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On Jacobi sums in Q((,)
by

BrUNO ANGLES (Caen) and FiLippo A. E. Nuccio (Roma)

Let p be a prime number, p > 5. Iwasawa has shown that the p-adic
properties of Jacobi sums for Q((,) are linked to Vandiver’s Conjecture
(see [0]). In this paper, we follow Iwasawa’s ideas and study the p-adic
properties of the subgroup J of Q((,)* generated by Jacobi sums.

Let A be the p-Sylow subgroup of the class group of Q((,). If E denotes
the group of units of Q((,), then if Vandiver’s Conjecture is true for p, by
Kummer theory and class field theory, there is a canonical surjective map

Gal(Q(&,)(VE)/Q(¢) — A~ /pA™.

Note that J is, for the “minus” part, the analogue of the group of cyclotomic
units. We introduce a submodule W of Q((,)* which was already considered
by Iwasawa [6]. This module can be thought of, for the minus part, as the
analogue of the group of units. We observe that J C W and if the Iwasawa—
Leopoldt Conjecture is true for p then W (Q((p)*)P = J(Q(¢p)*)P. We prove
that if pA~ = {0} then (Corollary there is a canonical surjective map

Gal(Q(() (VW) /Q(G)) — AT /pAT.

The last part of our paper is devoted to the study of the jacobian of the
Fermat curve XP 4+ YP = 1 over Fy, where ¢ is a prime number, ¢ # p.
It is well-known that Jacobi sums play an important role in the study of
that jacobian. Following ideas developed by Greenberg [4], we prove that
Vandiver’s Conjecture is equivalent to some properties of that jacobian (for
a precise statement see Corollary .

1. Notations. Let p be a prime number, p > 5. Let , € p, \ {1}, and
let L = Q((p). Set O = Z[(p] and E = O*. Let A = Gal(L/Q) and let
A = Hom(A,Zy). Let T be the group of fractional ideals of L which are
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prime to p, and let P be the group of principal ideals in Z. Let A be the
p-Sylow subgroup of the ideal class group of L.

Set m=(, — 1, K = Qu((p), U =1+ 7?Zy[(y)]. Observe that if A € P,
then there exists o € L* N U such that A = aO. If H is a subgroup of U,
we will denote the closure of H in U by H. Let w € A be the Teichmiiller
character, i.e.

Voe A, o(¢) = 1‘;’(0).
For p € AA, we set
1 _
€=-"7 > N (6) € Zy[A.
p deA
If M is a Z,[A]-module, for p € A, we set
M(p) = e,M.

For ¢ € A, 9 odd, recall that

1224
By = me/J(a).
pa:l
Set
15
0=->» ao, €Q|A],
p; Q[4]

where o, € A is such that 0,((,) = (. Observe that we have the following
equality in C[A]:

N
0= 5 + Z Blvwﬂed,,
PeA, Y odd

where N = 5.4 6.
If M is a Z[A]-module, we set

M- ={meM:o_1(m)=-m}, M"={meM:o_1(m)=m}.
If M is an abelian group of finite type, we set
Mlp] ={m e M :pm =0}, d,M = dimg, M/pM.
2. Background on Jacobi sums. Let CI(L) be the ideal class group

of L. Then CI(L) ~Z/P. Note that we have a natural Z][A]-morphism (see
[6, pp. 102-103])

¢ (Anng ) CI(L))™ — Homg A (CI(L), ET/(ET)?).

For the convenience of the reader, we recall the construction of ¢. Let x €
(Anngz A CI(L))~ and A € Z. We have A® = 7,0, where v, € L* N U. Now,

Yo = 5a7(;1
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for some £, € ETNU. One can prove that we obtain a well-defined morphism
of Z[A]-modules ¢(x) : CI(L) — ET/(E*)?, class of A + class of &,. In this
section, we will study the kernel of the morphism ¢.

Let W be the set of elements f € Homys)(Z, L*) such that:

o f(I)CU
e there exists 3(f) € Z[A] such that f(aO) = al) foralla € L* NU.

One can prove that if f € W then §(f) is unique, the map 3 : W — Z[A4]
is an injective Z[A]-morphism and 3(W) C Annga(CI(L)) (see [2]). If B
denotes the group of Hecke characters of type (Ag) that have values in Q((p)
(see [6]), then one can prove that B is isomorphic to W.

