borel subset A of the canonical space
Cpr0, T0s,Rq. Moreover, it is strong Markov.

Proof. Existence has been already proven in Theorem 8.

First Step. We first establish uniqueness of the marginal laws. Assume indeed that P1

and P2 are two solutions of the martingale problem with the same initial condition pt0, x0q.
Then, for any bounded and locally Hölder continuous function f : r0, T0q ˆ R Ñ R, it holds

(18) @t ě t0, E1

ż T0

t0

fspXsq ds “ E2

ż T0

t0

fspXsq ds,

where E1 and E2 denote the expectations under P1 and P2 (pXtq0ďtďT0
denotes the canonical

process). Indeed, denoting by u the solution of the PDE PpY, f, T0q with 0 as terminal
condition at time T0, we know from the definition of the martingale problem that, both
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under P1 and P2, the process puspXsq ´
şs
t0
frpXrq drqt0ďsďT0

is a martingale. Therefore,

taking the expectation under E1 and E2 and noticing that uT0
pXT0

q “ 0 almost surely under
P1 and P2, we deduce that both sides in (18) are equal to ´ut0px0q, which is enough to
complete the proof of (18) and thus to prove that the marginal laws of the canonical process
are the same under P1 and P2.

By Theorems 4.2 and 4.6 in [7], we deduce that the martingale problem has a unique so-
lution (note that the results in [7] hold for time homogeneous martingale problems whereas
the martingale problem we are here investigating is time inhomogeneous; adding an addi-
tional variable in the state space, the problem we are considering can be easily turned into a
time-homogeneous one). Measurability and strong Markov property are proved as in [7]. �

3. Solving the PDE

This section is devoted to the proof of Theorem 5. As the definition of a mild solution in
Definition 3 consists in a convolution of a rough integral with the heat kernel, the first step
is to investigate the smoothing effect of a Gaussian kernel onto a rough integral. Existence
and uniqueness of a mild solution to (12) is then proved by means of a contraction argument.

Parts of the results presented here are variations of the ones obtained in Sections 3.1 and
3.2 of Hairer [14] for solving the KPZ equation, but differ slightly in the very construction
of a mild solution, see Remark 4.

3.1. Mild solutions as Picard’s fixed points. In this subsection, we fix α, β, χ, ϑ, λ such
that 1{3 ă β ă α ď 1, χ ă β{2 and ϑ, λ ě 1. Given Y P Cpr0, T q ˆ R,Rq for some final
time T ď 1, we assume that there exists W T such that pW T

t “ pYt, ZT
t q,W T

t q0ďtďT is in
Rα,χpr0, T q ˆR,R2q, pZT

t q0ďtďT being given by (11). We will simply denote by κ to the semi
norm κα,χppW T

t ,W
T
t qtPr0,T qq and we will omit the superscript T in ZT , W T and W T . We also

recall the definition of Θϑ,λ
T pvq for v P Bβ,ϑpr0, T q ˆ R,W q:

Θϑ,λ
T pvq

“ sup
rě1

tPr0,T q

” 1

E
ϑ,λ
T pt, rq

´
vvwrt,T qˆr´r,rs

β{2,β ` 1

2
vBWvwrt,T qˆr´r,rs

β{2,β `
`
pT ´ tq´β

2 ` rβ
˘
}Rvt}r´r,rs

2β

¯ı
,

with Eϑ,λ
T pt, rq “ exprλpT ´ tq `ϑrp1`T ´ tqs. We start with the following technical lemma,

which plays a crucial role in the proof of Theorem 5:

Lemma 11. For any γ1 ď γ2 ď β{2 and k P N˚, there is a constant C “ Cpα, β, γ1, γ2, χ, kq
(independent of ϑ and λ) such that for any t, τ P r0, T q, with τ ď T ´ t, and any r ě 1, the
following bounds hold for any v P Bβ,ϑpr0, T q ˆ R,W q and any x P r´r, rs:
ż

R

ż τ

0

|Bk
xp1pyq|
s1`γ1

ˇ̌
ˇ̌
ż x´?

sy

x

vt`spzq dYt`spzq
ˇ̌
ˇ̌ ds dy ď Ψλ

β´α
2 τγ2´γ1rγ2 ,

ż

R

ż τ

0

|Bk
xp1pyq|
s1`2γ1

ˇ̌
ˇ̌
ż x´?

sy

x

`
vt`spzq ´ vt`spxq

˘
dYt`spzq

ˇ̌
ˇ̌ ds dy ď Ψλ

β´α

4 τβ´2γ1

´
rβ ` pT ´ tq´β

2

¯
,

with Ψ “ CeCTϑ2

κΘϑ,λ
T pvqEϑ,λ

T pt, rq.
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Proof. In the whole proof, we just denote Θϑ,λ
T pvq and Eϑ,λ

T pt, rq by Θ and Ept, rq. We start
with the proof of the first inequality. The point is to apply the second inequality in Lemma
2 with y replaced by x ´ ?

sy and thus r replaced by r ` |y|. We get
ˇ̌
ˇ̌
ż x´?

sy

x

vt`spzq dYt`spzq
ˇ̌
ˇ̌ ď CκΘEpt ` s, r ` |y|q

“
s

α
2 |y|α

`
r ` |y|

˘χ ` D
`
t` s, r ` |y|,

?
sy
˘‰
,

where C “ Cpα, βq. Noting that Ept`s, r`|y|q ď expr´pλ`ϑpr`|y|qqs`ϑp1`T q|y|qsEpt, rq
and that Dpt ` s, r ` |y|,?syq ď Cp1 ` |y|3qDpt ` s, r ` |y|,?sq, we deduce that

pr ` |y|q´γ2

ż τ

0

s´1´γ1

ˇ̌
ˇ̌
ż x1´?

sy

x1

vt`spzq dYt`spzq
ˇ̌
ˇ̌ ds

ď CκΘEpt, rqeϑp1`T q|y|`1 ` |y|3
˘ ż τ

0

e´pλ`ϑpr`|y|qqs

sγ1pr ` |y|qγ2 D
1`t, s, r ` |y|

˘
ds,

(19)

where

D
1pt, s, ρq “ s

α
2

´1ρχ ` sα´1ρ2χ ` sα`β

2
´1ρ2χ`β

2 ` s
α
2

`β´1ρχ
´
ρβ ` pT ´ t ´ sq´β

2

¯
.(20)

We thus have to bound integrals of the form ρb´γ2
şτ
0
e´pλ`ϑρqssa´γ1´1 ds with a ě α{2 (ě γ2),

0 ă b ď a and ρ ě 1. Bounding sγ2´γ1 by τγ2´γ1 and noticing that

ρb´γ2

pλ` ϑρqa´γ2
ď ρb´γ2

pλ ` ρqa´γ2

ď ρb´a1tρěλu ` λγ2´a1t1ďρăλu1tbăγ2u ` λb´a1tρăλu1tběγ2u ď λpb_γ2q´a,

(21)

we get the following upper bound for the integral (performing a change of variable to pass
from the first to the second line and recalling that γ2 ď β{2 to derive the last inequality):

ρb´γ2

ż τ

0

e´pλ`ϑρqssa´γ1´1 ds ď τγ2´γ1ρb´γ2

ż τ

0

e´pλ`ϑρqssa´γ2´1 ds

ď τγ2´γ1ρb´γ2

pλ ` ϑρqa´γ2

ż pλ`ϑρqτ

0

e´ssa´γ2´1 ds ď τγ2´γ1λpb_β
2

q´aΓpa ´ γ2q.
(22)

Because of the term in pT ´ t´ sq in the definition of D 1, we also have to control

ρχ´γ2

ż τ

0

e´pλ`ϑρqs

s1´α
2

´β`γ1pT ´ t ´ sqβ

2

ds ď τγ2´γ1ρχ´γ2

ż τ

0

e´pλ`ϑρqs

s1´α
2

´β`γ2pT ´ t ´ sqβ

2

ds

“ τγ2´γ1
ρχ´γ2

pλ ` ϑρqα
2

´γ2

τ
β
2

pT ´ tqβ

2 pλ ` ϑρqβ

2

ż
1

0

pτpλ ` ϑρqqα
2

`β
2

´γ2e´τpλ`ϑρqs

s1´α
2

´β`γ2r1 ´ τs{pT ´ tqsβ

2

ds.

(23)

In order to bound the integral in the second line, we make use of the inequality xae´xs ď
aae´a{sa, which holds for s P p0, 1s and a, x ě 0. Using also the bounds τ ď T ´ t and
λ ` ϑρ ě 1 together with (21), we get (for a possibly new value of the constant C):

ρχ´γ2

ż τ

0

e´pλ`ϑρqs

s1´α
2

´β`γ1pT ´ t ´ sqβ
2

ds

ď Cτγ2´γ1λpχ_γ2q´α
2

ż
1

0

ds

s1´β

2 p1 ´ sqβ

2

ď Cτγ2´γ1λ
β´α
2 .

(24)
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A careful inspection of (20) shows that we can apply (22) and (24) with a ě α{2 and
b´ a ď χ´ α{2 in order to bound (19) (a is the part different from ´1 in the exponent of s
and b is the exponent of ρ). We obtain

pr ` |y|q´γ2

ż τ

0

s´1´γ1

ˇ̌
ˇ̌
ż x´?

sy

x

vt`spzq dYt`spzq
ˇ̌
ˇ̌ ds

ď CκΘEpt, rqeϑp1`T q|y|`1 ` |y|3
˘
τγ2´γ1λ

β´α

2 .

(25)

As r´γ2 ď p1 ` |y|qγ2pr ` |y|q´γ2 , we get the first bound of the lemma by integrating (25)
against

ˇ̌
Bk
xp1pyq

ˇ̌
.

We now turn to the proof of the second inequality in the statement. We make use of the
first inequality in Lemma 2. Replacing vt`spzq by vt`spzq ´ vt`spxq in (19), we get the same
inequality but with a simpler form of D1pt, s, r` |y|q, namely the first term in the right-hand
side in (20) doesn’t appear. This says that we can now apply (22) with a ě α^pα{2`βq ě β

and b ´ a ď χ ´ α{2. The value of a being larger than β, this permits to apply (21) with
γ2 replaced by 2γ2. Then, we can replace γ1 and γ2 by 2γ1 and 2γ2 in (22). With the
prescribed values of a and b, the resulting bound in (22) is Cτ 2γ2´2γ1λpb_βq´a. Choosing
γ2 “ β{2 and following (25), we see that the contribution of (22) in the second inequality
of the statement is Ψλpβ´αq{2τβ´2γ1rβ ď Ψλpβ´αq{4τβ´2γ1rβ, which fits the first part of the
inequality. To recover the second part of the inequality, we must discuss the contribution of
(23). Going back to (20), we are to analyze (pay attention that, in comparison with (23), γ2
is set to 0):

pT ´ tqβ

2 ρχ
ż τ

0

e´pλ`ϑρqs

s1´α
2

´β`2γ1pT ´ t ´ sqβ

2

ds

ď τβ´2γ1ρχ
ż τ

0

e´pλ`ϑρqs

s1´α
2 p1 ´ s{pT ´ tqqβ

2

ds ď τβ´2γ1τα{2ρχ
ż

1

0

e´τpλ`ϑρqs

s1´α
2 p1 ´ sqβ

2

ds

“ τβ´2γ1τ
α{2´χ

2

ρχ

pλ ` ϑρqα{2`χ

2

ż
1

0

pτpλ ` ϑρqqα{2`χ

2 e´τpλ`ϑρqs

s1´α
2 p1 ´ sqβ

2

ds ď Cλ
χ´α{2

2 τβ´2γ1 ,

(26)

the last inequality following from (21). Noticing that χ ă β{2, this gives the second part of
the second inequality of the statement. �

Here is now the key result to prove Theorem 5.

Theorem 12. Keep the notations and assumptions introduced at the beginning of Subsection
3.1. For pv, BWvq P Bβ,ϑpr0, T q ˆ R,W q, define the function Mpv, BWvq : r0, T q ˆ R Ñ R

together with its W -derivative by letting, for any t P r0, T q and x P R,

“
Mpv, BWvq

‰
t
pxq “

ż T

t

ż

R

B2

xps´tpx´ yq
ż y

x

vspzq dYspzq dy ds.

BW

“
Mpv, BWvq

‰
t
pxq “

`
0, vtpxq

˘
pi.e. BYMpv, BWvqtpxq “ 0, BZMpv, BWvqtpxq “ vtpxqq.

(With an abuse of notation, we will just write pMvqtpxq for rMpv, BWvqstpxq.) Then M

defines a bounded operator from Bβ,ϑpr0, T q ˆ R,W q into itself. Moreover, there exists a
positive constant C “ Cpα, β, χq such that for every v P Bβ,ϑpr0, T q ˆ R,W q,

Θϑ,λ
T pMvq ď

`
1

2
` Cκ exppCTϑ2qλ´ǫ

˘
Θϑ,λ

T pvq, with ǫ :“ pα ´ βq{4.
16



Proof. As in the proof of Lemma 11, we just denote Θϑ,λ
T pvq and Eϑ,λ

T pt, rq by Θ and Ept, rq.
By an obvious change of variable, we get for any r ě 1, x P r´r, rs and t P r0, T q,

pMvqtpxq “
ż

R

B2

xp1pyq
ż T´t

0

s´1

ż x´?
sy

x

vt`spzq dYt`spzq ds dy.

Then the first inequality of Lemma 11 with γ1 “ γ2 “ 0, τ “ T ´ t and k “ 2 leads to

`
Ept, rq

˘´1 |pMvqtpxq| ď CκeCTϑ2

λ
β´α

2 Θ,(27)

where C “ Cpα, β, χq.
We now study the time variations of Mv. For 0 ď t ď s ď T and x P R, we deduce from

the identity 1

2
B2

xp “ Btp:

ˇ̌
pMvqspxq ´ pMvqtpxq

ˇ̌
ď 1

2

ˇ̌
ˇ̌
ż T

s

ż s

t

ż

R

B4

xpρ´upx´ yq
ż y

x

vρpzq dYρpzq dy du dρ
ˇ̌
ˇ̌

`
ˇ̌
ˇ̌
ż s

t

ż

R

B2

xpρ´tpx ´ yq
ż y

x

vρpzq dYρpzq dy dρ
ˇ̌
ˇ̌

:“ 1

2
T1 ` T2.

By the changes of variable pρ, uq ÞÑ ps ` ρ ´ u, s´ uq and then y ÞÑ x´ ?
ρs, we get:

T1 “
ˇ̌
ˇ̌
ż

R

B4

xp1pyq
ż s´t

0

ż T´s`u

u

1

ρ2

ż x´?
ρy

x

vs`ρ´upzq dYs`ρ´upzq dρ du dy
ˇ̌
ˇ̌

ď
ż

R

ˇ̌
B4

xp1pyq
ˇ̌ ż s´t

0

u
β

2
´1

ż T´t

0

1

ρ1`β
2

ˇ̌
ˇ̌
ż x´?

ρy

x

vs`ρ´upzq dYs`ρ´upzq
ˇ̌
ˇ̌ dρ du dy.

Applying Lemma 11 with τ “ T ´ t, γ1 “ γ2 “ β{2 and k “ 4, we obtain

r´β

2 T1 ď CeCTϑ2

κΘEpt, rqλβ´α

2

ż s´t

0

u
β

2
´1 du ď CeCTϑ2

κΘEpt, rqλβ´α

2 ps ´ tqβ

2 ,

where C “ Cpα, β, χq. In order to handle T2, we can directly use Lemma 11 with τ “ s ´ t,
γ1 “ 0, γ2 “ β{2 and k “ 2. We then obtain the same bound as for T1, so that

r´β

2

`
Ept, rq

˘´1
ˇ̌
pMvqspxq ´ pMvqtpxq

ˇ̌
ď CeCTϑ2

κΘλ
β´α

2 ps ´ tqβ

2 .(28)

We now investigate the space variations. Fix ´r ď x ă x1 ď r. If |x1 ´ x|2 ď T ´ t, the
space increment between x and x1 reads:

ˇ̌
pMvqtpx1q ´ pMvqtpxq

ˇ̌

“
ˇ̌
ˇ̌
ż T

t

ż

R

`
B2

xps´tpx1 ´ yq ´ B2

xps´tpx´ yq
˘ ż y

x

vspzq dYspzq dy ds
ˇ̌
ˇ̌

ď I
x,x1

1 pxq ` I
x,x1

1 px1q ` I
x,x1

2 ,

(29)

17



with (using the fact that the mapping R Q z ÞÑ B2

xpspzq is centered)

I
x,x1

1 pξq :“
ˇ̌
ˇ̌
ż |x1´x|2

0

ż

R

B2

xpspξ ´ yq
ż y

ξ

vt`spzq dYt`spzq dy ds
ˇ̌
ˇ̌,

I
x,x1

2 :“
ˇ̌
ˇ̌
ż T´t

|x1´x|2

ż

R

ż x1

x

B3

xpspu ´ yq
ż y

x

vt`spzq dYt`spzq du dy ds
ˇ̌
ˇ̌.

