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Abstract

For a real abelian number field F and for a prime p we study the relation between the

p-parts of the class groups and of the quotients of global units modulo cyclotomic units

along the cyclotomic Zp-extension of F . Assuming Greenberg’s conjecture about the van-

ishing of the λ-invariant of the extension, a map between these groups has been constructed

by several authors, and shown to be an isomorphism if p does not split in F . We focus in

the split case, showing that there are, in general, non-trivial kernels and cokernels.

1. Introduction

Let F/Q be a real abelian field of conductor f and let ClF be its ideal class group. A

beautiful formula for the order of this class group comes from the group of cyclotomic

units: this is a subgroup of the global units O
×
F whose index is linked to the order of ClF . To

be precise, we give the following definition ([Sin81, section 4]):

Definition 1·1. For integers n > 1 and a not divisible by n, let ζn be a primitive nth root

of unity. Then Norm
Q(ζn)

F�Q(ζn)
(1 − ζ a

n ) ∈ F and we define the cyclotomic numbers DF to be

the subgroup of F× generated by −1 and Norm
Q(ζn)

F�Q(ζn)
(1 − ζ a

n ) for all n > 1 and all a not

divisible by n. Then we define the cyclotomic units of F to be

CycF := DF � O
×
F .

Sinnott proved in [Sin81, theorem 4·1, with proposition 5·1], the following theorem:

THEOREM (Sinnott). There exists an explicit constant κF divisible only by 2 and by

primes dividing [F : Q] such that

[O×
F : CycF ] = κF |ClF |.

Let now p be an odd prime that does not divide [F : Q]: by tensoring O
×
F , CycF and ClF

with Zp we get an equality

[O×
F ⊗ Zp : CycF ⊗ Zp] = |ClF ⊗ Zp|

and it is natural to ask for an algebraic interpretation of this. Moreover, observe that our

assumption p � [F : Q] makes the Galois group � := Gal(F/Q) act on the modules

appearing above through one-dimensional characters, and we can decompose them accord-

ingly: in the sequel we write M(χ) for every Z[�]-module M to mean the submodule of
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M ⊗ Zp[Im(χ)] on which � acts as χ , where χ ∈ �̂ (see the end of Section 2 for a precise

discussion). Then an even more optimistic question is to hope for a character-by-character

version of Sinnott’s theorem, namely

[O×
F (χ) : CycF(χ)] ?= |ClF(χ)| (1·1)

and then ask for an algebraic interpretation of this. Although it is easy to see that these

�-modules are in general not isomorphic (see the example on page 143 of [KS95]), it can

be shown that they sit in an exact sequence for a wide class of fields arising in classical

Iwasawa theory. More precisely, let F∞/F be the cyclotomic Zp-extension of F and let

Ŵ = Gal(F∞/F)�Zp: then

F∞ =
⋃

n�0

Fn ⊃ · · · ⊃ Fn ⊃ Fn−1 ⊃ · · · ⊃ F0 = F

where Fn/F is a cyclic extension of degree pn whose Galois group is isomorphic to Ŵ/Ŵ pn

.

In a celebrated work (see [Iwa73]) Iwasawa gives a formula for the growth of the order of

ClFn
⊗ Zp: he proves that there are three integers μ, λ and ν, and an index n0 � 0, such that

|ClFn
⊗ Zp| = pμpn+λn+ν for every n � n0.

Moreover, Ferrero and Washington proved in [FW79] that the invariant μ vanishes. A long-

standing conjecture by Greenberg (see [Gre76], where conditions for this vanishing are

studied) predicts that λ = 0: according to the conjecture the p-part of the class groups

should stay bounded in the tower.

Although a proof of this conjecture has never been provided, many computational checks

have been performed verifying the conjecture in many cases (see, for instance, [KS95]).

Under the assumptions λ = 0 and χ(p) � 1, i. e. p does not split in F , some authors (see

[BNQD01], [KS95], [Kuz96] and [Oza97]) were able to construct an explicit isomorphism

α : ClFn
(χ)�

(

O
×
Fn

/CycFn

)

(χ) (1·2)

if n is big enough. Although the construction of the above morphism works also in the case

χ(p) = 1, as detailed in the beginning of Section 5, the split case seems to have never been

addressed. We focus then on this case, and study the map in this context, still calling it α.

Our main result is the following (see Corollary 5·2):

THEOREM. With notations as above, assume that χ is a non-trivial character of � such

that χ(p) = 1 and that λ = 0. Then, for sufficiently big n, there is an exact sequence

0 −→ K −→ ClFn
(χ)

α−→
(

O
×
Fn

/CycFn

)

(χ) −→ C −→ 0 :

both the kernel K and the cokernel C of α are finite groups with trivial Ŵ-action isomorphic

to Zp[Im(χ)]/L p(1, χ) where L p(s, χ) is the Kubota–Leopoldt p-adic L-function.

2. Some Tate cohomology

In this section we briefly recall some well-known facts that are useful in the sequel.