LEMMA 2.1. Ker¢ = g(W™).

Proof. We just prove the inclusion Ker¢ C S(W™). Let = € Ker ¢. Let
A € Z. Then there exists a unique v, € L* N U such that 7,7y, = 1 and

A* =~,0.

Let f:Z — L*, A+ 7, It is not difficult to see that f € Homg)(Z, L*)
and f(Z) C U. Now, if « € L* N U, we have

f(aO) = a”*u

for some u € E. Since x € Z[A]™ and «, f(aO) € U, we must have u = 1.
Therefore f € W~ and z = 3(f). =

Now, we recall some basic properties of Gauss and Jacobi sums (we refer
the reader to [12], Sec. 6.1]).

Let P be a prime ideal in Z and let £ be the prime number such that
¢ e P. We fix (s € e \ {1}. Set Fp = O/P. Let xp : F}, — pp, be such that

Vo e Fh,  xp(a) = al=VP/P (mod P),
where NP = |O/P)|. For a € Z/pZ, we set

Z XP rJFP/]FZ( )'

acFp
We also set 7(P) = Tl(P). For a,b € Z/pZ, we set
Jan(P) == > xba)xp(1 - a).
a€cFp

Then:
e if a+b=0 (mod p), we have:

(i) if @ # 0 (mod p), then j, ,(P) =1,
(ii) if a = 0 (mod p), then j,4(P) =2 — NP,



202 B. Angles and F. A. E. Nuccio
e if a+b# 0 (mod p), we have
Ta(P)7(P)

(P) =
JadlP) = P
Observe that 7(P) =1 (mod 7), and therefore (see [5, Theorem 1])
Va,b € Z/pZ,  jap(P) € U.

Let {2 be the compositum of the fields Q({;) where ¢ runs through the
prime numbers distinct from p. The map P +— 7(P) induces by linearity a
Z[A]-morphism

T:T — 2()"
Let G be the Z[A]-submodule of Homgz | (Z, £2(¢,)*) generated by 7. We set

j = Q N HOIHZ[A](I, L*>

Let S be the Stickelberger ideal of L, i.e. S = Z[A]0 N Z[A]. Then one can
prove the following facts (see [2]):

e JCW,
e the map 3 : W — Z[4] induces an isomorphism J ~ S of Z[A]-
modules.

LEMMA 2.2. Let N' € Homga (I, L*) be the ideal norm map. Then, as
a Z-module,
(p—1)/2
TJ=NZo @ jinZ.
n=1

Proof. Recall that, for 1 <n <p—2 and a prime P in Z, we have

. (P, (P
iiaP)= = 3 xpla)xp(t - a) = D)
ocFp Tn—i—l( )
Thus, for 1 <n <p-—2,
jl,n = 7'1+U”_01+" = T s
Tn+1

where 77¢ = 7, for a € F),. Observe that
VaeF,, 7TaT_a=N.

Thus N € J. Since J ~ S, J is a Z-module of rank (p + 1)/2. It is not
difficult to show that (see [5, Lemma 2])

(p—1)/2
J =1L ® @ T_oT7.
a=1

Observe also that, for 2 < n < p — 2, we have

jl,p—n = jl,n—1~
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Let V be the Z-submodule of J generated by N and the ji,, 1 < n <
(p—1)/2. Then j1, € V for 1 <n < p — 2. Furthermore,

jlm, = 7
n=1 N
Therefore 77 € V. Since 717! = N, 7171 € V. Now, let 2 <r < (p—1)/2
and assume that we have proved that T_(T_l)TT*1 € V. We have

-1
1 Nt

Tr NT__TI .

Jlp—1=

Thus

-—1 -1 r -—1 r—1
Ty = J1p1Tl—rT and 7_,7" = JraT——1)T -

Hence 7_,.7" € V and the lemma follows. =

LEMMA 2.3. Let £ be a prime number, £ # p. Let P be a prime ideal of
O above £ and let a € {1,...,p —2}. Then Q(j1,.(P)) = L if and only if
¢=1 (mod p) and a®> +a+1# 0 (mod p) if p=1 (mod 3).