By Lemma 11 with τ “ |x1 ´ x|2, γ1 “ 0, γ2 “ β{2 and k “ 2, we get

r´β
2

`
Ept, rq

˘´1`
I
x,x1

1
pxq ` I

x,x1

2
px1q

˘
ď CeCTϑ2

κΘλ
β´α
2 |x1 ´ x|β.(30)

The term I
x,x1

2
can be bounded in the following way:

I
x,x1

2
ď
ż

R

ˇ̌
B3

xp1pyq
ˇ̌ ż x1

x

ż T´t

|x1´x|2
s´ 3

2

ˇ̌
ˇ̌
ˇ

ż u´?
sy

u

vt`spzq dYt`spzq
ˇ̌
ˇ̌
ˇ ds du dy

ď |x1 ´ x|β´1

ż

R

ˇ̌
B3

xp1pyq
ˇ̌ ż x1

x

ż T´t

|x1´x|2
s´1´β

2

ˇ̌
ˇ̌
ˇ

ż u´?
sy

u

vt`spzq dYt`spzq
ˇ̌
ˇ̌
ˇ ds du dy.

(31)

Using now Lemma 11 with τ “ T ´ t, γ1 “ γ2 “ β{2 and k “ 3 we obtain:

r´β

2

`
Ept, rq

˘´1
I
x,x1

2 ď CeCTϑ2

κΘλ
β´α

2 |x1 ´ x|β .
We end up with the following bound for the space increment:

r´β

2

`
Ept, rq

˘´1
ˇ̌
pMvqtpx1q ´ pMvqtpxq

ˇ̌
ď CeCTϑ2

κΘλ
β´α

2 |x1 ´ x|β.(32)

Recall that (32) holds true when |x1 ´ x|2 ď T ´ t. When |x1 ´ x|2 ą T ´ t, the argument is

straightforward as the space increment is smaller Ix,x1

1
pxq and I

x,x
1

px1q, so that (32) holds as
well.

We study RpMvqt in a similar way. Recalling the definition (7) for RpMvqt , we then make
use of the very definition of ZT , see (11):

R
pMvqtpx, x1q “ pMvqtpx1q ´ pMvqtpxq ´ vtpxq

`
ZT

t px1q ´ ZT
t pxq

˘

“
ż T

t

ż

R

`
B2

xps´tpx1 ´ yq ´ B2

xps´tpx´ yq
˘ ż y

x

pvspzq ´ vtpxqq dYspzq dy ds.

The strategy consists of the same decomposition as the one used to prove (32) except that
we now apply the second inequality in Lemma 11 and not the first one. This leads to

new definitions of Ix,x1

1 and I
x,x1

2 , the term vt`spxq being subtracted to vt`spzq. If, instead

of vt`spxq, vt`spξq was subtracted to vt`spzq in the definition of Ix,x1

1 pξq and vt`spuq was

subtracted to vt`spzq in the definition of Ix,x1

2 , Lemma 11 would give
`
pT ´ tqβ

2 ^ r´β
˘`
Ept, rq

˘´1|RpMvqtpx, x1q| ď CeCTϑ2

κΘλ
β´α

4 |x1 ´ x|2β .(33)

Therefore, we must discuss the fact that the centering term in both I
x,x1

1
px1q and I

x,x1

2
is

vt`spxq. For handling I
x,x1

1 px1q, we must investigate
ˇ̌
ˇ̌
ż |x1´x|2^pT´tq

0

ż

R

B2

xpspx1 ´ yq
ż y

x1

`
vt`spx1q ´ vt`spxq

˘
dYt`spzq dy ds

ˇ̌
ˇ̌.
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Letting ṽspzq “ vspx1q´vspxq, we see that Θϑ,λ
T pṽq ď rβ{2|x1 ´x|βΘ. Then, we are led back to

the original definition of Ix,x1

1
px1q but with vs replaced by the constant function ṽs. Following

(30), we then get that the above term is less than C exppCTϑ2qκΘλpβ´αq{2rβ|x1 ´ x|2β .
The strategy for handling the correction in I

x,x1

2
is completely similar and leads to the

same bound. We deduce that (33) holds true.
Finally, as the W -derivative of pMvqt is defined as BW pMvqt “ p0, vtq, we have

(34)
1

2

`
Ept, rq

˘´1}BW pMvqt}rt,T qˆr´r,rs
β{2,β ď 1

2
Θ.

From (27), (28), (32), (33) and (34), we complete the proof. �

3.2. Proof of Theorem 5. First step. As in the previous subsection, we omit the super-
script T in ZT , W T and W T . We then start with a technical remark. For any T ď 1 and
any v P Bβ,ϑpr0, T q ˆ R,W q, Mv is always in Bβ,ϑpr0, T q ˆ R,W q by Theorem 12. Actually,
this result remains true when T ě 1. It is indeed well-checked that the bound T ď 1 in
the statement of Theorem 12 is only useful to get a resulting constant C that depends on
a minimal number of parameters and that a similar result holds when T ď T0, for some
T0 ě 1, provided the constant C is allowed to depend upon T0.

Now, for a function f P L8pp0, T q ˆ Rq, a continuously differentiable function uT from R

into itself such that suprě1 e
´ϑrvpuT q1wr´r,rs

β ă 8 and a function v P Bβ,ϑpr0, T q ˆ R,W q, we
let for pt, xq P r0, T q ˆ R

` xMv
˘
t
pxq :“

ż

R

BxpT´tpx ´ yquT pyq dy ´
ż T

t

ż

R

Bxps´tpx´ yqfspyq dy ds `
`
Mv

˘
t
pxq

“
ż

R

pT´tpyqpuT q1px ´ yq dy ´
ż T

t

ż

R

Bxps´tpx´ yqfspyq dy ds `
`
Mv

˘
t
pxq.

(35)

The point is to check that xMv can be lifted up into an element of Bβ,ϑpr0, T q ˆ R,W q.
By Theorem 12, the last part of the right-hand side is in Bβ,ϑpr0, T q ˆ R,W q. Its derivative
with respect to W is BW rMvs, as defined in the statement of Theorem 12. Moreover, by
standard regularization properties of the heat kernel, the second term in the right-hand side
is in Cγ{2,γpr0, T s ˆR,Rq for any γ P p0, 1q, with a finite Hölder norm on the whole r0, T s ˆR

(and not on compact subsets only). In particular, it can be lifted up into an element of
Bβ,ϑpr0, T q ˆ R,W q with a zero derivative with respect to W . Finally, the first term is at
most of exponential growth in x (with exponent ϑ). By standard regularization properties
of the heat kernel, it is smooth on r0, T q ˆ R. And investigating carefully the regularization
effect of the heat kernel, it can be shown that

sup
0ďtăT

sup
rě1

"
pT ´ tqβ

2 e´ϑr
›››
ż

R

pT´tp¨ ´ yqpuT q1pyqdy
›››

r´r,rs

2β

*
ă 8,

thus proving that sup0ďtăT suprě1tpT ´ tqβ{2e´ϑr}R
ş
R
pT´tp¨´yqpuT q1pyqdy}r´r,rs

2β u ă 8, so that
xMv P Bβ,ϑpr0, T q ˆ R,W q, with rBW p xMvqstpxq “ rBW pMvqstpxq “ p0, pMvqtpxqq for t P
r0, T q.

Second step. Now we construct a solution on r0, T s by a contraction argument when T ď 1
(the same argument applies when T ě 1 thanks to the remark made at the beginning of the
first step). We choose λ large enough such that Cκ exppCTϑ2qλ´ǫ ď 1{4 (with the same
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constant C as in the statement of Theorem 12) and we remark that pBβ,ϑpr0, T qˆR,W q,Θϑ,λ
T q

is a Banach space. We then notice that, for any u, v P Bβ,ϑpr0, T q ˆ R,W q, xMu ´ xMv “
Mpu ´ vq (the equality holding true for the lifted versions), so that, by Theorem 12 and

Picard’s theorem, the mapping xM admits a unique fixed point v̄ in Bβ,ϑpr0, T q ˆ R,W q.
Letting

ūtpxq “
ż

R

pT´tpx ´ yquT pyq dy ´
ż T

t

ż

R

ps´tpx ´ yqfspyq dy ds

`
ż T

t

ż

R

Bxps´tpx ´ yq
ż y

x

v̄spzq dYspzq dy ds,
(36)

we obtain a mild solution, as defined in (12). It must be unique as the x-derivative of any

other mild solution (when lifted up) is a fixed point of xM. Differentiation under the integral
symbol in the mild formulation (12) can be justified by Lemma 11, making use of a standard
uniform integrability argument.

Third step. We finally prove (13) and (14). We start with estimating v̄. With our choice
of λ and by Theorem 12, we have

Θϑ,λ
T pv̄q ď Θϑ,λ

T p xM0q ` 3

4
Θϑ,λ

T pv̄q,

where 0 stands for the null function, so that

(37) Θϑ,λ
T pv̄q ď 4Θϑ,λ

T p xM0q.

As xM0 has a zero derivative with respect to W , it is well checked that Θϑ,λ
T p xM0q ď

Cpsuprě1 e
´ϑrvpuT q1wr´r,rs

β ` }f}8q for a universal constant C (which would depend on T0
if T was assumed to be less than T0 for some T0 ě 1). This gives the exponential bound for
v̄ and for the pβ{2, βq-Hölder constant of v̄ in time and space.

In order to get the same estimate for ū, we go back to the original formulation (12):

utpxq “
ż

R

pT´tpx´ yquT pyq dy ´
ż T

t

ż

R

ps´tpx´ yqfspyq dy ds

`
ż T

t

ż

R

Bxps´tpx´ yq
ż y

x

Bxuspzq dYspzq dy ds.
(38)

Again, the two first terms can be estimated by standard properties of the heat kernel: the
first term is at most of exponential growth and it is differentiable in time, the time derivative
being also at most of exponential growth; the second term is bounded and it is γ-Hölder
continuous on the whole space for any γ P p0, 1q. Finally the third term can be handled by
repeating the analysis of Mv in the proof of Theorem 12: Following (27) and (28), it is at
most of exponential growth and it is locally p1` βq{2-Hölder continuous in time, the Hölder
constant growing at most exponentially fast in the space variable (in comparison with (28),
the additional 1{2 comes from the fact there is one derivative less in the heat kernel).

3.3. Proof of Proposition 6. As above, we omit the superscript T in Zn,T ,W n,T and W n,T .
Stability of solutions under mollification of the input follows from a classical compactness
argument. Given a sequence pW n,W nqně1 as in the statement, we can solve (12) for any
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n ě 1: The solution is denoted by un and its gradient by vn “ Bxu
n. By (2) in Proposition

6 and by the previous subsection, it is well-checked that

(39) sup
ně1

Θϑ,λ
T pvnq ă 8.

Therefore, by Theorem 12,

(40) sup
ně1

Θϑ,λ
T pMnvnq ă 8,

where Mn is obtained by replacing Y by Y n in the definition of M. It is worth mention-
ing that, contrary to the convention we have used so far, we must use rBWnpMnvnqst “
p0, pMnvnqtq as choice of the derivative and not rBWnpMnvnqst “ 0 (which was the conven-
tion for smooth functions).

As a consequence of (39) and (40), we deduce that the sequences pvnqně1 and pMnvnq
are uniformly continuous on compact subsets of r0, T s ˆ R. In the same way, the sequence
punqně1 is also uniformly continuous on compact subsets. Moreover, un, vn and Mnvn are at
most of exponential growth, uniformly in n ě 1. By Arzelà-Ascoli Theorem, we can extract
subsequences (still indexed by n) that converge uniformly on compact subsets of r0, T s ˆ R.
Limits of punqně1, pvnqně1 and pMnvnqně1 are respectively denoted by û, v̂ and m̂. In order
to complete the proof, we must prove that pû, v̂q is a mild solution of (12).

By (39), the sequence pRvnt qně1 is uniformly bounded on compact subsets of r0, T q ˆ R.
Writing (7) for each of the vn and letting n tend to 8, this says that the pair pv̂, p0, m̂qq
belongs to Bβ,ϑpr0, T q,Rq, the remainder at any time t P r0, T q being denoted by R̂t. At this

stage of the proof, we know that, for any t P r0, T q and any r ě 1, vv̂t ´ vnt wr´r,rs
β ` vm̂t ´

BWnvnt wr´r,rs
β tends to 0 as n tends to the infinity. We wish we also had limnvR̂t´Rvnt wr´r,rs

2β “ 0
in order to pass to the limit in the rough integrals involved in the mild formulation, as the
convergence of the remainders is required to do so (see Subsection 2.1). Actually, we cannot
prove it. Anyhow, by (7), the convergence holds in L8pr´r, rsq so that, by (39), it holds as

well in Hölder norm, but with β replaced by any β 1 ă β, that is limnvR̂t ´ Rvnt wr´r,rs
2β1 “ 0.

Replacing β by β 1, we can pass to the limit in the rough integrals appearing in the mild
formulation (12) of the PDE satisfied by each of the pvnqně1’s. To pass to the limit in
the whole formulation, we can invoke some uniform integrability argument as we did to

differentiate the mild formulation after Eq. (36). Thus the pair pv̂, p0, m̂qq satisfies v̂ “ xMv̂

in Bβ1,ϑpr0, T q ˆR,W q, which is enough to identify with the solution in Bβ,ϑpr0, T q ˆR,W q.

4. Stochastic Calculus for the Solution

In Theorem 8, we proved existence and uniqueness of a solution to the martingale problem
associated with (1), but we said nothing about the dynamics of the solution. In this section,
we answer to this question and give a sense to the formulation (4).

4.1. Recovering the Brownian part. Equation (4) suggests that the dynamics of the
solution to (1) indeed involves some Brownian part. The point we discuss here is thus
twofold: (i) We recover in a quite canonical way the Brownian part in the dynamics of the
solution; (ii) we discuss the structure of the remainder.

Theorem 13. Under the assumption of Theorem 8, for any given initial condition x0, we can
find a probability measure (still denoted by P) on the enlarged canonical space Cpr0, T0s,R2q
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(endowed with the canonical filtration pFtq0ďtďT0
) such that, under P, the canonical process,

denoted by pXt, Btq0ďtďT0
, satisfies the followings:

piq The law of pXtq0ďtďT0
under P is a solution to the martingale problem with x0 as initial

condition at time 0 and the law of pBtq0ďtďT0
under P is a Brownian motion.

piiq For any q ě 1 and any β ă α, there is a constant C “ Cpα, β, χ, κα,χpW,W q, q, T0q
such that, for any 0 ď t ď t` h ď T0,

(41) E
“ˇ̌
Xt`h ´ Xt ´ pBt`h ´ Btq

ˇ̌q‰ 1

q ď Chp1`βq{2.

piiiq For any 0 ď t ď t ` h ď T0,

(42) E
“
Xt`h ´ Xt|Ft

‰
“ bpt, Xt, hq :“ ut`h

t pXtq ´ Xt,

where the mapping ut`h : r0, t`hsˆR Q ps, xq ÞÑ ut`hps, xq is the mild solution of PpY, 0, t`hq
with ut`h

t`hpxq “ x as terminal condition.

Proof. The point is to come back to the proof of the solvability of the martingale problem
in Subsection 2.7. For free and with the same notations, we have the tightness of the family
pXn

t , Btq0ďtďT0
, which is sufficient to extract a converging subsequence. The (weak) limit is

the pair pXt, Btq0ďtďT0
in piq. (Pay attention that we do not claim that the ‘B’ at the limit

is the same as the ‘B’ in the regularized problems but, for convenience, we use the same
letter.) We then repeat the proof of (17) which writes:

Xn
t`h ´ Xn

t “
ż t`h

t

Bxu
n
s pXn

s q dBs ` unt pXn
t q ´ unt`hpXn

t q

“ Bt`h ´ Bt `
ż t`h

t

“
Bxu

n
s pXn

s q ´ 1
‰
dBs `

“
unt pXn

t q ´ unt`hpXn
t q
‰
.

Repeating the analysis of the the third step in Subsection 2.7, we know that the third term
in the right hand side satisfies the bound (41). The point is thus to prove that the second
term also satisfies this bound. Recalling that unt`hpxq “ x, we notice that Bxu

n
s pXn

s q ´ 1 “
Bxu

n
s pXn

s q´Bxu
n
t`hpXn

s q. The bound then follows from the fact that Bxu
n is locally β{2-Hölder

continuous in time, the Hölder constant being at most of exponential growth, as ensured by
Theorem 5. Letting n tend to 8, we complete the proof of piiq.

