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General results on Fitting ideals

By "ring" we mean a commutative ring with 1. We fix such a ring and we call it R. If M is a finitely generated R-module and x is a set of generators of M (we will assume all such sets to be ordered ), we indicate by |x| the number of elements it contains; an element r = (r 1 , . . . , r |x| ) ∈ R |x| is called a relation among the generators in x if |x| i=1 r i x i = 0 ∈ M . Definition 1. Let M be a finitely generated R-module and let x be a set of generators of M . A matrix X is said to be a matrix of relations for x if 1. X ∈ M q×|x| (R) with q ≥ |x|; 2. X • x = 0, i. e. every row is a relation among the x i 's.

We are now ready to define the main object of our study. If X is a n × mmatrix (with n ≥ m), we define its determinantal ideal DetId(X) ⊆ R to be the ideal of R generated by all m × m-minors of X.

Definition 2. Let M be a finitely generated R-module. We define the R-Fitting ideal of M to be

Fitt R (M ) = X DetId(X)
where X runs through all matrices of relations for all sets of generators of M .

Remark. Observe that a priori the sum in the definition is extended to infinitely many ideals. Moreover, we want to stress that our convention that a matrix of relations has always more rows than columns (these being as many as the generators) is crucial for the definition of the determinantal ideal. Indeed, suppose that we allow every matrix whose rows are relations among a set of generators to be a matrix of relations and that we define its determinantal ideal to be the ideal generated by all minors of largest possible rank. Then if x is a set of generators, let x ′ = {x 1 , x 1 , x 2 , . . . , x |x| } be the old set of generators with one entry doubled -say the first. Then (-1, 1, 0, . . . , 0) would be a matrix of relations, and DetId(X) = R.

The definition of Fitting ideal given above is practically useless for any application: but it may be of some use in certain proofs. Thus, before passing to concrete examples, we want to show that in the definition it would have been enough to sum over all matrices of relations of one fixed set of generators. Indeed we have: Proposition 1. Let x be a fixed, finite set of generators of the finitely generated module M . Then

Fitt R (M ) = X DetId(X)
where X runs through all matrices of relations for x.

Proof. Only for the proof, for every set of generators y of M , set

A(y) := Y DetId(Y )
for Y running, as above, through all matrices of relations for y. We need to show that for every set of generators y, the equality A(x) = A(y) holds: indeed, by definition, Fitt R (M ) = y A(y) and if they all coincide this sum reduces to A(x). Let then y be any set of generators and set xy := {x 1 , . . . , x |x| , y 1 , . . . , y |y| }: clearly |xy| = |x| + |y|. Since the x i 's generate M , we can find a relation 

c k1 x 1 + c k2 x 2 + • • • c k|x| x |x| + y k = 0 , for suitable c ki ∈ R, for every 1 ≤ k ≤ |y|. Let now X = (a ij )
( Y ) = DetId( Y ′ ) = DetId(X)DetId(I |y| ) = DetId(X)
. Moreover, since the rows of Y are relations among the elements of xy, the same holds for the rows of Y ′ , so X is a matrix of relations for x (since Y was a matrix of relations, X has more rows than columns). This shows the inclusion A(xy) ⊆ A(x), and repeating the same argument with y at the place of x shows that A(y) = A(xy) = A(x), as we needed.

Remark. Observe that it is enough to restrict the computation to square |x| × |x|-matrices. Indeed, substituting a matrix of relations X with all its |x| × |x|-submatrices in the sum defining DetId(X) gives the same elements in the determinantal ideal.

Example. Let M = R a for some a ≥ 1. A set of generators for M is e, where e i is the vector such that (e i ) j = δ i,j . For every relation (r 1 , . . . , r a ) ∈ R a , a i=1

r i e i = 0 =⇒ r i = 0 ∀ i .
Therefore there are no non-trivial relations and, in particular, the only matrix of relations for e is the 0 matrix. Accordingly, Fitt R (R a ) = 0.