Proof. Since ji o(P) = 1 (mod 72) and j1,4(P)j1,.(P)°-t = ¢/ where f
is the order of ¢ in (Z/pZ)*, we have

Voe A,  j1a(P)” =j1a(P) & j1a(P)70 = ji1a(P)O.
Recall that
VU & A, jl,a(P)UO — jl,a(P)O RN P(ofl)(1+aa701+a)9 — O

Since j1,4(P)7¢ = j1,4(P), we can assume ¢ = 1 (mod p). Let 0 € A. We
have to consider the following equation in C[A]:

(0 —=1)(1+ 04— 0144)0 = 0.
This is equivalent to
V€ A, podd,  ((o) — 1)(1 4 ¢(a) — ¥(1 +a)) = 0.
Assume that w3(c) # 1. Then
1+ w(a) —w3(1+a)=0.

This implies a? + a = 0 (mod p), which is a contradiction. Thus w?(c) = 1.
Suppose that o # 1. We get 1 + w(a) = w(1 + a), which is equivalent to

a’>+a+1=0 (mod p).

Conversely, one can see that if p =1 (mod 3), a®> +a+ 1 =0 (mod p), and
w3(0) =1, then

Vip € A, odd,  ((0) = 1)(1+(a) — (1 +a)) = 0.

The lemma follows. =
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For z € Z,, let [x] € {0,...,p— 1} be such that z = [z] (mod p). We set

(H N e g

LEMMA 2.4.
(a) Let v € A\, Y # w, Y odd. Then

p—2
ey (2(1 Yo — am){n—l]) € Ziey.
n=1
(b) We have
1 A2
’ €w (;(1 + o — UHn)[n_l]) € Zpey-

Proof. (a) Write ¢ = w¥, k odd, k € {3,...,p — 2}. We have

p—2 p—1 nk _ n)k
S (14 g(n) — g +n)pl = 3 2F n(” " — & (mod p).
n=2 n=1

This implies (a).

(b) We have
Va € F;,  w(a) =aP (mod p?)
Thus
p—1p—1
150 o) — ol = = 350 T b
n=1k=1 p k kl)
and we get
152
) Z(l +w(n) — w1 +n))[n 1= -1 (mod p).
n=1

This implies (b). =
LEMMA 2.5. Let ¢ be a prime number, { # p. Let Vy be the Z[A]-
submodule of L*/(L*)P generated by {f(P): f € J} where P is some prime
of T above L. Let ) € A, ¢ odd and v # w. Then
Ve(y) = Fpeyn(P).
Proof. Let E = L(({;). Then
L* E*
(lﬁ)p(dﬂ — (Eﬁj;(w)'

Now, in %W)? we have V;(¢) = Fpey7(P). It remains to apply Lemma
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Finally, we record the following lemma:

LEMMA 2.6. We have

N

—
@ 2 zlan) =207 1 T (04 ) — (1 m)n ).
YEA, 1 odd =1
Furthermore (J~ : Z[Aln) # 0 (mod p).
Proof. Set 7~ =(1—0_1)J C J~. Then (see [12, Sec. 6.4]):
(T~ J7) =20-3/2,
Now, by the same kind of argument as in [I2] Sec. 6.4], we get

- 1 p—2 B
Gz =2 T (046 v+ m)h).
YeEA, podd =1
It remains to apply Lemma [2.4] to conclude the proof. =

3. Jacobi sums and the ideal class group of Q((,). Recall that
the Iwasawa-Leopoldt Conjecture ([9, p. 258]) asserts that A is a cyclic
Zp|A]-module. This conjecture is equivalent to:

Ve A, ¢odd, ¥ £ w,  A®W) = Zy/Byy1Zy.

It is well-known (see [12, Theorem 10.9]) that

Ve A godd, ¢ #£w, AWl = {0} = A(W) =~ Zy/Byy1Zy.
In this section, we will study the links between Jacobi sums and the structure
of A™. R

We fix ¢ € A, 1 odd and 9 # w. We set

m(Y) = vp(Byy-1).
Recall that, by [12, Sec. 13.6], we have |[A(y)| = p™¥). Let p*¥) be the
exponent of the group A(v)). Then
By 41 =0 (mod pF.
LEMMA 3.1. Let P be a prime ideal in I above a prime number €. Then
epn(P)O =0 inIT/I? < (L) #1 or By y-1 =0 (mod p).