Throughout, L/K is a cyclic extension of number fields, whose Galois group we denote

by G. In our application, K and L will usually be layers Fm and Fn of the cyclotomic Zp-

extension for some n � m, but we prefer here not to restrict to this special case.
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We need to introduce some notation. Let

UK =
∏

v�∞
O

×
K ,v ×

∏

v|∞
K ×

v

be the idèle units, i. e. idèles having valuation 0 at all finite place v (we refer the reader to

sections 14 − 19 of Cassels’ paper in [CF86] for basic properties of idèles and idèle class

group) and let 
 be the set of places of K that ramify in L/K . It is known (see [CF86,

Serre, section 1.4]) that the Tate cohomology of local units in an unramified extension of

local fields is trivial: therefore Shapiro’s Lemma ([CF86, Tate, proposition 7·2]) gives

Ĥ q (G, UL) = Ĥ q

(

G,
∏

v∈


∏

w|v
O

×
L ,w

)

�

∏

v∈


Ĥ q
(

Gv, O
×
L ,w

)

,

where we fix a choice of a place w of L above v for every v ∈ 
 and we denote by Gv

its decomposition group in G; we will make this identification throughout. We denote the

product of local units at places v ∈ 
 appearing above by U
 . Consider the following

commutative diagram of G-modules:

0

��

0

��

0

��
0 �� O×

L

��

�� L×

��

�� PrL

��

�� 0

0 �� UL

��

�� A×
L

��

�� IdL

��

�� 0

0 �� QL

��

�� CL

��

�� ClL

��

�� 0

0 0 0

(2·1)

Here IdL and PrL denote the group of all fractional ideals of L and of principal ideals,

respectively; while CL = A×
L /L× is the group of idèle classes and QL = UL/O×

L .

LEMMA 2·1. Taking Tate cohomology of (2·1) and exploiting the fact that G is cyclic, we

find the diagram:

Ĥ−1(G, UL)

β

��

Ĥ 0(G, ClL)
δ �� Ĥ−1(G, QL) .

Then Im(β) is generated by the image via δ of classes [NormG/Gv
(Pv)] for Pv running

through all primes in L above 
.

Proof. First of all, the above decomposition

Ĥ−1(G, UL)�

∏

v∈


Ĥ−1(Gv, O
×
w)

allows to write β =
∏

βv where βv is the restriction of β to the vth factor Ĥ−1(Gv, O
×
w).
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We therefore fix a place v ∈ 
 and we show that Im(βv) is the class of δ(
∑

σ∈G/Gv
σPv)

for some prime Pv of L above v; observe that the sum (written by a small abuse of notation,

since we are summing over representatives of G/Gv in G – but their choice is harmless)

makes sense, since Pv is fixed by Gv. Choosing a uniformizer πw at Pw we get a generator

(τ − 1)πw of Ĥ−1(Gv, O
×
w), where τ is a generator of Gv: the isomorphism of Shapiro’s

Lemma gives

Ĥ−1(Gv, O
×
w)

� �� ∏
w|v Ĥ−1(G, O×

w)

(τ − 1)πw
� �� {σ

(

(τ − 1)πw

)

}σ∈G/Gv

and therefore the image of βv is generated by
∑

σ∈G/Gv
σ((τ − 1)πw) := ϑv.

On the other hand, the map δ is given (see [NSW00, chapter I, section 2]) by

x �→ (γ − 1)x , where γ is a generator of G, for all x ∈ Ĥ 0(G, ClL). As ClL =
IdL/PrL � CL/QL , we can write the class [Pw] ∈ ClL as [(. . . , 1, πw, 1, . . .)] where

(. . . , 1, πw, 1, . . .) ∈ A×
L is the idèle whose w-component is πw and all other components

are 1. Then NormG/Gv
[Pw] =

∑

σ∈G/Gv
σ [(. . . , 1, πw, 1, . . .)] ∈ H 0(G, ClL) and the image

via δ of its class in Ĥ 0(G, ClL) is clearly ϑv (observe that
∑

σ σ(τ − 1) =
∑

σ σ(γ − 1)).

PROPOSITION 2·2 (See [Iwa73]). Let j : ClK → ClL be the map induced by extending

fractional ideals of OK to OL . Then

Ker(j)�Ker
(

Ĥ 1(G, O×
L ) −→ Ĥ 1(G, U
)

)

.

Proof. We simply apply the Snake Lemma twice. First of all, apply it to

0 �� QK
��

��

CK
�� ClK

��

j

��

0

0 �� QG
L

�� CG
L

�� ClG
L

�� Ĥ 1(G, QL) :

it shows Ker(j)� QG
L /QK . Then apply it to

0 �� O×
K

�� UK
�� QK

��

��

0

0 �� (O×
L )G �� (UL)G �� QG

L
�� Ĥ 1(G, O×

L ),

finding QG
L /QK �Ker(Ĥ 1(G, O×

L ) → Ĥ 1(G, U
)).

Remark. The above proof does not use the hypothesis that G be cyclic. In fact,

we will in the sequel apply the proposition assuming this cyclicity, finding Ker(j) �

Ker(Ĥ−1(G, O×
L ) → Ĥ−1(G, U
)). We remark that in his thesis [Gre76] Greenberg gives

the following criterion: μ = λ = 0 if and only if for all m � 0 the map j relative to the

cyclic extension Fn/Fm , restricted to p-Sylow subgroups, becomes 0 for sufficiently large n

(possibly depending on m). This will be the starting point for our proof of Theorem 5·1.