Example. Let p be a prime number, R = Z and let M = Z/pZ × Z/p 2 . Then clearly Ann Z (M ) = p 2 Z. We want to compute Fitt Z (M ). For this, let {(a, 0), (0, b)} be a set of generators of M , where p ∤ ab. Then a matrix of relations for this set is of the form

X =      α 1 β 1 α 2 β 2 . . . . . . α q β q      with v p (α i ) ≥ 1 and v p (β i ) ≥ 2, for some q ≥ 2. Therefore, any 2 × 2-minor of X looks like det(X ij ) = α i β i α j β j and v p (det(X ij ) = v p (α i β j -α i β i ) ≥ 3, showing via Proposition 1 that Fitt Z (M ) = p 3 Z.
If we allowed "matrices of relations" having only one row, (p, p 2 ) would have been one such a matrix, generating the ideal p 2 Z. In this sense, this invariant is "finer" than the usual annihilator.

Remark. In his book [START_REF] Northcott | Finite free resolutions[END_REF] Northcott defines the i-th Fitting ideal for every natural number i ≥ 0. What we have defined is then the 0-th Fitting ideal, and is enough for the purposes of Wiles' proof.

We now gather the main elementary results on Fitting ideals.

Lemma 1. Let I ⊆ R be an ideal. Then Fitt R (R/I) = I.

Proof. A generator for R/I is 1 and the general matrix of relations for it is

  α 1 . . . α q   such that α i • 1 = 0 ∈ R/I, i. e. such that α i ∈ I for all i's.
For the rest of this section M will denote a finitely generated R-module.

Lemma 2. Let M ′ be a quotient of M and let π : M ։ M ′ be a surjection:

then Fitt R (M ) ⊆ Fitt R (M ′ ).
Proof. Let x be a set of generators for M ; then π(x) = {π(x) 1 , . . . , π(x) |x| } is a set of generators for M ′ . If {r 1 , . . . , r |x| } is a relation for x, it is also one for π(x). Therefore any matrix of relations for x is also a matrix of relations for π(x), showing the desired inclusion.

Lemma 3. If M ∼ = M 1 × M 2 , then Fitt R (M ) = Fitt R (M 1 ) • Fitt R (M 2 ).
Proof. On one side, any two matrices X, Y of relations for M 1 and M 2 , respectively, give a matrix of relations

X 0 0 Y for M 1 × M 2 .
On the other side, choosing as set of generators for M 1 × M 2 one of the form xy = {x 1 , . . . , x |x| , y 1 , . . . , y |y| } where x is a set of generators for M 1 and y is one for M 2 , we can form from any matrix of relations for xy two matrices of relations for x and y. These matrices verify clearly DetId(X)DetId(Y ) = DetId(XY ), and our statement follows.

Combining Lemma 3 and Lemma 1 we get

Corollary 1. If M = R/a 1 × • • • × R/a n for ideals a i ⊆ R, then Fitt R (M ) = a 1 • • • a n .
Lemma 4. If M can be generated by n elements, then

Ann R (M ) n ⊆ Fitt R (M ) ⊆ Ann R (M ) .
Proof. First of all, let x be a set of generators with |x| = n. Then, if

c i ∈ Ann R (M ) for 1 ≤ i ≤ n, the matrix C =    c 1 . . . 0 . . . . . . . . . 0 . . . c n    is a matrix of relations for x and c 1 • • • c n = det(C) ∈ Fitt R (M ), so Ann R (M ) n ⊆ Fitt R (M ).
On the other hand, let X be a square n × n-matrix of relations for x: let X • be its adjugate matrix1 . Then multiplying the equation

X • x = 0 by X • shows that det(X) ∈ Ann R (M ).
Since, as we observed, Fitt R (M ) is generated by these determinants, we find Fitt R (M ) ⊆ Ann R (M ).

Remark. This Lemma gives another proof that Fitt R (R/I) = I, since in that case n = 1 and Ann R (M ) = I.

During the school, Otmar Venjakob observed that since M admits n generators, there is a surjection

R/Ann R (M ) n ։ M
and applying Lemma 2 gives the first inclusion.

Recall that a R-module M is said to be faithful if Ann R (M ) = 0. Thus the above Lemma gives because every element of IM can be written as a finite sum of the generators of M with coefficients in I. The matrix X whose i-th row is