The last assertion piiiq is easily checked for with X replaced by Xn and ut`h replaced by
un (and for sure with Ft replaced by the σ-field generated by pXn

s , Bsq0ďsďt). It is quite
standard to pass to the limit in n. �

4.2. Expansion of the drift. The next proposition gives a more explicit insight into the
shape of the function b in (42):

Proposition 14. Given T0 ą 0, there exist a constant C and an exponent ε ą 0 such that

bpt, x, hq “ bpt, x, hq ` O
`
h1`ε expp2|x|q

˘
,

bpt, x, hq “
ż t`h

t

ż

R

Bxps´tpx´ yq
`
Yspyq ´ Yspxq

˘
dy ds

`
ż t`h

t

ż

R

Bxps´tpx ´ yq
ż y

x

Zt`h
s pzq dYspzq dy ds,

Op¨q standing for the Landau notation (the underlying constant in the Landau notation being
uniform in 0 ď t ď t ` h ď T0).
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Remark 15. The first term in the definition of bpt, x, hq reads as a mollification (in x) of
the gradient (in x) of pYtpxqqtďsďt`h,xPR by means of the transition density of pBtqtě0 (which
is the martingale process driving the dynamics of X). It is (locally in x) of order h1{2`α{2.
The second term reads as a correction in the mollification of pYspxqqtďsďt`h,xPR. It keeps
track of the rough path structure of pYspxqqtďsďt`h,xPR. The proof right below shows that it is
of order h1{2`α, thus proving that it can be ‘hidden’ in the remainder Oph1`ǫq when α ą 1{2.
This requirement α ą 1{2 fits the standard threshold in the rough paths theory above which
Young’s theory applies.

Proof. From (12), we know that ut`h
t pxq expands as

ut`h
t pxq “ x `

ż t`h

t

ż

R

Bxps´tpx ´ yq
ż y

x

vt`h
s pzq dYspzq dy ds,

where vt`h
s pyq “ Bxu

t`h
s pyq. Taking into account the terminal condition vt`h

t`h ” 1 and follow-

ing (35), the equation for v can be reformulated into p xMvqtpxq “ 1 ` pMvqtpxq, with the
same notations as in Theorem 12 (with T “ t ` h). By Theorem 12, pv, BW t`hvq belongs to
Bβ,ϑpr0, t` hq ˆ R,W t`hq, with

BYMpv, BW t`hvqtpxq “ 0, BZt`hMpv, BW t`hvqtpxq “ vtpxq.
Therefore, we can write

vt`h
s pzq “ vt`h

s pxq ` vt`h
s pxq

`
Zt`h

s pzq ´ Zt`h
s pxq

˘
` R

vspx, zq,
which we can plug into the expression for ut`h

t pxq by means of Theorem 1:

ut`h
t pxq ´ x “

ż t`h

t

vt`h
s pxq

ż

R

Bxps´tpx´ yq
`
Yspyq ´ Yspxq

˘
dy ds

`
ż t`h

t

vt`h
s pxq

ż

R

Bxps´tpx ´ yq
ż y

x

`
Zt`h

s pzq ´ Zt`h
s pxq

˘
dYspzq dy ds

`
ż t`h

t

ż

R

Bxps´tpx´ yqU t`h
s px, yq dy ds,

(43)

where U t`h
s px, yq in a remainder term that derives from the approximation of the rough

integral of vt`h
s with respect to Ys. By Theorem 1, there exist a constant C and an exponent

ε ą 0 such thatˇ̌
ˇ̌
ż t`h

t

ż

R

Bxps´tpx´ yqU t`h
s px, yq dy ds

ˇ̌
ˇ̌

ď C expp2|x|q
ż t`h

t

ps ´ tq´ 1

2

ż

R

ps´tpx ´ yq expp|x ´ y|q|x´ y|1`ε dy ds

ď C expp2|x|qh1`ε.

(44)

Above, the exponential factor permits to handle the polynomial growth of W t`h “ pY, Zt`hq
and the exponential growth of vt`h (see the definition of Θϑ,λ

T pvq in the statement of Theorem
12), the exponent in the exponential factor being arbitrarily chosen as 1 (which leaves ‘some
space’ to handle additional polynomial growth and which is possible since the terminal
condition ut`h

t`h is of polynomial growth).
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We now investigate the second term in the right hand side of (43). We recall that, by
assumption, there exists a constant C, independent of h, such that

(45)

ˇ̌
ˇ̌
ż y

x

`
Zt`h

s pzq ´ Zt`h
s pxq

˘
dYspzq

ˇ̌
ˇ̌ ď

ˇ̌
W

t`h
s px, yq

ˇ̌
ď Cp1 ` |x| _ |y|q2χ|x´ y|2α.

We also recall from Theorem 5 that v is pα ´ ǫq{2-Hölder continuous in time, locally in
space (the rate of growth of the Hölder constant being at most exponential and Theorem 12
allowing to choose 1 as exponent in the exponential), so that |vt`h

s pyq´1| ď Chpα´ǫq{2 expp|y|q,
for s P rt, t` hs and for a possibly new value of the constant C. Therefore,

ż t`h

t

vt`h
s pxq

ż

R

Bxps´tpx ´ yq
ż y

x

`
Zt`h

s pzq ´ Zt`h
s pxq

˘
dYspzq dy ds

“
ż t`h

t

ż

R

Bxps´tpx´ yq
ż y

x

`
Zt`h

s pzq ´ Zt`h
s pxq

˘
dYspzq dy ds

`
ż t`h

t

`
vt`h
s pxq ´ 1

˘ ż

R

Bxps´tpx´ yq
ż y

x

`
Zt`h

s pzq ´ Zt`h
s pxq

˘
dYspzq dy ds,

the last term being less than

(46) C expp2|x|qhpα´ǫq{2
ż t`h

t

ps ´ tq´1{2`α dr ď C expp2|x|qh1{2`3α{2´ǫ ď C expp2|x|qh1`ǫ,

the last inequality holding true since α is strictly larger than 1{3 and ǫ can be chosen
arbitrarily small. Therefore, from (43), (44) and (45), we deduce that

ut`h
t pxq ´ x “

ż t`h

t

vt`h
s pxq

ż

R

Bxps´tpx´ yq
`
Yspyq ´ Yspxq

˘
dy ds

`
ż t`h

t

ż

R

Bxps´tpx´ yq
ż y

x

`
Zt`h

s pzq ´ Zt`h
s pxq

˘
dYspzq dy ds ` O

`
expp2|x|qh1`ǫ

˘
.

(47)

Using (45) once more and following the proof of (46), we also have

ut`h
t pxq ´ x “

ż t`h

t

vt`h
s pxq

ż

R

Bxps´tpx ´ yq
`
Yspyq ´ Yspxq

˘
dy ds ` O

`
expp2|x|qh1{2`α

˘
.

It then remains to look at the first term in the right-hand side of (43). The point is to
expand vt`h

t pxq on the same model as ut`h
t pxq right above. Basically, the same expansion

holds but, because of the derivative in the definition of vt`h
t pxq “ Bxu

t`h
t pxq, we loose 1{2 in

the power of h in the Landau notation. Therefore, for t ď s ď t ` h, the above expansion
turns into

vt`h
s pxq ´ 1 “

ż t`h

s

vt`h
ρ pxq

ż

R

Bxpρ´tpx ´ yq
`
Yspyq ´ Yspxq

˘
dy dρ` O

`
expp2|x|qhα

˘
.
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Using once again the fact that vt`h is pα´ ǫq{2-Hölder continuous in time (locally in space,
the Hölder constant being at most of exponential growth), we obtain

vt`h
s pxq ´ 1 “

ż t`h

s

ż

R

B2

xpρ´tpx ´ yq
`
Yspyq ´ Yspxq

˘
dy dρ

`
ż t`h

s

`
vt`h
ρ pxq ´ 1

˘ ż

R

B2

xpρ´tpx ´ yq
`
Yspyq ´ Yspxq

˘
dy dρ ` O

`
expp2|x|qhα

˘

“ Zt`h
s pxq ` O

ˆ
expp2|x|q

„
hα ` hpα´ǫq{2

ż t`h

s

pρ´ tq´1`α{2 dρ

˙
.

The last term can be bounded by Opexpp2|x|qhα´ǫ{2q. Now, by (47),

ut`h
t pxq ´ x “

ż t`h

t

`
1 ` Zt`h

s pxq
˘ ż

R

Bxps´tpx´ yq
`
Yspyq ´ Yspxq

˘
dy ds

`
ż t`h

t

ż

R

Bxps´tpx ´ yq
ż y

x

`
Zt`h

s pzq ´ Zt`h
s pxq

˘
dYspzq dy dr

` O

ˆ
expp2|x|q

„
hα´ǫ{2

ż t`h

t

ps ´ tq´1{2`α{2ds ` h1`ǫ

˙
.

(48)

It thus remains to boundż t`h

t

Zt`h
s pxq

ż

R

Bxps´tpx ´ yq
`
Yspyq ´ Yspxq

˘
dy ds.

By (11), it is plain to see that Zt`h
r pxq “ Opexpp2|x|qhα{2q. Then, the above term must at

most of order Opexpp2|x|qh1{2`αq, from which the proof of the proposition is easily completed.
In order to complete the proof of Remark 15, it remains to show the announced bound for

ż t`h

t

ż

R

Bxps´tpx ´ yq
ż y

x

Zt`h
s pzq dYspzq dy ds.

We already have a bound when Zt`h
s pzq is replaced by Zt`h

s pxq. By (45), we also have a
bound when Zt`h

r pzq is replaced by Zt`h
r pzq ´ Zt`h

r pxq. �

4.3. Purpose. The goal is now to prove that Theorem 13 and Proposition 14 are sufficient
to define a differential calculus for which the infinitesimal variation dXt reads

(49) dXt “ dBt ` bpt, Xt, dtq, t P r0, T q,
or, in a macroscopic way, Xt “ X0 ` Bt `

şt
0
bps,Xs, dsq, which gives a sense to (1). In that

framework, Proposition 14 and Remark 15 give some insight into the shape of the drift.
As explained below, we are able to define a stochastic calculus in such a way that the

process p
şt
0
bps,Xs, dsqq0ďtďT has a Hölder continuous version, with p1 ` αq{2 ´ ǫ as Hölder

exponent, for ǫ ą 0 as small as desired, thus making pXtq0ďtďT a Dirichlet process.

In order to give a meaning to (49), the point is to give a sense to
şT
0
ψt dXt and possibly

to
şT
0
ψtbpt, Xt, dtq for a sufficiently large class of integrands: We construct the integral with

respect to processes pψtq0ďtďT that are progressively-measurable and p1 ´ αq{2 ` ǫ Hölder
continuous in Lp for some p ą 2 and some ǫ ą 0. The construction of the integral consists of
a mixture of Young’s and Itô’s integrals. Precisely, the progressive-measurability of pψtq0ďtďT

permits to ‘get rid of’ the martingale increments in X that are different from the Brownian
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ones and thus to focus on the function b only in order to define the non-Brownian part of
the dynamics. Then, the Hölder property of pψtq0ďtďT permits to integrate with respect
to pbpt, Xt, dtqq0ďtďT in a Young sense. For that reason, the resulting integral is called a
stochastic Young integral. It is worth mentioning that it permits to consider within the
same framework integrals defined with respect to the martingale part of X and integrals
defined with respect to the zero quadratic variation part of X .

The construction we provide below is given in a larger set-up. In the whole section, we
thus use the following notation: pΩ, pFtqtě0,Pq denotes a filtered probability space satisfying
the usual conditions; moreover, for any 0 ď s ď t, Sps, tq denotes the set ts1 P r0, ss, t1 P
r0, ts, s1 ď t1u. The application to (41) is discussed in Subsection 4.6.

4.4. Lp Construction of the Integral.

4.4.1. Materials. We are given a real T ą 0 and a continuous progressively-measurable
process pAps, tqq0ďsďtďT in the sense that, for any 0 ď s ď t, the mapping Ω ˆ Sps, tq Q
pω, s1, t1q ÞÑ Aps1, t1q is measurable for the product σ-field Ft b BpSps, tqq and the mapping
SpT, T q Q ps, tq ÞÑ Aps, tq is continuous. We assume that there exist a constant Γ ě 0, three
exponents ε0 P p0, 1{2s, ε1, ε1

1
ą 0 and a real q ě 1 such that, for any 0 ď t ď t`h ď t`h1 ď

T ,

E
“ˇ̌
E
“
Apt, t` hq|Ft

‰ˇ̌q‰ 1

q ď Γh
1

2
`ε0,

E
“
|Apt, t` hq|q

‰ 1

q ď Γh
1

2 ,

E
“ˇ̌
E
“
Apt, t` hq ` Apt` h, t` h1q ´ Apt, t` h1q|Ft

‰ˇ̌q‰ 1

q ď Γph1q1`ε1,

E
“
|Apt, t` hq ` Apt` h, t` h1q ´ Apt, t` h1q|q

‰ 1

q ď Γph1q 1

2
p1`ε1

1
q.

(50)

In the framework of (49), we have in mind to choose Apt, t`hq “ Xt`h ´Xt or Apt, t`hq “
Bt`h ´ Bt, in which cases A has an additive structure and ε1 and ε1

1 can be chosen as
large as desired, or Apt, t ` hq “ bpt, Xt, hq, in which case A is not additive. The precise
application to (49) is detailed in Subsection 4.6. Generally speaking, we call Apt, t ` hq
a pseudo-increment. Considering pseudo-increments instead of increments (that enjoy, in
comparison with, an additive property) allows more flexibility and permits, as just said, to
give a precise meaning to bpt, Xt, dtq in (49). The strategy is then to split Apt, t ` hq into
two pieces:

Rpt, t` hq :“ E
“
Apt, t ` hq|Ft

‰
, Mpt, t ` hq :“ Apt, t` hq ´ E

“
Apt, t ` hq|Ft

‰
,(51)

Mpt, t ` hq being understood as a sort of martingale increment and Rpt, t ` hq as a sort of
drift.

We are also given a continuous progressively-measurable process pψtq0ďtďT and we assume
that, for an exponent ε2 ă ε0 and for any 0 ď t ď t ` h ď T ,

(52) E
“
|ψt|q

1‰ 1

q1 ď Γ, E
“
ψt`h ´ ψt|q

1‰ 1

q1 ď Γh
1

2
´ε2,

for some q1 ě 1. We then let p “ qq1{pq ` q1q so that 1{p “ 1{q ` 1{q1.
26



4.4.2. Objective. The aim of the subsection is to define the stochastic integral
şT
0
ψtApt, t`dtq

as an LppΩ,Pq version of the Young integral. In comparison with the standard version of the
Young integral, the LppΩ,Pq construction will benefit from the martingale structure of the
pseudo-increments pMpt, t` hqq0ďtďt`hďT , the integral being defined as the LppΩ,Pq limit of
Riemann sums as the step size of the underlying subdivision tends to 0. Given a subdivision
∆ “ t0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T u, we thus define the ∆-Riemann sum

(53) Sp∆q :“
N´1ÿ

i“0

ψtiApti, ti`1q.

We emphasize that this definition is exactly the same as the one used to define Itô’s integral:
on the step rti, ti`1s, the process ψ is approximated by the value at the initial point ti. For
that reason, we will say that the Riemann sum is adapted. In that framework, we claim:

Theorem 16. There exists a constant C “ Cpq, q1,Γ, ε0, ε1, ε2q, such that, given two subdi-
visions ∆ Ă ∆1, with πp∆q ď 1,

(54) E
“
|Sp∆q ´ Sp∆1q|p

‰1{p ď C 1 maxpT 1{2, T q
`
πp∆q

˘η
,

where πp∆q denotes the step size of the subdivision ∆, that is πp∆q :“ max1ďiďN rti ´ ti´1s,
and with η :“ minpε0 ´ ε2, ε1, ε

1
1
{2q.

For general partitions ∆ and ∆1 (without any inclusion requirement), Theorem 16 applies
to the pairs p∆,∆ Y ∆1q and p∆1,∆ Y ∆1q, so that (54) holds in that case as well provided
πp∆q in the right-hand side is replaced by maxpπp∆q, πp∆1qq. We deduce that Sp∆q has a
limit in LppΩ,Pq as πp∆q tends to 0. We call it the stochastic Young integral of ψ with
respect to the pseudo-increments of A.

4.4.3. Proof of Theorem 16. First Step. First, we consider the case where the two subdivi-
sions ∆ and ∆1, ∆ being included in ∆1, are not so different one from each other. Precisely,
given ∆ “ t0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T u and ∆1 “ ∆ Y tt1

1
ă ¨ ¨ ¨ ă t1Lu (L ě 1), the

ptiq1ďiďN ’s and the pt1jq1ďjďL’s being pairwise distinct, we assume that, between two con-
secutive points in ∆, there is at most one point in ∆1. For any j P t1, . . . , Lu, we then
denote by s´

j and s`
j the largest and smallest points in ∆ such that s´

j ă t1j ă s`
j . We have

t1j ă s`
j ď s´

j`1
ă t1j`1 for 1 ď j ď L´ 1. We then claim:

Lemma 17. Under the above assumption, the estimate (54) holds with πp∆q replaced by
ρp∆1z∆q, where ρp∆1z∆q :“ sup1ďjďLrs`

j ´ s´
j s.