We end this section with some remarks on the action of � on the cohomology along a

Zp-extension. Pick a p-adic character χ of �; setting Rχ = Zp[Im(χ)], we let δ ∈ � act on
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Rχ by x �→ χ(δ)x . In this way, Rχ becomes a Zp[�]-algebra. For every Z[�]-module M

we denote by M(χ) the χ-eigenspace of M ⊗Zp[�] Rχ for the action of �: it is defined as

M(χ) = {m ∈ M ⊗ Rχ s. t. δ · m = χ(δ) · m ∀ δ ∈ �}�HomZp[�](Rχ , M ⊗ Zp): for more

details, see [Sch88, section 2]. Then we have the following

LEMMA 2.3 [Sch88, lemma 2·1]. Suppose that G and � are abelian groups such that

p � |�| and G is a p-group. Let M be a Z[� × G]-module, then:
(i) for every q ∈ Z, the natural map

Ĥ q
(

G, M ⊗ Zp

)� −→ Ĥ q(G, (M ⊗ Zp)
�)

is an isomorphism (of abelian groups with trivial � × G-action)

(ii) for every character χ : � → Q×
p , there is an isomorphism of Zp[�]-modules

Ĥ q (G, M(χ))� Ĥ q (G, M) (χ) ∀ q ∈ Z . (2·2)

3. Cyclotomic units

We now go back to the situation described in the introduction: let then F∞/F be the Zp-

extension of F and denote by Ŵ its Galois group. For every n and for every prime ideal

p ⊆ OFn
dividing p, we let O

×
Fn ,p

denote the local units at p. Also, we let CycFn
be the

cyclotomic units of Fn as defined by Sinnott in [Sin81]. Fix from now on a non-trivial

character χ � 1 of � and an odd prime p � [F : Q] such that χ(p) = 1: accordingly,

let Rχ = Zp[(Im(χ)], seen as a �-module as detailed at the end of Section 2. Remark that

for every n � 0, Gal(Fn/Q)�� × Gal(Fn/F), and this turns F×
n , CycFn

, ClFn
, etc . . . into

�-modules.

Consider a contravariant functor

M : SGr(�) −→ Z[�]-Mod

from the category of subgroups of � (morphisms being inclusions) to that of Z[�]-modules,

verifying the condition (compare with [NSW00])

M (H)�M (1)H for all H ⊳ � functorially in H . (3·1)

Example. Prototypical examples of such a functor are the additive group M (H) :=
F H

n , or the global (resp. cyclotomic, local) units M (H) := O×
F H

n
(resp. M (H) :=

CycF H
n
,M (H) = O

×
F H

n ,p
), together with the natural inclusions F H

n →֒ Fn , O
×
F H

n
→֒ O

×
Fn

,

ecc . . . Moreover, since p � |�|, the p-part of the class group verifies (3·1): indeed, for all

H the map ClF H
n

j→ Cl H
Fn

Norm→ ClF H
n

coincides with the multiplication by [� : H ], and is

therefore an isomorphism when restricted to p-Sylow (and this for all n � 0). Similarly,

we have H 1(H, Cycn ⊗ Zp) = 0 for all H ⊳ � because p � |H | (apply Corollary 1 to

Proposition 8 of Atiyah and Wall’s paper in [CF86]), so

((

O
×
Fn

/CycFn

)

⊗ Zp

)H
� (OF H

n
/CycF H

n
) ⊗ Zp

and also the functors M (H) = (OF H
n
/CycF H

n
) ⊗ Zp verify condition (3·1) for all n � 0.

Suppose now that a functor as above is given, and that it verifies (3·1): then for every

character χ of �, there is a natural identification M (1)(χ) � M (Ker(χ))(χ). Indeed,

M (Ker(χ)) � M (1)Ker(χ) ⊆ M (1), while M (1)(χ) has obviously a trivial action of

Ker(χ), showing M (1)(χ) ⊆ (M (1) ⊗ Rχ )Ker(χ). Since, as the above examples show, we
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will be dealing only with functors verifying (3·1), this discussion enables us to replace �

with �/Ker(χ)� Im(χ) without changing the χ-components we are interested in. We can

therefore assume that p splits completely in F , and we assume this throughout.

Then we set

Un :=
(

∏

p|p

O
×
Fn ,p

)

and we agree to let O×
n = O

×
Fn

and similarly Cycn = CycFn
. Observe that since in a Zp-

extension only primes above p ramify, the set 
 of Section 2 relative to Fn/F is 
 = {p ⊂
OF , p|p} for all n and our notation is consistent with the one introduced there. We finally

set

Bn :=
(

O
×
n /Cycn

)

(χ) , Bn :=
(

Un/Cycn

)

(χ) and An := ClFn
(χ).

By Sinnott’s theorem above, together with [Sin81, theorem 5·3] that guarantees p � κFn

for all n, the groups ClFn
⊗ Zp and (O×

n /Cyc
n
) ⊗ Zp have the same order. The character-

by-character version of this result is much deeper: it is known as Gras’ Conjecture, and

is a consequence of the (now proven) Main Conjecture of Iwasawa Theory, as detailed in

[Gre77] or [BNQD01]. It follows that |An| = |Bn| for all n � 0.

