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ROUGH PATHS AND 1D SDE WITH A TIME DEPENDENT
DISTRIBUTIONAL DRIFT. APPLICATION TO POLYMERS.

FRANCOIS DELARUE! AND ROLAND DIEL?

Laboratoire J.-A. Dieudonné,
Université de Nice Sophia-Antipolis and UMR, CNRS 7351,

Parc Valrose, 06108 Nice Cedex 02, France.

ABSTRACT. Motivated by the recent advances in the theory of stochastic partial differen-
tial equations involving nonlinear functions of distributions, like the Kardar-Parisi-Zhang
(KPZ) equation, we reconsider the unique solvability of one-dimensional stochastic differen-
tial equations, the drift of which is a distribution, by means of rough paths theory. Existence
and uniqueness are established in the weak sense when the drift reads as the derivative of a
a-Holder continuous function, a > 1/3. Regularity of the drift part is investigated carefully
and a related stochastic calculus is also proposed, which makes the structure of the solutions
more explicit than within the earlier framework of Dirichlet processes.

1. INTRODUCTION

Given a family of continuous paths (R 3 x — Y;(x))~o with values in R, we are interested
in the solvability of the stochastic differential equation

(1) dX, = 0,Y,(X,)dt + dB,, t >0,

with a given initial condition, where 0,Y; is understood as the derivative of Y; in the sense
of distribution and (B;)=0 is a standard one-dimensional Wiener process.

When 0,Y; makes sense as a measurable function, with suitable integrability conditions,
pathwise existence and uniqueness are known to hold: See the earlier papers by Zvonkin
[32] and Veretennikov [30] when the derivative exists as a bounded function, in which case
existence and uniqueness hold globally, together with the more recent result by Krylov and
Rockner [23] when 0,Y; is in LV ((0,+0) x RY) for some p > d + 2 ~the equation being set
over R? instead of R, in which case existence and uniqueness just hold locally; see also the
Saint-Flour Lecture Notes by Flandoli [10] for a complete account. In the case when 0,Y;
only exists as a distribution, existence and uniqueness have been mostly discussed within the
restricted time homogeneous framework. When the field Y is independent of time, X indeed
reads as a diffusion process with (1/2)exp(—2Y (z))0,(exp(2Y (x))d,) as generator. Then,
solutions to (1) can be proved to be the sum of a Brownian motion and of a process of zero
quadratic variation and are thus referred to as Dirichlet processes. In this setting, unique
solvability can be proved to hold in the weak or strong sense according to the regularity of
Y, see for example the papers by Flandoli, Russo and Wolf [12, 13] on the one hand and the
paper by Bass and Chen [3] on the other hand. We also refer to the more recent work by
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Catellier and Gubinelli [6] for the case when (B;);>¢ is replaced by a general rough signal,
like the trajectory of a fractional Brownian motion with an arbitrary Hurst parameter.

In the current paper, we allow Y to depend upon time, making impossible any factorization
of the generator of X under a divergence form and thus requiring a more systematic treatment
of the singularity of the drift. In order to limit the technicality of the paper, the analysis is
restricted to the case when the diffusion coefficient in (1) is 1, which is already, as explained
right below, a really interesting case for practical purposes and which is, anyway, somewhat
universal because of the time change property of the Brownian motion. As suggested in
the aforementioned paper by Bass and Chen [3], pathwise existence and uniqueness are
then no more expected to hold whenever the path Y; has oscillations of Holder type with
a Holder exponent strictly less than 1/2. For that reason, we will investigate the unique
solvability of (1) in the so-called weak sense by tackling a corresponding formulation of
the martingale problem. Indeed, we will consider the case when Y; is Holder continuous,
the Holder exponent, denoted by «, being strictly greater than 1/3, hence possibly strictly
less than 1/2, thus yielding solutions to (1) of weak type only, that is solutions that are
not adapted to the underlying noise (B;)i=o. At this stage of the introduction, it must be
stressed that the threshold 1/3 for the Holder exponent of the path is exactly of the same
nature as the one that occurs in the theory of rough paths. It is also worth mentioning that
a variant of our set-up has just been considered by Flandoli, Issoglio and Russo [11], which
handle the same equation, the dimension of the state space being possibly larger than 1 but
the Holder exponent of Y; being (strictly) greater than 1/2.

Actually, the theory of rough paths will play a major role in our analysis. The strategy
for solving (1) is indeed mainly inspired by the papers [32, 30, 23] we mentioned right above
and consists in finding harmonic functions associated with the (formal) generator

;;+@m@@.
Solving Partial Differential Equations (PDEs) driven by ¢; + £;, say in the standard mild
formulation, then requires to integrate with respect to 0,Y;(x) (in x), which is a non-classical
thing. This is precisely the place where the rough paths theory initiated by Lyons (see
(25, 24]) comes in: As recently exposed by Hairer in his seminal paper [19] on the KPZ
equation and in the precursor paper [18] on rough stochastic PDEs, mild solutions to PDEs
driven by ¢; + L£; may be expanded as rough integrals involving the standard heat kernel
on the one hand and the ‘rough’ increments 0,Y; on the other hand. In our case, we are
interested in the solutions of the PDE

(3) Orur(x) + Loug(x) = fo(),

when set on a cylinder [0,7] x R, with a terminal boundary condition at time 7" > 0, and
when driven by a smooth function f. Solutions obtained by letting the source term f vary
generates a large enough ‘core’ in order to apply the standard martingale problem approach
by Stroock and Varadhan [28] and thus to characterize the laws of the solutions to (1).
Unfortunately, although such a strategy seems quite clear, some precaution is in fact
needed. When « is between 1/3 and 1/2, which is the typical range of application of Lyons’
theory, the expansion of mild solutions as rough integrals involving the heat kernel and the
increments of d,Y; is not so straightforward. It is indeed not enough to assume that the path

R 5 z — Y;(z) has a rough path structure for any given time ¢ > 0. As explained in detail
2
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in Section 2, the rough path structures, when taken at different times, also interact, asking
for the existence, at any time ¢ > 0, of a ‘lifted” 2-dimensional rough path with Y; as first
coordinate. We refrain from detailing the shape of such a lifting right here as it is longly
discussed in the sequel. We just mention that, in Hairer [19], the family (Y:(2)))i=0.er has
a Gaussian structure, which permits to construct the lifting by means of generic results on
rough paths for Gaussian processes, see Friz and Victoir [16]. Existence of the lifting under
more general assumptions is thus a challenging question, which is (partially) addressed in
Section 5: The lifting is proved to exist in other cases, including that when o > 1/2 and when
(Yi(2))t=0,2er is smooth enough in time (and in particular when it is time homogeneous).
Another difficulty is that, contrary to Hairer [18, 19] in which problems are set on the torus,
the PDE is here set on a non-compact domain. This requires an additional analysis of the
growth of the solutions in terms of the behavior of (Y;(z))i=o0.er for large values of |x|, such
an analysis being essential to discuss the non-explosion of the solutions to (1).

Besides existence and uniqueness, it is also of great interest to understand the specific
dynamics of the solutions to (1). Part of the paper is thus dedicated to a careful analysis
of the infinitesimal variation of X, that is of the asymptotic behavior of X;,, — X; as h
tends to 0. In this perspective, we prove that the increments of X may be split into two
pieces: a Brownian increment as suggested by the initial writing of Eq. (1) and a sort of
drift term, the magnitude of which is of order h'*#/2 for some 8 > 0 that is nearly equal
to . Such a decomposition is much stronger than the standard decomposition of a Dirichlet
process into the sum of a martingale and of a zero quadratic variation process. Somehow it
generalizes the one obtained by Bass and Chen [3] in the time homogeneous framework when
a > 1/2. As a typical example, (1+ 3)/2 is nearly equal to 3/4 when Y; is almost 1/2-Holder
continuous, which fits for instance the framework investigated by Hairer [19]. In particular,
except trivial cases when the distribution is a true function, integration with respect to the
drift term in (1) cannot be performed as a classical integration with respect to a function
of bounded variation. In fact, since the value of (1 + ()/2 is strictly larger than 1/2, it
makes sense to understand the integration with respect to the drift term as a kind of Young
integral, in the spirit of the earlier paper [31]. We here say ‘a kind of Young integral’ and not
‘a Young integral’ directly since, as we will see in the analysis, it sounds useful to develop
a stochastic version of Young’s integration, that is a Young-like integration that takes into
account the probabilistic notion of adaptedness as it is the case in [t0’s calculus.

In the end, we prove that, under appropriate assumptions on the regularity of the field
(Yi(2))t=02er, Eq. (1) is uniquely solvable in the weak sense (for a given initial condition)
and that the solution reads as

(4) dXt - b(t, Xt7 dt) + dBt,

where b maps [0, +o0) x R x [0, +20) to R and the integral with respect to b(t, X;, dt) makes
sense as a stochastic Young integral, the magnitude of b(¢, X;, dt) being of order dt+#)/2,
The examples we have in mind are twofold. The first one is the so-called ‘Brownian
motion in a time-dependent random environment’ or ‘Brownian motion in a time-dependent
random potential’. Indeed, much has been said about the long time behavior of the Brownian
motion in a time-independent random potential such as the Brownian motion in a Brownian
potential, see for example [2, 5, 8, 20, 21, 27, 29]. We expect our paper to be a first step
forward toward a more general analysis of one-dimensional diffusions in a time-dependent

random potential, even if, in the current paper, nothing is said about the long run behavior of
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the solutions to (1), this question being left to further investigations. As already announced,
the second example we have in mind is the so-called Kardar-Parisi-Zhang (KPZ) equation
(see [22]), to which much attention has been paid recently, see among others Bertini and
Giacomin [4], Hairer [19] and Friz and Hairer [15, Chap. 15] about the well-posedness
and Amir, Corwin and Quastel [1] about the long time behavior. In this framework, Y
must be thought as a realization of the time-reversed solution of the KPZ equation, that is
Yi(z) = w(w, T —t,z), T being positive and u(w, -,-) denoting the random solution to the
KPZ equation and being defined either as in Bertini and Giacomin by means of the Cole-
Hopf transform or as in Hairer by means of rough paths theory. Then, Eq. (1) reads as the
equation for describing the dynamics of the canonical path (w;)o<i<r on the canonical space
C([0,T],R) under the polymer measure

exp [t at) aptu,

where ( is a space-time white noise and P is the Wiener measure, the white noise being
independent of the realizations of the Wiener process under PP. In this perspective, our
result provides a quenched description of the infinitesimal dynamics of the polymer.

The paper is organized as follows. We remind the reader of the rough paths theory in
Section 2. Main results about the solvability of (1) are also exposed in Section 2. Section
3 is devoted to the analysis of PDEs driven by the operator (2). In Section 4, we propose
a stochastic variant of Young’s integral in order to give a rigorous meaning to (4). We
discuss in Section 5 the construction of the ‘rough’ iterated integral that makes the whole
construction work. Finally, in Section 6, we explain the connection with the KPZ equation.

2. GENERAL STRATEGY AND MAIN RESULTS

Our basic strategy to define a solution to the SDE (1) relies on a suitable adaptation of
Zvonkin’s method for solving SDEs driven by a bounded and measurable drift (see [32]) and
of Stroock and Varadhan’s martingale problem (see [28]). The main point is to transform
the original equation into a martingale. For sure such a strategy requires a suitable version
of I1t6’s formula and henceforth a right notion of harmonic functions for the generator of the
diffusion process (1). This is precisely the point where the rough paths theory comes in, on
the same model as it does in Hairer’s paper for solving the KPZ equation.

This section is thus devoted to a sketchy presentation of rough paths theory and then to
an appropriate reformulation of Zvonkin’s method.

2.1. Rough paths on a segment. We start with reminders about rough paths, following
Gubinelli’s approach in [17]. Given « € (0, 1], n € N\{0} and a segment I < R, we denote by
C*(I,R™) the set of a-Holder continuous functions f : I — R"™ and we define the seminorm

fly) — fl _a

1= sup PO ZIOL g e morm {71 = 11 + (1 v max o) 2 115,
syelazy Y — T zel

with | f|% := sup, |f(2)| and @ v b = max(a,b). Note that the factor (1 v max,ey |z|)~*/2

is somewhat useless and could be replaced by 1 at this stage of the paper. Actually it will

really matter in the sequel, when considering paths over the whole line. Similarly, we denote

by C$(I, R™) the set of functions % from 12 to R" such that Z(x,z) = 0 for every z and with
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finite norm | 2|7, := sup, yer,ry (1% (2, y)|/ly — 2|*}. (Functionals defined on the product
space R? will be denoted by calligraphic letters).

For o € (1/3,1], we call a-rough path (on I) a pair (W, #’) where W € C*(I,R") and
W e C3(1, ]R"Q) such that, for any indices i,j € {1,...,n}, the following relation holds:

(5) W(a,2) — W (a,y) = Wy, 2) = (W) — Wia)(W(2) - Wily), a<y<z

We then denote by R*(I, R™) the set of a-rough paths; we will often only write W for the
rough path (W, #). The quantity # %7 (z,y) must be understood as a value for the iterated
integral (or cross integral) “§”(Wi(z) — Wi(z)) dW(z)” of W with respect to itself (we will
also use the tensorial product “§(W(z) — W(z)) ® dW(2)” to denote the product between
coordinates). When o = 1, such an integral exists in a standard sense. When o > 1/2, it
exists as well, but in the so-called Young sense (see [31, 24] and Lemma 24 below). When
a € (1/3,1/2], which is the typical range of values in rough paths theory, there is no more
a canonical way to define the cross integral and it must be given a priori in order to define
a proper integration theory with respect to dIW. In that framework, condition (5) imposes
some consistency in the behavior of # when intervals of integration are concatenated. Of
course, # plays a role in the range o € (1/3,1/2] only, but in order to avoid any distinction
between the cases a € (1/3,1/2] and « € (1/2, 1], we will refer to the pair (W, #) in both
cases, even when « > 1/2, in which case # will be just given by the iterated integral of W.

Given W e R*(I,R") as above, the point is then to define the integral “{* v(z)dW (z)”
of some function v (from I into itself) with respect to the coordinates of dW for some
[z,y] = I. When v belongs to C#(I,R), for 3 > 1 — «, Young’s theory applies, without
any further reference to the second-order structure # of W. When g < 1 — «, Young’s
theory fails, but, in the typical example when v is W — W (x) itself (or one coordinate of
W — W (x)), the integral is well-defined as it is precisely given by #. In order to benefit
from the second-order structure of # for integrating a more general v, the increments of v
must actually be structured in a similar fashion to that of WW. This motivates the following
notion (which holds whatever the sign of o + 5 — 1 is): For g € (1/3,1], a path v is said to
be S-controlled by W if v € C#(I,R) and there is a function dyv € C#(I, R") such that the
remainder term

(6) Z" (w,y) = v(y) — v(z) — dwo(z) (W(y) - W(2)), zyel,

is in Cgﬁ/ (I,R), with f’ := 8 A 1/2. In the above right-hand side, dyv(x) reads as a row
vector -as it is often the case for gradients- and (W (y) — W (x)) as a column vector. Although
Owv may not be uniquely defined, we will sometimes write v for (v, dyv) when no confusion
is possible on the value of dyv. For instance, any function v € C?# (I, R) is B-controlled by

W, a possible (but not necessarily unique) choice for the ‘derivative’ dyv being dyv = 0.
We are then able to define the integral of a function v controlled by W (see [17, 18, 19]):

Theorem 1. Given a, 3 € (1/3,1], let W € R(I,R") be a rough path and v € CP(I,R) be
a path (-controlled by W. For two reals x < y in 1, consider the compensated (vectorial)
Riemann sum:

N—-1

S(A) =] {v(xi)(W(le) — W (x)) + dwolz) ¥ (s, xm)}

=0
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where A = (x = xg < -+ < xx = ¥y) is a partition of [z,y] (above dwv(x;) is a row vector
and W (x;,x;i11) a matriz). Then, as the step size m(A) of the partition tends to 0, S(A)
converges to a limit, denoted by Sz v(z)dW(z), independent of the choice of the approximating
partitions. Moreover, there is a constant C = C(n,a, B) such that,

xT

Y
(7) J v(z) AW (z) — v(x) (W(?/) - W(x)) — Owv(x) W (, y)'
< (I 5 awoll§ Ny — a2 + W Sy — of+> ).

Observe that, with our prescribed range of values for o and 3, the exponents 2a + 3 and
a + 2" are (strictly) greater than 1. This observation is crucial to prove the convergence of
S(A) as the step size tends to 0. When v is any arbitrary function in C?*(I, R), Definition 1
applies and the integral of Sz v(z)dW (z) coincides with the Young integral. Notice also that,
most of the time, we shall work with 8 < a.

We now address the problem of stability of the integral with respect to W. Replacing
((v, Owv), W) by a sequence of smooth approximations ((v™, dyn»v"), W"),>1, a question is
to decide whether the (classical) integrals of the (v™),>1’s with respect to the approximated
paths are indeed close to the rough integral of v with respect to W. Actually, it is true if

(i) the convergence of W" to W holds in the sense of rough paths, that is [W — W"]%, +
|7 —#m|L, tends to 0 as n tends to the infinity (#™ standing for the true iterated
integral of W), in which case we say that the rough path W (or (W, #)) is geometric;

(ii) the convergence of (v", dy=v™) to (v, dwv) holds in the sense of controlled paths, that
is [v — 0"} + [Owv — Swnv ] + | 2Y — R[5 tends to 0 as n tends to the infinity.

2.2. Time indexed families of rough paths. It is well-guessed that, in order to handle
(1), we have in mind to choose W (z) = Y;(z), x € R, and to apply rough paths theory at any
fixed time ¢ = 0 (thus requiring to choose I = R and subsequently to extend the notion of
rough paths to the whole R, which will be done in the next paragraph). Anyhow a difficult
aspect for handling (1) is precisely that (Y;(z))i=04er is time dependent. If it were time
homogeneous, part of the analysis we provide here would be useless: we refer for instance
to [12, 13, 3]. From the technical point of view, the reason is that, in the homogeneous
framework, the analysis of the generator of the process X reduces to the analysis of a
standard one-dimensional ordinary differential equation. Whenever coefficients depend on
time, the connection with ODEs boils down, thus asking for non-trivial refinements. From
the intuitive point of view, time-inhomogeneity makes things much more challenging as the
underlying differential structure in space varies at any time: In order to integrate with
respect to 0,Y;(x) in the rough paths sense, the second-order structure of the rough paths
must be defined first and it is well-understood that it is then time-dependent as well. This
says that the problem consists of a time-indexed family of rough paths, but, a priori (and
unfortunately), it is not clear whether defining the rough paths time by time is enough to
handle the problem. Actually, as we explain below, it may not be enough as the rough paths
structures interact with one another, thus requiring additional assumptions on (Y3(2))=0.zer-

As above, we first limit our exposition of time-dependent rough paths to the case when x

lives in a segment I. For some time horizon 7" > 0, and for o,y > 0, we define the following
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(semi-)norms for continuous functions f: [0,7) x [ - R" and .# : [0,T) x I? — R™:

Jily) = fsla 0,T)xI ACEN
D = s ALy oy HGE D]
usizy 10 = sl +ly =l gz W

with the convention that HfH([f(’XT)XH = Supo<sr | f|%, together with

LA o= LI+ (1 mac o)~ £

We then define the spaces C7*([0,T) x I, R™) and C3"*([0,T") x I, R") accordingly.