Proof of Lemma 17. (i) As a first step, we compute the difference Sp∆1q ´ Sp∆q. We write

Sp∆1q ´ Sp∆q “
Lÿ

j“1

“
Sp∆jq ´ Sp∆j´1q

‰
,

with ∆j “ ∆ Y tt1
1
, . . . , t1ju, for 1 ď j ď L, and ∆0 “ ∆. Then,

Sp∆jq “ Sp∆j´1q ` ψs´
j
Aps´

j , t
1
jq ` ψt1

j
Apt1j , s`

j q ´ ψs´
j
Aps´

j , s
`
j q

“ Sp∆j´1q `
`
ψt1

j
´ ψs´

j

˘
Apt1j , s`

j q ` ψs´
j

`
Aps´

j , t
1
jq ` Apt1j, s`

j q ´ Aps´
j , s

`
j q
˘
.
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Therefore,

Sp∆1q ´ Sp∆q “
Lÿ

j“1

`
ψt1

j
´ ψs´

j

˘
Mpt1j , s`

j q `
Lÿ

j“1

`
ψt1

j
´ ψs´

j

˘
Rpt1j, s`

j q

`
Lÿ

j“1

ψs´
j

`
Aps´

j , t
1
jq ` Apt1j , s`

j q ´ Aps´
j , s

`
j q
˘

:“ δ1Sp∆,∆1,Mq ` δ1Sp∆,∆1, Rq ` δ2Sp∆,∆1q.

(55)

(ii) We first investigate δ1Sp∆,∆1,Mq. The process přℓ

j“1
pψt1

j
´ ψs´

j
qMpt1j , s`

j qq0ďℓďL is a

discrete stochastic integral and thus a martingale with respect to the filtration pFs`
ℓ

q0ďℓďL,

with the convention that s´
0 “ s`

0 “ 0. The sum of the squares of the increments is given

by
řL

j“1
pψt1

j
´ ψs´

j
q2pMpt1j , s`

j qq2. By the second line in (50) and by (52), we observe from

Minkowski’s inequality first and then from Hölder’s inequality (recalling 1{p “ 1{q ` 1{q1)
that there exists a constant C such that

E

„ˇ̌
ˇ̌
Lÿ

j“1

`
ψt1

j
´ ψs´

j

˘2`
Mpt1j , s`

j q
˘2
ˇ̌
ˇ̌
p
2

 2

p

ď
Lÿ

j“1

E

”`
ψt1

j
´ ψs´

j

˘p
E

”`
Mpt1j , s`

j q
˘p|Ft1

j

ıı 2

p

ď C

Lÿ

j“1

`
t1j ´ s´

j

˘p1´2ε2q`
s`
j ´ t1j

˘
ď CT

`
ρp∆1z∆q

˘η1
,

with η1 :“ 1 ´ 2ε2 ě 2pε0 ´ ε2q, where we have used s´
j ă t1j ă s`

j . By discrete Burkholder-

Davis-Gundy inequalities, we deduce that Er|δ1Sp∆,∆1,Mq|ps1{p ď CT 1{2pρp∆1z∆qqη1{2.

(iii) We now turn to δ1Sp∆,∆1, Rq. In the same way, by the first line in (50) and by (52),

E
“ˇ̌
δ1Sp∆,∆1, Rq

ˇ̌p‰ 1

p ď
Lÿ

j“1

E
“ˇ̌

|ψt1
j

´ ψs´
j

|p|Rpt1j , s`
j q|p

‰ 1

p

ď C

Lÿ

j“1

`
t1j ´ s´

j

˘1{2´ε2
`
s`
j ´ t1j

˘1{2`ε0 ď CT
`
ρp∆1z∆q

˘η2
,

with η2 :“ ε0 ´ ε2. Therefore, Er|δ1Sp∆,∆1, Rq|ps1{p ď CT
`
ρp∆1z∆q

˘η2 .
(iv) We finally investigate δ2Sp∆,∆1q. We split it into two pieces:

δ2Sp∆,∆1q “
Lÿ

j“1

ψs´
j
R1ps´

j , t
1
j , s

`
j q `

Lÿ

j“1

ψs´
j
M 1ps´

j , t
1
j , s

`
j q,

:“ δ2Sp∆,∆1, R1q ` δ2Sp∆,∆1,M 1q,
(56)

with

R1ps´
j , t

1
j , s

`
j q :“ E

“
Aps´

j , t
1
jq ` Apt1j , s`

j q ´ Aps´
j , s

`
j q
ˇ̌
Fs´

j

‰
,

M 1ps´
j , t

1
j , s

`
j q :“ Aps´

j , t
1
jq ` Apt1j , s`

j q ´ Aps´
j , s

`
j q ´ R1ps´

j , t
1
j, s

`
j q.

By the third line in (50) and by (52), we have, with η3 :“ ε1, Er|δ2Sp∆,∆1, R1q|ps1{p ď
CT pρp∆1z∆qqη3 .
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We finally tackle δ2Sp∆,∆1,M 1q. We notice that it generates a discrete time martingale
with respect to the filtration pFs`

ℓ
q0ďℓďL. As in the second step, we compute the Lp{2pΩ,Pq

norm of the sum of the squares of the increments. By the last line in (50), it is given by

E

„ˇ̌
ˇ̌
Lÿ

j“1

ψ2

s´
j

`
M 1ps´

j , t
1
j , s

`
j q
˘2
ˇ̌
ˇ̌
p

2

 2

p

ď
Lÿ

j“1

E

”
ψ

p

s´
j

E

”`
M 1ps´

j , t
1
j , s

`
j q
˘p|Fs`

j´1

ıı 2

p ď CT
`
ρp∆1z∆q

˘η4
,

with η4 :“ ε1
1
. By discrete Burkholder-Davis-Gundy inequality, Er|δ2Sp∆,∆1,M 1q|ps1{p ď

CT 1{2pρp∆1z∆qqη4{2.
Putting piq, piiq, piiiq and pivq together, this completes the proof. �

4.4.4. Proof of Theorem 16. Second Step. We now consider the general case when ∆ Ă ∆1

(∆1 �“ ∆) without any further assumption on the difference ∆1z∆.
As above, we denote the points in ∆ by t1, . . . , tN . The points in the difference ∆1z∆ are

denoted in the following way. For i “ 1, . . . , N , we denote by t1
1,i, . . . , t

1
Li,i

the points in the
intersection p∆1z∆q X pti´1, tiq, where Li denotes the number of points in p∆1z∆q X pti´1, tiq.
Each Li may be written as Li “ 2ℓi ` εi where ℓi P N and εi P t0, 1u. We then define ∆1

1 as
the subdivision made of the points that are in ∆ together with the points

 
tt12ℓ,i, ℓ “ 1, . . . , ℓiu Y tt2ℓi`1 if εi “ 1u

(
whenever ℓi ě 1, for i “ 1, . . . , N.

This says that, to construct ∆1
1
, we delete, for any i “ 1, . . . , N , the point t1

1,i if Li “ 1 and
the points that are in p∆1z∆q X pti´1, tiq and that have an odd index 2ℓ ´ 1 with 1 ď ℓ ď ℓi
if Li ą 1 (so that the last point is kept even if labelled by an odd integer when ℓi ě 1). By
construction, ∆1

1
and ∆1 satisfy the assumption of Subsection 4.4.3, so that
››Sp∆1

1
q ´ Sp∆1q

››
LppΩ,P q ď CmaxpT 1{2, T q

“
ρp∆1z∆1

1
q
‰η
.

It holds ∆1
1

Ą ∆. If ∆1
1

�“ ∆, we then build a new subdivision ∆1
2
as the subdivision

associated with ∆1
1
in the same manner as ∆1

1
is associated with ∆1. We then obtain

(57)
››Sp∆1

2q ´ Sp∆1
1q
››
LppΩ,Pq ď CmaxpT 1{2, T q

“
ρp∆1

1z∆1
2q
‰η
.

We then carry on the construction up until we reach ∆1
M “ ∆ for some integer M ě 1. We

notice that such an M does exist: by construction each ∆1
j contains ∆ and 7r∆1

js ă 7r∆1
j´1s

(with the convention ∆1
0

“ ∆1).
We now make an additional assumption: We assume that ∆1 is a dyadic subdivision, that

is ∆1 “ t2´PkT, 0 ď k ď 2P u for some P ě 1. This says that ∆ is also made of dyadic points
of order P . We denote by Q the unique integer such that

maxpLi, 1 ď i ď Nq “ 2Q ` r with 0 ď r ď 2Q ´ 1,

and by iQ some index such that LiQ “ 2Q ` r. At the first step, the 2Q first points in

p∆1z∆q X ptiQ´1, tiQq are reduced into 2Q´1 points. At the second step, they are reduced

into 2Q´2 points and so on... Therefore, it takes steps to reduce the 2Q first points in
p∆1z∆q X ptiQ´1, tiQq into a single one. Meanwhile, it takes at most Q steps to reduce the r
remaining points in p∆1z∆qXptiQ´1, tiQq into a single one (without any interferences between
the two reductions). We deduce that, after the Qth step, there are at most two operations
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to perform to reduce ∆1
Q into ∆. This says that M is either Q ` 1 or Q ` 2 and that, at

each step j P t1, . . . , Qu of the induction, we are doubling the step size ρp∆1
j´1

z∆1
jq, that is

ρp∆1
j´1z∆1

jq “ 2j´1ρp∆1z∆1
1q, j “ 1, . . . , Q,

so that

ρp∆1z∆1
1
q ď 2´pQ´1qπp∆q, and ρp∆1

j´1
z∆1

jq ď 2j´Qπp∆q, j “ 1, . . . , Q.

Therefore, ρp∆1
j´1

z∆1
jq ď 2j´M`2πp∆q, j “ 1, . . . ,M . By extending (57) to each of the steps

of the induction, we get (up to a new value of C)

(58)
››Sp∆1q ´Sp∆q

››
LppΩ,Pq ď CmaxpT 1{2, T q

“
πp∆q

‰η Mÿ

j“0

2ηpj´Mq ď CmaxpT 1{2, T q
“
πp∆q

‰η
.

When ∆ and ∆1 contain non-dyadic points (so that they are different from t0, T u), we can
argue as follows. We can find a dyadic subdivision, denoted by D2, such that, in any open
interval delimited by two consecutive points in D2, there is at most one element of ∆. Then,
we remove points from D2 to obtain a minimal subdivision D1, made of dyadic points, such
that, in any open interval delimited by two consecutive points in D1, there is exactly one
element of ∆. In such way, in any open interval delimited by two consecutive points in ∆,
there is at most one point in D1. Therefore, we can apply Lemma 17 to pD1, D1 Y ∆q and
p∆, D1 Y ∆q. We get
››SpD1q ´ Sp∆q

››
LppΩ,Pq ď CmaxpT 1{2, T q

“
max

`
πpD1q, πp∆q

˘‰η ď C 1 maxpT 1{2, T q
“
πp∆q

‰η
,

since πpD1q ď 2πp∆q. By the same argument, we can find a dyadic subdivision D1
1
for

which the above inequality applies with pD1,∆q replaced by pD1
1,∆

1q. Then, we can find a
dyadic subdivision D such that both D1 Ă D and D1

1
Ă D. Applying (58) to pD1, Dq and

to pD1
1
, Dq, we can bound the difference between SpD1

1
q and SpD1q. The result follows.

4.5. Further Properties of the Integral.

4.5.1. Extension of the Integral. Given the decomposition (51), it is worth noting that both

the integrals
şT
0
ψtMpt, t ` dtq and

şT
0
ψtRpt, t ` dtq are also defined as Lp limits of the

associated adapted Riemann sums. The main point is to check that Lemma 17 applies to
SM and SR, where, with the same notation as in (53), SMp∆q “ řN´1

i“0
ψtiMpti, ti`1q and

SRp∆q “ řN´1

i“0
ψtiRpti, ti`1q. A careful inspection of the proof of Lemma 17 shows that the

non-trivial point is to control the quantities δ2Sp∆,∆1,Mq and δ2Sp∆,∆1, Rq, obtained by
replacing A by M and R respectively in the definition of δ2Sp∆,∆1q in (55). Actually, since
we already have a control of the sum of the two terms (as it coincides with δ2Sp∆,∆1q in the
proof of Lemma 17), it is sufficient to control one of them only. Clearly,

››δ2Sp∆,∆1, Rq
››
LppΩ,Pq ď

›››
Lÿ

j“1

ψs´
j

`
Rps´

j , t
1
jq ` E

`
Rpt1j , s`

j q|Fs´
j

˘
´ Rps´

j , s
`
j q
˘›››

LppΩ,Pq

`
›››

Lÿ

j“1

ψs´
j

`
Rpt1j , s`

j q ´ E
`
Rpt1j , s`

j q|Fs´
j

˘˘›››
LppΩ,Pq

.

We emphasize that the first term above is nothing but δ2Sp∆,∆1, R1q in (56), for which we
already have a bound. Therefore, the only remaining point is to control the second term
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above. Again, we notice that it has a martingale structure, which can be estimated by
Burkholder-Davis-Gundy inequality. By the first line in (50) and by (52),

E

„ˇ̌
ˇ
Lÿ

j“1

ψ2

s´
j

´
Rpt1j , s`

j q ´ E
`
Rpt1j, s`

j q|Fs´
j

˘¯2
ˇ̌
ˇ
p

2

 2

p

ď C

Lÿ

j“1

E

”
ψ

p

s´
j

`
Rpt1j, s`

j q
˘pı 2

p ď C 1
Lÿ

j“1

`
s`
j ´ s´

j

˘1`2ε0 ď C2T
`
ρp∆1z∆q

˘2ε0
,

which is enough to conclude that Theorem 16 is also valid when replacing A by R or M in

§4.4.4. Therefore, we are allowed to split the integral of ψ as
şT
0
ψtApt, t`dtq “

şT
0
ψtMpt, t`

dtq `
şT
0
ψtRpt, t`dtq. The reader must pay attention to the fact that neither M nor R must

satisfy (50) even if A does. The extension of the integral to the case when they are driven
by M or R is thus a consequence of the proof of Theorem 16 itself.

4.5.2. Continuity in Time. It is plain to see that the integral is additive in the sense that,
for any 0 ď S ď S ` S 1 ď T ,

ż S`S1

0

ψtApt, t ` dtq “
ż S

0

ψtApt, t ` dtq `
ż S`S1

S

ψtApt, t` dtq.

An important question in practice is the regularity property of the process r0, T q Q t ÞÑşt
0
ψsAps, s ` dsq, which is not well-defined for the moment. At this stage of the procedure,

each of the integrals is uniquely defined up to an event of zero probability which depends on
t. A continuity argument is thus needed in order to give a sense to all the integrals at the
same time. By Theorem 16, we know that, for h P p0, 1q,

(59)

››››
ż t`h

t

ψsAps, s ` dsq ´ ψtApt, t ` hq
››››
LppΩ,Pq

ď Ch
1

2
`η,

for η ą 0 as in the statement of Theorem 16, so that, by the two first lines in (50),

}
şt`h

t
ψsAps, s ` dsq}LppΩ,Pq ď Ch1{2, for possibly new values of C. By Kolmogorov’s con-

tinuity criterion, this says that there exists a Hölder continuous version of the process
p
şt
0
ψsAps, s ` dsqq0ďtďT , with 1{2 ´ 1{p ´ ǫ as pathwise Hölder exponent, for any ǫ ą 0.
By the same argument, we notice that there exist Hölder continuous versions of the pro-

cesses p
şt
0
ψsMps, s ` dsqq0ďtďT and p

şt
0
ψsRps, s ` dsqq0ďtďT . The Hölder exponent of the

second one is actually better. Indeed, noticing that (59) also holds for R and taking advan-

tage of the first line in (50), we deduce that }
şt`h

t
ψsRps, s` dsq}LppΩ,Pq ď Chp1`ηq{2, so that

the pathwise Hölder exponent can be chosen as p1 ` ηq{2 ´ 1{p ´ ǫ for any ǫ ą 0.

4.5.3. Dirichlet decomposition. It is well-checked that the process p
şt
0
ψsMps, s ` dsqq0ďtďT

is a martingale, thus showing that the integral of ψ with respect to the pseudo-increments
of A can be split into two terms: a martingale and a drift. We expect that, in practical
cases, the exponent p can be choose as large as desired: In this setting, the martingale part
has p1{2 ´ ǫq-Hölder continuous paths, for ǫ ą 0 as small as desired, and the drift part has
p1{2 ` η ´ ǫq-Hölder continuous paths, also for ǫ ą 0 as small as desired, thus proving that
the integral is a Dirichlet process.
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4.6. Application to diffusion processes driven by a distributional drift. We now
explain how the stochastic Young integral applies to (1). First, we can choose Apt, t` hq “
Xt`h ´ Xt, for 0 ď t ď t ` h ď T0. Then the process A is additive. In particular, the two
last lines in (50) are automatically satisfied with ε1 and ε1

1 as large as needed. By (41), the
second line in (50) is also satisfied. Finally, we notice that

E
“
Xt`h ´ Xt|Ft

‰
“ E

“
Xt`h ´ Xt ´

`
Bt`h ´ Bt

˘
|Ft

‰
,

so that, by (41) again, the first line in (50) is satisfied with ε0 “ β{2.
With our construction, this permits to define p

şt
0
ψs dXsq0ďtďT0

for any progressively mea-
surable process pψtq0ďtďT0

satisfying (52) with ε2 ă β{2. It also permits to define the integrals

p
şt
0
ψsMps, s ` dsqq0ďtďT0

and p
şt
0
ψsRps, s ` dsqq0ďtďT0

, where

Mpt, t ` hq “ Xt`h ´ Xt ´ E
“
Xt`h ´ Xt|Ft

‰
, Rpt, t ` hq “ E

“
Xt`h ´ Xt|Ft

‰
.