Remark. The semi-local units considered by Gillard [Gil79b] are products over all p

above p of local units that are 1 (mod p). In our situation, all completions Fp at primes

p | p are isomorphic to Qp, so the two definitions coincide and Un(χ) is a free Rχ -module

of rank 1.

Moreover, since p splits completely in F/Q, all primes above p totally ramify in Fn/F :

let Pn be one such a prime. Its image in An generates a subgroup which is independent of the

choice of Pn: indeed, all primes above p are conjugate by an element in �, and the image in

An of δ(Pn) is Pχ(δ)
n , which generates the same subgroup as Pn . We call this subgroup �n

and we can restate Lemma 2·1 saying that Im(β) = δ(�n) (use also Lemma 2.3).

We now investigate in some detail the structure of Cycn . First of all, letting f be the

conductor of F , we define

ηn :=
(

Norm
Q(ζ

f pn+1 )

Fn

(

1 − ζ f pn+1

)

)

⊗
(

∑

δ∈�

χ(δ−1)δ

)

∈ Cycn(χ).

The left factor is a unit since p � f because p splits completely in F , it is cyclotomic by

definition and is acted upon by � through χ : morever, Sinnott’s description of cyclotomic

units shows that Cycn(χ) = η0 Rχ × ηn Rχ [Gn] (see, for instance, [Gil79a, section 3] for

details). In particular, we have an isomorphism of Gn-modules Cycn(χ)� Rχ × IGn
where

IGn
is the augmentation ideal in Rχ [Gn], and we find a split exact sequence

0 −→ 〈ηn〉 −→ Cycn(χ) −→ 〈η0〉 −→ 0 (3·2)

where we denote, here and in what follows, by 〈η0〉 and 〈ηn〉 the Rχ [Gn]-modules generated

by η0 and ηn respectively: by the above isomorphisms, (3·2) corresponds to the sequence

0 −→ IGn
−→ IGn

× Rχ −→ Rχ −→ 0. (3·3)

LEMMA 3·1. We have Ĥ 0(Gn,m, 〈ηn〉) = 0 and Ĥ−1(Gn,m, 〈η0〉) = 0. In particular, the

natural map Ĥ q(Gn,m, Cycn(χ))� Ĥ q(Gn,m, 〈η0〉)× Ĥ q(Gn,m, 〈ηn〉) induced by (3·2) gives
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isomorphisms of �-modules

Ĥ 0(Gn,m, Cycn(χ))� Ĥ 0(Gn,m, 〈η0〉)

and

Ĥ−1(Gn,m, Cycn(χ))� Ĥ−1(Gn,m, 〈ηn〉).

Both are groups of order pdn where d = rkZp
Rχ .

Proof. The exact sequence

0 −→ IGn
−→ Rχ [Gn] −→ Rχ −→ 0

shows, since Ĥ q(Gn,m, Rχ [Gn]) = 0 for all q, that Ĥ 0(Gn,m, IGn
) � Ĥ−1(Gn,m, Rχ ) = 0.

The Rχ [Gn]-isomorphisms 〈ηn〉� IGn
and 〈η0〉� Rχ give the result.

Suppose now that λ = 0. The extension F∞/F is totally ramified since p splits in F

and the maps N n
m : An → Am (induced by norms on (χ)-parts, and that we keep on calling

“Norm maps” by a slight abuse of notation) are surjective by class field theory for all n � m;

assuming λ = 0 and choosing m big enough, the orders of An and Am coincide, and these

norm maps are actually isomorphisms. Therefore the projective limit X = lim←− An with

respect to norms stabilizes to a finite group and An � X for all n � 0 (we introduce here

the notation a � b, equivalent to b � a, to mean that there exists a b0 � b such that what

we are stating holds for all a � b0). In particular, the action of Ŵ on X must factor through

a certain quotient Gm = Ŵ/Ŵ pm

. Therefore Gn,m acts trivially on An for all n � m and the

Gn,m-norm NGn,m
=

∑

τ∈Gn,m
τ acts on An as multiplication by pn−m . Choosing n big enough

so that pn−m An = 0, we find NGn,m
An = 0 and

Ĥ 0(Gn,m, An) = A
Gn,m

n /NGn,m
An = An

= An[NGn,m
]/IGn,m

An = Ĥ−1(Gn,m, An)
(3·4)

where IGn,m
is the augmentation ideal of Rχ [Gn,m]. Therefore An � Ĥ−1(Gn,m, An) �

Ĥ 0(Gn,m, An), whenever λ = 0 and n � m � 0. A similar argument leads to the equivalent

of (3·4) for Bn , namely Ĥ q(Gn,m, Bn)� Bn for all q ∈ Z.

LEMMA 3·2. If λ = 0 and m � 0, the natural map

H 1(Gn,m, Cycn(χ)) −→ H 1(Gn,m, O×
n (χ))

is injective for all n � m.