For a € (1/3, 1], we call time dependent a-rough path a family of rough paths (W )i« =
(Wi, #;)o<t<r where W e C([0,T) x I,R") and # e C([0,T) x I?,R™) such that, for any
t €[0,T), the pair (Wy, #;) is an a-rough path and

0,7)xI
(8) (W, )| = sup (WAL + | #4]5.} < oo
te[0,T)

We denote by R*([0,T) xI, R™) the set of time-dependent a-rough paths endowed with the
seminorm || - H([]O,(’IT)XH. For 8 € (1/3,1], we then say that v € C([0,T) x I, R) is S-controlled by
the paths (W,)o<i<r if v € C#2([0, T) xI, R) and there exists a function dyv € C#22([0, T) x
I,R") such that, for any ¢ € [0,T), the remainder below is in C2 (I, R"):

(9) R (x,y) == vi(y) — v(z) = dwo(z) (Wi(y) = Wi(x)), z,yel

2.3. Rough paths on the whole line. So far, we have only defined rough paths (or time
dependent rough paths) on segments. As Eq. (1) is set on the whole space, we must extend
the definition to R, the point being to specify the behavior at infinity of the underlying
(rough) paths and of the corresponding controlled functions.

When the family (Y;(2))i>0zer is differentiable in z, a sufficient condition to prevent
a blow-up in (1) is to require (0,Y;(x))i>04er to be at most of linear growth in . In our
setting, (Y;(x))i=0.zer is singular and it makes no sense to discuss the growth of its derivative.
The point is thus to control the growth of the local Hélder norm of (Y;(2))t=0.er together
with (as shown later) the growth of the local Holder norm of the associated iterated integral.

This motivates the following definition. For o € (1/3,1] and x > 0, we call a-rough path
(on R) with rate x a pair W = (W, #') such that, for any a > 1, the restriction of (W, #)
to [—a,a] is in R¥([—a, a]), and

W ([;a,a] e [—a,a]

a>1  aX a?x

We denote by R*X(R, R™) the set of all such (W, %#").
This definition extends to time-dependent families of rough paths. Given T > 0, we say
that (W, #;)o<i<r belongs to R*X([0,T) x R,R") if

(1]-) K'oz,x((VVta %)0<t<T) = S[up) Ra,x (VVta Wt) < 0.
te[0, T

< 00.

In a similar way, we must specify the admissible growth of the functions that are controlled
by rough paths on the whole R. A comfortable framework is to require exponential bounds.
Given (W, #') € R*X(R,R") and ¥ > 1, we say that a function v : R — R is in B*?(R, W)

7



for some [ € (1/3,1] if, for any segment I = R, the restriction of v to I is S-controlled by W
and

(12> @ﬁ(v) ;= sup |:e—19a<[[v]][ﬁfa,a] + %Hawvﬂ%*ma] + a_ﬁ/H%ng}aﬂ])] < 0.

a=1

Abusively, we omit the dependence upon dyv in ©Y(v). Similarly, for (W;, #;)o<i<r €
R>X([0,T) x R,R"™), a function v : [0,7) x R — R is in B*?([0,T) x R, W) if, for any a > 1,
its restriction to [0,7) x [—a, a] is B-controlled by (W};)o<i<r and, for some A > 0,
T)x T) % Bma _pr ' v || [—a,a
[[[ L R 1 A A VA | A o 1]
E7(t,a)

O (v) := sup
a>l
te[0,T)

is finite, with B2 (t,a) := exp[A(T — t) + Pa(1 + T —t)] (it reflects the backward nature of
(3)). Note that the set B>Y([0,T) x R, W) does not depend on A, but that ©5:*(v) does.
By Theorem 1, we can easily obtain a control of the integral §v; dY; by the norm @g’A(v):

I

Lemma 2. Assume 5 < «. Then, there exists a constant C' = C(n, «, ), such that, for any
I, N\ a=1, anyve B ([0,T) x R,W) and any (t,z,y) € [0,T) x [~a,a]?,

fy (vr(2) — vi(a)) dWi(2)

T

/3

< CA'S an (Wt %)@g’A(v)Eg’)‘(t, a) x D(t,a,y — x)

a—p

S COXNF Koy (Wi, %) OUAMV)EI t, a) x [ly — z|*aX + D(t,a,y — 2)],

fy v (2) dWi(2)

xT

with D(t,a, z) = |2[22a® + [2|22+Ba2+ 2 4 2042 oX(0¥ + (T — )~ 7).

2.4. Enlargement of the rough path structure. We now discuss how the time dependent

rough path structures of the drift (Y;())i=0.er interact with one another as time varies.
Formally the generator associated with (1) reads £ = 0; + 0,(Y:(x))0, + (1/2)02,. This

suggests that, on [0,7) x R, harmonic functions (that is zeros of the generator) read as

ut<x) :PTftuT@j) + L Lprt(x - z>amur<z) dY;(Z) dT, T e R,

where p denotes the standard heat kernel and P the standard heat semi-group (so that
Pf(x) = §zpi(x —y)f(y)dy). In the case when the boundary condition of the function v is
glven by ur(z) = z, a formal expansion of d,u,(x) in the neighborhood of T' gives

T
Opu(z) ~ 1+ J J Oxpr—t(x — 2)dY,(z) dr
t Jr

" f J oot~ Z>{ | T | o= waviw ds} aY,(z)dr + ...

In the first order term of the expansion, the space integral makes sense as the singularity
can be transferred from Y, onto 0,p,_(z — 2), provided the integration by parts is licit:
using the approximation argument discussed above, it is indeed licit when the rough path
is geometric. In order to give a sense to this first order term, the point is to check that the
resulting singularity in time is integrable, which is addressed in Section 3. Unfortunately, the

story is much less simple for the second order term. Any formal integration by parts leads to
8



a term involving a ‘cross’ integral between the space increments of Y, but taken at different
times: This is the place where rough structures, indexed by different times, interact.

We refrain from detailing the computations at this stage of the paper and feel more
convenient to defer their presentation to Section 3 below. Basically, the point is to give, at
any time ¢ € [0,7'), a sense to the integral §? Z7'(z) dY;(z), where, for all t € [0,T) and z € R,

(13) f 2P Yo(a dr_f fampr (= 2)(Y(2) — Yo(z)) dzdr-

Assuming that supge, g sup, ,er[(1 + [2[X + PO~ Y; 5] is finite (for some y > 0), the
above integral is well-defined (see Lemma 19 below). In order to make sure that the cross
integral of Z! with respect to Y; exists, the point is to assume that the pair (Y;, ZI') can be
lifted up to a rough path of dimension 2, which is to say that there exists some #7 with
values in R?* such that (Y, Z7), #7T) is an a-time dependent rough path, for some o > 1/3.
We will see in Section 5 conditions under which such a lifting #7 indeed exists.

2.5. Generator of the diffusion and related Dirichlet problem. We now provide some
solvability results for the Dirichlet problem driven by ¢; + £; in (2):

Definition 3. Given Y € C([0,T) x R, R), assume that there exists #' T such that (W1 =
(Y, ZT), #'T) belongs to RO"X([O T) X R ,R?) with o > 1/3 and x > 0. Given f e C([0,T] x
R, R), with sup,, supg<;<r € || f2 H I < o0 for some ¥ = 0, a function u : [0, T] xR >R
is a mild solution on [0,T] x R to the problem P, f,T):

Ly =f —with Lv:=0dv+ Lw,

if w is continuously differentiable with respect to x, with d,u € B4 ([0,T) x R, WT) for some
p e (1/3,1], and satisfies

049 we) = Pr-ur o)~ | " P ds + | [ onda ) [t an @ avar

Finiteness of the integrals over R will be checked in Lemma 11 below. We also emphasize
that a notion of weak solution could be given as well, but we won’t use it.

Remark 4. When (W™, #'T) is geometric, the last term in the right-hand side coincides (by
integration by parts, which is made licit by approximation by smooth paths) with S? SR Prit(x
y)0zur(y) dY,(y) dr, which reads as a more ‘natural formulation’ of a mild solution and which
is, by the way, the formulation used in Sections 3.1 and 3.2 of Hairer [19] for investigating
the KPZ equation and in Section 3.1 of Hairer [18] for handling rough SPDEs. The for-
mulation (14) seems a bit more tractable as it splits into two well separated parts the rough
integration and the reqularization effect of the heat kernel. Once again, both are equivalent
in the geometric (and in particular smooth) setting.

Here is a crucial result in our analysis (the proof is postponed to Section 3):

Theorem 5. Let Y be as in Definition 3. Then, for any f € C([0,T] x R,R) and u” €
CH(R,R), with

15)  mas= suple?( sup (LA + RIE=) + 1152+ Y1) < o,

a=1

9



for somed =1, >0 and f € (1/3,a), with > 2x, there is a unique solution, in the space
BA([0,T) x R,WT), of the problem P(Y, f, T) with up = u? as terminal condition.
Letting m = max[1,T,9, mg, ko (W, #7T)], we can find C = C(m,a, B3,X), such that,
for any (t,x) € [0,T] x R,

(16) s ()| + [Oue(2)] < Cexp(Cla]),

and for any (s,t,x,y) € [0,T]* x R?,

lus(x) — uy(x)| < Cexp(Cla|)|t —s| 2,

0pur() — Opus(y)| < Cexp(Cllz| v [yl]) (|t — 5|2 + |z — y]?).

We now address the question of stability of mild solutions under mollification of (W1, #'T).
We call a mollification of W7 ‘physical’ if it consists in mollifying Y in z first -the mollification
is then smooth in z, the derivatives being continuous in space and time- and then in replacing
Y by its mollified version in (13). Denoting by Y™ the mollified path at the nth step of the
mollification, the resulting Z™7 is smooth in x, the derivatives being also continuous in
space and time. This permits to define the corresponding pair (W™T #™T) directly. In
that specific geometric setting, we claim (once again, the proof is deferred to Section 3):

(17)

Proposition 6. In the same framework as in Theorem 5, assume that the rough path
(WT, #7T) is geometric in the sense that there exists a sequence of smooth paths (Y™),=1
such that the corresponding sequence (W™T = (Y™, Z™7T)),>1 satisfies

(1) |(WE—wnT T —pm T)H 0T yends to 0 as n tends to oo for any segment I < R,
where W, (x,y) = = Wt"T (2) = W (@) @ AW (2), for t € [0,T) and z,y € R,
(2) sup,ot Kan (W, 2 ocrer) is finite (see (11) for the definition of ry ).

Then, the associated solutions (u™)n,=1 (in the sense of Definition 3) and their gradients
(V™ = 0pu")p=1 converge towards u and v = dyu uniformly on compact subsets of [0, T] x R.

It is worth noting that each u™ is actually a classical solution of the PDE (3) driven by Y™
instead of Y. The reason is that, in the characterization (14) of a mild solution (in the rough
sense), the rough integral coincides with a standard Riemann integral when W™ is smooth.
We refer to [18, Corollary 3.12] for another use of this (quite standard) observation.

2.6. Martingale problem. We now define the martingale problem associated with (1):

Definition 7. Let Ty > 0 and o € R. Given Y € C([0,Ty) x R,R), assume that, for any
0<T < Ty, there exists W' such that (WT = (Y, Z1), #'T) belongs to R*X([0,T) x R, R?)
with o > 1/3 and x < a/2, the supremum supocp<g, Kan (W, #,T )o<i<r) being finite.

A probability measure P on C([0, Ty, R) (endowed with the canonical filtration (Fi)o<i<t,)
15 said to solve the martingale problem related to L starting from x if the canonical process
(X1)o<i<t, satisfies the following two conditions:

(.Z) ]P)(XQ = l‘o) = 1,
(2) for any T € [0,Ty], f€C([0,T] x R,R) and u” € C'(R, ]R) satisfying (15) with respect
to some ¥ =1, v >0 and B € (2x, ), the process (u,(X;) — So fr(X5) dr)o<i<r is a square

integrable martingale under P, where u is the solution of P(Y, f,T) wzth ur = ul.
10



A similar definition holds by letting the canonical process start from xy at some time
to # 0, in which case we say that the initial condition is (to,xo) and (1) is replaced by
]P)(VS € [O,to], XS = IL‘Q) =1.

Note that we require more in Definition 7 than in Definition 3 as we let the terminal
time 7" vary within the interval [0, T]. In particular, in order to consider a solution to the
martingale problem, it is not enough to assume that, at time Ty, (W70 #70) belongs to
RX([0,Ty) x R, R?). The rough path structure must exist at any 0 < T < Ty, the regularity
of the path W7 and of its iterated integral W7 being uniformly controlled in T € [0, Tp].

Our goal is then to prove existence and uniqueness of a solution:

Theorem 8. In addition to the assumption of Definition 7, assume that, at any time 0 <
T < Ty, WTE, #7T) is geometric (in the sense of Proposition 6), the paths (Y™),>1 used
for defining the approzimating paths (W™T #™1), o1 being the same for all the T’s and
the supremum SUPg<r<r, SUP, > Fan (W ) ocier) being finite. Then, for an initial
condition (to, zo) € [0, Ty] x R, there exists a unique solution to the martingale problem (on
[0,Ty]) with (to, z0) as initial condition. It is denoted by Py, ... The mapping [0,Tp] x R 3
(t,x) — Py, (A) is measurable for any Borel subset A of the canonical space C([0,Ty],R).
Moreover, it is strong Markov.

Remark 9. The martingale problem is here set on the finite interval [0,Ty]. Obviously,
existence and uniqueness extend to [0, 0).

The proof of Theorem 8 is split into two distinct parts: Existence of a solution is discussed
in Subsection 2.7 whereas uniqueness is investigated in Subsection 2.8.

2.7. Solvability of the martingale problem. We start with:

Proposition 10. Given Ty > 0, assume that the assumption of Theorem 8 is in force. For
an initial condition (to, xg) € [0,Ty] x R, there exists a solution to the martingale problem
(on [0, Ty] ) with (ty,x) as initial condition.

Proof of Proposition 10. First step. Without any loss of generality, we can assume that
to = 0. Considering a sequence of paths (Y"),>; as in the statement of Proposition 6, we
can also assume that Y™ has bounded derivatives on the whole space, see Lemma 33 in the
appendix. We then notice that, for a given xy € R, the following SDE (set on some filtered
probability space endowed with a Brownian motion (B;)o<;<7;,) admits a unique solution:

(18) AXP = dB, + 0,V (X dt, te[0,Ty] ; Xo= o

Second step. Choosing 8 € (1/3,a) with 8 > 2y and letting u” (z) = exp(Jz) for a given
T € [0,T], we denote by (u}(z))o<t<raer the mild solution to (14) with f = 0 and YV
replaced by Y. Following the remark after Proposition 6, u™ is a classical solution of

(19) ol () + 102 ul(z) + 0,Y(x)0,ul(x) = 0,

oYaxx
so that, by Itd’s formula, the process (u}(X/'))o<t<r is a true martingale (since we know,
from Theorem 5, that u™ is at most of exponential growth). Then, (16) yields

E[exp(9X7)] = E[uy (X?H = uo(z0) < Cexp(Claol),



where C' = C(m, a, 3, x) as in Theorem 5. A crucial thing is that m is uniformly bounded in
T € [0, Ty] so that it can be assumed to be independent of T'. Replacing u” (z) by v’ (—z),
we get the same result with ¢ replaced by —1 in the above inequality, so that

E[exp (9 X7])] < Cexp(Clol).

Therefore, the exponential moments of X7 are bounded, uniformly in n > 1. As C is
independent of T" € [0, Tp], we deduce that the marginal exponential moments of (X]*)o<i<r,
are bounded, uniformly in n > 1.

Third step. Now we change the domain of definition and the terminal condition of the
PDE. We consider the PDE on [0, ¢+ h] x R with u/*"(x) = 2 as boundary condition, where
0<t<t+h<Ty Tosimplify, we still denote by (u?(2))o<s<t+n.rer the mild solution to
(14) with f = 0, Y replaced by Y™ and u}',, = u'*" as terminal condition. By Itd’s formula,

on — X =ul, (X)) — wf (X)) + ' (X) — o, (XT)
(20) th n n n n n n
= J Opug (XJ) dBs + ug (X3') — u , (X7).
t

Therefore, by (16) and (17), we deduce that, for any ¢ > 2, there exists a constant C,,
independent of n, such that

B[|X7,, — X7 <Cq{EKfM|5xu;‘(X?)l2d8)%} S [ (XD — (X))

Q=
Q=
S

1

1 1
< Co{n*70 sup B0l (X7 + B[l (X7) — wn (X711}
<s<Tp
< Cy{h* 0 sup E[exp(qlX])]* + 1% sup E[exp(glX2])[]"}.
0<s<Tp 0<s<Tp

By the second step (uniform boundedness of the exponential moments) and by Kolmogorov’s
criterion, we deduce that the processes (X[")o<t<r, are tight.

Fourth step. It remains to prove that any weak limit (X;)o<i<7, is a solution to the
martingale problem. The basic argument is taken from [9, Lemma 5.1]. Anyhow, it requires
a careful adaptation since the test functions u in Definition 7 may be of exponential growth
(whereas test functions are assumed to be bounded in [9, Lemma 5.1]). We thus give the
complete proof. For T € [0,T5], we know from Proposition 6 that we can find a sequence
(u™)n=1 of classical solutions to the problems P (Y™, f, T') such that the sequence (u", d,u™),>1
converges towards (u, d;u), uniformly on compact subsets of [0,7] x R. Applying Ito’s
formula to each (u}(X]'))o<t<r, n = 1, we deduce that

t t
WD)~ () — | L) ds = | fan(xn) B, 0<e<T

By (16), we know that the functions (d,u"),>1 are at most of exponential growth, uniformly

in n = 1. Moreover, we recall that the processes ((X]")o<t<r)n>1 have finite marginal ex-

ponential moments uniformly in n > 1 as well. Therefore, the martingales ((u}(X}") —

ug (XE) So fs(X™) ds)o<t<T)n=1 are bounded in L? uniformly in n > 1. Letting n tend to

the mﬁmty, this completes the proof. O
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2.8. Proof of Theorem 8. We now complete the proof of Theorem 8. Existence has been
already proved in Proposition 10. The point is thus to prove uniqueness and measurability
of the solution with respect to the initial point.

We first establish uniqueness of the marginal laws. Assume indeed that P; and P, are two
solutions of the martingale problem with the same initial condition (tg,z(). Then, for any
f€C([0,T] x R,R) satisfying (15), it holds

To To
(21) E, fs(Xs)ds = Eq fs(Xs) ds,

to to
where E; and E, denote the expectations under P; and Py ((X;)o<t<7, denotes the canonical
process). Indeed, denoting by u the solution of the PDE P(Y, f,Ty) with 0 as terminal
condition at time T, we know from the definition of the martingale problem that, both
under P; and Py, the process (ug(Xs) — Sfo fr(X,) dr)y<s<, 18 a martingale. Therefore,
taking the expectation under E; and E, and noticing that ur, (Xz,) = 0 almost surely under
P; and Py, we deduce that both sides in (21) are equal to —uy,(zg), which is enough to
complete the proof of (21) and thus to prove that the marginal laws of the canonical process
are the same under P; and P,.