By (42), we have Rpt, t` hq “ bpt, Xt, hq, so that p
şt
0
ψsbps,Xs, dsqq0ďtďT0

is well-defined.
Moreover, by Proposition 14 and by boundedness of the exponential moments of pXtq0ďtďT0

(see the proof of Theorem 8), we know that R̂pt, t` hq “ pb´ bqpt, Xt, hq also satisfies (50),

from which we deduce that p
şt
0
ψspb´ bqps,Xs, dsqq0ďtďT0

and so p
şt
0
ψsbps,Xs, dsqq0ďtďT0

are
well-defined. Actually the exponent in the power of h appearing in the difference pb ´
bqpt, Xt, hq being strictly greater than 1, the integral process p

şt
0
ψspb ´ bqps,Xs, dsqq0ďtďT0

must be 0. We deduce that p
şt
0
ψsbps,Xs, dsq “

şt
0
bps,Xs, dsqq0ďtďT0

.

We finally discuss the integral p
şt
0
ψsMps, s ` dsqq0ďtďT . We let

M̂pt, t` hq “ Xt`h ´ Xt ´
`
Bt`h ´ Bt

˘
´ E

“
Xt`h ´ Xt|Ft

‰

“ Xt`h ´ Xt ´
`
Bt`h ´ Bt

˘
´ E

“
Xt`h ´ Xt ´

`
Bt`h ´ Bt

˘
|Ft

‰
.

By (41), Er|M̂pt, t` hq|q|s1{q ď C 1
qh

p1`βq{2 for some Cq1 ě 0, which reads as a super-diffusive

bound for the pseudo-increments of M̂ . It is then well-checked that pM̂pt, t ` hqq0ďtďt`hďT0

fulfills all the requirements in (50). Therefore, the integral p
şt
0
ψsM̂ps, s ` dsqq0ďtďT0

makes
sense. By Subsection 4.5, it is a martingale but by the super-diffusive bound of the pseudo-
increments it must be the null process. Put it differently, only the Brownian part really
matters in M and we can justify (49) thanks to the equality

ż t

0

ψs dXs “
ż t

0

ψs dBs `
ż t

0

ψsbps,Xs, dsq.

5. Construction of the integral of Z w.r.t. Y . Examples.

As a final discussion, we address the existence of a rough path structure pW T
t ,W

T
t q0ďtďT

for the pairW T
t “ pYt, ZT

t q, for T running in some interval r0, T0s, T0 ą 0. In this framework,

we emphasize that the only challenge is to define the ‘cross-integral’ It,T px, x1q :“
şx1

x
pZT

t pyq´
ZT

t pxqq dYtpyq. Indeed, as we are seeking a geometric rough structure, it makes sense to let

(imitating the integration by parts)
şx1

x
pYtpyq ´ Ytpxqq dYtpyq :“ p1{2qpYtpx1q ´ Ytpxqq2, with

a similar identity with Yt replaced by ZT
t , and

(60)

ż x1

x

pYtpyq ´ Ytpxqq dZT
t pyq :“ pYtpx1q ´ YtpxqqpZT

t px1q ´ ZT
t pxqq ´ It,T px, x1q.
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5.1. Overview of the results. We are given pYtpxqq0ďtďT0,xPR satisfying for some χ, κ ą 0:

κα,χppYtq0ďtďT0
q :“ sup

rě1,0ďtďT

`
}Yt}r´r,rs

α {rχ
˘

ď κ ă 8,

together with sup0ďtďT0
|Ytp0q| ď κ (since only the variations of pYtpxqq0ďtďT0,xPR matter in

(1), we could even assume that Ytp0q “ 0, for t P r0, T0s). With the same notation as
in (9), we then have κα,χppYt,Ytq0ďtďT0

q ď Cκ, for some universal constant C, where Yt

denotes the (geometric) iterated integral of Yt as just defined right above. Recalling the
definition (11) of ZT

t , it can be proved that, for any T P r0, T0s, sup0ďtďT |ZT
t p0q| ď Cκ and

κα,χppZT
t q0ďtďT q ď Cκ, the constant C now depending upon T0 but not on T , thus proving

that κα,χppZT
t ,Z

T
t q0ďtďT q ď Cκ. The proof of sup0ďtďT |ZT

t p0q| ď Cκ is quite straightfor-
ward: Taking benefit of the Hölder regularity of pYtpxqq0ďtďT0,xPR in x, the singularity of
the second-order derivative of the heat kernel appearing in the definition of ZT can be in-
tegrated. More generally, it can be proved, using the same strategy, that, for any r ě 1,
sup0ďtďT suprě1 supxPr´r,rs |ZT

t pxq| ď Cκrχ. The proof of κα,χppZT
t q0ďtďT q ď Cκ is slightly

more subtle. The idea is to go back to (29), with v ” 1 therein, recalling that the analysis
is split into two parts: |x1 ´ x|2 ď T ´ t and T ´ t ă |x1 ´ x|2, the first case only being
challenging. It is then quite straightforward to check that |I1px, x1qpξq| ď Cκrχ|x1 ´ x|α,
for x, x1, ξ P r´r, rs with r ě 1. Moreover, following (31) with β “ 1, we also have

I2px, x1q ď Cκrχ
şx1

x

ş
|x´x1|2 s

´p3´αq{2 ds ď Cκrχ|x1 ´ x|α, for x, x1 P r´r, rs, which completes

the proof.
The point is thus to prove that the cross-integral is well-defined and satisfies

(61)
ˇ̌
It,T px, x1q

ˇ̌
ď C

`
1 ` |x|2χ ` |x1|2χ

˘
|x1 ´ x|2α,

the constant C possibly depending upon T0 but not on T .
As we already said in Introduction, existence of the cross-integral has been proved within

the framework of the KPZ equation by means of general results on rough paths theory
applied to Gaussian processes, see [14, Section 7] and [12]. Anyhow, it is a natural question
to wonder about the existence for more general classes of ‘environments’. In this section, we
thus exhibit several sufficient conditions under which (61) is indeed satisfied, the examples
we provide being of the following types:

(1) As a first example, we recover the case when the family pYtpxqqtě0,xPR is constant in
time, see Proposition 18.

(2) When the family pYtpxqqtě0,xPR does depend on time, we prove that the cross-integral
is well-defined under some additional time-space regularity. Basically, if the sum of
the Hölder exponent in space and twice the Hölder exponent in time is greater than
1 ´ α, then the cross-integral is well-defined, see Proposition 19. As an application,
we deduce that the cross-integral is always well-defined when α ą 1{2, which fits the
standard regime for Young’s integration.

(3) In Proposition 20, we pay a special attention to the case when Yspxq reads, for some
s ě 0 and x P R, as a space convolution of pYtpzqqzPR with respect to some heat
kernel, for some t ď s. Such a situation occurs when the dynamics of Y satisfy a
parabolic equation.

(4) The final example we give is of a different nature. We assume that the structure of
pYtpxqqtě0,xPR relies on an additional Brownian sheet so that the cross-integral exists
as a stochastic integral. As a basic application, we discuss the case when pYtpxqqtě0,xPR
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is a forward solution to the stochastic heat equation. The case when pYtpxqqtě0,xPR
solves a backward SPDE will be discussed in the next section within the framework
of the application to KPZ equation.

It is worth mentioning that the cross-integral is also well-defined when pYtpxqqtě0,xPR reads
as a combination of some of the examples given above.

5.2. Principle of the analysis. The construction of the cross-integral may be achieved in
two different ways. A first one is to go back to Riemann sums, or possibly compensated
Riemann sums as in rough paths theory, and to prove the convergence as the step size of the
underlying mesh tends to 0. Another way consists in mollifying the inputs and in proving
uniform estimates of the cross-integrals driven by the mollified inputs, the cross-integrals
being for sure well-defined in the regular setting. Below, we implement the second strategy
as it ensures, for free, the ‘geometric’ property of the limit cross-integral and as it provides,
in some quite interesting cases, explicit expressions of such a limit cross-integral.

We first notice that there is no real difficulty in mollifying the inputs. It is indeed sufficient
to mollify first the paths pYtpxqqtě0,xPR in space and then to plug the mollified version of
pYtpxqqtě0,xPR in the definition (11) of ZT

t pxq. Below, we consider, as a mollification of

pYtpxqqxPR, for a given t ě 0, the path Y n
t pxq “

ş
R
p1{npx ´ yqYtpyq dy. Then, we define Zn,T

t

accordingly, by replacing Yt by Y
n
t in (11).

It is worth mentioning that T is here a given terminal time, which is assumed to live in
the compact set r0, T0s. For making the whole machinery work in the previous sections,
it is a crucial point to obtain estimates like (61) for the mollified cross-integral that are
uniform in n ě 1 and but also in t and T , for 0 ď t ď T ď T0. A first step forward in that

direction is to give a sense, for each s ą t, to the cross integral Inpt,sqpx, x1q :“
şx1

x

ş
R

B2

xps´tpy´
zqY n

s pzqBxY
n
t pyq dy dz and to bound it independently of n. In that perspective, a famous

result by Young [26] states that, given an exponent β ą 0, there exists a universal constant
c ą 0 such that, for any two smooth functions f and g on the interval rx, x1s satisfying
(62) |fpzq ´ fpyq| |gpz1q ´ gpyq| ď C|z ´ z1|1`β ,

for some constant C and for any x ď z ď y ď z1 ď x1, it holds

(63)

ˇ̌
ˇ̌
ż x1

x

fpzqg1pzq dz ´ fpxq
`
gpx1q ´ gpxq

˘ˇ̌ˇ̌ ď cC|x1 ´ x|1`β.

Letting fpyq “
ş
R

B2

xps´tpy ´ zqY n
s pzq dz and gpyq “ Y n

t pyq, we notice that f is α1-Hölder

continuous on rx, x1s, for 0 ă α1 ď 1, with a Hölder constant of order ps ´ tq´p1`α1{2q`α{2

(independently of n). Equation (62) then holds with 1 ` β “ α1 ` α and C of order ps ´
tq´p1`α1{2q`α{2 (independently of n). Asking β ą 0 requires α1 `α ą 1 and asking the Hölder
constant to be integrable (uniformly in n) requires α1 ă α. In the end, for defining the
cross-integral, Young’s theory only applies if α ą 1{2.

Below, we go back to Young’s framework in a more detailed, but generally speaking, the
objective is to go further into the analysis and to discuss several cases when the cross-integral
exists even if α ď 1{2 (α being larger than 1{3).

5.3. Time homogeneous environment. The first step is to discuss the case when Y is
constant in time or, equivalently, to focus, in the time-dependent framework, on the mollified
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cross-integral
şx1

x
Z

n,T
t pyqBxY

n
t pyq dy, with

Z
n,T
t pyq :“

ż T

t

ż

R

Bsps´tpy ´ zqY n
t pzq dz ds “

ż

R

pT´tpy ´ zqY n
t pzq dz ´ Y n

t pyq.

Here Z
n,T
t reads as a modified version of Zn,T

t , in which Y n
s has been replaced by Y n

t (see
(11)). In comparison with (11), the second order derivative B2

xps´t has been also replaced by
Bsps´t, by taking benefit (up to a factor 2) of the heat equation satisfied by ps´t.

In such a case, the cross-integral
şx1

x
pZn,T

t pyq´Z
n,T
t pxqq dY n

t pyq can be expressed explicitly,
without any reference to the derivative of Y n

t :

ż x1

x

`
Z

n,T
t pyq ´ Z

n,T
t pxq

˘
dY n

t pyq

“
ż x1

x

ż

R

`
pT´tpy ´ zq ´ pT´tpx´ zq

˘
Y n
t pzqBxY

n
t pyq dz dy

´
ż x1

x

`
Y n
t pyq ´ Y n

t pxq
˘
BxY

n
t pyq dy

“ Y n
t px1q

`
Z

n,T
t px1q ´ Zn,T pxq ` Y n

t px1q ´ Y n
t pxq

˘
´ 1

2

“`
Y n
t px1q ´ Y n

t pxq
˘2‰

´
ż x1

x

ż

R

BxpT´tpy ´ zqY n
t pzqY n

t pyq dz dy,

(64)

the passage from the second to the third line following from an integration by parts. It
is quite straightforward to see that the cross-integrals converge as n tends to the infinity,
the limit cross-integral satisfying a similar formula. A crucial point is that it satisfies (61),
uniformly in t ď T in r0, T0s:

Proposition 18. Under the assumptions and notations specified in Subsection 5.1, let

ZT
t pyq “

şT
t

ş
R

B2

xps´tpy ´ zqYtpzq dz ds. Then, the integral
şx1

x
pZT

t pyq ´ ZT
t pxqq dYtpyq may

be defined as a ‘geometric integral’ obtained by replacing pY n,Zn,T q by pY,ZT q in (64). It
satisfies (61), the constant C therein being uniform with respect to t ď T in r0, T0s.

Proof. By the mollification argument, it is sufficient to prove that the bound (61) holds for
Y smooth, provided the resulting constant C in (61) only depends on κ and T0. Replacing

Y n
t pyq by Ytpyq ´Ytpxq in (64) (which doesn’t change the definition of Zn,T

t ) and subtracting
ZT

t pxqrYtpx1q ´ Ytpxqs, we get

It,T px, x1q “
`
Ytpx1q ´ Ytpxq

˘`
ZT

t px1q ´ ZT
t pxq ` Ytpx1q ´ Ytpxq

˘
´ 1

2

`
Ytpx1q ´ Ytpxq

˘2

´
ż x1

x

ż

R

BxpT´tpy ´ zq
`
Ytpzq ´ Ytpxq

˘`
Ytpyq ´ Ytpxq

˘
dz dy.

The terms in the first line are easily tackled. Indeed, the term ZT
t has the same regularity

in space as ZT
t (the proof is the same, replacing Ys by Yt). The point is thus to investigate

the last term in the definition of It,T px, x1q. We put things in a more general framework
that will be reused in the sequel. Letting h “ T ´ t in the definition of It,T px, x1q, we
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replace Bxphpy´ zq by another antisymmetric function Ghpy, zq (in the sense that Ghpz, yq “
´Ghpy, zq) satisfying, for any β ě 0,

(65)

ż

R

|y ´ z|β
ˇ̌
Ghpy, zq

ˇ̌
dz ď Cβh

β{2´1{2,

and, for any a P R,

(66)

ż a

´8

ˆż `8

a

|y ´ z|β
ˇ̌
Ghpy, zq

ˇ̌
dz

˙
dy `

ż 8

a

ˆż a

´8
|y ´ z|β

ˇ̌
Ghpy, zq

ˇ̌
dz

˙
dy ď Cβh

β{2,

the constant Cβ possibly depending on T0. It is standard to check that Ghpy, zq “ Bxphpy´zq
satisfies (65). The verification of (66) is a bit more involved. Since Bxphpy´zq ě 0 for y ě z,
we have (the value of Cβ varying from line to line)
ż 8

a

ˆż a

´8
|y ´ z|β

ˇ̌
Bxphpy ´ zq

ˇ̌
dz

˙
dy “

ż 8

a

ˆż a

´8
h´1

`
y ´ z

˘1`β
p1
`y ´ z

h1{2
˘
dz

˙
dy

ď Cβh
β{2

ż 8

a

ˆż a

´8
h´1

`
y ´ z

˘
p2
`y ´ z

h1{2
˘
dz

˙
dy

ď Cβh
β{2

ż 8

a

h´1{2p2
`y ´ a

h1{2
˘
dy.

We then consider:

(67) Ihpx, x1q :“
ż x1

x

ż

R

Ghpy, zq
“
Ytpzq ´ Ytpxq

‰“
Ytpyq ´ Ytpxq

‰
dz dy,

with ´r ď x ă x1 ď r, for some r ě 1. Splitting Ytpzq ´ Ytpxq into Ytpzq ´ Ytpyq plus Ytpyq ´
Ytpxq, we deduce from (65) that |Ihpx, x1q| ď Cp1`r2χqrh´1{2|x1´x|1`2α`h´p1´αq{2|x1´x|1`αs,
so that, for h ě |x1 ´ x|2,

|Ihpx, x1q| ď C
`
1 ` r2χ

˘
|x1 ´ x|2α.

In order to handle the case h ď |x1 ´ x|2, we first deduce from the antisymmetry property
that ż x1

x

ż x1

x

Ghpy, zq
“
Ytpzq ´ Ytpxq

‰“
Ytpyq ´ Ytpxq

‰
dz dy “ 0.

Therefore, Ihpx, x1q “ I1

hpx, x1q ` I2

hpx, x1q, with

I1

hpx, x1q :“
ż x1

x

ż `8

x1

Ghpy, zq
“
Ytpzq ´ Ytpxq

‰“
Ytpyq ´ Ytpxq

‰
dz dy,

I2

hpx, x1q :“
ż x1

x

ż x

´8
Ghpy, zq

“
Ytpzq ´ Ytpxq

‰“
Ytpyq ´ Ytpxq

‰
dz dy.