Proof. Taking Gn,m-cohomology in the exact sequence defining Bn gives

0 −→ H 0(Gn,m, Cycn(χ)) −→ H 0(Gn,m, O×
n (χ)) −→ H 0(Gn,m, Bn) −→

−→ H 1(Gn,m, Cycn(χ)) −→ H 1(Gn,m, O×
n (χ)). (3·5)

Since Gn,m-invariants of Cycn(χ) and O×
n (χ) are Cycm(χ) and O×

m(χ) respectively, we im-

mediately see that Ker(H 1(Gn,m, Cycn(χ)) −→ H 1(Gn,m, O×
n (χ))) = B

Gn,m

n /Bm . Assum-

ing that m is big enough and λ = 0 implies that the orders of Bn and Bm coincide, and the

same holds, a fortiori, for B
Gn,m

n and Bm . Thus, the above kernel is trivial.
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4. Semi-local units modulo cyclotomic units

We now state a very useful result about semi-local units in our setting; it can already be

found in a paper by Iwasawa [Iwa60]. We keep the same notation introduced in the previous

section and we make from now on constant use of Lemma 2.3 above, especially in the form

of the isomorphism in (2·2).

Definition 4·1. We define U 1
n to be the kernel U 1

n = Ker(N n
0 : Un → U0) and we set

B1
n = U 1

n (χ)/〈ηn〉.

PROPOSITION 4·2. The natural map U 1
n × U0 →֒ Un induced by injections is an iso-

morphism of � × Gn-modules. It induces a decomposition Bn �B1
n × B0.

Proof. Since all primes above p are totally ramified in Fn/F we can restrict our attention

to a single prime p | p in OF and show that

O
× 1
n,p × O

×
0,p �On,p

where we denote by O× 1
n,p the local units having norm 1 in O

×
0,p: taking the product over all

primes above p will give the first statement of the Proposition. Consider the exact sequence

induced by the norm map N n
0

0 −→ O
× 1
n,p −→ O

×
n,p −→ N n

0 (O×
n,p) ⊆ O

×
0,p −→ 0.

Since the extension Fn,p/F0,p is cyclic and totally ramified, local class field theory shows

that Ĥ 0(Gn, O
×
n,p) = O

×
0,p/N n

0 (O×
n,p) is a cyclic group of order pn . As O

×
0,p � Z×

p this shows

N n
0 (O×

n,p) = (O×
0,p)

pn × μp−1 and since O
×
0,p contains no roots of unity of p-power order we

can identify this group with O
×
0,p simply by extracting pnth roots. We find

0 −→ O
× 1
n,p −→ O

×
n,p

pn
√

N n
0−→ O

×
0,p −→ 0. (4·1)

Since the natural embedding O
×
0,p →֒ O×

n,p is a Gn-linear section of (4·1), it splits the se-
quence and therefore gives an isomorphism O× 1

n,p × O
×
0,p �On,p.

The explicit description Cycn(χ) = 〈η0〉 × 〈ηn〉 together with N n
0 (ηn) = 0 (see the dis-

cussion before equation (3·2)) shows that N n
0 (Cycn(χ)) = N n

0 (〈η0〉) = 〈ηpn

0 〉. The argument

above thus gives the commutative diagram:

0 �� 〈ηn〉 ��
� �

��

Cycn(χ)
pn
√

N n
0 ��

� �

��

〈η0〉 ��
� �

��

0

0 �� U 1
n (χ) �� Un(χ)

pn
√

N n
0 �� U0(χ) �� 0

and this proves Bn �B1
n × B0.

More useful than the splitting itself is the following easy consequence:

COROLLARY 4·3. For every n � m � 0 and for every q ∈ Z the natural maps

Ĥ q(Gn,m, Un(χ)) −→ Ĥ q(Gn,m, U 1
n (χ)) × Ĥ q(Gn,m, U0(χ))

and

Ĥ q(Gn,m, Bn) −→ Ĥ q(Gn,m, B1
n) × Ĥ q(Gn,m, B0)
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induced by Proposition 4·2 are isomorphisms of abelian groups. In particular, we have

Ĥ−1(Gn,m, Un(χ)) = Ĥ−1(Gn,m, U 1
n (χ)) and Ĥ 0(Gn,m, Un(χ)) = Ĥ 0(Gn,m, U0(χ)).

Proof. The splitting of the cohomology groups follows immediately from the Proposi-

tion. Concerning the cohomology of Un(χ), we observe that, since Gn,m acts trivially on

the torsion-free module U0, the group Ĥ 0(Gn,m, U0) is a group of order p[F :Q](n−m) while

Ĥ−1(Gn,m, U0) = 0. This already implies that Ĥ−1(Gn,m, Un) = Ĥ−1(Gn,m, U 1
n ). It also

shows that Ĥ 0(Gn,m, U 1
n ) must be trivial because Ĥ 0(Gn,m, Un) has order p[F :Q](n−m) by

local class field theory; Lemma 2.3 then allows to take (χ)-parts and to get the desired

equalities.

LEMMA 4·4. For all n � m � 0, there are isomorphisms Ĥ q(Gn,m, B1
n)� Rχ/L p(1, χ)

and Ĥ q(Gn,m, B0)� Rχ/L p(1, χ) holding for every q ∈ Z.