Following Theorems 4.2 and 4.6 in [9], we deduce that the martingale problem has a
unique solution (note that the results in [9] hold for time homogeneous martingale problems
whereas the martingale problem we are here investigating is time inhomogeneous; adding an
additional variable in the state space, the problem we are considering can be easily turned
into a time-homogeneous one). Measurability and strong Markov property are proved as in

9]. O

3. SoLvVING THE PDE

This section is devoted to the proof of Theorem 5. As the definition of a mild solution in
Definition 3 consists in a convolution of a rough integral with the heat kernel, the first step
is to investigate the smoothing effect of a Gaussian kernel onto a rough integral. Existence
and uniqueness of a mild solution to (14) is then proved by means of a contraction argument.

Parts of the results presented here are variations of the ones obtained in Sections 3.1 and
3.2 of Hairer [19] for solving the KPZ equation, but differ slightly in the very construction
of a mild solution, see Remark 4. The reader may also have a look at Section 3 in Hairer
[18] for a quite simpler framework.

3.1. Mild solutions as Picard’s fixed points. In this subsection, we fix o, 3, x, 9, A such
that 1/3 < f <a <1, x < /2 and 9, = 1. Given Y € C([0,7) x R,R) for some final
time 7" < 1, we assume that there exists #7 such that (W! = (V;, ZD), #,7)o<i<r is in
RAX([0,T) x R, R?), (Z])o<t<r being given by (13). We will simply denote by x the semi
norm Ko (W, #,")iefor)) and we will omit the superscript T in Z7, W7 and #7. We also
recall the definition of ©2*(v) for v e BS?([0,T) x R, W):

t,T)x[—a,a t,T)x[—a,a B—a , _ g ’ v, | [—a,a
[ﬂvﬂgﬂ,’ﬂ[ D owo] BT 4+ XS (0 A (T - 1)) | Ly ]]

0% v) := su
T ( ) p E%)\(t’ a)

a=1
te[0,T)

with BVt a) = exp[MT —t) +9a(1+T —t)]. We start with the following technical lemma,

which plays a crucial role in the proof of Theorem 5:
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Lemma 11. For any v, < v, < /2 and k € N*, there is a constant C = C(«, 5,71, 72, X, k)
(independent of O and \) such that, for any t,7€[0,T), with T <T —t, and any a > 1, the
following bounds hold for any v e B>?([0,T) x R,W) and any x € [—a, a]:

JJ |68Ml !U Y () dYon(2)

with U = CeCT kOIAN ) BV (t,a). When 2y, < ', we also have

dsdy < < AT Ma?

/

0 T—/sy
| %U (t1s(2) — rea(2) Vi (2)| dsdy < OA'S" 772 (o7 4 (0 1) 7).
R JO

Proof. In the whole proof, we just denote ©5*(v) and E2*(t,a) by © and E(t,a). We start
with the proof of the first inequality. The point is to apply the second inequality in Lemma
2 with y replaced by « — /sy and thus a replaced by a + |y|. We get

z—+/sy o N
f Ves(2) dYips(2)] < CFL)\TB@E(t-i-S, a+y))[s2 [y|* (a+]y])*+ 2 (t+s,a+yl,v/sy)],

xT

where C' = C'(«, 3). Noting that E(t+s, a+|y|) exp[—( A+ (a+]y|))s+I(1+T)|y|)|E(t, a)
and that Z2(t + s,a + |y|,v/sy) < C(1 + |y[>)2(t + s,a + |y|,/s), we deduce that

(a+ )™ f Sy f Y () Wi ()] ds
0 x!
- < CRASZOE(t, )T (1 4 |y )J Mg/(t, s,a+|y|) ds
s7 (a + |y|)>
where

(23)  D'(t,s,p) = s2 LpX 4 271X 4 3‘)‘*%_1/)2"*% + g2t )X (pﬁl + (T —t— 3)_%> .
We thus have to bound integrals of the form p"=7 {7 e~ Psg=n=1ds with ¢’ > a/2
(=), 0 < ¥ <d and p = 1. Bounding 7277 by 77277 and noticing that
pbl*ﬂﬂ < pbl*f)/?
(24) (A +dp)¥r ()\ + p)¥
p - 1{p>/\} + )‘72761/1{1<0<>\7b’<w2} + )‘bliall{p@\,b’?w} S

)\(b’ vy2)—a’

)

we get the following upper bound for the integral (performing a change of variable to pass
from the first to the second line and recalling that v, < /2 to derive the last inequality):

T

pb’f’m J e*()\“r'ﬂp)ssal*"/l*l ds < T“{Q*'Ylpbl*’“ﬂ J ef()\Jrﬁp)sSa’f’yzfl ds
0 0
(25) 72— pb’f’yz (AM-9p) , ;BN
< ——7— e Ps¥ Tl ds < T\ y)a ['(a" — 7).
(A +p) =2 Jo
14



Because of the term in (7' — ¢ — s) in the definition of 2’, we also have to control
T 67()\+19p)s T 6*(>\+79P)3

px—wj Sds < 7T pX T f - ds

0 SIS (T —t—5)% 0 s ER(T —t —8)%

pX—’YQ T Jl ( ()\ + ﬁp))%-i-%,— 26—7'()\+19p)s

A +00)2 7 (T — 5 (A +9p)T Jo =58+ [1 — rs/(T — 1)]F

In order to bound the integral in the second line, we use the inequality 2% e~** < (a’)% e~ /s%
which holds for s € (0,1] and a/,x = 0. Using also the bounds 7 < T —t and A + Jp > 1
together with (24), we get (for a possibly new value of the constant C):

(26)

B/
- 2
= F12mn

ds.

T ef()\Jrﬂp)s
pX_’YQJv = ds
(27) 0 s 7EII(T —t —5) %
1
< CTWM(XV@%J —ds 7 < Cr AT,
0 s 2(1—-s)7

A careful inspection of (23) shows that we can apply (25) and (27) with ¢’ > «/2 and
b —a < x— a/2 in order to bound (22) (@ is the part different from —1 in the exponent of
s and ' is the exponent of p in (23)). We obtain

T z—+/5Y
(a+ |?/|)_WJ s J Vrs(2) dYigs(2)| ds

0 T

(28)
< C/@)\%B OE(t, a)eﬂ(uT)\yl (1 + |y|3)7_72771)\ﬂ;;.

As a ™ < (14 |y[)2(a + |y|)~ 72, we get the first bound of the lemma by integrating (28)
against [0p; (y)|.

We now turn to the proof of the second inequality in the statement. We make use of the
first inequality in Lemma 2. Replacing vy, s(2) by veys(2) — v s(x) in (22), we get the same
inequality but with a simpler form of D'(¢, s, a + |y|), namely the first term in the right-hand
side in (23) doesn’t appear. This says that we can now apply (25) with o’ = aa («/2+5") = 5
and b’ — a’ < x — /2. The value of @’ being larger than 4’ this permits to apply (24) with
72 replaced by /. Then, we can replace v; and 42 by 2v; and 8" in (25) (with v < 5'/2).
With the prescribed values of ¢’ and ¥, the resulting bound in (25) is C7# =21 \¢'VF)=a",
Following (28), we see that the contribution of (25) in the second inequality of the statement
is \@=BA)/8Y \B=a) 228" =2m 8" < Y NB=)/878' =27 48" which fits the first part of the inequality.
To recover the second part of the inequality, we must discuss the contribution of (26). Going
back to (23), we have to analyze (pay attention that, in comparison with (26), v is set to

0):
/ T —(A+p)s
0 sITETHEINT —t — )T

T —(A+vp)s 1 —7(A+9p)s
(29> < 7—6/2"/1pr € ( p) - dS < ,7_5/2"/17_CM/2pXJ‘ € ( p) - dS

0 sE(1—s/(T—1)% 0 55 (1-5)2

cx/2+X _7_ s
_ 7_5'72‘/17.@22_’( pX - J ( ()‘ + ﬁp)) - (A+0) ds < C)\X @/2 6'72“/17
A+9p)" 2 Jo s72(1—s)7
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the first inequality being valid for 2y; < " only and the last inequality following from (24).
Noting that y < [3/2, this gives the second part of the second inequality of the statement. [

Here is now the key result to prove Theorem 5.

Theorem 12. Keep the notations and assumptions introduced at the beginning of Subsection
8.1. For (v,0wv) € BA([0,T) x R,W), define the function M(v,0wv) : [0,T) x R — R
together with its W -derivative by letting, for any t € [0,T) and x € R,

[M(v, awv)], f f 2pee( — y f A(2) Y. () dy ds.

GW[M(v,on)]t( ) = (0,v(x))  (ie. oy M(v,dpwv)(z) =0, dzM(v, dwv)i(z) = vy()).

(With an abuse of notation, we will just write (Muv)i(z) for [M(v,dwv)]i(z).) Then M
defines a bounded operator from B*?([0,T) x R, W) into itself. Moreover, there exists a
positive constant C = C(«, B,x) such that for every v e BV ([0,T) x R, W),

QUM Mu) < (2 + Crexp(CTY*)A™) O (v), with € := (o — 3)/8.

Proof. As in the proof of Lemma 11, we just denote ©2%*(v) and EX*(¢,a) by © and E(t, a).
By an obvious change of variable, we get for any a > 1, x € [—a,a] and t € [0,T),

T—t T—/5Y
(30) Mole) = [ En) [ st ) Vi) dsa.
R 0 T
Then the first inequality of Lemma 11 with 74 = =0, 7 =T —t and k = 2 leads to
(31) (E(t,a)) " [(Mo)i(z)] < CreCT" X756,

where C' = C(a, 5, x).
We now study the time variations of Mv. For 0 <t < s < T and x € R, we deduce from
the identity 30%p = dyp:

(M) () — (M 1

aDr—u(z — Y J +(2) dY,(2) dy dudr

wp,n (x—y f +(2)dY,.(2) dy dr

= —Tl + 7.

By the changes of variable (r,u) — (s +7 —u,s —u) and then y — x — \/rs, we get:

T—s+u 1 T—+/TY
J‘ a:1:pl f J‘ Us+r—u(z) d}/s+r—u(z) drdu dy

< omo ’f f 1

Applying Lemma 11 with 7 =T — ¢, 71 = 79 = /2 and k = 4, we obtain

wlm

T—/TY
J‘ Us+r—u(z) d}/s+r—u(z) drdu dy

xT

s—t
a 3T < CeCT” KO E(t, a))fiﬁ%ﬂ J widu < Ce“T" kOE(t, )N 5 (s —1t)z2,
0

B
2
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where C' = C(a, 3, x). In order to handle 75, we can directly use Lemma 11 with 7 = s — ¢,
v =0, 72 = /2 and k = 2. We then obtain the same bound as for 77, so that

(32) a7 (E(t,a)) " [(Mu)y(z) — (Mo)(z)] < Ce™ k0N (s — 1) .

We now investigate the space variations. Fix —a <z < 2’ < a. If [z —z|*> < T —t, the
space increment between x and 2’ reads:

J J P2ps_i(2 —y) — 2ps_ t(a:—y))J s(2) dYs(z) dy ds

[(Mu)(2”) —

with (using the fact that the mapping R 5 z — amps( ) is centered)

|2’ —a|?

x,x’
Il

Y
(/:vps f UtJrs(Z) dY;HrS(’Z) dy ds s

f ” 51 =9) [ tree) Vi o) dudy s
o/ —af?

By Lemma 11 with 7 = |2/ — x|?, v, = 0, 72 = 3/2 and k = 2, we get
(34) a3 (B(t,a) (I (@) + T (@) < Ce“T ONT 2! — aff.

The term Z&* can be bounded in the following way:

s [ ol [ [
|2’ $|2
' pT—t s
Sl 0

R x J|z'—z|?

Using now Lemma 11 with 7 =T — ¢, v; = 79 = /2 and k = 3 we obtain:
a % (E(t, a))fllg’x, < CefT” e \35" 2’ — x|’

We end up with the following bound for the space increment:

(36) a ? (E(t, a))fl‘(/\/lv)t(x') — (Mu)(z)] < Ce“T? kO

Recall that (36) holds true when |2/ — z|> < T —t. When |2/ — x|*> > T — t, the argument is

obvious as the space increment is smaller than Z0% () + " (2'), so that (36) holds as well.
We study the remainder term in a similar way. Recalling the definition (9), we then make
use of the definition of Z7, see (13):

RN (,0") = (Mu)i(a') — (Mu)i(2) = v(2) (2] (+') = Z] (x))

(37) f f Ppoi(t — ) — Ppos(z — y>)f (0s(2) — vi(2)) AYa(2) dy ds.
=Xy (x,2") + By (x, 1)),

t\.’)lw

u—+/sy
J Vpr5(2) dYiis(2)| ds dudy

(35)

u—+/sy
J Upys(2) dYess(2)| ds dudy.

u

3252 a|:p —x|5

where

T, 0') i= Te @) = T @) + T Bia) = T - T ) + T
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with

, o= |2 A (T—t) y
T () = f f (€ —y) f (vrss(E) — ve(2)) dVia(2) dy ds,

%" ::J | J J Opps(u—y J (vr4(u) = vi(w)) dYips(2) dudy ds,
x—z'|2 A (T—t)

and

, |z—a'|2 A (T—t)
7€) = J J O2ps(& J (virs(2) = vr5(6)) AYiys(2) dy ds,

e j " J J Fpalu—y J (vr18(2) — Veys(w)) AV s(2) dudy ds.
r—x'[2 A t)

We start with #’. The strategy is similar to the one used to prove (36) except that we
now apply the second inequality in Lemma 11 and not the first one. In order to handle
i ’z/"(ﬁ), with & = = or 2/, we apply the second inequality in Lemma 11 (with k£ =
T=|lv—2A(T—1) and fyl = 0) in the spirit of (34). Similarly, we can play the same game
as in (35) to tackle Ty, writing s7%/2 = s 175712+ < |o/ — 2[?#~1s71=%" and applying
the second inequality in Lemma 11 (with k=3, 7 =T —t and 2y, = ). We get

(38) (T - t)%l ~a 7Y (B(, a))_1|9?£(a:, )| < CeCTﬁgm@)\B_Ta|x' —z?.

It thus remains to discuss J°% and J&°. We start with the following general bound that
holds true for any ¢ € [z,2] and s € [0,T — t]. Since 5 < 2/’ < 2/, we indeed have

—a,a —a,a 272,87, Bﬁ,*
[v65(6) = vel@)] < C(Jursls ’]+Hth£o D) s (§) = wel)P

[—a,a]

so that (using the rate of growth of [Uﬂ B2, B in a)

(39) [0 (€) — vy(2)| < Cd? _EE(t’ a)@(|§ gy ng_g)'

We now handle 7. Following (34) (but noticing that the integrand is here constant in z),
we deduce from (39) with s < |2/ — z|?,

, , , , |2’ —z|2 A(T—t) .
17 @) + 17 ()] < Cra”H4B(0 )0l — o | s
0

! , l‘,—l“Q
< Cra Etajele’ —af 7 [ s
0

< Crd” E(t,a)0z’ — z|*.

Note that there is no decay in A because |v;is(z") — v;(2)| is bounded by means of E(t,a)

and not of E(t + s,a). Similarly, using (39) with ¢ = v and |u — | < s'/2,
T—t

75| < Cka® E(t,a)Olz’ — x| s
|x—a2'|2 A (T—t)
T—t
< Cra® E(t,a)0|z’ — x| s 2 ds < Cra” E(t, )02’ — x|,
|x—z'|2 A (T—t)
18



from which we deduce that
A5 a P (Bt a)) Rz, 2
Together with (38), we get

2 B—a ’
< CeT"kONE |2 — 2P

(40) N (T =% A a ) (Bl a) @M < e ons

|25
Finally, as the W-derivative of (Muw), is defined as dy (Mwv); = (0, v;), we have

(41) = (B(t,)) " Jow (Mo)| DT < Ze.

From (31), (32), (36), (40) and (41), this completes the proof. O

3.2. Proof of Theorem 5. First step. As in the previous subsection, we omit the super-
script T in Z7, WT and #7. We also notice that Theorem 12 remains true when 7' < Ty,
for some Ty > 1, provided that the constant C' in the statement is allowed to depend upon
Ty.

Now, for f and u’ as in (15), we let for (¢,z) € [0,T) x R:

(42) ¢t($) = PT—tuT(x) - Jt Ps—tfs(x) d57 ¢t(x) = 5w¢t(l‘)> (tv :L‘) € [OaT] x R.

By standard regularization properties of the heat kernel, ¢ is (5/2, )-Holder continuous on
any [0, T] x [—a,a], a = 1, the H6lder norm being less than C exp(da). Moreover,

(43) sup sup {(T — 1) F-%e _ﬁantHZﬁ } < 0,

0<t<T a=1

For v € B*?([0,T) x R, W), we then let
(44) (Mv),(x) := ¢, (z) + (Mv),(2).

The point is to check that Muv can be lifted up into an element of B*?([0,T) x R,W). By
Theorem 12, the last part of the right-hand side is in B»?([0,T) x R, W). Its derivative
with respect to W is dy[Mu], as defined in the statement of Theorem 12. By (43), for
any t € [0,T), ¢ is 2p"-Holder continuous (in z) and belongs to B*?([0,T) x R, W) with
a zero derivative with respect to W. Moreover, from (43), Mu € B% 210, T) x R, W), with
[Ow (Mv)]i(x) = [Ow(Mw)]i(z) = (0,v(x)) for t € [0,T).

Second step. We construct a solution to (14) by a contraction argument when 7" < 1 (the
same argument applies when 7' > 1). We choose A large enough such that C'k exp(CTY*)A~¢ <
1/4 (with the same C' as in Theorem 12) and we note that (B%?([0,T) x R, W), 05?) is a
Banach space. Since Mu — Muv = M (u—v) for any u,v € B>?([0,T) x R, W) (the equality
holding true for the lifted versions), we deduce from Theorem 12 and Picard fixed point
Theorem that M admits a unique fixed point o in B5?([0,T) x R, W). Letting

(45) () = gul) + f ) f BuPas( — 1) f " B(2) AYi(2) dy ds,

with ¢ as in (42), we obtain d,u = v so that @ is a mild solution, as defined in (14). It must

be unique as the z-derivative of any other mild solution (when lifted up) is a fixed point of
19



M. Differentiation under the integral symbol in (45) and in the mild formulation (14) can
be justified by Lebesgue’s Theorem, using bounds in the spirit of Lemma 11.

Third step. We finally prove (16) and (17). We first estimate v. With our choice of A and
by Theorem 12, we have ©7)(7) < O2*(MO0) + (3/4)0%*(4), where 0 is the null function,
so that

(46) 02 (1) < 407 (MO).

As MO =1 e B*?([0,T) x R, W), the right-hand side is bounded by some C' (which would
depend on Tj if T' was less than Tj for some Ty = 1). Since 0, u = v, this gives the exponential
bound for v and for the (//2, 8)-Holder constant of v in time and space.