We start with I1

hpx, x1q. We write I1

hpx, x1q “ I
1,1
h px, x1q ` I

1,2
h px, x1q, with

I
1,1
h px, x1q :“

ż x1

x

ż `8

x1

Ghpy, zq
“
Ytpzq ´ Ytpyq

‰“
Ytpyq ´ Ytpxq

‰
dz dy,

I
1,2
h px, x1q :“

ż x1

x

ż `8

x1

Ghpy, zq
“
Ytpyq ´ Ytpxq

‰2
dz dy.
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By (66), we have |I1,1
h px, x1q| ď Cp1 ` r2χqhα{2|x ´ x1|α. Similarly, |I1,2

h px, x1q| ď Cp1 `
r2χq|x ´ x1|2α Therefore,

ˇ̌
I1

hpx, x1q
ˇ̌

ď C
`
1 ` r2χ

˘`
hα{2|x´ x1|α ` |x ´ x1|2α

˘
.

Notice that I2

hpx, x1q can be bounded in a similar way. Therefore,
ˇ̌
Ihpx, x1q

ˇ̌
ď C

`
1 ` r2χ

˘`
hα{2|x´ x1|α ` |x ´ x1|2α

˘
,

which is less than Cp1 ` r2χq|x ´ x1|2α if h ď |x ´ x1|2.
�

5.4. Time space regularity. From the practical point of view, the previous paragraph is of
real interest as its scope goes beyond the time homogeneous framework. Indeed, it says that,
in the analysis of the mollified cross-integrals –see Subsection 5.2 –, one can limit ourselves

to the investigation of
şx1

x
pZn,T

t pyq ´Z
n,T
t pxqqBxY

n
t pyq dy, with a new of definition of Zn,T

t pyq
(which, we feel, yields no confusion with the one introduced in the previous subsection):

(68) Z
n,T
t pyq :“

ż T

t

ż

R

B2

xps´tpy ´ zq
`
Y n
s pzq ´ Y n

t pzq
˘
dz ds.

Put it differently, one can distinguish the Y n appearing in the cross-integral from the Y n

appearing in the definition of Zn,T
t . Below, we investigate several cases of a more general

kind:

(69) Z
n,T
t pyq “

ż T

t

ż

R

B2

xps´tpy ´ zqYn
t,spzq dz ds,

that covers (68), pYn
t,spyqq0ďtďsďT0,yPR denoting a family of paths indexed by two-dimensional

time indices.

5.4.1. Young’s theory. Making use of Young’s theory, we are then able to prove:

Proposition 19. Let the assumptions and notations specified in Subsection 5.1 be in force.
Consider also a time-space family pYt,spyqq0ďtďsďT0,yPR such that, for some µ, µ1 ě 0 satisfying
2µ1 ` µ ą 1 ´ α and for some constant κ1 ą 0, it holds

(70) @s P rt, T0s, @y, z P R, |Yt,spzq ´ Yt,spyq| ď κ1`1 ` |y|χ ` |z|χ
˘
|s ´ t|µ1 |y ´ z|µ.

For 0 ď t ď T ď T0, let

(71) ZT
t pyq :“

ż T

t

ż

R

B2

xps´tpy ´ zqYt,spzq dz ds,

and define, on the same model as in Subsection 5.2, a mollified version Yn
t,s of Yt,s by convolu-

tion with the heat kernel and then consider Zn,T
t as in (69). Then, for any α1 P p1´α, µ`2µ1q,

there exists a constant C 1 “ C 1pα1, κ, κ1, T0q such that, for any 0 ď t ď T ď T0, the ‘geometric
integral’ of ZT

t with respect to Yt makes sense and satisfies (61) with respect to C 1 and 2α
replaced by α ` α1.

The reader might worry about the fact that (61) holds with respect to a larger exponent
than 2α. The resulting effect can be read in Theorem 1, in which the regularity of W

explicitly appears. As a consequence, it affects Lemma 2 as it generates a new term in the
definition of D, which writes (with the same notation as therein) |z|2pα`α1q`βρ2χ`β{2. This
new definition of D must be injected in the proof of Lemma 11. Basically, a new term must
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be added to the definition of D1 in (20): It is of the form sα`α1`β{2´1ρ2χ`β{2. The important
point is that the power of ρ is not changed in comparison with the original case when α1 “ 0.
Thus, the final result remains true.

A typical example of application is Yt,spyq “ Yspyq ´Ytpyq. In the specific case when Ytpyq
may be expanded as Ytpyq “ ftY pyq, f being more than p1{2 ´ αq-Hölder continuous, (70)
holds with µ “ α and µ1 ą 1{2 ´ α. Another example of application is Yt,spyq “ Yspyq.
In that framework, (70) is satisfied with µ ą 1{2 and µ1 “ 0 if α ą 1{2, in which case the
cross-integral fits the Young theory discussed in Subsection 5.2.

Proof. As in the proof of Proposition 18, we can assume that the mappings Yt and pYt,sqtďsďT

are smooth in space. The proof is then an application of Young estimates (62) and (63), with
fpyq “

ş
R

B2

xps´tpy´ zqYt,spzq dz and gpyq “ Ytpyq. We notice that f is α1-Hölder continuous
on rx, x1s, for 0 ă α1 ď 1, with a Hölder constant of the form C 1p1 ` |x|χ ` |x1|χqps ´
tq´p1`α1{2q`µ{2`µ1

(C 1 depending upon α1). Eq. (62) then holds with 1 ` β “ α1 `α and C of
the form C 1ps ´ tq´p1`α1{2q`µ{2`µ1

. Asking β ą 0 requires α1 ` α ą 1 and asking the Hölder
constant to be integrable requires α1 ă µ ` 2µ1. Young’s theory applies if µ ` 2µ1 ` α ą 1,
in which case (61) holds with 2α replaced by α ` α1 ą 1.

�

5.4.2. Space convolution. As another important example for practical applications, we con-
sider the case when Yt,s is given as a convolution (in space) of the increment Ys ´ Yt:

Proposition 20. Let the assumptions and notations specified in Subsection 5.1 be in force.
Consider also a family of kernels pqt,spz, uqq0ďtăsďT0,z,uPR (that is a family of non-negative
functions with mass 1 in u) satisfying:

(72)
ˇ̌
ˇqt,spz, uq ´ pps´tqσ2

t pzqpz ´ uq
ˇ̌
ˇ ď Cps ´ tqµpC2ps´tqpz ´ uq, 0 ď t ă s ď T0, z, u P R,

with µ ą 1{2 ´ α and C ě 1, σtp¨q being a C-Lipschitz continuous function with values in
r1{C,Cs. Letting Yt,spzq “

ş
R
qt,spz, uqpYtpuq´Ytpzqq du and defining Yn

t,spzq by mollifying Yt,s

with a kernel of variance 1{n, consider ZT
t pyq given by (71) and Z

n,T
t pyq given by (69). Then,

there exist a constant C 1 “ C 1pµ, κ, C, T0q and an exponent ǫ “ ǫpα, µq ą maxp2α ´ 1, 0q
such that, for any 0 ď t ď T ď T0, the ‘geometric integral’ of ZT

t with respect to Yt makes
sense and satisfies (61) with C 1r2χ|x1 ´ x|2α replaced by C 1r2χp|x1 ´ x|2α ` |x1 ´ x|1`ǫq.

As emphasized right after Proposition 19, the reader must not worry about the additional
|x1 ´ x|1`ǫ.

Example 21. An example for q is the transition density of a second-order operator Lt “
btp¨qBx ` p1{2qσ2

t p¨qB2

x, where b is a bounded function and σ is, in addition to the assumption
specified in the statement of Proposition 20, 1{2-Hölder continuous in time, uniformly in
space. The proof of (72) follows from the ‘parametrix’ method in [11, Chapter 1].

Proof of Proposition 20. First step. The first step of the proof consists in showing that Yn
s,t

can be chosen as the integral with respect to q of the mollified version Y n
t of Yt. With the

definition given in the statement (which is the right one for defining a ‘geometric integral’),

Yn
t,spzq “

ż

R

p1{npz ´ vqYn
t,spvq dv “

ż

R

qnt,spz, uq
`
Ytpuq ´ Y n

t pzq
˘
du,
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with qnt,spz, uq “
ş
R
p1{npz ´ vqqt,spv, uq dz. The point is then to estimate qnt,spz, uq by taking

benefit of (72) and of a Gaussian convolution. The argument is based on the fact that, for
σ P r1{C,Cs and 0 ă s ´ t ď T0,

(73)
ˇ̌
Bσ

“
pσ2ps´tqpz ´ uq

‰ˇ̌
“
ˇ̌
Bσ

“
σ´1ps´t

`z ´ u

σ

˘‰ˇ̌
ď C 1ps´t

`z ´ u

C 1
˘
,

for some constant C 1 ą 0. This says that, in (72), we can replace σtpzq by σtpuq up to a
modification of the value of the constant C in the right-hand side. Indeed, the distance
|σtpuq ´ σtpzq| is less than C|u´ z|, which is of order ps´ tq1{2 when multiplied by the heat
kernel of variance s ´ t.

Recalling the very basic formula
ş
R
ps1py´zqps2pzq dz “ ps1`s2pyq, for y P R and s1, s2 ą 0,

we then deduce from the new version of (72) that

ˇ̌
qnt,spz, uq ´ p1{n`ps´tqσ2

t puqpz ´ uq
ˇ̌

“
ˇ̌
ˇ̌
ż

R

p1{npz ´ vq
“
qt,spv, uq ´ pps´tqσ2

t puqpv ´ uq
‰
dv

ˇ̌
ˇ̌

ď Cps ´ tqµp1{n`C2ps´tqpz ´ uq.

Following (73) and modifying the constant C if necessary, the same holds true with σ2

t puq
replaced by σ2

t pzq, that is
ˇ̌
qnt,spz, uq ´ p1{n`ps´tqσ2

t pzqpz ´ uq
ˇ̌

ď Cps´ tqµp1{n`C2ps´tqpz ´ uq.

We then notice that
ż

R

p1{n`ps´tqσ2
t pzqpz ´ uq

`
Ytpuq ´ Y n

t pzq
˘
du “

ż

R

pps´tqσ2
t pzqpz ´ vq

`
Y n
t pvq ´ Y n

t pzq
˘
dv,

ż

R

p1{n`C2ps´tqpz ´ uq
`
Ytpuq ´ Y n

t pzq
˘
du “

ż

R

pC2ps´tqpz ´ vq
`
Y n
t pvq ´ Y n

t pzq
˘
dv,

from which we deduce that

(74) Yn
t,spzq “

ż

R

pps´tqσ2
t pzqpz ´ uq

`
Y n
t puq ´ Y n

t pzq
˘
du ` ǫns,tpzq,

where ǫns,tpzq denotes a remainder, bounded by C 1p1` |z|χqps´ tqα{2`µ, the constant C 1 being
independent of n. The integral with respect to the remainder can be estimated by means of
Proposition 19 since α{2 ` µ ą p1 ´ αq{2. This says that we can forget the remainder ǫns,t
and do as if it was 0.

Below, we thus focus on the cross-integral driven by the first term only in the right-hand
side in (74). This permits to do the same as in the previous proofs: We can directly assume
that Yt is smooth in space and forget the superscript n in the notations. Regardless the

restriction ǫns,t ” 0, the cross-integral is still denoted by
şx1

x
pZT

t pyq ´ ZT
t pxqq dYtpyq.

Second step. The point is to prove (61) for ´r ď x ă x1 ď r, with r ě 1. By integra-

tion by parts (see the introduction of the section), it is equivalent to focus on
şx1

x
pYtpyq ´

Ytpxqq dZT
t pyq, which reads

ż T

t

ż x1

x

ż

R

B3

xps´tpy ´ zq
ˆż

R

pps´tqσ2
t pzqpz ´ uq

`
Ytpuq ´ Ytpzq

˘`
Ytpyq ´ Ytpxq

˘
du

˙
dz dy ds.
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By (73), we can replace σtpzq by σtpyq. Indeed, the function σt being Lipschitz in space, the
difference between the two terms can be bounded by (for a new value of C 1)

C 1`1 ` r2χ
˘ ż T

t

ż x1

x

ps ´ tq´3{2`1{2`α{4|y ´ x|α dy ds,

which is less than C 1p1 ` r2χqpT ´ tqα{4|x´ x1|1`α. Actually, it is even sufficient to focus on

(75)

ż T

t

ż x1

x

ż

R

B3

xps´tpy ´ zq
ż

R

pps´tqσ2
t pyqpz ´ uqYtpuq

`
Ytpyq ´ Ytpxq

˘
du dz dy ds,

as the remainder, which reads
şT
t

şx1

x

ş
R

B3

xps´tpy ´ zqYtpzq
`
Ytpyq ´ Ytpxq

˘
dz dy ds, has been

already tackled within the framework of time-homogeneous environments.
Third step. We denote by Jt,T px, x1q the term in (75). The good point is that, by convo-

lution in z, the expression can be reduced to
ż T

t

ż x1

x

ż

R

d3

dw3 |w“y
pps´tqr1`σ2

t pyqspw ´ uqYtpuq
`
Ytpyq ´ Ytpxq

˘
ds dy du.

Noting that B2

xpps´tqp¨q “ 2Bsrps´ts, we get that Jt,T px, x1q is equal to

2

ż T

t

ż x1

x

ż

R

r1 ` σ2

t pyqs´2BsBxps´t

` y ´ u

r1 ` σ2
t pyqs1{2

˘
Ytpuq

`
Ytpyq ´ Ytpxq

˘
du dy ds.

which, by integration by parts in u, also matches

2

ż T

t

ż x1

x

ż

R

r1 ` σ2

t pyqs´3{2Bsps´t

` y ´ u

r1 ` σ2
t pyqs1{2

˘
BxYtpuq

`
Ytpyq ´ Ytpxq

˘
du dy ds.

Integrating in time, we finally get

Jt,T px, x1q “ 2

ż x1

x

ż

R

r1 ` σ2

t pyqs´3{2pT´t

` y ´ u

r1 ` σ2
t pyqs1{2

˘
BxYtpuq

`
Ytpyq ´ Ytpxq

˘
du dy

´ 2

ż x1

x

r1 ` σ2

t pyqs´1BxYtpyq
`
Ytpyq ´ Ytpxq

˘
dy.

The second term in the right-hand side writes

´
ż x1

x

r1 ` σ2

t pyqs´1
d

dy

“`
Ytpyq ´ Ytpxq

˘2‰
dy,

and easily tackled by integration by parts, taking benefit of the Lipschitz property of σ. It
is less than Cr2χp|x1 ´ x|2α ` |x1 ´ x|1`2αq.

Fourth step. It thus remains to discuss

2

ż x1

x

ż

R

r1 ` σ2

t pyqs´3{2pT´t

` y ´ u

r1 ` σ2
t pyqs1{2

˘
BxYtpuq

`
Ytpyq ´ Ytpxq

˘
du dy.

Performing an integration by parts in u and using the Lipschitz property of σ, it is equal to

2

ż x1

x

ż

R

r1 ` σ2

t pyqs´2BxpT´t

` y ´ u

r1 ` σ2
t pyqs1{2

˘`
Ytpuq ´ Ytpxq

˘`
Ytpyq ´ Ytpxq

˘
du dy.
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Using the analogue (73) for BσBxps´t (which consists in adding a constant ps´ tq´1{2 in front
of the right-hand side), we can replace σ2

t pyq by σtpyqσtpuq. The resulting difference is indeed
less than Cr2χp|x1 ´ x|1`α ` |x1 ´ x|1`2αq. We are thus left with

2

ż x1

x

ż

R

r1 ` σtpyqσtpuqs´2BxpT´t

` y ´ u

r1 ` σtpyqσtpuqs1{2
˘`
Ytpuq ´ Ytpxq

˘`
Ytpyq ´ Ytpxq

˘
du dy.

It can be put in the same form as in (67), with

Ghpy, zq “ r1 ` σtpyqσtpzqs´2Bxph
` y ´ z

r1 ` σtpyqσtpzqs1{2
˘
.

It is thus sufficient to check (65) and (66), which is not very difficult since, for y ě z (and
similarly for z ď y), 0 ď Ghpy, zq ď C 1Bxphrpy ´ zq{C 1s, for some constant C 1.