Corollary 2. If M is a faithful R-module, then Fitt R (M ) = 0. Lemma 5. If I ⊆ R is any ideal of R, then Fitt R/I (M/IM ) = Fitt R (M ) + I ⊆ R/I Proof. It is clear that if x is a set
(ξ i1 -α i1 , . . . , ξ i|x| -α i|x| ) is a matrix of relations for M and X ≡ X (mod I). Therefore DetId([X]) = DetId([ X]) = DetId( X) + I ⊆ Fitt R (M ) + I. This gives the other inclusion. Lemma 6. If 0 -→ M 1 -→ M 2 -→ M 3 -→ 0 is an exact sequence of finitely generated R-modules, then Fitt R (M 1 ) • Fitt R (M 3 ) ⊆ Fitt R (M 2 ) .
Proof. Without loss of generality, we may and will assume that M 1 ⊆ M 2 and that the first map above is the natural inclusion. Let now [x] be a set of generators for M 3 and let x be a lifting of it to M 2 . Let y be a set of generators for M 1 ⊆ M 2 . Then xy is a set of generators for M 2 . Let X ∈ M p×|x| (R), Y ∈ M q×|y| (R) be matrices of relations for [x] and y, respectively, and let C = (-c ij ) ∈ M p×|y| (R), where

X • x =       |y| i=1 c 1i y i |y| i=1 c 2i y i . . . |y| i=1 c pi y i       .
Then the matrix

Z = X C 0 Y is a (p + q) × |xy|-matrix of relations for M 2 and DetId(X) • DetId(Y ) ⊆ DetId(Z) since every minor of Z is of the form M X M C 0 M Y = M X 0 0 M Y
where M X is a submatrix of X and M Y is a submatrix of Y .

Applications to Wiles' proof

In this section we focus on the applications of the theory of Fitting ideals developed up to now to Wiles' proof. In a first part we will start by assuming that not only M is finitely generated, but that is in fact finitely presented; and we eventually specialize to the case

R = O[[T ]]
where O is the ring of integers of a p-adic field.

Finite presentations

First of all, recall that an R-module M is said to be finitely presented if there is an exact sequence of R-modules

R a h → R b ϕ → M → 0
for suitable a, b ∈ N. Clearly, every finitely presented module is finitely generated, since it can be generated by ϕ(e i ) for 1 ≤ i ≤ b. If R is noetherian, the converse is also true: indeed, if M is finitely generated, it is a quotient of a finitely generated free module and there is an exact sequence

0 → S ψ → R b ϕ → M → 0
for some S and for some b ∈ N. Using that R is noetherian, S should also be finitely generated, say a quotient of R a by a module T : we find

0 / / T / / R b h / / k R a ϕ / / M / / 0 S ψ > > 0 > > 0
where h := ψ • k. We can therefore extract from the above diagram the sequence

R a h → R b ϕ → M → 0
that is exact since Ker(ϕ) = Im(ψ) = Im(h). Now we present some results that are true for general finitely presented Rmodules. Thus, assuming noetherianity reduces this hypothesis to M being finitely generated.

From now on we we fix an R-module M and we assume it is finitely presented.

Proposition 2. Let R a h → R b ϕ → M → 0 be a finite presentation of M and let H ∈ M b×a (R) be a matrix attached to h. If a ≥ b, then Fitt R (M ) = DetId(H tr ) and if a < b then Fitt R (M ) = 0. Proof. The finite presentation R a h → R b ϕ → M → 0
shows that a set of generators of M is {ϕ(e 1 ), . . . , ϕ(e b )} and that the relations among these elements are precisely the kernel of ϕ, namely Im(h), that is spanned by the columns of H. By Proposition 1, to compute Fitt R (M ) it suffices to consider matrices whose rows are relations among these generators. If a ≥ b, then H tr is a matrix of relations; moreover, if X is any other matrix of relations, then all its sumbatrices are linear combinations of rows of H tr and their determinant coincide with the determinant of those rows. Therefore DetId(X) ⊆ DetId(H tr ), showing the desired equality. If a < b, then every matrix of relations X ∈ M b×b (R) has at least two linearly dependent rows, since they belong to Im(h) and this module has R-rank a < b. Therefore DetId(X) = 0 for all such matrices, showing Fitt R (M ) = 0.

Lemma 7. If I is a finitely generated ideal, then Fitt R (M ) ⊆ Fitt R (M/IM ) ⊆ (Fitt R (M ), I) ⊆ R .
Proof. The first inclusion is Lemma 2. For the second, if A matrix associated to h * is

R a h → R b → M → 0 is a presentation of M and if I = α 1 , . . . , α n , then a presentation of M/IM is R a+nb h * → R b → M/IM
H * =      H 0 . . . 0 0 A . . . 0 . . . . . . . . . . . . 0 0 . . . A     
where H is a matrix associated to h and A is the diagonal matrix

A =      α 1 0 . . . 0 0 α 2 . . . 0 . . . . . . . . . . . . 0 0 . . . α n      .
Any non-trivial b × b minor of H * is either a b × b minor of H or a linear combination of suitable multiples of some α j 's, and hence we get the second inclusion. Observe that the above proof works both if a ≥ b and if a < b.