In order to get the same estimate for @, we go back to (45). The function ¢ can be estimated
by standard properties of the heat kernel: it is at most of exponential growth and it is locally
(1+ 5)/2-Holder continuous in time, the Holder constant growing at most exponentially fast
in the space variable. The second term can be handled by repeating the analysis of Muv
in the proof of Theorem 12: Following (31) and (32), it is at most of exponential growth
and it is locally (1 + )/2-Hélder continuous in time, the Holder constant growing at most
exponentially fast in the space variable (in comparison with (32), the additional 1/2 comes
from the fact there is one derivative less in the heat kernel).

3.3. Proof of Proposition 6. As above, we omit the superscript 7" in Z™%, W™T and #™7.
Stability of solutions under mollification of the input follows from a classical compactness
argument. Given a sequence (W", #™),>1 as in the statement, we can solve (14) for any
n = 1: The solution is denoted by u™ and its gradient by v" := d,u™. By (2) in Proposition
6 and by (46), it is well-checked that

(47) sup O (") < oo,
n=1

where [Own(v")]; = (0,v]"). As a consequence, the sequence (v™),>; is uniformly continuous
on compact subsets of [0,7] x R. In the same way, the sequence (u"),>1 is also uniformly
continuous on compact subsets. Moreover, v and v™ are at most of exponential growth
(in z), uniformly in n > 1. By Arzela-Ascoli Theorem, we can extract subsequences (still
indexed by n) that converge uniformly on compact subsets of [0, 7] x R. Limits of (u™),>1
and (v"),>; are respectively denoted by @ and ©0. In order to complete the proof, we must
prove that (@, ) is a mild solution of (14).

Writing (9) for each of the (v"),1, exploiting (47) to control the remainders (Z'),>1
uniformly in n > 1 and then letting n tend to oo, we deduce that the pair (v, (0,0)) belongs
to BP?([0,T),R), the remainder at any time ¢ € [0,T) being denoted by Z*. By (9),
lim, |2 — 2% |55 = 0 for any a > 1. By (47), it holds as well in 8”-Hélder norm, for any
"€ (1/3,8'), that is lim,, | %" — 2% |\ = 0.

Replacing " by 8” in (7), this suffices to pass to the limit in the rough integrals appearing
in the mild formulation (14) of the PDE satisfied by each of the (v"),>;’s. To pass to the
limit in the whole formulation, we can invoke Lebesgue’s/\ Theorem, using bounds in the spirit
of Lemma 11. Thus the pair (9, (0,0)) satisfies & = Mo in B4Y([0,T) x R, W), which is
enough to conclude by uniqueness of the solution.
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4. STOCHASTIC CALCULUS FOR THE SOLUTION

In Theorem 8, we proved existence and uniqueness of a solution to the martingale problem
associated with (1), but we said nothing about the dynamics of the solution. In this section,
we answer to this question and give a sense to the formulation (4).

4.1. Recovering the Brownian part. Equation (4) suggests that the dynamics of the
solution to (1) indeed involves some Brownian part. The point we discuss here is thus
twofold: (i) We recover in a quite canonical way the Brownian part in the dynamics of the
solution; (ii) we discuss the structure of the remainder.

Theorem 13. Under the assumption of Theorem 8, for any given initial condition xq, we can
find a probability measure (still denoted by P) on the enlarged canonical space C([0, Tp|, R?)
(endowed with the canonical filtration (F;)o<i<t,) Such that, under P, the canonical process,
denoted by (Xy, By)o<i<t,, Satisfies the followings:

(1) The law of (Xy)o<t<t, under P is a solution to the martingale problem with xy as initial
condition at time 0 and the law of (By)o<i<t, under P is a Brownian motion.

(it) For any q = 1 and any B < «, there is a constant C = C(o, B, X, kax(W, #'), ¢, 1))
such that, for any 0 <t <t+ h <Tj,

(48) E[|Xpin — Xi — (Beyn — By)["]" < CRO2)2,
(1ii) For any 0 <t <t -+ h <Tp,
(49) E[Xt+h — Xt|-7:t] = b(t, Xs, h) = ul™"(X) — X,

where the mapping u't" : [0,t+h] xR 3 (s, z) — u'*"(s, ) is the mild solution of P(Y,0,t+h)

with ult}(x) = x as terminal condition.

Proof. The point is to come back to the proof of the solvability of the martingale problem
in Subsection 2.7. For free and with the same notations, we have the tightness of the family
(X", Bt)o<t<t,, Which is sufficient to extract a converging subsequence. The (weak) limit is
the pair (X;, By)o<i<r, in (i). (Pay attention that we do not claim that the ‘B’ at the limit
is the same as the ‘B’ in the regularized problems but, for convenience, we use the same
letter.) We then repeat the proof of (20) which writes:

t+h
n o XP = f oo (XY dB, + ul(X]) — ufn (XT)
t

t+h
= Bin — By + f [0.ul(X7) — 1] dBs + [ul (X)) — uf n (X))

t
Repeating the analysis of the the third step in Subsection 2.7, we know that the third term
in the right hand side satisfies the bound (48). The point is thus to prove that the second
term also satisfies this bound. Recalling that u} ,(z) = x, we notice that d,ul(X}) —1 =
Opul (X)) —0yup,, (X7). The bound then follows from the fact that d,u™ is locally 5/2-Holder
continuous in time, the Holder constant being at most of exponential growth, as ensured by
Theorem 5. Letting n tend to oo, this completes the proof of (ii).

The last assertion (i77) is easily checked for with X replaced by X" and u'*" replaced by
u™ (and for sure with F; replaced by the o-field generated by (X7, Bs)o<s<t). It is quite
standard to pass to the limit in n. ([l
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4.2. Expansion of the drift. The next proposition gives a more explicit insight into the
shape of the function b in (49):

Proposition 14. Given Ty > 0, there exist a constant C' and an exponent € > 0 such that
b(t,z,h) = b(t,z, h) + O(h'** exp(2|z])),

bt 1) jj Pt — ) (Yaly) — Vi) dy ds
f [[evsto—n [ 2z ave)apas

O(+) standing for the Landau notation (the underlying constant in the Landau notation being
uniform in 0 <t <t+ h <Tj).

Remark 15. The first term in the definition of b(t,z, h) reads as a mollification (in x) of
the gradient (in x) of (Yi(x))i<s<t+nzer by means of the transition density of (Bt)i=o (which
is the martingale process driving X ). It is (locally in x) of order h'/>*®/2. The second term
reads as a correction in the mollification of (Ys())t<s<t+nazer. It keeps track of the rough path
structure of (Ys(7))i<s<tshacr. The proof right below shows that it is of order hY**  thus
proving that it can be ‘hidden’ in the remainder O(h'*€) when o > 1/2. This requirement
a > 1/2 fits the standard threshold in rough paths above which Young’s theory applies.

Proof. From (14), we know that u.*"(z) expands as

t+h
ul ™ _x+f J eDs—t( J o' (2) dY,(2) dy ds,

where v/th(y) = d,ul™(y). Here, the function ¢ in (14) is equal to ¢;(z) = z for any
te[0,t+ h] and x € R, and thus 0,¢ = 1. By Theorem 12, 9**" € B5Y([0,¢ + h) x R, W*h)
and solves the equation v = 1 + Mwv. In particular, dyv,(x) = 0 and dgenvy() = ().
Therefore, we can write

o (2) = ot (2) + ot (2 )(Z”h(z) — Zﬁ*h(:v)) + R (x, 2),

which we can plug into the expression for u/™"(z) by means of Theorem 1:
t+h
) o= [ o) [ o - ) (Vi) - Vi) dyas
t
t+h y
(50) [ j i~ ) [ (Z0(2) - Z09"()) avi(z) dyds

t+h
f f OuDs—t(x — ) U (2, y) dy ds,

where %!*"(z,y) is a remainder term that derives from the approximation of the rough
integral of o™ with respect to Y,. By Theorem 1, there exist a constant C' and an exponent
e > 0 such that

t+h
f J‘ axpsft(x - y)%tJrh('ra y) dy ds
R

(51) "
< Cexp(2\a:\)f

t

(5= 07 | peestw)explluDlyl* = dyds < Cexp2la i
R
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Above, the exponential factor permits to handle the polynomial growth of W' with
With — (Y, Z""), and the exponential growth of 5"+ (see the definition of ©9:*(v) in the
statement of Theorem 12), the exponent in the exponential factor being arbitrarily chosen as
1 (which leaves ‘some space’ to handle additional polynomial growth and which is possible
since the terminal condition u}!} is of polynomial growth).

We now investigate the second term in the right hand side of (50). We recall that, by
assumption, there exists a constant C, independent of h, such that

y

| @) -zt avice)
We also recall from Theorem 5 that v is (o — €)/2-Holder continuous in time, locally in
space (the rate of growth of the Holder constant being at most exponential and Theorem 12

allowing to choose 1 as exponent in the exponential), so that [0 (y)—1| < Ch@=92 exp(Jy]),
for s € [t,t + h] and for a possibly new value of the constant C'. Therefore,

J o f Oaps—(2 —y) Ly(Zi”‘(z) — 70 () dY,(2) dy ds
J HhJ OaPs—i{ J (Z5"(2) = 27 (@)) dYi(2) dy ds
[ 1) [t [@e - ) e aas

the last term being less than

(52)

<@ y)| < A+ Jaf v [y e — g™

t+h
(53)  Cexp(2|z|)hle—e QJ (s —t) V¥ dr < Cexp(2|z])RY2H3927¢ < Cexp(2]z|) A1,

t

the last inequality holding true since « is strictly larger than 1/3 and e can be chosen
arbitrarily small. Therefore, from (50), (51) and (52), we deduce that

uft"(z) — —J o J Oups—t(z — y) (Yaly) — Yi(z)) dy ds

JJF f Ds—t(T —y f (25 (2) = ZL () dYi(z) dy ds + O (exp(2]z])h' ™).

Using (52) once more and following the proof of (53), we also have

uﬁmw=£@%MQ%Mwmmwmm@wm@mwwm.

It then remains to look at the first term in the right-hand side of (50). The point is to
expand v/ (z) on the same model as u!™"(x) right above. Basically, the same expansion
holds but, because of the derivative in the definition of v} " ( ) = d,ul™(x), we loose 1/2 in
the power of h in the Landau notation. Therefore, for t < s < t + h, the above expansion
turns into

@Ww—bf W%UﬁmmwwM@—WM@W+mmwww-
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Using once again the fact that v'™" is (a — €)/2-Holder continuous in time (locally in space,
the Holder constant being at most of exponential growth), we obtain

t+h
) 1= [ e ) () - Vi) dyr

+Jw@?W@—1X&%mt@—yXK@)—K@ﬂdw%+INwMﬂﬂWﬂ

S

t+h
=£Mm+0GmmwhwwWWf @—WWW@D.

s

The last term can be bounded by O(exp(2|z|)h*~%?). Now, by (54),

W) == [+ 20 @) [ apede - (Vi) - V(o)) dyds

(55) + :+ L Dupos(z — 1) f (25 (2) — 20 (2)) dYi(z) dy dr

t+h
+ O <6Xp(2|x|) [ha—e/Z J‘ (S N t)—1/2+a/2d8 n hl_;,_e]) '
t

It thus remains to bound

£+ Z;Urh(l’) J OxDs—t(T — y) (Ys(y) — Y;(a;’)) dy ds.

R

By (13), it is plain to see that Z!*"(x) = O(exp(2|z|)h*/?). Then, the above term must at
most of order O(exp(2|z|)hY/?%), from which the proof of the proposition is easily completed.
In order to complete the proof of Remark 15, it remains to show the announced bound for

t+h Y
f fa%tm—wJZﬁvmnw@M&
t R x

We already have a bound when Z!™"(z) is replaced by Z!*"(x). By (52), we also have a
bound when Z!™"(2) is replaced by Z!*h(2) — Zt+h(x). O

4.3. Purpose. The goal is now to prove that Theorem 13 and Proposition 14 are sufficient
to define a differential calculus for which the infinitesimal variation d.X; reads

(56) dXt = dBt + b(t, Xt, dt), te [0, T),

or, in a macroscopic way, X; = Xo + B; + Sé b(s, Xs,ds), which gives a sense to (1). In that
framework, Proposition 14 and Remark 15 give some insight into the shape of the drift.

As explained below, we are able to define a stochastic calculus in such a way that the
process (Sé b(s, Xs,ds))o<i<r has a Holder continuous version, with (1 + «)/2 — € as Holder
exponent, for € > 0 as small as desired, thus making (X;)o<;<7 a Dirichlet process. More
generally, we manage to give a sense to the integrals Sg Yy dX; and Sg b(t, Xy, dt) for a large
class of integrands (;)o<t<r, thus making meaningful the identity

T T T
f Y dX; = f U, dBy + f b(t, Xy, dt).
0 0 0
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The above integrals will be constructed with respect to processes (¢ )o<i<7 that are progressi-
-vely-measurable and (1 — «)/2 + ¢ Holder continuous in L? for some p > 2 and some € > 0.
The construction of the integral consists of a mixture of Young’s and [t0’s integrals. Precisely,
the progressive-measurability of (¢;)o<;<7 permits to ‘get rid of’” the martingale increments
in X that are different from the Brownian ones and thus to focus on the function b only
in order to define the non-Brownian part of the dynamics. Then, the Holder property of
(¢1)o<t<r permits to integrate with respect to (b(t, Xy, dt))o<i<r in a Young sense. For that
reason, the resulting integral is called a stochastic Young integral. It is worth mentioning
that it permits to consider within the same framework integrals defined with respect to
the martingale part of X and integrals defined with respect to the zero quadratic variation
part of X. Following the terminology used in [6], in which the authors address a related
problem (see Remark 18 below for a precise comparison), the Young integral with respect to
(b(t, X, dt))o<t<r may be called ‘nonlinear’.

The construction we provide below is given in a larger set-up. In the whole section, we
thus use the following notation: (2, (F;)i=0,P) denotes a filtered probability space satisfying
the usual conditions; moreover, for any 0 < s < t, S(s,t) denotes the set {s’ € [0,s],t €
[0,¢],s" < ¢'}. The application to (48) is discussed in Subsection 4.6.

4.4. [P Construction of the Integral.

4.4.1. Materials. We are given a real T' > (0 and a continuous progressively-measurable
process (A(s,t))o<s<i<r in the sense that, for any 0 < s < ¢, the mapping  x S(s,t)
(w, s, ') — A(s,t') is measurable for the product o-field F; ® B(S(s,t)) and the mapping
S(T,T) > (s,t) — A(s,t) is continuous. We assume that there exist a constant I' > 0, three
exponents &g € (0,1/2], €1, > 0 and areal ¢ > 1 such that, forany 0 <t <t+h <t+h <
T7

-

E[|E[A(t,t + h)|F]|"]* < Thz*=,
[A(t,t + h)|"]" < Th3,
E[[E[A(t,t + h) + A(t + h,t + 1)) — A(t,t + )| F][* ]é < T(h)He,

E[JA(t,t +h) + A(t+ bt + ) = A(t,t + 1|77 < ()30,

-

(57)

[
E[
[

In the framework of (56), we have in mind to choose A(t,t+h) = Xy, — Xy or A(t,t+h) =
By — By, in which cases A has an additive structure and e; and €| can be chosen as
large as desired, or A(t,t + h) = b(t, Xy, h), in which case A is not additive. The precise
application to (56) is detailed in Subsection 4.6. Generally speaking, we call A(t,t + h)
a pseudo-increment. Considering pseudo-increments instead of increments (that enjoy, in
comparison with, an additive property) allows more flexibility and permits, as just said, to
give a precise meaning to b(t, Xy, dt) in (56). The strategy is then to split A(¢,¢ + h) into
two pieces:

(58)  R(t,t+h):=E[A(t,t + h)|F], Mt t+h):=A(tt+h)—E[A(tt+h)|F],

M(t,t + h) being seen as a sort of martingale increment and R(t,t + h) as a sort of drift.
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We are also given a continuous progressively-measurable process (1;)o<;<7 and we assume
that, for an exponent 9 < g9 and for any 0 <t <t+ h < T,

(59) E[|wt|q/]? <T, E[wwh - 1/1t|q,]? < Fhéfez,
for some ¢ > 1. We then let p = qq¢’/(q¢ + ¢) so that 1/p =1/q+ 1/q¢'.

4.4.2. Objective. The aim of the subsection is to define the stochastic integral Sg P A(t, t+dt)
as an LP(Q,P) version of the Young integral. In comparison with the standard version of the
Young integral, the LP(€,P) construction will benefit from the martingale structure of the
pseudo-increments (M (t,t + h))o<i<i+n<r, the integral being defined as the LP(€, P) limit of
Riemann sums as the step size of the underlying subdivision tends to 0. Given a subdivision
A={0=ty<t; <--- <ty =T}, we thus define the A-Riemann sum

(60) S(A) = Z_ Yy, Atiy tivr).

We emphasize that this definition is exactly the same as the one used to define 1t6’s integral:
on the step [t;,t;11], the process 1 is approximated by the value at the initial point ¢;. For
that reason, we will say that the Riemann sum is adapted. In that framework, we claim:

Theorem 16. There exists a constant C = C(q,q',T',eq,€1,€2), such that, given two subdi-
visions A < A, with 7(A) < 1,

(61) E[|S(A) — S(AYP] < €' max(T"?, T)(m(A))",

where w(A) denotes the step size of the subdivision A, that is m(A) := maxi<;<n[t; — ti 1],
and with n := min(ey — €9, €1,€7/2).

For general partitions A and A’ (without any inclusion requirement), Theorem 16 applies
to the pairs (A, A U A’) and (A", A U A'), so that (61) holds in that case as well provided
7(A) in the right-hand side is replaced by max(7(A), 7(A’)). We deduce that S(A) has a
limit in LP(Q2,P) as m(A) tends to 0. We call it the stochastic Young integral of ¢ with
respect to the pseudo-increments of A.

4.4.3. Proof of Theorem 16. First Step. First, we consider the case where the two subdivi-
sions A and A’, A being included in A’, are not so different one from each other. Precisely,
given A = {0 =t <t; < - <ty=Tland A = Au{t) < - <t} (L >=1), the
(ti)1<i<n’s and the (#})1<j<r’s being pairwise distinct, we assume that, between two con-
secutive points in A, there is at most one point in A’. For any j € {1,..., L}, we then
denote by s; and S;F the largest and smallest points in A such that s; <. < s;r. We have
th <s <s;y <tj, for1<j<L—1 We then claim:

Lemma 17. Under the above assumption, the estimate (61) holds with w(A) replaced by
p(ANA), where p(A"\A) 1= sup, ;<[] — 57 ].
Proof of Lemma 17. (i) As a first step, we compute the difference S(A’) —S(A). We write
L
S(A") = S(A) = Y [S(a7) = 5T,

j=1
26



with AV = AU {th,... t;}, for 1<j <L, and A? = A. Then,
S(AT) = S(A™H) + 9~ A(s} 1) + vy A(t], J) by Alsy )
= S(ATTH + (?/}t; — @/)SJ_—)A( ;», ]+) (A(s] , J) + A(t], s; = A(sy, s;r))

Therefore,

L L
S(A Z (Y — ¥ ) M(t}, 57) Z (Vg — ¥ ) R(t], )

62
(62) +Z¢ s; )+ At sT) — A(s; ,s)))

= 515(A, A M)+ 5,S(A, A, R) + 6,S(A, A').