Proof. Let � := Rχ [[T ]] and fix an isomorphism ̟ : � � Rχ [[Ŵ]]. This isomorphism

fixes a choice of a topological generator ̟(1 + T ) =: γ0 of Ŵ and we denote by κ ∈ Z×
p the

element εcyc(γ0) where

εcyc : Gal(F̄/F) −→ Z×
p

is the cyclotomic character of F . The main tool of the proof will be [Gil79b, theorem 2],

that gives isomorphisms of Rχ [[Ŵ]]-modules

B0 � Rχ/L p(1, χ) and Bn ��/( f (T ), ωn(T )/T ) (4·2)

where ωn(T ) = (1 + T )pn − 1 and f (T ) ∈ � is the power series verifying f (κ s − 1) =
L p(1 − s, χ) for all s ∈ Zp. We make Ŵ act on the modules appearing in (4·2) by γ0 · x =
̟−1(γ0)x = (1 + T )x for all x ∈ B0 (resp. all x ∈ Bn): this induces the action of Gn,m we

need to compute the cohomology with respect to.

Starting with B0, observe that the action of Ŵ, and thus of its subquotient Gn,m , is trivial

on the finite group B0: as in (3·4) we get

Ĥ q(Gn,m, B0)�B0 for all n � m � 0,

and we apply (4·2) to get our claim.

Now we compute Ĥ−1(Gn,m, B1
n): by definition, Ĥ−1(Gn,m, B1

n) = B1
n[NGn,m

]/IGn,m
B1

n .

Applying ̟ we find IGn,m
�ωm(T )(�/ωn(T )) and ̟(NGn,m

) = νn,m(T ) where νn,m(T ) :=
ωn(T )/ωm(T ). Hence

Ĥ−1(Gn,m, B1
n)�

{g(T ) ∈ �

∣

∣

∣
g(T )νn,m(T ) ∈ ( f (T ), ωn(T )/T )}

( f (T ), ωn(T )/T, ωm(T ))
.

As observed in [Gil79b, lemma 5], f (T ) and ωn(T )/T have no common zeroes. Therefore

a relation

g(T )
ωn(T )

ωm(T )
= a(T ) f (T ) + b(T )

ωn(T )

T

implies νn,m(T ) | a(T ) and we find g(T ) = c(T ) f (T )+b(T )ωm(T )/T for some c(T ) ∈ �:

thus,

Ĥ−1(Gn,m, B1
n)�

( f (T ), ωm(T )/T )

( f (T ), ωn(T )/T, ωm(T ))

�
(ωm(T )/T )

( f (T ), ωn(T )/T, ωm(T ))
.
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The evaluation map g(T )ωm(T )/T �→ g(0) gives an isomorphism

(ωm(T )/T )

(ωm(T ))
� Rχ

and we find

(ωm(T )/T )

( f (T ), ωn(T )/T, ωm(T ))
� Rχ/

(

f (0), ωn(0)
)

.

Since this last module is Rχ/ f (0) as soon as n is big enough and, by definition, f (0) =
L p(1, χ), we get our claim for q = −1. Using now that B1

n is finite and therefore has a

trivial Herbrand quotient, we know that the order of Ĥ 0(Gn,m, B1
n) is the predicted one: the

fact that it is cyclic as an Rχ -module comes from the exact sequence

0 −→ Ĥ 0(Gn,m, B1
n) −→ Ĥ 0(Gn,m, U 1

n (χ)) −→Ĥ 0(Gn,m, 〈ηn〉) −→
−→ Ĥ 1(Gn,m, B1

n) −→ 0

since Ĥ 0(Gn,m, U 1
n (χ)) is itself cyclic, as discussed in Corollary 4·3.

Finally, the fact that Gn,m is cyclic gives isomorphisms in Tate cohomology

Ĥ 2q(Gn,m, M) � Ĥ 0(Gn,m, M) for all modules M (and analogously Ĥ 2q+1(Gn,m, M) �

Ĥ−1(Gn,m, M)), so the claim for all q’s follows from our computation in the cases q = 0, −1.

We want to stress that Rχ is an unramified extension of Zp. In particular, p is a uniformizer

in Rχ and therefore the p-adic valuation of an element in Rχ is an integer: for a, b ∈ Rχ we

will write a
p= b to mean that both sides have the same valuation.

PROPOSITION 4·5. Recall that X = lim←− An: if λ = 0 then |XŴ| p= L p(1, χ)d where

d = rkZp
Rχ .