Combining this Lemma with Corollary 2 we get Corollary 3. If I ⊆ R is a finitely generated ideal and M is a faithful R-module, then Fitt R (M/IM ) ⊆ I.

Iwasawa Algebras

Next we focus on applications of the theory of Fitting ideal in Wiles' proof of the Iwasawa Conjecture. We assume for this that O is the ring of integers of a p-adic field and we let Λ denote the formal power series ring Λ = O[[T ]]: we refer the reader to chapters 7, 13 and 15 of [START_REF] Washington | Introduction to Cyclotomic Fields[END_REF] for basic facts about Λmodules. This is a complete, local, noetherian ring: let m denote its maximal ideal, that is generated (for instance) by π and T where π is a uniformizer of O. Since it is noetherian, we can combine general results of Section 1 with those of § 2.1. If p 1 , . . . , p k are prime ideals of height 1 in Λ and r, e 1 , . . . , e k are non-negative integers, define the finitely generated Λ-module E(r, p e 1 1 , . . . , p e k k ) to be

E(r, p e 1 1 , . . . , p e k k ) = Λ r ⊕ k i=1 Λ/p e i i :
These are called elementary Λ-modules: they are classified (up to isomorphism) by the above set of prime ideals and integers and every finitely generated Λ-module is pseudo-isomorphic to exactly one of these modules -a pseudo-isomorphism being a Λ-homomorphism with finite kernel and cokernel.

For a finitely generated torsion module M , r = 0 and a coarser (but often important) invariant than the entire set above is the so-called characteristic polynomial, that is the unique distinguished2 polynomial f M (T ) such that

f M (T ) • Λ = k i=1 p e i i ;
since this definition is easily seen to be multiplicative in exact sequences and since finite modules are pseudo-isomorphic to the trivial module, this is an invariant under pseudo-isomorphism. Observe that prime ideals of height 1 are all principal, generated either by a uniformizer of O or by irreducible distinguished polynomial. We start with the following Lemma 8. Let N = E(0, p e 1 1 , . . . , p e k k ) be an elementary torsion Λ-module. Then

1. f N (T ) • Λ = Fitt Λ (N ) .

If none of the p

i 's is π • Λ, then Fitt Λ (N ) = char Λ • T : N → N • Λ .
where char Λ • T : N → N is the characteristic polynomial (say, in the variable X) of the multiplication by T seen as O-linear endomorphisms of the finite free O-module N , evaluated at X = T .

Remark. Given a non-constant distinguished polynomial g(T ), the module Λ/g(T )Λ is O-torsion free; thus, if p i = πΛ for all i's, then N is finitely generated and torsion-free over the principal ideal domain O, hence free of finite rank. Moreover, despite its name, we will always denote the characteristic polynomial of a Λ-module M by f M , leaving the notation char Λ (•) for the usual meaning of the characteristic polynomial of a linear map (see Corollary 4 below for instances in which these two notions coincide).

Proof. The equality in 1. is clear after Corollary 1 and the definition of elementary module. For 2. without loss of generality we can assume that N = Λ/p e with p = g(T )Λ where g(T ) is a non-constant distinguished polynomial. Then p e = g(T ) e Λ and g(T ) e is still distinguished, say of degree λ: let g i be the coefficient of T i in g(T ) e for 0 ≤ i ≤ λ -1. Let {1, T, . . . , T λ-1 } be a basis of N : the matrix attached to the multiplication by T in this basis is

       0 0 0 0 -g 0 1 0 0 0 -g 1 . . . 1 0 0 -g 2 . . . . . . . . . . . . . . . 0 0 0 1 -g λ-1       
and the characteristic polynomial is then

-X 0 0 0 -g 0 1 -X 0 0 -g 1 . . . 1 -X 0 -g 2 . . . . . . . . . . . . . . . 0 0 0 1 -g λ-1 -X
Developing the determinant along the first line shows, by induction on λ, that this characteristic polynomial is precisely

λ-1 i=0 g i X i + X λ = g(X) e .
Using 1. and evaluating at X = T yields 2., since f Λ/g(T ) e Λ = g(T ) 2 .