(71) We first investigate 015(A, A, M). The process (ZJ (Y —1,- )M(t;, T)o<e<z s a
discrete stochastic integral and thus a martingale with respect to the filtration (.Fsz—)oggg L,
with the convention that s; = s§ = 0. The sum of the squares of the increments is given
by Zfﬂ(wt; — @Z)s;) (M(t;,s;))?. By the second line in (57) and by (59), we observe from

Minkowski’s inequality first and then from Hélder’s inequality (recalling 1/p = 1/q + 1/¢)
that there exists a constant C' such that
M(t), st

[ M D obc [ e [T A |

: Jj=

2

() —s) 7 (7 — ) < OT (p(ANA))™

J

with 7 1= 1 — 2e9 = 2(g9 — £2), where we have used s; < th < s;r. By discrete Burkholder-
Davis-Gundy inequalities, we deduce that E[|6,S(A, A’, M)[P]VP < CTY2(p(ANA))™/2,
(#i) We now turn to §;.S(A, A’ R). In the same way, by the first line in (57) and by (59),

B[J5:S(A, & )7 < Y Bl - v PIRCE, sHP]?

kSR
TM@

L
< CZ(t; — )P (s — )P < oT(p(ana) ™

with 7, 1= g9 — €2. Therefore, E[|6;S(A, A, R)[P]YP < OT (p(A\A))™
(iv) We finally investigate d25(A, A’). We split it into two pieces:
L
S(A, A 21/1 CR(s7 1, 87) + ) - M (s7, 1, sT),
=1

= 525(A, A R') + 5,S(A, N, M),
27
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with

Jrirg Jr 77

M (s, t,s7) = A(s; , ;) + A(t), ) — A(s;,s]) — R (s5, 15,87 ).

VAR 3773 j’j> VRV
By the third line in (57) and by (59), we have, with n3 := &, E[|6S(A, A/, R))[P]P <
CT(p(ANA))™
We finally tackle d,.5(A, A’ M"). We notice that it generates a discrete time martingale
with respect to the filtration (Fs;)osésb As in the second step, we compute the L?/?((Q, P)

R(s7,t,,st) = E[A(S;,t}) + At sT) — A(sy, S;r)}-rsj_]u

norm of the sum of the squares of the increments. By the last line in (57), it is given by

[

L

20 (M55 85,5))

j=1
with 1y := €). By discrete Burkholder-Davis-Gundy inequality, E[|6:S(A, A/, M")[P]V/P <
CTY2(p(AN\A))™/2. Putting (i), (i4), (#49i) and (iv) together, this completes the proof. [

2

%r < ZL]E[wf;E[(M’(sivtévS}))pIFS;_I]]” < OT(p(AN\A)™

4.4.4. Proof of Theorem 16. Second Step. We now consider the general case when A < A’
(A" = A) without any further assumption on the difference A"\ A.

As above, we denote the points in A by ¢q,...,ty. The points in the difference A"\A are
denoted in the following way. For i =1,..., N, we denote by t,, ... ,t’Lm the points in the
intersection (A"\A) n (t;_1,t;), where L; denotes the number of points in (A"\A) N (t;_1, ;).
Each L; may be written as L; = 2¢; + ¢; where ¢; € N and ¢; € {0, 1}. We then define A as
the subdivision made of the points that are in A together with the points

{{t'%i, C=1,...,0;} U {tey,1if g; = 1}} whenever ¢; > 1, fori=1,..., N.

This says that, to construct A}, we delete, for any i = 1,..., N, the point ¢ ; if L; = 1 and
the points that are in (A\A) n (¢;_1,t;) and that have an odd index 2¢ — 1 with 1 < ¢ < ¢;
if L; > 1 (so that the last point is kept even if labelled by an odd integer when ¢; > 1). By
construction, A} and A’ satisfy the assumption of Subsection 4.4.3, so that

[S(AY) = S(A)] o py < Cmax(TV2,T)[p(ANAY)]".
(@.P)

It holds A] o A. If A] = A, we then build a new subdivision A} as the subdivision
associated with A} in the same manner as A} is associated with A’. We then obtain

(64) S(25) — S iy < Cmax(TV2, ) [p(A7\AG)]".

We then carry on the construction up until we reach A}, = A for some integer M > 1. We
notice that such an M does exist: by construction each A’ contains A and §[A’] < £[A] ]
(with the convention Aj = A').

We now make an additional assumption: We assume that A’ is a dyadic subdivision, that
is A" = {27PkT 0 < k < 27} for some P > 1. This says that A is also made of dyadic points
of order P. We denote by @ the unique integer such that

max(L;,1 <i < N)=29+r with0<r <29 -1,

and by ig some index such that L;, = 2@ + r. At the first step, the 2% first points in
(ANA) N (tig-1,ti,) are reduced into 297" points. At the second step, they are reduced

into 2972 points and so on... Therefore, it takes () steps to reduce the 2% first points in
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(A"\A) N (tiy,-1,ti,) into a single one. Meanwhile, it takes at most () steps to reduce the r
remaining points in (A"\A) N (t;, -1, ti,) into a single one (without any interferences between
the two reductions). We deduce that, after the Qth step, there are at most two operations
to perform to reduce A, into A. This says that M is either @ + 1 or @ + 2 and that, at
each step j € {1,...,Q} of the induction, we are doubling the step size p(A}_\A}), that is

p(A) \A)) =27 p(ANAY), j=1,...,Q,
so that
P(ANAL) < 27@Dr(A), and p(A)\AD) <27r(A), j=1,...,Q.

Therefore, p(A}_\A}) < 277M*271(A), j = 1,..., M. By extending (64) to each of the steps
of the induction, we get (up to a new value of C')

(65) [S(A") = S(A)] 0 0p) < Cmax(TV2,T)[x(A)]" Z 210-M) < Cmax(T"2,T)[x(A)]".

When A and A’ contain non-dyadic points (so that they are different from {0, 7'}), we can
argue as follows. We can find a dyadic subdivision, denoted by D,, such that, in any open
interval delimited by two consecutive points in D,, there is at most one element of A. Then,
we remove points from Ds to obtain a minimal subdivision D7, made of dyadic points, such
that, in any open interval delimited by two consecutive points in D, there is exactly one
element of A. In such way, in any open interval delimited by two consecutive points in A,
there is at most one point in D;. Therefore, we can apply Lemma 17 to (Dy, D; U A) and
(A, Dy U A). We get

|S(Dy) — S(A)HLP(Q’P) < Cmax(TY?, T)[max(n(Dy), 7(A))]" < C"max(T"?, T)[x(A)]",

since m(D1) < 2m(A). By the same argument, we can find a dyadic subdivision D for
which the above inequality applies with (D;, A) replaced by (D}, A’). Then, we can find a
dyadic subdivision D such that both D; ¢ D and D] < D. Applying (65) to (Dy, D) and
to (D}, D), we can bound the difference between S(D}) and S(D;). The result follows.

4.5. Further Properties of the Integral.

4.5.1. Eztension of the Integral. Given the decomposition (58), it is worth noting that both

the integrals Sg e M(t,t + dt) and Sg Y R(t,t + dt) are also defined as LP limits of the
associated adapted Riemann sums. The main point is to check that Lemma 17 applies to
Sy and Sg, where, with the same notation as in (60), Sy(A) = Zz‘]\:ol Wy, M (t;,t;41) and
Sr(A) = Zﬁ\fol Wy, R(t;, tir1). A careful inspection of the proof of Lemma 17 shows that the
non-trivial point is to control the quantities d3S(A, A’, M) and §,S(A, A, R), obtained by
replacing A by M and R respectively in the definition of d,.5(A, A’) in (62). Actually, since

we already have a control of the sum of the two terms (as it coincides with 625(A, A’) in the
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proof of Lemma 17), it is sufficient to control one of them only. Clearly,

L
HéZS(A,A’,R)HLP(QP)éHZ?/}SJ.—(R 7o)+ E(R(t, 57| F,) = R(s; . s7))

LP(Q,P)

+H2w (t).5)) — B(R(E;, 57| F.-))

We emphasize that the first term above is nothing but §,S(A, A’ R) in (63), for which we
already have a bound. Therefore, the only remaining point is to control the second term
above. Again, we notice that it has a martingale structure, which can be estimated by
Burkholder-Davis-Gundy inequality. By the first line in (57) and by (59),

UEM (o 5) —E(R(, 5])| .- >)2§f
Z [vr (it sy <c Z T < O (p(aN8))*,

which is enough to conclude that Theorem 16 is also valid when replacing A by R or M in
§4.4.4. Therefore, we are allowed to split the integral of ¢ as SOT VAt t+dt) = Sg Y M (t,t+
dt) + Sg Y R(t,t+dt). The reader must pay attention to the fact that neither M nor R must
satisfy (57) even if A does. The extension of the integral to the case when they are driven
by M or R is thus a consequence of the proof of Theorem 16 itself.

LP(Q,P)

4.5.2. Continuity in Time. It is plain to see that the integral is additive in the sense that,
forany 0 < S<S+95<T,
S+’

S+5’ S
f YAt + dt) = f YAt + dt) + f WAL, t + dt).
0

0 S

An important question in practice is the regularity property of the process [0,T) 3 t —
Sé s A(s, s + ds), which is not well-defined for the moment. At this stage of the procedure,
each of the integrals is uniquely defined up to an event of zero probability which depends on
t. A continuity argument is thus needed in order to give a sense to all the integrals at the
same time. By Theorem 16, we know that, for h € (0, 1),

1
< Chz™
Lr(Q,P)

for n > O as in the statement of Theorem 16, so that, by the two first lines in (57),
h
15"y

t+h
(66) ft Vs A(s, s +ds) — At t + h)

A(s, s + ds)| op) < ChY2, for possibly new values of C. By Kolmogorov’s con-
tlnulty crlterlon this says that there exists a Holder continuous version of the process
(Sé Vs A(s, s + ds))o<t<r, With 1/2 — 1/p — € as pathwise Holder exponent, for any € > 0.

By the same argument, we notice that there exist Holder continuous versions of the pro-
cesses (Sé Y M(s, s + ds))o<t<r and (Sé Vs R(s,s + ds))o<i<r. The Holder exponent of the
second one is actually better. Indeed, noticing that (66) also holds for R and taking advan-
tage of the first line in (57), we deduce that || SHh R(s,s+ds)|rp < ChU+/2 50 that

the pathwise Holder exponent can be chosen as (1 +17)/2 — 1/p — € for any € > 0.
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4.5.3. Dirichlet decomposition. It is well-checked that the process (Sé s M (s, s + ds))o<i<r
is a martingale, thus showing that the integral of 1) with respect to the pseudo-increments
of A can be split into two terms: a martingale and a drift. We expect that, in practical
cases, the exponent p can be choose as large as desired: In this setting, the martingale part
has (1/2 — €)-Hoélder continuous paths, for € > 0 as small as desired, and the drift part has
(1/2 + n — €)-Holder continuous paths, also for € > 0 as small as desired, thus proving that
the integral is a Dirichlet process.

4.6. Application to diffusion processes driven by a distributional drift. We now
explain how the stochastic Young integral applies to (1). First, we can choose A(t,t + h) =
Xipn — Xg, for 0 <t <t+ h <Ty. Then the process A is additive. In particular, the two
last lines in (57) are automatically satisfied with ; and €/ as large as needed. By (48), the
second line in (57) is also satisfied. Finally, we notice that

E[Xt+h - X¢|E] = E[Xt-i-h - Xt - (Bt+h - Bt) |‘E]7

so that, by (48) again, the first line in (57) is satisfied with ¢q = /3/2.
With our construction, this permits to define (Sé s dXs)o<t<T, for any progressively mea-
surable process (¢ )o<i<T, Satisfying (59) with e, < §/2. It also permits to define the integrals

(Sé s M (s, s+ ds))o<i<t, and (Sé Vs R(s, s + ds))o<i<T,, Where
M(t,t+h) = Xeyn — Xi — E[Xt+h - Xt|~B]7 R(t,t+h) = E[Xt+h - Xt|~7:t]-

By (49), we have R(t,t + h) = b(t, X4, h), so that (Sé sb(s, Xs, ds))o<i<r, is well-defined.

Moreover, by Proposition 14 and by boundedness of the exponential moments of (X};)o<i<7;
(see the proof of Theorem 8), we know that R(t,t + h) = (b— b)(t, X;, h) also satisfies (57),
from which we deduce that (§; 1(b— b)(s, Xy, ds))o<i<r, and so (§; 1sb(s, X, ds))oi<r, ave
well-defined. Actually the exponent in the power of h appearing in the difference (b —
b)(t, X;, h) being strictly greater than 1, the integral process (Sé s (b —b)(s, Xs, ds))o<t<ny
must be 0. We deduce that (Sé Ysb(s, X, ds) = Sé b (s, Xs, ds))o<t<ry -

We finally discuss the integral (Sé s M(s,s + ds))o<t<r. We let

M(t,t+h) = Xepn — Xy — (Bisn — B) — E[Xorn — X[ F]
= Xion = Xi = (Bisn — Bi) = E[Xyon — X, — (B — B)) | F].

By (48), E[|M(t,t + h)|7]Y7 < C!h1+72 for some C! = 0, which reads as a super-diffusive
bound for the pseudo-increments of M. It is then well-checked that (M(t,t + h))o<i<trn<n,
fulfills all the requirements in (57). Therefore, the integral (Sé YoM (s, s + ds))o<i<r, makes
sense. By Subsection 4.5, it is a martingale but by the super-diffusive bound of the pseudo-
increments it must be the null process. Put it differently, only the Brownian part really
matters in M and we can justify (56) thanks to the equality

¢ t ¢
f s d Xy = J s d By —i—f »sb(s, X5, ds).
0 0 0

Remark 18. In [6], the authors already introduced a ‘nonlinear’ version of the Young inte-
gral. The motivation was similar to ours as the underlying objective was to solve singular

differential equations driven by a distributional (but time-homogeneous) velocity field and
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perturbed by a rough signal. The construction suggested therein also consists of an approxi-
mation by means of Riemann sums, but the convergence is shown pathwise. The proof relies
on a suitable control on the default of additivity of the nonlinear integrator, on the model
of the third line in (57), but expressed in a pathwise (instead of LP) form. We refer to
(6, Theorem 2.4] for the main statement: Therein, the pseudo-increment reads Gy, (fi,)
instead of A(t;,t;+1) and the condition v + pv > 1 corresponds to the condition 1 + & > 1
in the third line of (57). In the specific framework of singular differential equations driven
by a distributional drift and a Brownian path, the Young integral is used in order to give
a meaning to the drift part, exactly as we do here. Anyhow, the construction by Catellier
and Gubinelli relies on a path by path time averaging principle, which goes back to Davie’s
work [7]. Our construction is different as it relies on a space averaging principle, inspired
by Zwvonkin’s method [32]. We indeed make use of the statistical behavior of the Brownian
motion (and its connection with the heat equation) in order to define explicitly the effective
drift b(t,x,dt). This explains why our approach is of stochastic nature.

5. CONSTRUCTION OF THE INTEGRAL OF Z W.R.T. Y. EXAMPLES.

We here address the existence of a rough path structure (W] = (W, #7))o<i<r for the
pair W = (V;, Z]'), for T running in some interval [0, Ty], Ty > 0, the process (Z] )o<i<r
being given by (13). The process #T is intended to encapsulate the iterated integrals of
W7, namely §Y(W)""(2) — W) (2)) dW?T(2), for 4,j € {1,2} and =,y € R. Here W"" and
W7 denote the coordinates of W/, namely W;"" (z) = Y;(z) and W' (z) = ZF(z).

As we are seeking a ‘geometric’ rough structure, the iterated integrals are expected to be
the limits of iterated integrals computed along smooth approximations of the paths (Y;)o<i<r
and (Z1)o<t<r, see (1) and (2) in Proposition 6. In particular, if it exists, #7 must share
some of the properties satisfied by iterated integrals of smooth paths, among which the
integration by parts. This means that V/tl’l’T and %Q’Q’T must be given by

/ / 2 / / 2
67) W @) = A — V@) P () = L @) - 20 (@)
and that #,"*" and #,>"" must be connected through
(68) (H2T 4 W2 (w,') = (V') - Yilo)) (20 (&) - 27 ().

To sum up, the only challenge for constructing #7 is to define the ‘cross-integral’

x/

(69) I (2, 2) = W (2, 0)) = J (Z(y) — 2 (x)) dYi(y).

xT

5.1. Overview of the results. We are given (Yi(x))o<t<ty2er satisfying for some a €
(1/3,1) and x, k > 0:

(70) Kax((Ye)ost<ry) '=  sup (HEH([X_G’G]/QX) S K< .

a=1,0<t<Tp
Below, we often write rq,(Y) for o, ((Y2)o<i<m, ). As a first remark, we note that, for
T € [0, Tp], the process (Z1)o<i<r in (13) has the same regularity as Y, uniformly in 7"

Lemma 19. Given T € [0, Ty], recall the definition of Z} in (13). There exists a constant
C only depending on Ty, o and x such that ke ((Z])o<i<r) < Ck.
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Proof. To prove g ((Z5)o<i<r) < Ck, we go back to (33), noticing that (Mu), therein is
equal to ZI when v = 1 and recalling that the analysis is split into two parts: |2/ —z|?> < T —t
and T —t < |2/ — x|?, the first case only being challenging. It is then plain to check

that, for z,2/, & € [—a,a], with a > 1, ZP" (£) < CraX Sif/_x‘Q sTie2ds < OraX|z’ — x|*.
Moreover, following (35) with 3 = 1, we also have Z3° < CkaX Sf S‘Z, s B~0/2 qsdu <

CraX|z" — x|*, for z, 2" € [—a, a], which completes the proof. O

71.|2

In order to construct # r(z,y) in (69) as a geometric integral, we must specify what an
approximation of Y is. We shall say that a sequence (Y"),>o is a smooth approximation of

Y on [0,Tp] if, for each ¢ € [0,Tp], the function V" : R 5 z — Y*(x) is a smooth function
OTO [—a,a]
— 0

such that sup,,~ fa ((Y{")o<t<n,) < 0 and, for any a > 1, lim,,_, [|Y"™ —
for any o € (0,«). Below, we shall often use the following trick, that holds true for any
a>1and any o/ € (0, @),

[0,Tb] x[—a,a]
< 0
= lim [|[Y" —
YH(Eg,TQ]X[fa,a] — O } 00 H

In particular, a typical example for Y is to let

(72) V(o) i | Yide = g)plon) o

where p is a smooth density, p and its derivatives being at most of polynomial decay, in
which case the smooth approximation is said to be constructed by spatial convolution.