In order to complete the proof, we notice that all the exhibited bounds are of the form
Crχ|x1 ´ x|γ, for γ varying between γmin “ 2α and some γmax ą 1. By standard Young’s
inequality, we can bound any |x1 ´ x|γ by Cp|x1 ´ x|γmin ` |x1 ´ x|γmaxq. �

5.5. Decorrelation of the increments. Another strategy is to assume that Y is random,
with suitable decorrelation properties, so that the cross-integral can be constructed as a
stochastic integral. Denoting by pΞ,G,Pq the corresponding probability space (which models
some random ‘environment’ and which is given apart from the space pΩ,A,Pq used to build
the solution to (1)), we claim:

Proposition 22. Let pζpt, xqq0ďtďT0,xPR be a Brownian sheet with respect to some filtration
pGtq0ďtďT0

on pΞ,G,Pq, such that, for any t P r0, T0s, the mapping Yt (seen as a random func-
tion) is Gt-measurable. Assume also that, for any T P r0, T0s, there exists a GT -measurable
random variable κT , with sup0ďTďT0

Er|κT |ps ă `8 for all p ě 1, such that, for all r ě 1,

@t P r0, T s, @x, x1 P r´r, rs, |Ytpxq ´ Ytpx1q| ď κT r
χ|x ´ x1|α,

with α P p1{3, 1{2q, and
@t, t1 P r0, T s, @x P r´r, rs, |Ytpxq ´ Yt1pxq| ď κT r

χ1|t1 ´ t|η,
with χ P p0, α{2q and χ1, η ą 0. In addition let pkt,spx, yq0ďtďsďT0,x,yPR be a progressively-
measurable process, in the sense that the mapping ∆T,T0

ˆ R2 Q pt, s, x, yq ÞÑ kt,spx, yq P R

is GT b Bp∆T,T0
ˆ R2q measurable, where ∆T,T0

:“ tpt, sq P r0, T s ˆ r0, T0s : t ď su. Assume
that it satisfies

|kt,spx, yq| ď Cps´t

`y ´ x

C

˘
, |Bxkt,spx, yq| ď Cps ´ tq´1{2ps´t

`y ´ x

C

˘
.

Letting Yt,spzq “
şs
t

ş
R
kρ,spz, uq dζpρ, uq and defining Yn

t,spzq in a similar way by mollification,

consider ZT
t pyq given by (71) and Z

n,T
t pyq given by (69). Then, for any α1 P p0, αq, there

exist an exponent χ1 “ χ1pα1, α, η, χq, with χ1 Ñ χ as α1 Ñ α, and a random variable κ1,
with finite moments of any order, such that, almost surely, for any 0 ď t ď T ď T0, the
‘geometric integral’ of ZT

t with respect to Yt makes sense and satisfies (61) with respect to
C replaced by κ1, α replaced by α1 and χ replaced by χ1.

Proof. First step. We first assume that ZT
t pyq and Ytpyq are regular in the variable y. By

(60), it is enough to focus on the cross-integral Jt,T px, x1q :“
şx1

x
rYtpyq ´ YtpxqsBxZ

T
t pyq dy

instead of It,T px, x1q “
şx1

x
rZT

t pyq ´ ZT
t pxqsBxYtpyq dy.
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By stochastic Fubini’s theorem and by a change of variable, we can write Jt,T px, x1q “şT
t
Ht,spx, x1q ds, with

(76) Ht,spx, x1q “
ż

R

B3

xps´tpzq
„ż s

t

ż

R

ˆż x1

x

kρ,spy ´ z, uq
“
Ytpyq ´ Ytpxq

‰
dy

˙
dζpρ, uq


dz.

Clearly, we can bound |Jt,T px, x1q| by Ktpx, x1q :“
şT0

t
|Ht,spx, x1q| ds. The strategy is then to

bound the moments of Ktpx, x1q and thus to compute the bracket of the stochastic integral
in (76). The bracket reads

Aspzq :“
ż s

t

ż

R

ż x1

x

ż x1

x

kρ,spy ´ z, uqkρ,spy1 ´ z, uq
`
Ytpyq ´ Ytpxq

˘`
Ytpy1q ´ Ytpxq

˘
dρ du dy dy1.

Assuming that ´r ď x ă x1 ď r, for some r ě 1, and recalling that there exists a Gt-
measurable random variable κt, with sup0ďtďT0

Er|κt|ps ă `8 for any p ě 1, such that
|Ytpx1q ´ Ytpxq| ď κtr

χ|x1 ´ x|α, we can bound Aspzq, P almost surely, by

|Aspzq| ď C 1κ2t r
2χ|x1 ´ x|2α

ż x1

x

ż x1

x

ż s

t

pps´ρq{C1py ´ y1q dy1 dy dρ ď C 1κ2t r
2χps ´ tq|x1 ´ x|1`2α.

Recalling, for a given p ě 1, the standard inequality

Ts :“
ż

R

ˇ̌
B3

xps´tpzq
ˇ̌
E

„ˆż s

t

ż

R

ˆż x1

x

kρ,spy ´ z, uq
“
Ytpyq ´ Ytpxq

‰
dy

˙
dζpρ, uq

˙p ˇ̌
Gt

1{p
dz

ď Cp

ż

R

ˇ̌
B3

xps´tpzq
ˇ̌
E
“`
Aspzq

˘p{2ˇ̌
Gt

‰1{p
dz,

for a universal constant Cp, and using the bound |B3

xps´tpzq| ď C 1ps ´ tq´3{2pps´tq{C1pzq, we
deduce that (the value of Cp being allowed to increase from line to line) Ts ď Cpκtr

χ|x ´
x1|1{2`αps ´ tq´1, so that

(77) E
“
|Ht,spx, x1q|p

‰1{p ď CpE
“
κ
p
t

‰1{p
rχps ´ tq´1|x´ x1|1{2`α.

Since the singularity is non-integrable, we must provide another bound for the left-hand side.
By integration by parts in z, we write:

(78) Ht,spx, x1q “
ż

R

B2

xps´tpzq
„ż s

t

ż

R

ˆż x1

x

Bzkρ,spy ´ z, uq
“
Ytpyq ´ Ytpxq

‰
dy

˙
dζpρ, uq


dz,

which may be split into Ht,spx, x1q “ H1

t,s ` H2

t,s, with

H1

t,s “
ż

R

B2

xps´tpzq
„ż s

t

ż

R

ˆż x1

x

Bzkρ,spy ´ z, uq
“
Ytpyq ´ Ytpz ` uq

‰
dy

˙
dζpρ, uq


dz,

H2

t,s “
ż

R

B2

xps´tpzq
„ż s

t

ż

R

ˆż x1

x

Bzkρ,spy ´ z, uq
“
Ytpz ` uq ´ Ytpxq

‰
dy

˙
dζpρ, uq


dz.

Repeating the proof of (77), but using in addition the bound for Bzk and the fact that
|Ytpyq ´ Ytpz ` uq| ď |y ´ pz ` uq|α, we obtain

E
“
|H1

t,s|p
‰1{p ď CpE

“
|κt|p

‰1{p
rχps ´ tq´1|x1 ´ x|

ˆż s

t

pρ´ sq´1`α dρ

˙1{2

ď CpE
“
|κt|p

‰1{p
rχps ´ tq´1`α{2|x1 ´ x|.

(79)
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(The basic argument is as follows: when computing the bracket of the stochastic integral,
the square of gradient of the kernel gives pr´ sq´1 and the square of |Ytpyq ´Ytpz`uq| gives
pr ´ sqα.)

In order to handle H2
t,s, we notice that

H2

t,s “
ż

R

B2

xps´tpzq
„ż s

t

ż

R

“
kρ,spx1 ´ z, uq ´ kρ,spx ´ z, uq

‰“
Ytpz ` uq ´ Ytpxq

‰
dζpρ, uq


dz.

Now, the bracket is less than C 1κ2t r
2χp1 ` |x1 ´ x|αq

şs
t
ps ´ ρq´1{2 dρ, so that

(80) E
“
|H2

t,s|p
‰1{p ď CpE

“
|κt|p

‰1{p
rχps ´ tq´3{4p1 ` |x1 ´ x|α{2q.

From (77), (79) and (80) and from a standard interpolation argument, we deduce that, for
any ǫ P p0, 1{2 ´ αq, we can find ε1pǫq ą 0 and ε2pǫq ą 0, both converging to 0 with ǫ, such
that

E
“
|Ht,s|p

‰1{p ď C 1
pE

“
|κt|p

‰1{p
rχ`ε2pǫqps ´ tq´1`ε1pǫq|x1 ´ x|1{2`α´ǫ

ď C 1
pE

“
|κt|p

‰1{p
rχ`1{2´α`ε2pǫqps ´ tq´1`ε1pǫq|x1 ´ x|2α,

(81)

Recalling that α ą 1{3, we have 1{2 ´ α ă α{2. This says that we can assume without any
loss of generality that χ ą 1{2 ´ α. Then, rχ`1{2´α`ε2pǫq ď r2χ`ε2pǫq. By integration from t

to T0, we get

E
“
sup

tďTďT0

|Jt,T px, x1q|p
‰1{p ď E

“
|Ktpx, x1q|p

‰1{p ď C 1
pE

“
|κt|p

‰1{p
r2χ`ε2pǫq|x1 ´ x|2α.(82)

Second step. Eq. (82) is the basic step for applying, for a given 0 ď t ď T0, Kolmogorov’s
continuity criterion. Anyhow, standard Kolmogorov’s criterion doesn’t apply since Jt,T px, x1q
is not additive in the variables x, x1. To bypass this difficulty, we use Theorem 23 below,
which is a refined version of Kolmogorov’s criterion. It applies in the current framework
because

Jt,T px, yq ` Jt,T py, x1q ´ Jt,T px, x1q “ ´
`
ZT

t px1q ´ ZT
t pyq

˘`
Ytpyq ´ Ytpxq

˘
.

Indeed, assume for the moment that, for any α1 P p0, αq, there exists εpα1q, with εpα1q Ñ εpαq
as α1 Ñ α, such that sup0ďTďT0

κα1,χ`εpα1qppZT
t q0ďtďT q is in any Lp for any p ě 1. Then (87)

holds with γ1 “ α, γ2 “ α1 and ζ “ r2χ`εpα1qκ1, where κ1 is a random variable with finite
moments of any order. The index T here plays the role of the index L in (87): As L is
assumed to be in N in (87), T can be chosen first in a countable dense subset of rt, T0s;
as Yt is assumed to be smooth, cross-integrals can be explicitly defined and there is indeed
no difficulty to replace in (82) the supremum over T P rt, T0s by a supremum over T in a
countable dense subset of rt, T0s.

Applying Theorem 23, we deduce that, for any α1 P p0, αq, any r ą 0 and any 0 ď t ď T0,

there exists a random variable Γr,α1

t , with finite moments of any order, the bounds being

uniform in t P r0, T0s, such that suptďTďT0
|Jt,T px, x1q| ď Γr,α1

t |x´x1|2α1
for any x, x1 P r´r, rs.

Pay attention that Γr,α1

t depends on r as Kolmogorov’s criterion applies on segments. To

get the explicit dependence of the moments of Γr,α1

t upon the variable r, we can apply
Kolmogorov’s criterion to Jt,T prx, rx1q, with x, x1 P r´1, 1s. We can find εpα1q (possibly
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different from the previous one), with εpα1q Ñ 0 as α1 Ñ α, such that

sup
rě1

sup
0ďtďT0

 
r´pr2χ`εpα1qsEr sup

tďTďT0

|Γr,α1

t |ps
(

ă 8.

Letting Γα1

t “ suprPN˚tr´r2χ`2εpα1qsΓr,α1

t u, we have, for any p ą 1{εpα1q

sup
0ďtďT0

E
“`
Γα1

t

˘p‰ ď
ÿ

rPN˚

"
r´pr2χ`2εpα1qs sup

0ďtďT0

E
“`
Γr,α1

t

˘p‰
*

ă 8,

which shows that, for any t P r0, T0s, it holds P-almost surely, for all x, x1 P r´r, rs,
(83) sup

tďTďT0

|Jt,T px, x1q| ď Γα1

t r
2χ`2εpα1q|x1 ´ x|2α1

,

the random variable Γα1

t having finite moments of any order, the bounds being uniform in
t P r0, T0s.

Third step. The last point of the proof is to ‘exchange’ the ‘@t P r0, T0s’ and the ‘P-almost
surely’ in (83). The argument consists of another application of Kolmogorov’s criterion. We

thus investigate Jt,T px, x1q ´Jt1,T px, x1q for t ď t1 ď T . It can be split into
şt1

t
Ht,spx, x1q ds`şT

t1 rHt,spx, x1q ´ Ht1,spx, x1qs ds. By (81), it is quite straightforward to see that

E

„ˇ̌
ˇ̌
ż t1

t

Ht,spx, x1q ds
ˇ̌
ˇ̌
p1{p

ď C 1
ppt1 ´ tqε1pǫqE

“
|κt|p

‰1{p
r2χ`ε2pǫq|x1 ´ x|2α.

The point is thus to bound Erp
şT0

t1 |Ht,spx, x1q ´ Ht1,spx, x1q| dsqps1{p. To this end, we notice
that Ht,spx, x1q in (76) depends upon t through three quantities: the derivative of the heat
kernel, the initial time in the stochastic integral and the increment of Y . Therefore, we must
investigate the regularity of each of these three quantities upon t.

We start with the derivative of the heat kernel. Above, we just used the bound |B3

xps´tpzq| ď
C 1ps ´ tq´3{2pps´tq{C1pzq. Noting that we also have |BsB3

xps´tpzq| ď C 1ps ´ tq´5{2pps´tq{C1pzq,
we deduce by interpolation that

ş
R

|B3

xps´tpzq ´ B3

xps´t1pzq| dz ď C 1ps ´ t1q´3{2´ǫ1pt1 ´ tqǫ1
.

This says that, when estimating Er|Ht,spx, x1q ´Ht1,spx, x1q|ps1{p, the dependence of the heat
kernel upon the time parameter t leads to a slightly modified form of (81), with a new factor
pt1 ´ tqǫ1

and with ε2pǫq replaced by ε2pǫq ` ǫ1.
We now discuss what happens when the initial time varies in the stochastic integral ap-

pearing in the definition of Ht,spx, x1q. In (77), (79), (80), the interval of integration of the
variable ρ is rt, ss. This leads to the following singularities: ps ´ tq´1 in (77), ps ´ tq´1`α{2

in (79) and ps ´ tq´3{4 in (80). When s ě t1 and ρ lives in rt, t1s, the length ps ´ tq can be
replaced by pt1 ´ tq. This leads, for an arbitrary ǫ1 P p0, 1q, to the following new singularities:
pt1 ´ tqǫ1ps´ tq´1´ǫ1

in (77), pt1 ´ tqǫ1ps´ tq´1´ǫ1`α{2 in (79) and pt1 ´ tqǫ1ps´ tq´3{4´ǫ1
in (80).

Again, this says that, when estimating Er|Ht,spx, x1q ´ Ht1,spx, x1q|ps1{p, the dependence of
the stochastic integral upon the time parameter t leads to a slightly modified form of (81),
with a new factor pt1 ´ tqǫ1

and with ε2pǫq replaced by ε2pǫq ` ǫ1.
We finally discuss what happens when the time parameter varies in the increment of Y .

We recall that
|Yt1pxq ´ Ytpxq| ď κt1rχ

1|t1 ´ t|η,
so that (modifying the random variable κt1),

ˇ̌
Yt1px1q ´ Yt1pxq ´

`
Ytpx1q ´ Ytpxq

˘ˇ̌
ď κt1rχ

1|t1 ´ t|η.
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Since ˇ̌
Yt1px1q ´ Yt1pxq ´

`
Ytpx1q ´ Ytpxq

˘ˇ̌
ď
`
κt ` κt1

˘
rχ|x1 ´ x|α,

we get by interpolation (with a new definition of κt1)
ˇ̌
Yt1px1q ´ Yt1pxq ´

`
Ytpx1q ´ Ytpxq

˘ˇ̌
ď κt1rχ`ǫ1χ1|t1 ´ t|ǫ1η|x1 ´ x|p1´ǫ1qα.

This leads to a new version of (77), replacing therein χ by χ` ǫ1χ1, α by p1´ ǫ1qα and adding
the factor |t1 ´t|ǫ1η. For our purpose, there is no need to change (79) and (80) (it is enough to
split Yt1px1q´Yt1pxq´pYtpx1q´Ytpxqq into Yt1px1q´Yt1pxq and Yt1px1q´Yt1pxq and to reproduce
the analysis for both terms). This says that, when estimating Er|Ht,spx, x1q´Ht1 ,spx, x1q|ps1{p,
the dependence of Y upon the time parameter t leads to a slightly modified form of (81),
with a new factor pt1 ´ tqǫ1η and with ε2pǫq replaced by ε2pǫq ` ǫ1χ1 (up to modification of χ1)
and with α replaced by α ´ ǫ1.

Collecting the estimates in the three different cases, we end up with

(84) E
“

sup
t1ďTďT0

|Jt,T px, x1q ´ Jt1,T px, x1q|p
‰1{p ď C 1

pr
2χ`ε2pǫq|t1 ´ t|ε3pǫq|x1 ´ x|2α´ǫ,

with ε2pǫq, ε3pǫq Ñ 0 as ǫ Ñ 0. The notations in the above inequality are a bit ambiguous:
the times t and t1 are fixed so that, in the supremum T varies from t1 to T0. In order to
avoid such an ambiguity, we let Jt,T px, x1q “ 0 if T ď t. In particular, for t ď T ď t1,

|Jt,T px, x1q ´ Jt1,T px, x1q| ď
şt1

t
|Ht,spx, x1q|ds. Reproducing the analysis we just performed,

we deduce that the bound right above also holds with supt1ďTďT0
replaced by suptďTďt1 and

thus by sup0ďTďT0
(as Jt,T and Jt1,T vanish when T ď t). It says that sup0ďTďT0

|Jt,T px, x1q´
Jt1,T px, x1q| is a random variable, the moments of which are bounded in any Lp in a similar
fashion as in the increments in (84). By standard version of Kolmogorov’s theorem (applied
in the variable t), we deduce that

(85) E
“
sup

0ďtďT

sup
0ďTďT0

|Jt,T px, x1q|p
‰1{p ď C 1

pr
2χ`ε2pǫq|x1 ´ x|2α´ǫ.