Corollary 4. Let N be a finitely generated torsion Λ-module having no Otorsion. Then N is a finite free O-module and

f N (T ) • Λ = char Λ • T : N → N = Fitt Λ (E N )
where E N is the elementary module pseudo-isomorphic to N .

Proof. The freeness of N follows, as before, from O being a principal ideal domain; observe also that the elementary module attached to a module without O-torsion does not have π • Λ in its set of invariants. Thanks to the above Lemma, the equality follows from f N (T ) = f E N (T ), which is clear since, by definition, the characteristic polynomial of a Λ-module depends only on its pseudo-isomorphism class; and from char Λ • T :

N → N = char Λ • T : E N → E N .
This last relation may be proven, for instance, by observing that both are monic polynomials with coefficients in O of the same degree that have the same image in Λ ⊗ Q p .

Proposition 3. Let N be a finitely generated torsion Λ-module having no O-torsion. Then

f N (T ) • Λ = Fitt Λ (N ) .
We start with the following Lemma:

Lemma 9 (Auslander-Buchsbaum resolution). Let N be finitely generated torsion Λ-module that is free of finite rank as O-module. Then

Λ ⊗ O N γ → Λ ⊗ O N ε → N → 0 is a finite presentation of N as Λ-module, where γ(λ ⊗ n) = T λ ⊗ n -λ ⊗ T n and ε(λ ⊗ n) = λn .
Proof. The fact that ε is surjective is clear, as well as the fact that both γ and ε are Λ-homomorphisms and that ε • γ = 0. Moreover, if we prove that the sequence is exact, it is a presentation of N since the freeness of N implies that of Λ ⊗ N . Thus we need only to show that Im(γ) ⊇ Ker(ε) and this would follow from

x = γ(ξ) + 1 ⊗ ε(x) ∀ x ∈ Λ ⊗ O N (1) 
for some ξ depending on x. Since (1) is O-linear, we can check it only on elements of the form x = T k ⊗ n (use also that O[T ] is dense in Λ and both γ, ε are continuos) for suitable k ≥ 0 and n ∈ N : this we do by induction on k.

If k = 1, x = T ⊗ n = T ⊗ n -1 ⊗ T n + 1 ⊗ T n = γ(1 ⊗ n) + 1 ⊗ ε(T ⊗ n),
as we wanted. Asssuming (1) up to k -1, suppose x = T k ⊗ n: then

x = T T k-1 ⊗ n -T k-1 ⊗ T n + T k-1 ⊗ T n induction = = T k-1 T ⊗ n -1 ⊗ T n + γ(ξ ′ ) + 1 ⊗ ε T k-1 ⊗ T n = = T k-1 γ(1 ⊗ n) + γ(ξ ′ ) + 1 ⊗ T k n = = γ T k-1 ⊗ n + ξ ′ ) + 1 ⊗ ε(x) .
Setting ξ = T k-1 ⊗ n + ξ ′ we get (1).

Remark. It is indeed easy to prove that γ is injective.

We can now prove Proposition 3: This shows that the characteristic polynomial of multiplication by T (evaluated at X = T ) is the determinant of Mat(γ) and, by Proposition 2 applied to the Auslander-Buschsbaum resolution, we see that this determinant generates the Λ-Fitting ideal of N . Corollary 4 then gives the stated equality.

Proof. If x is a O-basis of N , the set {1 ⊗ x 1 , . . . , 1 ⊗ x |x| } is a Λ-
Now that we have collected these results, let M be a finitely generated torsion Λ-module and assume that "µ = 0", meaning3 that π does not divide the characteristic polynomial f M (T ) of M . Let tor O (M ) ⊆ M be the maximal O-torsion submodule of M : it is a Λ-submodule of M and there is an exact sequence 0 -→ tor O (M ) -→ M -→ N -→ 0 (2)

where N satisfies the hypothesis of Corollary 4. Observe now that as an application of Lemma 6 we find Corollary 5. Suppose R is a local ring and m is its maximal ideal. If M is an R-module of finite length, then m length R (M ) ⊆ Fitt R (M ) .