Given a smooth approximation (Y™),>; of Y, we may define, for any T € [0, Tp], the
process Z™T by replacing Y by Y™ in (13), and then, following (69), we may let

cﬁﬂwm;fﬂﬂﬂw—ﬂﬂ@mwwm%

xT

sup,,o [ V"

OTO [-a,a] 0

(71)

lim,, o Y™ —

which permits to define the structure (W' = (W™, #,"))o<s<r accordingly.
The following lemma then provides a general principle for constructing # (z, 2'):

Lemma 20. Suppose that, for any T € |0, To], there ezists a functzon IT 0, T] x R? > R
and a smooth approximation (Y"),=1 of Y such that, for some o/ € (1/3,a) and x' > ¥,

sup  sup supsup (|77 |5 a™) < oo,
0<T<Th te[0,T] n=1 a>1

VT e [07T0]7 Ya = 17 lim sup H{ﬁtT_tﬂtan -

n—=0 o<t<T

(73)
wal _ ),

Assume without any loss of generality that X' > x + a — a/. Then, for any T € [0,Ty], there
exists T € C([0,T] x R?,R*) such that the pair process (W' = (VVtT, W) )o<i<r is a time
dependent geometric rough path with indices (/,x’) in the sense that
(1) supgeqen, Ko (WT) < 00 and sup,,-, Supgepeg, ko (W™ = (WHT 9 T)) < o;
(2) for any T € |0,Ty] and any segment I R,

HwT W™ TH [0, T xT _ H(WT _ Wn,T’ wT _ Wn,T)’ ([)?&j:]XH

tends to 0 as n tends to oo.

Proof. The cross integral .#7 being given, the definition of #7 follows from (67) and (68).

The point is thus to prove the geometric nature of the rough path W7.
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By (71), we have, for any a > 1, lim,,_,, [|[Y" — [0.To][~a.al _ (. Moreover, HY"H[_‘W] <
(2a) |y |5 < Cav="+xk,  (Y™), proving that suan1 Koy (Y™) <0if X' = a—a/+y.

Applying Lemma 19 to (Y™, Z™T), we get sup, - Supp<r<r, Ko’/ ((Z1""Yo<rer) < 0. Now,
it is quite standard to see that, for any 7' € [0, Ty] and a > 1, sUPy<;<r SUD e[ q.q] \Z T () —
ZI'(z)| tends to 0 as n — o0. By Lemma 19 again, for a > 1 and T € [0, Tp], the functions
([—a,a] 3z — ZP""(x) € R)ocr<rn=1 are uniformly a-Holder continuous. By the same trick
as in (71), we easily deduce that || Z™T — ZT\|£O’(’;‘C]X[_G’G] tends to 0.

In order to complete the proof, it suffices to handle the iterated integrals, which follows
from (73) and (69) (applied to the pair (Y™, Z™T) instead of (Y, Z)). O

Here is the first main statement of this section:

Theorem 21. Givena € (1/3,1] and x > 0, let Y € C([0, To]| xR, R) satisfy ko ((Yi)o<t<ny) <
w0 (see (70) for the notation) and

(74)  |Ya(2) = Yi(x) — (Yly) = Ya(y))| < wa¥[s —t"le —y|", (s,0) € [0,Tp], z,y € R,

for some k =0 and p,v = 0 with 2v + p € (1 — o, 1]. Then, Y satisfies the assumptions of
Lemma 20 with respect to any (¢/,x") with o/ < a and X' > x +a—ao' + (1/2 —a)y. In
particular, for any T € [0,Ty], the pair WT = (Y, ZT), with ZT given by (13), may be lifted
into a geometric rough path W' = (WT, #T) satisfying the conclusions of Lemma 20.

Moreover, when the smooth approximation used in Lemma 20 is constructed by spatial
convolution, W' does not depend upon the kernel p in (72). When a > 1/2, W7 is al-
ways well-defined and remains the same whatever the smooth approximation is (even if not
constructed by convolution).

Theorem 21 guarantees that W7 exists for any T € [0, Tp] under some condition on the
time-space structure of the environment (Y;)o<i<7,- When Y is time homogeneous, (74) is
automotically satisfied, and the iterated integral in (69) always exists and is geometric under
the simple assumption that x,,(Y) < . In that case, the cross integral #(z,z’) in (69)
can be expressed explicitly, see (78) in Lemma 23 below. Moreover, a careful inspection
of the proof shows that the constraint x' > x + a — o + (1/2 — ), can be relaxed into
X' > x +a—a’. When Y is time dependent, the additional condition (74) is imposed. It is
inspired from the construction of the so-called Young integral between a Holder continuous
function and the increments of another Holder continuous function, see [31] and Lemma 24
below. For instance, if a > 1/2, (74) is always satisfied with ¢ = o and v = 0 and the
constraint on y’ reduces to ' > x + a — o’. When o < 1/2, a sufficient condition to imply
(74) is that Y has some $-Holder regularity in time: |Y;(y) — Yi(y)| < &'(1 + |y[¥)|s — ¢|?
with > (1 —«)/2. The bound (74) is then satisfied with ¢ = 0 and v = 5 A (1/2). A more
specific case is when Y;(y) can be expanded as Y;(y) = f;Y (y), with f §-Hélder continuous,
for 8 >1/2 -, and Y € C(R,R) with sup@l[a*XHYH([;a’a]] < o0, in which case (74) holds
with g = a and v = § A (1/2 — «/2). Notice finally that the constraint 2v + p < 1 can be
easily overcome: When 2v+ 1 > 1, the value of v can be decreased for free so that 2v+p = 1.

As mentioned in Introduction, existence of the cross-integral has been also proved within
the framework of the KPZ equation by means of general results on rough paths theory applied
to Gaussian processes, see [16], [18, Section 3| and [19, Section 7]. Theorem 22 below is a

refinement:
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Theorem 22. Let (Z,G,P) be a probability space with a Brownian sheet (((t,x))i>0zer. Let
YT(t x) = StT Sops—i(x —y)d{(s,y), for {0 < t < T,z € R}. For a smooth density p, p
and its derivatives being at most of polynomial decay, define in the same way YPT(t,x) :=
§i S poe(x =) ACP(s.), with ¢°(1,x) = §i §g plar — y) dC(s,9).

Then, for cmy Ty > 0, we ccm find an event =* € G, with P(Z*) = 1, such that, for any
realization in =*, for any Y® € C([0,Tp] x R, R), with ka, ,,(Y®) < 0 for some oy, > 1/2
and xp > 0, for any approrimation sequence (Y"( Yns1 of YO the function

Y(t,z) =Yt 2) + YO(t,2), (¢t x)e[0,Ty] xR,

satisfies the assumption of Lemma 20 with respect to any o € (0,1/2) and any x > xp+p—,
and with respect to the smooth approzvimation (Y™ = Y To 1 ym®)

Theorem 22 is specifically designed to handle the KPZ equation and to construct, in the
next section, the related polymer measure. In this perspective, an important point is to
control the time-dependent rough paths (W )o<i<p, uniformly in 7" e [0, Tp], which is one
of the reason why we revisit the argument given in [19, Section 7]. Instead of making use of
general results on rough paths theory for Gaussian processes, we benefit from the fact that
Y7o solves the backward stochastic heat equation to identify the cross-integral .Z% (x,2') in
(69) with a stochastic integral. Such a construction can be extended to non-Gaussian cases
when Y70 solves a stochastic PDE of a more general form (with possibly random coefficients).

5.2. Proof of Theorem 21. Following the decomposition of ¥ introduced in the statement
of Theorem 21, it makes sense to split Z!' () into ZI (x) = ZWT (2) + 27 (x), with

Z 02psi(w — y) (Yilly) — Yilw)) dy ds,
. o=,

707 Jﬁf%%tx— ) (Valy) — Yalr) — (Yily) — Yila)) dy ds.

Accordingly, we can split, at least formally, the iterated integral .#%(x,2’) in (69) into
IE(w,a') = S (@) + 7 (), with

(76) A @)= | (207w - 207 @) Vi), 1= 1,2

T

The analysis of ft(l)’T relies on

Lemma 23. Given «, x, k > 0, there is a constant C, such that, for anyY € C(|0,Tp] x R, R)
with ke (Y) < K, the map x — Y (x) being differentiable for any t € [0,Ty], it holds that

(77) YT €[0,Ty], Vt€[0,T], Ya =1, Ya,a' € [-a,a], |77 (x,2")] < Ca®|a’ — x>

Moreover,

TOT (o) — (Z(”T( ) = 207 (2)) (V@) = Yi(w)) + (Vi(a') = Yi())®

(78)
2 foth —ZK(XK@%—K@Dduw-



In the framework of Lemma 20, (78) remains true when Y is not differentiable in z, by
passing to the limit along a smooth approximation. When Y is time-homogeneous, .#! (z, z')

and ft(l)’T(x, 2') coincide, and we have an explicit formula for the cross integral in (69).

Proof. Taking benefit of the heat equation satisfied by p,_;, we have

2 (x) =2 JR | Openile =) (Yily) — Yilw)) dy ds = 2 JR pr—i(z = y)Yily) dy — 2Y(2).

Recalling that, under the assumption of Lemma 23, Y is smooth in space, we get from (68):

$l

IO (g, 2y = (207 (@) = ZO7 (1)) (Yi(a!) — V() — f (Yely) - Yu()) 2,28 (y) dy.

T

Plugging the formula for Z\""" into the above relationship, we get (78).

By Lemma 19, k4, (ZW7T) < Ck. Tt is then clear that, for z,2’ € [—a, a], the two first
terms in the right hand side of (78) satisfy (77). In order to prove that the third one satisfies
it as well, we notice that it may be rewritten under the form (up to the factor —2)

SIri(r, ") J J Oupr—t(y — 2) (Yi(2) = Yi(2)) (Vi(y) — Yi(z)) dz dy.

Splitting the increment Y;(z) — Yy (z) into Y;(2) — Yi(y) plus Y (y) — Y}( ), we deduce from the
bound |0,pr—i| < (T — )" pyr_y that | Fr_(z,2')| < Ca®>[(T — t)~1-/2|g — g|lte 4
(T — )" Y22’ — z|**22], so that, for T —t > |2’ — z|?, | Zr_i(z,2")| < Ca®™ |2’ — z|>.

In order to handle the case T'—t < |2’ — z|?, we first notice, by antisymmetry, that, for
v<a, Fr(va) = Z57P e o)+ g (2,2, that is gz (@, 27) = 0, where

/T (z,2’) = J JaxpT Yy — =z [Yt( ) — Y;t(l')][}/t(y)—)/t(l‘)] dzdy.

We start with ¢, (monal (x,2") (the other one may be handled in the same way). We have

A < 0o [ foaprady = 2l + 2 = 2l — ol dzdy
xT —00

Bounding |y — z| by |’ — x|, the result follows from the following bound applied with v = 0
or Y and h =T —t,

€T o0 €T o0
J <J \z\”|x—z\a}amph(y— z)‘dy) dz = —J |2|7|x — 2]* (J Oepn(y — 2) dy) dz
—00 x —00 x

= J 27|z — 2|*pn(z — 2) dz < Ca?h™2.

—0

In order to handle ft(?)’T, we will make use of a famous result by Young [31]:

Lemma 24. Given two exponents o, o > 0 with o+’ > 1, there exists a universal constant

¢ > 0 such that, for any o'-Hdélder function f and any a-Hdélder function g on the interval
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[z,2'], the Stieltjes integral S;“J f(2)dg(z) is well defined and it holds

(79) r f(2)dg(2) = f(2)(9(2") = 9(@))| < el flarlglala’ — 2|**

where ||f|o (resp. ||g|a) is the Hélder semi-norm of f (resp. g).
Young’s result gives directly the existence of .#2)7":

Lemma 25. ConsiderY € C([0,Tp] x R, R) satisfying both ka,(Y) < k and (74). Then, for
any 0 <t <T <Tpy, themapR s>z — Zt(2)’T 15 locally 2v+ p-Holder in space and there exists
a constant C', independent of t and T, such that ,%QVJ%X(Z(Q)’T) < Ck. As a consequence of
Young’s theory, the integral & ®T is well defined and, for a = 1, z, 2" € [—a, a,

‘ft@)’T(a:,x')‘ < Ca® K2 | — T

Proof. Let a > 1 and x < 2’ € [—a,a]. As in the proof of Lemma 19, we have to bound
1ZOT () — 22T (2)]. We split the analysis into two cases: |2/ —z|> < T—t and |2/ — z|? >
T—t, only the case |2’ —z|*> < T—t being challenging. To handle it, we go back to (33), letting
v = 1 therein and replacing Ys(z) by Ys(z) — Yi(z). By (74), we can repeat the computations
of Lemma 19, replacing s~*/2 by s=*~#/2. We deduce that |2 (/) — Z2"" (z)| < CraX|2’ —
x|*T#. Since the sum of the Holder exponents of Zt@)’T and Y} is larger than 1, the existence
of and the bound for .#® 7 are direct consequences of Lemma 24. O

Given Lemmas 23 and 25, we now turn to

Proof of Theorem 21. Consider a smooth approximation (Y"),>1 of Y constructed by spatial
convolution, as in (72). Following (75) and (76), we may split .#™7 accordingly, into .#™1 =
gWT 4 gm@.T  We then notice that each Y™ satisfies k4, (Y") < cx and satisfies (74)
with x replaced by ck, for ¢ independent of n. If @ > 1/2, we can always choose v = 0 and
@ = «in (74), in which case, by Lemmas 23 and 25, the first line in (73) is satisfied with
X = x. If a <1/2, we must have 2v + > 1 —a > a so that a + 2v + u > 2. By Lemmas
23 and 25, the first line in (73) is satisfied with 2y’ = 2y + (2v + u — «). Since the value of
v can be arbitrarily decreased provided that 2v + p > 1 — « still holds true, we deduce that
the first line in (73) is satisfied for any x' > x + (1 — «/2) .

It thus remains to check the second line in (73). We first notice that we can pass to the limit
in the formula (78) for .#™MT replacing therein Z(MWT by Z™T and Y by Y™. Obviously,
the limit is .# ()T (whatever the choice of the smooth approximation is). Following the proof
of Lemma 20, the convergence is uniform on any [0,7] x [—a, a], a = 1, which means that

(80) lim sup  sup ‘Jt(l)’T(aj, x') — ft"’(l)’T(x,x’)} = 0.

N0 0<t<T x,2'e[—a,a)

Passing to the limit in (77), # M7 satisfies (77). Combining with (80), we deduce, as in

(71), that the second line in (73) holds with .#7 — .#™7 replaced by .# W1 — gmM).T
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In order to complete the proof, we must prove the second line in (73), but with #7 — .77
replaced by # @1 — #m2)T We have the decomposition
FOT _ gnT _ j (227 () - 207 (@) = (20D () - 20O (@) ) avily)

x
!

w | (@) - 2T @) - Y,
We start with the second term in the right-hand side. For any o/ < a, we know that, locally,
the o/-Holder norm of Y — Y™ in space tends to 0. Repeating the proof of Lemma 25, we
deduce that, locally, the 2a/-Hélder semi-norm of the last term tends to 0. In order to prove
the same result for the first term, it suffices to notice that, for any pair (v, p’) with v/ < v
and p' < p, one of the two inequalities being strict, the difference Y™ — Y satisfies (74) with
a constant x that may depend on a but that tends to 0 as n tends to oo. Therefore, the
(20 + p')-Hélder norm of the integrand in the first term tends to 0

If (}7"),@1 is another approximation, also constructed by convolution, we can prove in the
same way that the difference #™ -1 — IOT tends to 0, where #™3-T ig associated with
Y™, Therefore, (#®7T),o; and (£™*7T), -, have the same limit. Things are the same

when a > 1/2 (with ¥ = 0 and g = «) and the construction of (Y"),>; is arbitrary, since,
in that case, (Y™),>1 necessarily satisfies (74), uniformly in n > 1. O

5.3. Proof of Theorem 22. The proof is divided in several steps. The first one is to prove
a generalization of the well-known Kolmogorov’s Holder continuity criterion.

Theorem 26. Let Q be a countable set and (Ry : [—1,1]> x = 3 (x,y,&) — Rp(z,y)(€) €
R)reo be a family of random fields on the space (Z,G,P), satisfying, for some p =1, some
C, 3,7, 7,72 > 0, some random variable ¢, all a =1 and all z,y,z € [—a,a], v <y < z,

E[sup |Rp(2,y)["] < CaP|z —y['*7,
(81) L0
VL e Q7 |RL(‘Tay) + RL(ya Z) - RL(xa Z)| < §a7|x - y|’\/1|y - Z|,Y2'

Then, for any L € Q and x,y € R, we can redefine Ry (x,y) on a P null event, and, for any
X > 1/p and 0 < ¢ < min(y; + 2, 8/p), we can find a constant ¢ := c(s, x, V1,72, 5,p) and a
non-negative random variable (', with E[|('|P] < ¢C, such that, for all a > 1,

(82)  VLeQ myel-aa], |[Ri(e,y)<c(Cat TN 4 canin)qrsiy — g

The result remains true when Q is a separable metric space and, for any x,y € R, the
mapping Q 3 L — Ry (x,y) is almost-surely continuous.

Proof. In the case a = 1, (82) can be proved by adapting the proof of the standard version of
Kolmogorov’s criterion. In order to get the result for any a = 1, we can fix a € N\{0} and then
apply the result on [—1,1]? to the family (R : [—1,1]* x 2 3 (z,y,£) — Rr(az,ay)(§))reo-
It satisfies (81) with Ca?” replaced by C'a'*#*P7 in the first line and (a” replaced by (a”72+7
in the second line. Therefore, for any ¢ € (0, min(y; + 2, 5/p)), we can find a constant C’,
independent of a, and a variable ¢ (which may depend on a), such that (up to a redefinition
of each Ry (az,ay) on a P null event)

VLe Q, Va,ye [-1,1], |Ri(ax,ay)| < C'a? (a2 + a2 |z — yl°,
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with E[|(;[’] < C'. Choose x > 1/p and let I' := sup,y o3[a ¥¢,]. Then, for another
constant C" > 0, E[|I'[P] < C" 3] ., a™PX < C". We have

VLe Q, Va,ye[-1,1], |Ri(az,ay)| < C'a’ (e HAPT 4+ ¢ +2¢) |az — ayl°.

When Q is a separable metric space, we consider a countable dense subset Q. For any
realization in an event of probability one, for any z,y € Q, the map Q 3 L — Ry(x,y)
is continuous, and, by the first part, the maps (R* 3 (z,y) — Rip(z,y)).q satisfy (82)
and are thus uniformly continuous on compact sets. With probability one, we can extend
Qx Q%3 (L,x,y) — Ry(z,y) into a continuous mapping on Q x R?, which satisfies (82). [

5.3.1. Regularity of Y. We start with:

Lemma 27. There ezists = € G, with P(Z2*) = 1, such that, on =*, for all o« < 1/2, x > 0,
the map [0,Ty] x R 3 (t,x) — Y, (2) is continuous and satisfy ka(Y°) < o0. Moreover,
E[(Kay(YT0))P] <0 for alla < 1/2, x >0 and p = 1.