Proof. Let L0 be the maximal pro-p abelian extension of F∞ everywhere unramified and

let M0 be the maximal pro-p abelian extension of F∞ unramified outside p. We claim that

L0 = M0. This follows from the fact that for every p ⊆ OF dividing p, the local field Fp is

Qp, since p splits completely, and it therefore admits only two independent Zp-extensions

by local class field theory. In particular, every pro-p extension of F∞,p that is abelian over

Fp must be unramified, so M0 = L0. Now let Y := Gal(L∞/F∞) where L∞ is the maximal

pro-p abelian extension of F∞ everywhere unramified: then the Artin reciprocity map gives

an isomorphism X � Y (χ); also, let M∞ be the maximal pro-p abelian extension of F∞
unramified outside p and Y := Gal(M∞/F∞). A classical argument (see [Was97, chapter

13]) shows that YŴ = Gal(L0/F∞) and YŴ = Gal(M0/F∞): our claim above implies that

YŴ = YŴ. Since the actions of � and Ŵ commute with each other, this also shows XŴ =
Y (χ)Ŵ. Combine this with the following exact sequence induced by multiplication by γ0−1

where γ0 is a topological generator of Ŵ

0 −→ XŴ −→ X
γ0−1−→ X −→ XŴ −→ 0 :

since we assumed λ = 0 all the groups are finite and the sequence gives |XŴ| =
|XŴ| = |Y (χ)Ŵ|. The Main Conjecture of Iwasawa Theory, as proved by Rubin of [Lan90,

appendix], shows that the characteristic polynomial of Y (χ) is f (T ) (see the proof of

Lemma 4·4). Since Y contains no non-zero finite Ŵ-submodules (see [NSW00]), we find

Y Ŵ = 0 and the order of Y (χ)Ŵ is f (0)d p= L p(1, χ)d , as detailed in [Was97, exercise

13·12].
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COROLLARY 4·6. If λ = 0, then �n is a cyclic Rχ -module of order |L p(1, χ)|−d
p for

every n � 0.

Proof. Indeed, [Gre76, theorem 2] shows that λ = 0 if and only if XŴ = �n . The result

now follows from the proposition and from the remark of Section 3.

5. Main result

We are now in position of proving our main result. We stick to the notation introduced

in Section 3. Let n � 0 and let Qn := (UFn
/O×

n )(χ) as in Section 2: consider the exact

sequence

0 −→ O
×
n (χ) −→ UFn

(χ) −→ Qn −→ 0.

Since Cycn(χ) ⊆ O×
n (χ), it induces an exact sequence

0 −→ Bn −→
(

UFn
/Cycn

)

(χ) −→ Qn −→ 0,

and the Tate cohomology of (UFn
/Cycn)(χ) coincides with that of Bn , as discussed in Sec-

tion 2. For every m � n the cyclicity of Tate cohomology for cyclic groups induces an exact

square

Ĥ 0(Gn,m, Qn)
α[0,1] �� Ĥ−1(Gn,m, Bn)

��

Ĥ 0(Gn,m, Bn)

��

Ĥ−1(Gn,m, Bn)

��

Ĥ 0(Gn,m, Bn)

��

Ĥ−1(Gn,m, Qn).α[1,0]
��

(5·1)

Consider now the exact sequence

0 −→ Qn −→ CFn
(χ) −→ An −→ 0 : (5·2)

by Lemma 2.3, we have Ĥ q(Gn,m, Cn(χ)) � Ĥ q(Gn,m, Cn)(χ) for all q ∈ Z; global

class field theory (see section 11.3 of Tate’s paper in [CF86]) shows Ĥ q(Gn,m, Cn)(χ) �

Ĥ q+2(Gn,m, Z(χ)) = 0 because we assumed χ � 1. Therefore the long exact cohomology

sequence of (5·2) induces isomorphisms

Ĥ q(Gn,m, An)� Ĥ q+1(Gn,m, Qn) for every q ∈ Z. (5·3)

Remark. Observe that our discussion never uses the assumption χ(p) = 1. Indeed, the

maps α[0,1] and α[1,0] are defined whenever χ � 1 and their composition with the isomorph-

isms in (5·3) are indeed the same maps appearing in [KS95, proposition 2·6], where the case

χ(p) � 1 is treated. As discussed in the introduction, in that case they turned out to be iso-

morphisms if λ = 0 (see also [BNQD01], [Kuz96] and [Oza97]). We are going to see this

is not the case if χ(p) = 1. Before stating the next theorem we recall that Rχ = Zp[Im(χ)]
with �-action δ · x = χ(δ)x for all δ ∈ �: its rank over Zp is denoted by d.

THEOREM 5·1. Let F be a real abelian field such that p � [F : Q] and fix a non-trivial

character χ of � such that χ(p) = 1. Assume that λ = 0 and let n � m � 0 be big enough.

Then the kernels Ker(α[0,1]), Ker(α[1,0]) and the cokernels Coker(α[0,1]), Coker(α[1,0]) of the

maps introduced in (5·1) are cyclic Rχ -modules of order |L p(1, χ)|−d
p .
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Proof. We start by determining Ker(α[0,1]). Choose m big enough so that |Am+k | = |Am |
for all k � 0 and n � m big enough so that Ĥ q(Gn,m, An) = An . As [Gre76, remark of

section 2, proposition 2] shows that λ = 0 implies Am = Ker(jm,n) if n is sufficiently large.

Combining Proposition 2·2 with (5·3), this gives an injection (here and in the rest of the

proof we make constant use of Lemma 2.3)

Ĥ 0(Gn,m, Qn) Ĥ−1(Gn,m, O×
n (χ)). (5·4)

Consider now the following commutative diagram, whose row and column are exact and

where the injectivity of the vertical arrow in the middle follows from Lemma 3·2:

Ĥ−1(Gn,m, Bn)

Ĥ 0(Gn,m, Qn)
� � ��

α[0,1]
���������������

Ĥ−1(Gn,m, O×
n (χ))

��

�� Ĥ−1(Gn,m, Un(χ)).