Proof. We claim that over a local ring every module of length 1 is isomorphic to k := R/m. Granting the claim, the Corollary follows from Lemma 1 and from Lemma 6, by induction on length R (M ). We now prove the claim: observe that if M is a k-vector space endowed with the natural R-action induced by R ։ k, then the notion of k-vector subspace and of R-submodule of M coincide. Therefore length R (M ) = length k (M ) = dim k (M ). The module M has length 1, and therefore in the chain of inclusions M ⊇ mM ⊇ 0 one is an equality. By Nakayama Lemma, M = mM ⇒ M = 0, and this is absurd since length R (0) = 0: therefore mM = 0, M is a k-vector space and our previous discussion shows that it has dimension 1 over k.

  of generators for M , than its image under the canonical projection is a set of generators for M/I, and that any relation for the first set is also a relation for the second, giving Fitt R (M ) + I ⊆ Fitt R/I (M/IM ). If now [X] = ([ξ ij ]) is a matrix of relation for the set [x] of generators of M/IM (we denote by [•] the class • + I), we can find elements α ij ∈ I such that for all 1 ≤ i ≤ |x| we have |x| j=1 ξ ij x j = |x| j=1 α ij x j

  → 0 where h * (w 1 , . . . , w a , v 1,1 , . . . , v 1,b , . . . , v n,1 , . . . , v n,b ) =h(w 1 , . . . , w a ) + n j=1 (α j v j,1 , . . . , α j v j,b ) .

  basis of Λ ⊗ N : moreover, γ = ϑ -τ where ϑ : λ ⊗ n → T λ ⊗ n τ : λ ⊗ n → λ ⊗ T n and therefore det Mat(γ) = det Mat(ϑ) -Mat(τ ) , where we introducejust along the proof -the notation Mat(•) to denote the matrix attached to a linear map in the bases chosen above. Since ϑ maps every element of the Λ-basis 1 ⊗ x i to T ⊗ x i , and by definition of τ , we find Mat(ϑ) = T • I |x| τ = •T : N → N .

  be any p × |x|-matrix appearing in the sum A(x) and define a new matrix, having |x| + |y| columns,

	minor of Y is also a |xy| × |xy|-minor of Y ) and Y is row equivalent to
	Y ′ =	    	c 11 c 12 . . . c 1|x| . . . . . . . . . . . . c |y|1 c |y|2 . . . c |y||x|	I |y|	    
					X	0
	(for this, use the identity matrix in the upper right corner of Y to make every
	element of the lower right corner trivial by means of elementary row oper-
	ations); since the determinantal ideals of similar matrices clearly coincide,
	we find that DetId(Y ) ⊆ DetId
	X =	        	c 11 . . . c 1|x| 1 . . . 0 . . . . . . . . . . . . . . . . . . c |y|1 . . . c |y||x| 0 . . . 1 a 11 . . . a 1|x| 0 . . . 0 . . . . . . . . . . . . . . . . . .	        	.
					a p1 . . . a p|x| 0 . . . 0
	It is clearly a matrix of relations for xy (it has p + |y| ≥ |x| + |y| rows) and
	every |x| × |x|-minor of X also appears as |xy| × |xy|-minor of X, showing
	the inclusion A(x) ⊆ A(xy).
	Let now Y be a matrix of relations for xy; define a new matrix
	Y =	    		c 11 c 12 . . . c 1|x| . . . . . . . . . . . . c |y|1 c |y|2 . . . c |y||x|	I |y|	    
					Y
	where I |y| is the |y| × |y| identity matrix. Then DetId( Y ) ⊇ DetId(Y ) (just
	observe that Y and Y have the same number of columns and every |xy|×|xy|-

The adjugate matrix X • of a square n × n-matrix X with coefficients in a ring R is a matrix such that XX • = det(X)I n . It may be defined as the matrix whose (i, j)-entry is the (j, i)-cofactor of X.

A power series is called a distinguished polynomial if it is either a constant in πO or it is a monic polynomial whose coefficients are all divisible by π but the leading one.

Traditionally, µ is the exponent of π • Λ in the set of invariants of an elementary module.

Applying this to our situation, we get: Proposition 4. Let M be a finitely generated torsion Λ-module such that µ = 0. Then

Proof. Observe, first of all, that since tor O (M ) is finite, it has trivial characteristic polynomial and f M (T ) = f N (T ). Now apply Lemma 6 to the above sequence (2). We find that

since tor O (M ) is of finite length and N has no O-torsion, we can apply Corollary 5 and Corollary 4 (together with our first remark) to translate the above inclusion as (π, T ) lentgh Λ (tor O (M )) • f M (T ) ⊆ Fitt Λ (M ). The second inclusion just follows from Lemma 2 together with Corollary 4.