Continuity of Y70 is a well-known fact, which follows from Kolmogorov’s criterion. Letting
Dr, = {(t,s) € [0,Tp]? : t < s}, the almost sure finiteness of , (Y is a consequence of the
following result:

Lemma 28. Let K : Dy x R x Z 5 ((t,5),y,&) — Ki(s,y)(§) € R be a random function,
continuous in (t,s,y) for any & and differentiable in t for any (s,y,§), such that IC,(s,y) is
measurable with respect to the sigma-field G := o({(u,y) — ((u, ) — ((s,y) + ((s,2), s <
u < Ty, z,y € R). Assume that there exist a constant € > 0 and a non negative random
variable r, with E[k?] < oo for any ¢ = 1, such that, P-almost surely, for anyt < s < Ty,

(83) f IICe (s, y)|2 dy < kl|s— t|_1+E and f |é’tht(s,y)|2 dy < kl|s — t|_3+5.
R R

Then, letting I} be the backward stochastic Ito integral StT §o Ki(r,u) dC(r,u), the quantity
SUPg<t<T<T \ZF'| is a random variable and, for any p = 1, we can find a constant c,, only
depending upon p and Ty, such that E[supgc,<pr, |Z7 [P]1VP < ¢, E[kP/]VP.

Proof of Lemma 28. For any t <t' <t'+06 <T < Ty, I} — I is equal to

LTH JR [Ki(s,y) — Ku(s,y)]d¢(s, y) + f% JR KCi(s,y) dC(s,y) — J:H JR Ko (s, ) dC(s,y).

By square integrability of K in (s,y), Z! is continuous in 7', and we can take the supremum
over T € [t' + 0, Ty]. Writing Ky — K = Sz 0K, dr, we get that, for any p > 1,

Y Ty ot p/271/p
E[ suwp |77 —Z}]"] ”<cp|t’—t|1/2E[(f | fmt/cr(s,y)dedrds) ]
+0<T<T) v+6Jdt IR

t'+6§ p/271/p v 45 /24 1/p
e (O e (O T N
t R ” R

the first term in the right-hand side being obtained by the Burkholder-Davies-Gundy in-
equality and the constant ¢, only depending upon p. Using the bounds (83), we get

E[t,jﬁ’q ‘ItT _Itﬂp]l/p < E[/ﬁp/Q]l/p (cp|t’ — t|1/25*1/2+€/2 -t 5|e/2 i 56/2) .
<4 =40
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Choosing 6 = t' —t and modifying ¢, if necessary, we can bound the right-hand side
by c,E[kP/2]Y/P|t" — t|/2. We easily get a similar bound when the supremum is taken over
T e [t,(t' +0) A Tp], with the convention that Z} = 0 when ¢’ > T. We deduce that

EH sup |ZF| — sup |ZZ] ]l/p < cpE[ﬁp/Q]l/p|t'—t|E/2.

t<T<To t'<T<To

The result follows from Kolmogorov’s criterion. O

Proof of Lemma 27. Lemma 28 applies to the proof of Lemma 27 with IC;(s,y) = ps_(z —
y) — ps_¢(2' — y) and thus ZI = YT (z) — YT (2'), for x,2/ € R. We have two bounds
for §; [Ki(s,y)[*dy. The first one is {; [K.(s,y)[*dy < C(s — ¢)7"? and the second one
is §p [Ki(s,y)?dy < C(s — t)=%?|2’ — z|%. By interpolation, we have, for any a € (0,1),
$p IKe(s,9)2dy < C(s—t)~ W2 |2/ —z[?**. A similar argument applies to {, [0,/;(s,y)[* dy.
We can bound it by C'(s—t)~*2 and by C(s—t)~"/?|2’ —x|?, and thus by C(s—t)~*/2*)|z/ —
z[**. The bound in the statement of Lemma 28 holds true with x = Cl2’ — z|** and
¢ = (1/2 — ). Therefore, for p > 1 and « € (0,1/2), we can find a constant C,, such that

E[ sup [V (2) =Y (@)]"" < Cpla’ — xf°.

0<t<T<Ty

The conclusion follows now from Theorem 26. We apply it with R, r(z,y) = Y,* (y) — V' (z),
p as large as desired, § = pa—1,( =0,v =0, 73 = 7 = 1, Lz(,T)andQ Dr,.
We get that, for any x > 0, a € (0,1/2) and p > 1, E[(suppey, fay(Y"))?] < o0 and
there is an event =¢**, of probability 1, on which suppcy, fay(Y?) < o0. Letting =* =
Ny,aeQ,x>0,0e(0,1/2) =, this completes the proof. (Note that the result is actually stronger
than the claim in the statement. The reason why we included a supremum over 7" in the
statement of Lemma 28 will become clear in the last part of the proof of Theorem 22.) [

5.3.2. Reducing the proof to the case Y®) = 0. The next step is to show:
Lemma 29. In order to prove Theorem 22, we can assume Y ®) = 0.

Proof. First step. If Y®) £ 0, we con51der =* and then x € (0, x| and a € (1 — ay, 1/2) as in
Lemma 27. For a realization in =* and for a smooth kernel p, p and its derivatives being at
most of polynomial decay, we let, for every integer n > 1, Y70 be the nth approximation
of YT constructed by convolution, see (72). Clearly, Y™ (z) = tTO So Ds—t(x —y) dC"(s,y),
where ¢"(s,y) = n{; {5 p(n(y — w)) d((r,w), proving that Y™ = y™°(") 7o By Lemma 27,
(71) holds true (with (Y, Y™) replaced by (Y7o, ym1o)).

Given a realization in Z* and the path Y'®), we consider an arbitrary smooth approximation
(Y®), o1 of YO so that (Y™ := Y10 4 y(®)) _ is a smooth approximation of Y.

Second step. Letting

s AW [ [ e 00w - i) s, i (1.0
we may split, at least formally, #1 (x, ') into

I (x,2') = FTT (g afy 4+ g IO (g oty 4 g O (g gty o g (OODT (g gy,
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where
x/

(85) T END :=f (27" (y) — 20" () Y (y), (i, 5) € {To, (b)}*.

T

When (i, j) = (Tp, Tp), the cross-integrals ft(i’j )’T(aj, x') can be constructed as Young integrals
by means of Lemma 24. Indeed, when ¢ = (b), the path Zt(b)’T has the same regularity as
Y® see Lemma 19, so that the sum of the Holder exponents of the two curves involved
in the definition of the integral is always greater than a + a; > 1 when at least one of the
two indices i or j is equal to (b). Lemmas 24 and 25 directly say that |77 (z,2')| <
Ca?0oter=a)|g! — 2|2 when x, 2’ € [~a,a] with a = 1, the constant C' being random (as it
depends upon the realization of k., (Y)). Denoting by Zm5T and #™E)T the quantities
associated with the smooth approximation Y, Jt"’(i’j )’T(aj, x') satisfies a similar bound, with
the same C. By bilinearity of Young’s integral in (f, g), see Lemma 24, it is clear that, for
all T € [0,Ty] and a > 1, supgeyeqp | ZT — 77 DT |00 tends to 0 as n tends to oo,
when (i,7) = (Tp, Tp) and o/ < a. O

5.3.3. Proof of Theorem 22 when Y® = 0.
Lemma 30. Theorem 22 is true when Y® = 0.

Proof. First step. The point is to construct #T which is equal to #1017 35 YY) = (. With
p as in the statement, recall ;" (x St So Ps—t(x —y) dCP(s, ) St —ep(r —u) d{(s,u).
With these notations, the smooth approxnnatlon Y™ TO considered in the first step of the
proof of Lemma 29 is obtained by replacing p by np(n-) and Y™ by replacing p by the
Dirac mass dy at 0. With Y?70 we associate a cross-integral as in (69). We let th’T(a:) =
StT 0P, ;YPTo(x)ds and

$l

07 (2, 2') = j (207 (y) — 207 (2)) AYP ™ (y)

! T
- [|[ @) - ey as aven)
T t

Using the identity Y™ = P,_, YT 4+ Y/ for 0 <t < s < Tj, this leads to " (z,2') =
2T () + 7T (22, with

/

T T
FPOT (g of) = f [ f (2P, Y P (y) — 2P, Y P To(2))0, Py Y2 () dy} ds
t x

(87)

/

T X
«ﬂm(z»T(x,a:’)::f U (2Pt YP T (y) — 2P YT (2)) AY " (y) ] o
t

xT

With these notations, ft"’T(a:, 2'), the cross integral corresponding to Y0 is obtained by
replacing p by np(n-) and Z! (x,2') by replacing (at least at a formal level) p by .
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Second step. Direct integration yields
T
1
iﬁtp7(1)7T(x7 I/) :J 5 ((ampsftyvspjo (SL’/))Q - (a:vpsftyrsp’TO (x))2> ds

t
T

— | Py (P ) — P2 (@) ds
t

Imitating the proof of Lemma 19, it is now easy to see that, for z, 2’ € [—a,a], with a > 1,
1.7 (2 )| < Crra*|z — 2/[**, for a deterministic constant C, independent of p, and
with K, 1= K(a+1/2)/2, (Y??) (the reason why we use (a+1/2)/2 will be explained below). The
computations also apply when p is replaced by &y. Since Y*? is constructed by convolution
of Yo with respect to p, we can bound k, by ¢,x, where ¢, is a deterministic constant that
may depend on the decay of p. When p is replaced by np( -), the constants c,(,.) can be

uniformly bounded in n, so that, for any n > 1, |27 (1 /)| < C,k2a?X |z — 2|2
The bilinearity of the cross-integral shows that supy,<r<p, SUP, we[—aa |77 (D), Tz, a))—

AR (x,2")] tends to 0 as n tends to co. By (71), the convergence holds in Holder norm.
Third step. We now study ff’@)’T(x, 2') for z, 2’ € [—a,al], a = 1. It is equal to

/

[[ @peeni - azpyene) ([ [ enent- 20062 ao) as
_ JT J [ J . UT (02P,_, YL (y) — 02P,_ Y/ "o () ds) Oz Prip(y — 2) dy] d¢(r, 2).

By integration by parts, .77 St et — KZ](r, u) d¢(r, u) with
T
Ki(r,u) = Po_ip(z’ — u)f (2P, Yo (a)) — O2P, Yo () ds
(55) . ’"

K2(r,u) — f

T

T
Prpty =) [ Pzt as an

T

We start with K2. For z,1’ € [—a,a], )STT B3P, Y T (y) ds) < CryaX (! (s — 1) 3202 ds <
CkpaX(r —t)~Y2+2/2 5o that

J K2 (r, u) > du < C/-@2 X(p —t) e

JUJ(J J Pty —v = w)pre(y' —v —u)dydy) (v)p (U/)dvdv']du_

By Gaussian convolution, the integral is equal to {; p(v) Si S; Poir—pyp(y —y' + v) dy dy’ dv.
It is bounded by |2’ — z| or by (r — )72’ — z|2. By interpolation, it is less than (r —
t)=@|a’ —x|**22. Replacing a by (a+1/2)/2 in (89) and only in (89) (which is always possible
since « can be chosen as close as 1/2 as needed), we deduce that

(89)

(90) J K7 (r,u) [P du < Cﬂia2x\x’ — g2 — ) IH(2-a)2,
R
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We now reproduce the same analysis, with 0,/CZ(r, u) instead of K?(r,u). Since |0;p,_¢(z)| <
c(r — t) " 'per—r)(x), this amounts to replace (r — ¢)~1F@+V2/2 By (p — )=3+@F1/2/2 i the
above computation, so that, for ¢t < t/,

(91) J 10JC2 (r, u)|? du < C/{ia2x|x’ — |2 (p — )3 12m)2
R

The analysis of K! may be handled in the same way. It is actually much easier since
Sf[é’gPS_t}QP’TO (z') — 62P,_, YT (x)] ds has the same structure as Z/*" (z/) — Z" () and can
be bounded by Ck,aX|z'—xz|*. We thus deduce that (90) and (91) hold true with K? replaced
by K! — K2, By Lemma 28 with € = (1/2 — a)/2,
(92) E[ sup |%p’(2)’T(x,x')|p]1/p < cpE[|/£p|p]1/pa2X|x' — x|V/te,
0<t<T<Tp

where ¢, is a constant independent of p. Repeating the analysis, (92) also holds when p is
replaced by .

Fourth step. The goal is to prove an analog of (92), but for the difference ftp’@)’T(a:, x') —
F2OT (1 2!). Letting k5, 1= K(1/a+a)2, (Y0 =YT0) and |pfy := §; [v]p(v) dv, we claim

E[ sup |77 (@,a!) = 7O (@0 p]

(93) 0<t<T<Tp
< cpa ( [|/{p750|p]1/p+ HpH(l/z /2 [|H|p]1/p)|x/ —:p|1/2+0‘,

The proof is as follows. By bilinearity of the cross-integral, .#»®)7 — 7%, yeads as
the sum of two terms of the same type as .#/ BT byt each involving a modification in the
definition (88) of K} (r,u) and KZ(r,u). The first modification consists in replacing Y70 by
Y To — Y10 and the second one in replacing Y*%0 by Y0 and then P,_;p by Pr_;p — p,_; (or
equivalently p by p—0&). The first modification contributes for c¢,a®E[|, ,|P]V?|2" — z|/2*+

n (93) (compare with (92)). Concerning the second modification, when p is replaced by
p — 0o in (89), the quintuple integral becomes (after convolution in u)

J J J J Poi—y(y =y — (0 =) = P2y (y — ¥ — v')) dy dy'p(v)p(v') dv dv’
” J P (0 =9) = ao (v = ¥/ = 0) ) dy dyfp(v) o

Since |0upr—i(y)] < c(r — t)"V2pe—p)(y), the integrals on the square [x,2'] x [z, 2] are
bounded by (r — )2’ — 2[*2* as in the proof of (90) and by C(r —¢)=*= 2|2/ — z|1*2|y].
By interpolation, it is less than C (r —t)=*=2|2' — 2 |**2%|y|7, for any n € (0, 1). Choosing n =
(1/2—a)/2, the right-hand side in (90) becomes C'r2a2X|a/ — x| 1+20 (y— )~ 1+(1/2=a)/4 | 5| (1/270)/2
(With £ := K(1/24a)2,(Y70)). Similarly, the right-hand side in (91) becomes Cr?a®*(r —
£) =3+ /2=a)/d g ppi20 o) (V27002 plaving the same game with K1, we get (93).

Fifth step. We now replace p by np(n-). From the second step, we know that we can find
a constant ¢, such that k() < ¢,k for any n > 1. Similarly, for any o’ > (1/2 + «)/2, we
can find a deterministic constant ¢ such that

K p.60 < CI:FJO/,X (YP,T()) + Kol x (YTo)] (1/24+a)/(2a)) [Sll]l) ( HYMTO o YTo Hga,a] /CLX) ] 1-(1/2+a)/(2a") .
az
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Now, sup,=q(|Y?70 — YTl jax) < c’plinH(ll/era)/Q, for a possibly new value of the con-
stant ¢),. It remains true with the same constant ¢, when p is replaced by np(n-), so that
E[|fnpn).60[P 17 < Cpllnp(n)|] = Con=||p||7, for some n > 0. Modifying if necessary the
value of 7, we deduce from (93) that
E[ sup |0 (@, 0) - O @2 )P]T < Gl — af P
0<t<T<Ty
Conclusion. We let I’ = sup,,o [n"? supy;<r<q, gL () — 70T (1 1)), We
have E[|ITP] <>, nPn2E[| g T (g gy — g 0@T (32 47)P], which is less than

Cga2px|x/ — g[P(/2+e) Z n-r2 — sz)a2px|x/ — g[P(/2+e)

n=1

when np > 2. We deduce, for x, 2’ € [—a, a],

E[sup sup (nn/2|cﬁtnp(n')y(2)7T(x’x/) . cﬁtéo,@),T(x’x/)|)10] 1/p < CpCL2X|Jf/ - x|1/2+a.
n>10<t<T<Tp
We aim at applying Theorem 26 with L = (n,¢,T) and Ry, (z,2') = n"/2(7*" T (5 47) —
%50’(2)’T(;1:, 2')), the issue being to control Ry (z,2") + Rp(z', ") — Rp(x,2"). From (87),

{ﬂtnp(w),(Q),T(x’ l‘,) + (ﬁtnp(w),(Q),T (l‘,, l‘”) . (ﬁtnp(w),(Q),T (l‘, IL'”)
T
_ f (aips_t}/snp(n-),To (ZL‘/) . aips_t}/snp(n-),To (ZL‘)) (}/tnp(n-%s(l_//) . }/tnp(n-%s(l_/)) ds.
t

All the terms converge in LP and the same relationship holds with np(n-) replaced by dp.
Making the difference between the relationships with np(n-) and dy, we get an explicit expres-
sion for Ry (z,2")+ R (2, 2")— R (x,2"). All the terms involved are explicitly controlled. By
the same method as in the second step, | Ry (z, 2')+ Ry (2', 2")— Ry (x, 2")| < Ca®X|z’ — x|+,
for a random variable (. By Theorem 26, for any x’ > x and o/ € (0, (1/2+«)/2), we can find
a random variable ¢’ such that [ 7" 3T (g 1) — g0 DT (1 1) < 262X |2) — 2], for
all z, 2" € [—a,a], a > 1. As 7T = ftnp(n')’(l)’T+ftnp(n')’(2)’T and Z = %60’(1)’T+%60’(2)’T,
this last bound combined with the conclusion of the second step prove that the assumptions
of Lemma 20 are satisfied. O

6. CONNECTION WITH THE KPZ EQUATION

KPZ equation was introduced by Kardar, Parisi and Zhang in [22] in order to model the
growth of a random surface subjected to three phenomena: a diffusion effect, a lateral growth
and a random deposit. It has the formal shape:

(94) Ohy(2) = $02hy(x) + Louh(x)? + {(t, @),

with 0 as initial condition, where Q is a time-space white noise (that is the time-space deriv-
ative of a Brownian sheet, defined on (=, G, P) as discussed in Theorem 22). Unfortunately,
it is ill-posed since the gradient does not exist as a true function, but as a distribution only.

Two strategies have been developed so far to give a sense to (94). The first one goes back
to [4] and consists in linearizing the equation by means of the so-called Hopf-Cole exponential

transformation. The second approach is due to Hairer [19] in the case when z is restricted to
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the torus (in which case ( is defined accordingly). Therein, the key point is to solve second-
order PDEs driven by a distributional first-order term by means of rough paths theory, which
is precisely the strategy we used in Section 3 to solve (14). The two interpretations coincide
but the resulting solution solves a renormalized version of (94), which writes (in a formal
sense) as (94) with an additional ‘=0’ in the right-hand side. The normalization must be
understood as follows: When mollifying the noise (say ¢ into ¢ "), Eq. (94) admits a solution,
denoted by A", but the sequence (h"),>1 is not expected to converge. To make it converge
to the solution of (94), some ‘counterterm’ must be subtracted to the right-hand side of
(94): This counterterm is a constant 7" depending upon n, which tends to oo with n, thus
explaining the additional ‘—o0

6.1. Polymer measure on the torus. Below, we make use of the framework defined in
[19]. This imposes two restrictions. The first one is that ¢ has to be defined on [0,00) x S!,
where S! is the 1d torus, which means that Q is a cylindrical Wiener process on L?(S!).
The second one is that the Fourier transform p of the kernel p used to mollify the noise
has to be even, compactly supported, smooth and non-decreasing on [0, ), in which case
p is defined from its Fourier transform. In particular, p has polynomial decay of any order
but may not be positive. The mollified version (" of ( is given by ("(t, ) So SR np(n

y)) d¢(s,y), with the convention that §; §, ¢(s,y) dC(s,y) = Sz §o S (5,5 + k) dC(s, y) if

Sé Sor | 2hez o(s.y + k)P ds dy < oo
Given Ty > 0 and n > 1, we introduce the (random) polymer measure:

di% < exp ( fo K fR np(n(Br,— — y)) d¢(s, y)),

where (By)o<i<7, is a Brownian motion under P ((Q, A, P) being distinct of (Z,G, P)), the
symbol ~ indicating that the right-hand side is normalized in such a way that Q¢ is a
probability. The polymer measure describes the law of a continuous random walk evolving in
the periodic random environment ¢". The factor Sgo §z np(n(Br,——y)) d{(s,y) is sometimes
written §0° C"(, By, ) dt or §,° {™(To — t, By) dt.