Ĥ−1(Gn,m, Cycn(χ))
��

��
ψ

�����������������

(5·5)

An easy diagram chase shows that Ker(α[0,1])� Ker(ψ). In order to study Ker(ψ), observe

that ψ appears in the sequence

0 −→ Ĥ 0
(

Gn,m, B1
n

)

−→ Ĥ−1(Gn,m, 〈ηn〉)
ψ−→ Ĥ−1

(

Gn,m, U 1
n (χ)

)

, (5·6)

since Ĥ−1(Gn,m, Cycn(χ)) = Ĥ−1(Gn,m, 〈ηn〉) by Lemma 3·1 and Ĥ−1(Gn,m, Un(χ)) =
Ĥ−1(Gn,m, U 1

n (χ)) by Corollary 4·3. Morever, again by Corollary 4·3, Ĥ 0(Gn,m, U 1
n (χ)) =

0 and (5·6) is exact, thus giving

Ker(α[0,1])� Ĥ 0(Gn,m, B1
n)� Rχ/L p(1, χ), (5·7)

the last isomorphism being Lemma 4·4.

Having determined Ker(α[0,1]), the exactness of (5·1) together with Corollary 4·3 (and

Lemma 4·4) show immediately that

Coker(α[1,0])� Ĥ 0(Gn,m, B0)� Rχ/L p(1, χ). (5·8)

Since the orders of An and Bn coincide for n � 0, and since these groups are isomorphic to

Ĥ q(Gn,m, Qn) and Ĥ q(Gn,m, Bn) respectively (see (3·4) and (5·3)), the equalities of orders

|Ker(α[0,1])| = |Coker(α[0,1])| and |Ker(α[1,0])| = |Coker(α[1,0])|

hold. By (5·7) and (5·8), the four groups have the same order, equal to |L p(1, χ)|−d
p .

We are left with the structure of Ker(α[1,0]) and Coker(α[0,1]). The map α[1,0] is the com-

position

Ĥ−1(Gn,m, Qn)
β̃ ��

α[1,0]

��
Ĥ 0(Gn,m, O×

n (χ)) �� Ĥ 0(Gn,m, Bn) (5·9)

and Ker(α[1,0]) ⊇ Ker(β̃) = �n , the last identification coming from Lemma 2·1 as dis-

cussed in the remark of Section 3. Combining Corollary 4·6 with the computation of the

order of Ker(α[1,0]) performed above, the inclusion cannot be strict, and Ker(α[1,0]) is cyclic
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over Rχ of the prescribed order. Looking at Ker(α[1,0]) and at Coker(α[0,1]) as subgroups of

Ĥ−1(Gn,m, Bn) as in (5·1), and knowing the structure of this last module by Lemma 4·3,

shows that Coker(α[0,1]) is cyclic, too.

Now we can single out from the proof a precise description of the kernels of the maps α[1,0]
and α[0,1] when seen as maps

α[i, j] : An −→ Bn,

by combining (3·4) and (5·3). Observe that, by Lemma (3·1), there is an isomorphism

Ĥ−1(Gn,m, Cycn(χ)) � Ĥ−1(Gn,m, 〈ηn〉), while Ĥ−1(Gn,m, 〈ηn〉) � Ĥ−1(Gn,m, IGn
) �

Ĥ 0(Gn,m, Rχ ) by (3·2) and (3·3). It is clear that these isomorphisms are not only Gn,m-linear,

but also Gn-linear and therefore that Ĥ−1(Gn,m, Cycn(χ)) has trivial Gn-action.

COROLLARY 5·2. With the same hypothesis as in the theorem,

Ker(α[0,1]) = Ker(α[1,0]) = �n,

where �n is the subgroup generated in An by the class of any prime of Fn above p, as

discussed in the remark of Section 3.

Proof. While proving the theorem we found Ker(α[1,0]) = �n , and we now focus on

Ker(α[0,1]). Looking again at (5·5) we find Ker(α[0,1]) ⊆ Im(Ĥ−1(Gn,m, Cycn(χ))) ⊆
Ĥ−1(Gn,m, O×

n (χ))Gn : since the isomorphisms Ĥ 0(Gn,m, Qn) � An are Gn-linear, we get

Ker(α[0,1]) ⊆ AGn

n . As in the proof of Corollary (4·6), the assumption λ = 0 is equivalent to

�n = XŴ and XŴ = AGn

n if n is big enough; putting all together, we have Ker(α[0,1]) ⊆ �n .

Since they have the same order thanks to Corollary 4·6 together with Theorem 5·1, the in-

clusion turns into an equality.

Remark. As the above Corollary shows, there are indeed two maps α[0,1] and α[1,0] sitting

in an exact sequence

0 −→ �n −→ An

α→ Bn −→ B0/η0 −→ 0,

where α can be either of them. This is the same as in the non-split case, where both α[0,1]
and α[1,0] give an isomorphism An � Bn for n � 0 if λ = 0 (see [KS95]).
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