Now, we can apply the extended version of Kolmogorov’s theorem, see Theorem 23 once
again, and then complete the proof in the mollified setting.

Fourth step. We now proceed with the last step of the proof. We are to show that the
mollified cross-integrals converge almost surely. In that framework, we must recall that the
mollification is obtained by a joint mollification of Ytpxq (in the variable x) and Yt,spxq (in
the variable x as well) by convolution with the heat kernel. We denote by pJ n

t,T px, x1qqně1 the
corresponding sequence of cross-integrals, for given values of t ď T in r0, T0s and x, x1 P R.

The strategy is to discuss the regularity of the sequence pJ n
t,T px, x1qqně1 with respect to the

mollification parameter n (or more precisely 1{n, which is the variance of the kernel at rank
n). The principle is exactly the same as the one used, in the previous step, for investigating
the time regularity. On the same model as (84), we can prove that, for 1 ď m ď n,

E
“

sup
0ďTďT0

ˇ̌“`
J n

t1,T ´ J n
t,T

˘
´
`
Jm

t1,T ´ Jm
t,T

˘‰
px, x1q

ˇ̌p‰1{p

ď C 1
pm

´ε3pǫqr2χ`ε2pǫq|t1 ´ t|ε3pǫq|x1 ´ x|1{2`α´ǫ,

with a possibly new value of ε3pǫq. It is plain to deduce that

E
“
sup
ně1

sup
0ďTďT0

ˇ̌`
J n

t1,T ´ J n
t,T

˘
px, x1q

ˇ̌p‰1{p ď C 1
pr

2χ`ε2pǫq|t1 ´ t|ε3pǫq|x1 ´ x|1{2`α´ǫ,
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which is enough to complete the proof.
Final step. To finish with, it remains to check that pZT

t pxqqxPR satisfies the required
regularity assumption, uniformly in 0 ď t ď T ď T0. The argument is similar to the one
used in the previous step. Indeed, it is quite straightforward to see that

ZT
t pxq “

ż T

t

ż

R

B2

xps´tpx ´ zq
ˆż s

t

ż

R

kρ,spz, uq dζpρ, uq
˙
ds dz,

so that

ZT
t px1q ´ ZT

t pxq “
ż T

t

ż

R

B2

xps´tpzq
„ż s

t

ż

R

“
kρ,spx1 ´ z, uq ´ kρ,spx1 ´ z, uq

‰
dζpρ, uq


ds dz

“
ż T

t

ż

R

B3

xps´tpzq
„ż s

t

ż

R

ˆż x1

x

kρ,spy ´ z, uq dy
˙
dζpρ, uq


ds dz.

The above formula must be compared with (76). It is of the same type but Ytpyq ´Ytpxq has
been replaced by 1. Basically, it says that the above analysis holds but with 2α replaced by
α and 2χ replaced by χ. �

5.6. The environment as the solution of a forward SPDE. As a concrete application
of Propositions 20 and 22, we consider the case when pYtpxqq0ďtďT0,xPR is the solution of a
forward SPDE of the form

dtYtpxq “ LtYtpxq dt ` ftpxq dζpt, xq,
where pζpt, xqq0ďtďT0,xPR is a Brownian sheet with respect to some filtration pGtq0ďtďT0

on some
pΞ,G,Pq, pLt “ btp¨qBx ` p1{2qσ2

t p¨qB2

xq0ďtďT0
is a family of second-order differential operators

driven by bounded smooth coefficients with bounded derivatives, the coefficient pσtp¨qq0ďtďT0

being bounded from below by a positive constant, and pftpxqq0ďtďT0,xPR is a progressively-
measurable random field, uniformly bounded by a deterministic constant (independent of
the randomness). The initial condition pY0pxqqxPR is collection of G0-measurable random
variables such that |Y0pxq ´ Y0px1q| ď κ0r

χ|x ´ x1|α, for all x, x1 P r´r, rs, with r ě 1,
where α P p1{3, 1{2q, χ P r0, α{2q and κ0 is a G0-measurable random variable such that
Er|κ0|ps ă `8 for all p ě 1.

Then, for any 0 ď t ď s ď T0, we can express Ys in terms of the fundamental solu-
tion pqt,spx, yqq0ďtăs,x,yPR of pLtq0ďtďT0

, which, together with its derivatives, behave as the
Gaussian heat kernel and its derivatives (see [11]). We write

(86) Yspxq “ Ytpxq `
ż

R

`
Ytpyq ´ Ytpxq

˘
qt,spx, yq dy `

ż s

t

ż

R

fρpyqqρ,spx, yq dζpρ, yq.

Choosing t “ 0, we derive a mild representation of Yspxq in terms of the initial condition
Y0. Up to a modification of χ, this permits to prove that pYspxqqxPR satisfies the continuity
assumption in Proposition 22. The continuity of the second term in the right-hand side
above is easily tackled. The third term can be handled on the same model as ZT

t in the
proof of Proposition 22.

Then, we can define pZT
t pxqqxPR for any 0 ď t ď T ď T0. By the previous results, we can

prove that the cross-integral is well-defined. According to the decomposition (86), we can
indeed split ZT

t into three terms: The first one coincides with ZT
t in Proposition 18; the

second one with ZT
t in Proposition 20 and the last one with ZT

t in Proposition 22. In each
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case, the cross-integral of ZT
t with respect to Yt is well-defined, proving that the cross-integral

of ZT
t with respect to Yt is also well-defined.

5.7. Refined Kolmogorov Theorem. The following theorem is an adaptation of the Kolo-
morogov continuity theorem, the proof of which is left to the reader:

Theorem 23. Let pRL : r´1, 1s2 Q px, yq ÞÑ RLpx, yq P RqLPN be a family of random fields
such that, for some p ě 1, there exist a constant C ą 0, three exponents β, γ1, γ2 ą 0 and a
random variable ζ, satisfying,

@x, y P r´1, 1s2, E
“
sup
LPN

|RLpx, yq|p
‰

ď C|x ´ y|1`β,

@L P N, @x ă y ă z P r´1, 1s, |RLpx, yq ` RLpy, zq ´ RLpx, zq| ď ζ |x´ y|γ1|y ´ z|γ2 .
(87)

Then, for 0 ă ς ă minpγ1 ` γ2, β{pq, there exist constants C 1 :“ C 1pγ1, γ2, β, pq and C2 :“
C2pC, γ1, γ2, β, pq and a non-negative random variable ζ 1, with Er|ζ 1|ps ă C2, such that,

@L P N, x ă y P r´1, 1s, |RLpx, yq| ď C 1`ζ 1 ` ζ
˘
|x´ y|ς .

6. Connection with the KPZ equation

KPZ equation was introduced by Kardar, Parisi and Zhang in [17] in order to model the
growth of a random surface subjected to three phenomena: a diffusion effect, a lateral growth
and a random deposit. It has the formal (normalized) shape:

(88) Btupt, xq “ 1

2
B2

xupt, xq ` 1

2
|Bxupt, xq|2 ` 9ζpt, xq,

with 0 as initial condition, where 9ζ is a time-space white noise (that is the time-space deriva-
tive of a Brownian sheet, defined on pΞ,G,Pq as discussed in Proposition 22). Unfortunately,
it is ill-posed. The basic reason is that the gradient is not expected to exist as a true func-
tion, thus making the term |Bxupt, xq|2 ill-defined. Formally, such a term must be seen as
the square of a distribution.

Two strategies have been developed so far to give a sense to (88). The first one goes back
to [4]. It consists in taking benefit of the so-called Hopf-Cole exponential transformation,
originally used within the framework of Hamilton-Jacobi-Bellman equations. Basically, u
is defined as the exponential of the solution of the stochastic multiplicative heat equation.
The second approach is due to Hairer [14] in the case when x is restricted to the torus (in
which case ζ is defined accordingly). Therein, the basic point is to solve second-order PDEs
driven by a distributional first-order term by means of rough paths theory, which is precisely
the strategy we used in Section 3 to solve (12). The two notions coincide but the resulting
solution solves a renormalized version of (88), which writes (again in a formal sense) as (88)
with an additional ‘´8’ in the right-hand side. The normalization must be understood as
follows: When mollifying the noise (say 9ζ into 9ζnq, Eq. (88) admits a solution, denoted
by un, but the sequence punqně1 is not expected to converge. To make it converge to the
solution of (88), some ‘counterterm’ must be subtracted to the right-hand side of (88): This
counterterm is a constant γn depending upon n, which tends to 8 with n, thus explaining
the additional ‘´8’.
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6.1. Polymer measure. For a given T0 ą 0 and for any n ě 1, we can introduce the
(random) polymer measure associated with the noise ζn:

dQζn

dP
„ exp

ˆż T0

0

ζnpt, Btq dt
˙
,

where pBtq0ďtďT0
is a Brownian motion under P (independent of ζ), the symbol „ indicating

that the right-hand side is normalized in such a way that Qζn is a probability measure.
By Girsanov’s transformation and Feynman-Kac formula, the dynamics of pBtq0ďtďT0

is the
solution of the SDE (1) with Ytpxq “ unpT0 ´ t, xq (the definition of un involves γn, but γn

is unnoticeable in the definition of the polymer measure as it is hidden in the normalization
constant of the right-hand side). In that framework, our result says that, as n tends to 8, the
law of pBtq0ďtďT0

under Qζn converges towards the law of the solution pXtq0ďtďT0
to (1) with

Ytpxq “ upT0 ´ t, xq, provided the underlying geometric rough path structure exists, which is
checked below in the periodic setting. By [14], the Hölder exponent α in our assumption (see
Definition 3) can be chosen as α “ 1{2 ´ ε, ε being as small as desired, and the exponent χ
can be chosen as 0 as the solution is periodic. Therefore, the law of pXtq0ďtďT0

, as defined in
Theorem 8, reads as a rigorous interpretation of the (a priori ill-defined) polymer measure
Qζ on the canonical space Cpr0, T0s,Rq, which is a new result.

6.2. Construction of the rough path. Generally speaking, the main lines for proving the
existence of a geometric cross-integral between pYtpxq “ upT0 ´ t, xqqxPR and the correspond-
ing pZT

t pxqqxPR, for given 0 ď t ď T ď T0, are explained in [14, Subsection 7.1]. Anyhow, the
result in [14] doesn’t exactly fit our requirements since the version of ZT

t which is considered
therein reads as a stationary version of the one we have been using so far and thus slightly
differs from it.

In [14], the rough path structure is shown to exist by means of general results connecting
Gaussian processes to rough paths. Actually, our results in Section 5 permit to recover
the construction. It is indeed proved in [14, Theorem 1.10] that u expands as the sum of
the stationary mean-zero solution u1 of the stochastic additive heat equation and a Hölder
continuous remainder u2 with a Hölder exponent arbitrarily close to 1. By Proposition 19,
the construction of the cross-integral of ZT

t (with the right definition in (11)) with respect
to the remainder u2pT0 ´ t, ¨q is easily handled. As u can be split into two parts, ZT

t can be

split into two parts as well: One part, denoted by Z
T,1
t , involves u1pT0 ´ t, ¨q and another

one, denoted by Z
T,2
t , involves u2pT0 ´ t, ¨q. Since the part involving u2pT0 ´ t, ¨q has the

same regularity as u2pT0 ´ t, ¨q, we can apply Proposition 19 again in order to define the

cross-integral of ZT,2
t with respect to u1pT0 ´ t, ¨q.

The only remaining point is thus to construct the cross-integral of u1pT0´t, ¨q with respect

to Z
T,1
t . Unfortunately, u1pT0 ´ ¨, ¨q is the solution of a backward SPDE whereas results in

Subsection 5.6 apply to forward SPDEs, the time reversal affecting the notion of adaptedness.
This asks for a rewriting of the argument. The fact that u1 is required to be of zero-mean (on
the torus) doesn’t play a role for investigating the existence of the cross-integral as only the
space increments of u1 matter for defining the integral. Therefore, forgetting the zero-mean
constraint, we can write, with Y 1

t pxq “ u1pT0 ´ t, xq,

Y 1

t pxq “
ż

S1
ps´tpx´ yqY 1

s pyq dy `
ż s

t

ż

S1
pρ´tpx´ yq dζpρ, yq,
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for 0 ď t ă s ď T0 and x, y P S1, where S1 is the unit circle and pps´tpxqq0ďtăs,xPR denotes

the heat kernel on S1. This permits to express the cross integral I1

t,T px, x1q :“
şx1

x
pZT,1

t pyq ´
Z

T,1
t pxqq dYtpyq as (at least in a formal way)
ż x1

x

ż T

t

ż

S1

`
B2

xps´tpy ´ zq ´ B2

xps´tpx´ zq
˘
Y 1

s pzq
ˆż

S1
Bxps´tpy ´ wqY 1

s pwq dw
˙
dz ds dy

`
ż x1

x

ż T

t

ż

S1

`
B2

xps´tpy ´ zq ´ B2

xps´tpx´ zq
˘
Y 1

s pzq
ˆż s

t

ż

S1
Bxpρ´tpy ´ wq dζpρ, wq

˙
dz ds dy.

As in the proof of Proposition 22, the second term can be tackled by integration by parts.
Transferring the derivative in y from pρ´t to ps´t, applying stochastic Fubini’s theorem
(paying attention to the fact that the notion of adaptedness is reversed because of the time-
reversal) and then making a change of variable, it reads (up to the boundary terms)

´
ż T

t

ż

S1
B3

xps´tpzq
„ż s

t

ż

S1

ˆż x1

x

pρ´tpy ´ wq
`
Y 1

s py ´ zq ´ Y 1

s pxq
˘
dy

˙
dζpρ, wq


dz ds,

which is very close to (76). The proof is then similar to the one of Proposition 22.
The first term in the decomposition of I1

t,T px, x1q can be split itself into two pieces, ac-

cording to the symbol ‘minus’ in the difference B2

xps´tpy ´ zq ´ B2

xps´tpx´ zq. The first part
can be integrated directly. It reads

1

2

ż T

t

„ˆż

S1
Bxps´tpx1 ´ zqY 1

s pzq dz
˙2

´
ˆż

R

Bxps´tpx´ zqY 1

s pzq dz
˙2

ds.

The second piece can be also computed explicitly. It reads
ż T

t

ˆż

S1
B2

xps´tpx´ zqY 1

s pzq dz
˙ˆż

S1

`
ps´tpx1 ´ zq ´ ps´tpx ´ zq

˘
Y 1

s pzq dz
˙
ds.

By standard bounds on ps´t, both terms are bounded by C|x1 ´ x|γp
şT
t

ps´ tqα´1´γ{2 dsq, for
any γ ă 2α, which permits to define a ‘geometric’ cross-integral satisfying (61).

6.3. Structure of the drift and further prospect. Decomposition (49) applies and says
that the ‘drift’ part in the dynamics under the polymer measure is almost 3{4-Hölder contin-
uous, which is a new result as well (we refer to [21] for a survey on the connection between
KPZ equation and polymers). Actually, as the remainder u2 in the decomposition of the
solution of the KPZ equation has a Hölder exponent close to 1, it can be proved, on the
same model as the proof of Remark 15, that only the cross-integral of u1pT0 ´ t, ¨q with Z

T,1
t

matters for computing the cross-integral part in the definition of b in Definition 14.
A challenging question is to investigate the long run behavior of X as T0 tends to the

infinity. Surely, this is connected with the long-run behavior of the solution to the KPZ
equation, which is a highly non-trivial question, see again [21] for a survey. This requires a
more systematic analysis of the long-run behavior of the solution to (1), which is left as a
research program for the future.
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[19] Lyons, T., Caruana, M., and Lévy, T. Differential equations driven by rough paths. Lectures

from the 34th Summer School on Probability Theory held in Saint-Flour, 2004. Lecture Notes in

Mathematics, 1908. Springer, Berlin, 2007.
[20] Lyons, T., and Qian, Z. System control and rough paths. Oxford University Press, Oxford, 2002.
[21] Quastel, J. Introduction to KPZ. Notes from the Saint-Flour summer school 2012. Available at

http://www.math.toronto.edu/quastel/survey.pdf

[22] Russo, F., and Trutnau, G. (2007) Some parabolic PDEs whose drift is an irregular random
noise in space. Ann. Probab., 35, 2213–2262.

[23] Stroock, D.W., and Varadhan, S.R.S. Multidimensional diffusion processes. Springer-Verlag,
Berlin-New York, 1979.

[24] Tanaka, H. (1994) Localization of a diffusion process in a one-dimensional Brownian environment.
Comm. Pure Appl. Math., 17, 755–766.

[25] Veretennikov, A. Yu. (1980) Strong solutions and explicit formulas for solutions of stochastic
integral equations. Mat. Sb., 111, 434–452.
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