By applying Ito-Wentzell formula to (R, _,(B;))o<i<r, we obtain, P @ P a.s.,

To
)+ | -t Bydt - f o0 1J @,k (B ds,
0
proving, by Girsanov Theorem, that, P a.s., the dynamics of (B;)o<i<r, under Q» satisfy
the SDE (1) with Y;(x) = k%, _,(x) (hf,(0) and 4™ are unnoticeable in the definition of the
polymer measure as they are hidden in the normalization constant of the right-hand side).
The main challenging question is to define the limit of Q¢» rigorously. The following
theorem provides a new result in that direction:

Theorem 31. Consider the solution to the (normalized) KPZ equation (94) with 0 as initial
solution and let Yi(x) := hqy—¢(x), for (t,z) € [0, To] x T. Then, we can find an event Z*, with
P(Z*) = 1, such that, for any realization in =* and any T € [0, Ty], the pair WT = (Y, Z1),
with ZT given by (13), may be lifted into a geometric rough path W = (WT, #'T) satisfying
the conclusions of Lemma 20, with (Y]'(x) := hif_,(2))n=1, for (t,z) € [0,Tp] x T, as
approximation sequence.
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Moreover, for any realization & € =%, Q¢n converges towards the law (on Q) of the solution
(Xt)o<t<t, to (1) when driven by the trajectory Y associated with £&. The limit law is inde-
pendent of the choice of p in the construction of h™ and reads as a rigorous interpretation of
the (a priori ill-defined) polymer measure Qg ~ exp(ggo C(Ty —t, B,) dt) - P on the canonical
space C([0,Tp], T).

Proof. Tt suffices to check the assumption of Lemma 20. To this end, recall from [19, Theorem
1.10] that, P a.s., h expands as Y* + h®, where Y* solves the stochastic heat equation
for some initial condition Y € Ne=oCY 2=¢(S!) and ht is a continuous remainder satisfying
hY € N.~oC'5(St) for any ¢ > 0 (the associated Holder constant being uniform on any closed
interval of (0,7p]). The point is thus to apply Theorem 22 (which easily extends to S') with

Y, (2) := Y7, (@) = [Pr—Y ") (), YO(t,2) := ha_(x) + [Pr,—Y "] (2).

The fact that p may not be positive is not a problem as we can split it into p = p, — p_ and
then check that the results of Section 5 still apply with such a decomposition. Clearly, Y70
solves the backward stochastic heat equation with zero as terminal condition. Moreover, for
any T' < Ty and any a; < 1, [19, Theorem 1.10] ensures that, for P a.e. realization in =*,

Kab,o((Yt(b))ostsT) is finite (here we can choose y, = 0 as we work on S'). Then, with the

same notation as above, we know from [19] that, almost surely on =*, |[h%, . — ynem)To
Yy ®) Hg?(’f;]xgl converges to 0 as n tends to co. By Theorems 8 (and its proof) and 22, we deduce

that, a.s. on Z*, the solution to the SDE (1) on [0, 7], when driven by h%, _, converges to
the solution of (1) driven by Y. This completes the proof on any [0,7] < [0, Tp).
In order to get the convergence on the entire [0, Tp], we must revisit [19] in order to control

the Hélder norm (in ) of ¥, uniformly in ¢ € [0, Ty]. The technical issue is that, in [19], the
KPZ equation is solved by means of a fixed point argument that allows for irregular initial
conditions. As the initial condition may be irregular, solutions exhibit a strong blow-up at
the boundary, see [19, Proposition 4.3]. In [19], A is split into h(x) = u(x) + hj(z), where
hi(z) = >, .+ Y7 (z), T denoting a finite collection of trees containing the root tree ». For
7€ T\{e}, Y7 is continuous and, for any £ > 0, |¥;|;_. is finite, uniformly in ¢ € [0, T]. The
remainder u is investigated through its derivative v : [0, Tp] x S! 3 (¢, 2) — vi(z) = (),
defined as solution of (see [19, Section 4] for the notations):

(95) vi(z) = Pug(z) + M[G(v., )]t + @CL P,_sF(vs, s)ds,

for some functionals M, G and F'. Our goal here is to expand h; as hy = [u; — Paug| + [h} +
P,ug] and to investigate the regularity of u; — Pyug directly by taking benefit of the fact that
ho = 0. Letting ¢ = 0, we notice that ug = —h{ so that hy = [u; — Pyug| + [hj — Pihg). We
also notice that hy — P,hf may be written Y,* — B,Y; + ZTeﬂ{-} Y," — PYy. Here, Y* — P,Y;
is our V" and, for any small & > 0, 3, 7, ¥y — BYy has a finite norm in C'~#(S?),
uniformly in ¢ € [0, To], so that h} — P.hf has the right decomposition to apply Theorems 8
and 22. Tt thus suffices to focus on u; — Pyug or, equivalently, on v, — Pyug = 0, [u; — Pyug]
in (95). The main idea is to see v; := v; — Py as the solution of

t
Uy = M[G(TJ. + Py, )] + (3;,3J P,_F(vg, s)ds,

0
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with vy = 0. (Note that, in the second term in the right-hand side, the value of v is fixed.) We
then make use of the norm |||, defined in [19, p.597], but with different parameters &, 9, a,
f and . We choose r = ¢ small enough, § = 2¢, « = 1/2+2¢, f = 1/4+¢ and v = o, which
satisfy all the prescriptions [19, Egs. (76a)-(76g)]. Following [19, Eqs.(83a),(83b),(83¢),(85)],
we get, for C,0 > 0, |0],7 < C + CTY(|].r + ||Pvo|.r), where the derivative of Pv, with
respect to the rough path structure is 0. Here vy = —d,hf, is a distribution in C~/>='(S1),
for ¢ > 0 as small as desired. Following [19, Eq.(82)], ||[Pvo|+r < 0. We deduce that, for
T small enough, |v].7 < . By [19, Eq.(73)], we get |t¢]» < Ct~%. Working at the level
of the primitive, we obtain |u; — Puaug|1-3. < o0, uniformly in ¢ € [0,7"]. The fact that T
has to be small is not a problem since we are interested in the behavior of h near the origin.
Therefore, h, = Y, + Y with ¥;" = [u, — Puo] + [hy — Y — Pi(hs — Y7)], fits the
[0,Tp] xS!
0,ap

assumptions in Theorems 8 and 22. The convergence to 0 of [[Af, _ —Y™"°("):-To —y ®)]
(on the whole [0, Ty] x S') is handled in the same way. O

We end up with:

Theorem 32. For P almost every realization of the environment ¢, under the polymer
measure Q¢ defined in Theorem 31, the canonical path has dynamics of the form

dXt = dBt + b(t, Xt, dt), te [O, T0]7

in the sense of (56), where b(t, X, dt) is of order O(dt**~¢), for & as small as desired, the
constant in the Landau notation being random but uniform in t € [0,Ty]. Moreover, in the
expression of b in Proposition 14, the second term can be computed by replacing (Y, Z'")
by (YTo, Z1o:t0) “where Y0 is the solution of the stochastic heat equation as in Theorem 22
and Z%" is computed accordingly as in (84).

Proof. The proof is a consequence of Proposition 14. The reason why the second term in
the decomposition of b can be simplified follows from the proof of Theorem 31. Indeed, we
know that Y may be split into Y70 + Y®) with k,, o(Y®) < o for a; close to 1. The
game is then the same as in (85): for (4,7) = (0,0), the cross-integrals #*»*h in (85) give
a contribution of order O(h¥?7¢) in the computation of b, which can be forgotten at the
macroscopic level. O

APPENDIX

Lemma 33. Given a sequence of smooth paths (Y™),>1 such that, for some Ty > 0 and any
T € [0, Ty], the sequence (W™T = (Y™, Z™T)),>1 satisfies the assumption of Proposition 6,
with Kk = sUPg<r<r, SUPy>1 Fan (W ) ocier) < 0, then, we can assume that, for any
n =1, Y™ has bounded derivatives on the whole space.

Proof. For N € N\{0}, we consider a smooth function ¢" : R — [0, 1], symmetric, equal to 1
on [0, N] and to 0 on [2N, +o0), non-increasing on [N, 2N, satisfying || d?¢" / da?|, < ¢,/N?
for some ¢, = 1, independent of N, for any integer p = 1. Then, we let Y;*"(z) = ¥;*(0) +
§o ™ (1)0:Y/"(y) dy and, for a given T' > 0, we define 2T WNT and #™NT accordingly.

For a given n, (Y™")y=; (resp. PY™Y for an integer p > 1) converges towards Y™
(resp. 02Y™) as N tends to oo, uniformly in x in compact sets and in ¢t € [0,7T). Using the
representations of Z;"""" and Z;"", see (13), the same holds true for the sequence (Z"N7T) =,
(resp. (W™NT)y<y) with Z%7T (resp. W™T) as limit path. Hence, (#,""")n=1 converges

47



towards #,™" in norm |- |, uniformly in ¢ € [0, T). Using the same notation as in Proposition
6, (J(WnNT — T synNT _ yn, T)H [o.1) 1) y=1 tends to 0 as N tends to oo. Therefore,
we can find a sequence (N,),>1 such that QA LA e 2 | 0T and
thus |(WmNeT — WT ypminT WT)H 07T tend to 0 as n tends to oo, which fits ( ) in
Proposition 6.

We now discuss (2) in Proposition 6. We start with the Holder estimate of Y. For
0 < <y <a, with a > 1, the second mean-value theorem yields Y;"" (y) — Y~ (z) =
on (@)Y () = Y (2)), for y' € [2,y]. We deduce that [¥,"" (y) — Y/"" (z)| < waX|y — a|*.
The same holds true when —a < y < x < 0. Changing x into 2k, we get the same result for
any z,1 € [—a,a]. By Lemma 19, the bound |Z"" (z) — Zt"N(y)| < kaX|z — y|* follows.

We finally discuss the regularity of the second-order integrals. As discussed in Section 5,
it suffices to focus on the cross-integral {” (2N (2) — 2N (2)] dYN (2).

By (13), 02" (x) + (1/2)0:2 P (@) = =2V (2) = —3.[¢N .Y (x). Similarly,
oz (@) + (1/2)022" (x) = —02[Y,"](x). Therefore,

ozt T — N 2P + L2 [ 2PN — N ZPT] = o au Y + 20T = Lok 20T

1
2

with Z;’N’T — Z;’T = 0. Therefore, integrating against ps_; and then integrating by parts,
Zp M (@) — N (2) 20 ( J f Oups—t( = y)oN (W)Y + 2" ] (y) dy ds

- L pocslz = 1) (y) ([Y!‘ + 20Ty + 5207 () dyds.

The aim is to differentiate both sides of the equality in order to estimate the derivative
of the left-hand side. In order to bound the derivative of the right-hand side, we discuss
the Holder constant of the integrands right above. We have |y (y)Y*(y) — ¢y (2)Y/"(z)| <
el Y (2)||ly — x| /N? + (c16/N)aX|y — x|, for x,y € [—a,a], a > 1. Modifying r if necessary
V" ()| < ka'™X. Therefore, we can find a constant C' > 0 such that

(96)

e (W)Y () — @iy (@)Y"(2)] < Ca' ™y — 2| /N + Ca*ly — z|*/N.

Since ¢’y = 0 outside [—2N, 2N], we can always assume that x,y € [-2N, 2N] (by projecting
x and y onto [—2N,2N]) and thus that a < 2N. Then, the left-hand side is less than
CaX|ly — z|*/N. Using a similar argument for all the other terms of the same type in the
right-hand side of (96), we deduce that the left-hand side in (96) is differentiable and that
0,[ 2T — N 2T ()| < CaX/N, when € [—a,a], a > 1. By integration by parts,

Y
| (tzer = o 2pm) ) = (207 = 4 27 @) v )

(I2X|l‘—y|1+a

N

~

Yy
- | [ e -y Ealz T - oV 2 e x| < 0

Since 0,Y;""(z) = 0 when |z| = 2N, we can always assume that x,y € [—-2N,2N] and

a < 2N. We deduce that the term in the first line is less than Ca®*|z — y[>**/N<. To end up
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the analysis, it thus suffices to prove that

[ ez - @zt w) e

xT

< Ca™|x — y|*.

Since 0,V (2) = N (2)0,Y;"(z), we can use again the second mean-value theorem to handle
SN2 () = 20" ()] Y (2) = §(0N(2))°[207 (2) = 27" (2)] 4Y," (). Therefore, it

xT

suffices to focus on Z"" (z) §21eN (z) — N (a)] dy;""(z). By integration by parts,

Y

207 () f [ (2) — " ()] d¥ (2)

T

Y

-2 [ e - e e as

xT

which is less than Ca®X|y — z|'**/N (following Lemma 19, Z;"" satisfies |Z"" (z)| < CaX
~better than the elementary but rough bound |Z}"" (z)| < Ca'*X-). Limiting the analysis
to the case a < 2N, we conclude as above. O

REFERENCES

[1] AMIR, G., CORWIN, I., AND QUASTEL, J. (2011) Probability distribution of the free energy of the
continuum directed random polymer in 141 dimensions. Comm. Pure Appl. Math., 64, 466-537.

[2] ANDREOLETTI, P., AND DIEL, R. (2011) Limit law of the local time for Brox’s diffusion. J.
Theoret. Probab., 24, 634—656.

[3] Bass, R., AND CHEN, Z.-Q. (2001) Stochastic differential equations for Dirichlet processes. (Eng-
lish summary) Probab. Theory Related Fields, 121, 422-446.

[4] BERTINI, L., AND GIACOMIN, G. (1997) Stochastic Burgers and KPZ equations from particle
systems. Comm. Math. Phys., 183, 571-607.

[5] Brox, T.(1986) A One-Dimensional Diffusion Process in a Wiener medium. Ann. Probab., 14,
1206-1218.

[6] CATELLIER, R., AND GUBINELLI, M. (2014) Averaging along irregular curves and regularisation
of ODEs. Technical report, available at http://arxiv.org/abs/1205.1735

[7] DAvIE, A.M. (2007) Uniqueness of solutions of stochastic differential equations. Int. Math. Res.
Not. IMRN, 24, Art. ID rnm124, 26 pp.

[8] DIEL, R. (2011) Almost sure asymptotics for the local time of a diffusion in Brownian environment.
Stochastic Process. Appl., 121, 2303-2330.

[9] ETHIER, S., AND KuURTz, T.G. Characterization and convergence. John Wiley & Sons, Inc., New
York, 1986.

[10] FLaNDoOLI, F. Random perturbation of PDEs and fluid dynamic models. Lectures from the 40th
Probability Summer School held in Saint-Flour, 2010. Lecture Notes in Mathematics, 2015.
Springer, Heidelberg, 2011.

[11] FLanpoLl, F., IssoGLio, E.; AND Russo, F. (2014) Multidimensional stochastic differential equa-
tions with distributional drift. Technical report, available at http://arxiv.org/abs/1401.6010

[12] FranpoLl, F., Russo, F., AND WoLF, J. (2003) Some SDEs with distributional drift. I. General
calculus. Osaka J. Math., 40, 493-542.

[13] FLanDoLI, F., Russo, F., AND WOLF, J. (2004) Some SDEs with distributional drift. II. Lyons-
Zheng structure, It’s formula and semimartingale characterization. Random Oper. Stochastic Equa-
tions 12, 2, 145-184.

[14] FRIEDMAN, A. Partial Differential Equations of Parabolic Type. Prentice-Hall, Inc., Englewood
Cliffs, 1964.

[15] Friz, P., HAIRER, M. A Course on Rough Paths (with an Introduction to Regularity Structures).
Springer, 2014.

[16] Friz, P., VICTOIR, N. Multidimensional Stochastic Processes as Rough Paths. Theory and Ap-
plications. Cambridge University Press, 2010.

[17) GUBINELLI, M. (2004) Controlling rough paths. J. Funct. Anal., 216, 86-140.

49



HAIRER, M. (2011) Rough Stochastic PDEs. Commun. Pure Appl. Math., 64, 1547-1585.
HAIRER, M. (2013) Solving the KPZ equation. Ann. of Math., 178, 559-664.

Hu, Y. AND SHI, Z. (1998) The Limits of Sinai’s Simple Random Walk in Random Environment.
Ann. Probab., 26 1477-1521.

Hu, Y. AND SHI Z. (1998) The local time of simple random walk in random environment. .J.
Theoret. Probab., 11 765-793.

KARDAR, M., PaRisi, G., AND ZHANG, Y.-C. (1986) Dynamical scaling of growing interfaces.
Phys. Rev. Lett., 56, 889-892.

KryLov, N. V., AND ROCKNER, M. (2005) Strong solutions of stochastic equations with singular
time dependent drift. Probab. Theory Related Fields, 131, 154-196.

Lyons, T., CARUANA, M., AND LEvVY, T. Differential equations driven by rough paths. Lectures
from the 34th Summer School on Probability Theory held in Saint-Flour, 2004. Lecture Notes in
Mathematics, 1908. Springer, Berlin, 2007.

Lyons, T., AND QIAN, Z. System control and rough paths. Oxford University Press, Oxford, 2002.
QUASTEL, J. Introduction to KPZ. Notes from the Saint-Flour summer school 2012. Available at
http://www.math.toronto.edu/quastel/survey.pdf

Russo, F., AND TRUTNAU, G. (2007) Some parabolic PDEs whose drift is an irregular random
noise in space. Ann. Probab., 35, 2213-2262.

STROOCK, D.W., AND VARADHAN, S.R.S. Multidimensional diffusion processes. Springer-Verlag,
Berlin-New York, 1979.

TANAKA, H. (1994) Localization of a diffusion process in a one-dimensional Brownian environment.
Comm. Pure Appl. Math., 17, 755-766.

VERETENNIKOV, A. YU. (1980) Strong solutions and explicit formulas for solutions of stochastic
integral equations. Mat. Sb., 111, 434-452.

Young, L.C. (1936) An inequality of the Holder type, connected with Stieltjes integration. Acta
Math., 67, 251-282.

ZVONKIN, A. K. (1974) A transformation of the phase space of a diffusion process that will remove
the drift. Mat. Sb., 93, 129-149.

50