Proof. First note that, if p € A, then epP = 0 in Z/ZP if and only if

p(¢) # 1. By the Stickelberger Theorem, we have
p—2

n(P)O = (2(1 t o — aHn)[n*l]) (1—0_1)0P.

n=1

Recall that e;0 = By ;-1€4. The lemma follows. m
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LEMMA 3.2. Let f € W~. Then f lies in WP if and only if f(P) € (L*)P
for all prime ideals P € L.

Proof. Let f € W™ be such that f(P) € (L*)P for all prime ideals P € 7.
Let A € Z. Then there exists 7, € L*NU such that 7,7, = 1 and f(A) = 14.
Observe that 8(f) € p(Z[A])~. Let g : T — L*, A+ ~y,. Then one can verify
that f=¢P andg e W™ . n

Let m > 1 be such that p™ > |A|. Set n = |CI(L)|/|A|. Let en(¢p) €
Z[A]~ be such that

em (V) = ey (mod p™).
Set
By = 20p e () € Z[A]"

Since npF¥e,, (v) € (Anng A CI(L))~, by Lemmaﬂ there exists a unique
element f, € W~ such that 3(fy) = By. Recall that

(Anng (4] A) () = PP Zey.
Therefore, for 0 < k < m, (V::Vﬁ(d)) is cyclic of order p* generated by the
image of f,. We set
W=A{f(A): AeZ, feW}, J={f(A):AcZ feJ}

Observe that J is a Z[A]-submodule of W, and it is called the module of
Jacobi sums of Q((p). Note that, by Lemma and the fact that %(1&) #
{0} (recall that 1 is odd and 1) # w), we have

W (L*)P

THEOREM 3.3. The map fy induces an isomorphism of groups

WL
Aw) = T ),

Proof. First observe that m > k(1)) + 1. Let P be a prime in Z. Then
fo(P)O = P%.

Let p € A\, p # 1. Then

em(p)em (1) =0 (mod p™).
Therefore, there exists v € L* NU such that:

P
pU-o nem(en(®) _ ( o ) 0
o-1(7)
But (1 —o0_1)em(¥) = 2em,(¢). Thus, there exists a € L*NU, ao_1(a) = 1,

and
PRI+
o )

fo(P)em? =
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Therefore, e, fy,(Z) = 0 in L*/(L*)pkal. It is clear that f;, induces a mor-
phism
7 L*
(I)TPW) - W(w)-

(L*)Lﬁ(w) . Then,

by the above remark, we get f,(P) =0 in L*/(L*)pk(w). Thus, there exists
v € L* N U such that

Now, let P be a prime in Z such that ey fy,(P) = 0 in

PPy = vpk(w)O.
Thus P?"em(¥) = v, This implies
) 7z
ewP =0 m W(w)

Thus our map is injective. Now, observe that the image of the map induced

wypk(¥)
by fy is (Li)%(w) and that A(y) ~ (Z)PL’"P(Q/)) The theorem follows. m

Recall that
= () e

Set
p—2
z=(1—-0_1 Z (1+ 0, —o110)[n Y] € Z[A]".
n=1

We have ((n) = z6.

COROLLARY 3.4.

(1) The map n induces an isomorphism of groups
J(Ly"
(L*)pm(w)
(2) J((LL:)) (1) # {0} if and only if A(v) is Zy-cyclic.
Proof. (1) Let P be a prime in Z. Then one can show that

Fy () = p(py2re"en @),

The first assertion follows from Theorem [3.3]
(2) Note that A(¢) is Z,-cyclic & m(¢) = k(¢). Thus, if A(¢) is Z,-
cyclic, then

A(Y) ~ (¥).

J(L*)P WL
(£ ) = e () # {0

)
By the proof of (1), if k(1)) < m(¢)) and if P is a prime in Z, then n(P)cm¥)
€ (L*)P. Therefore, we get (2). m
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4. The p-adic behavior of Jacobi sums. Let M be a subgroup of
L*/(L*)P. We say that M is unramified if L(¥/M)/L is an unramified ex-
tension. Note that Kummer’s Lemma asserts that ([I12, Theorem 5.36])

~ E
Vp e A, peven, p#1, ﬁ(p) is unramified = By ,,-1 =0 (mod p).

It is natural to ask if this implication is in fact an equivalence (see [1], [3]).
We will say that the converse of Kummer’s Lemma is true for the character
p if

E

EP
In this section, we will study this question with the help of Jacobi sums.

Let F/L be the maximal abelian p-extension of L which is unramified

outside p. Set X = Gal(F/L). We have an exact sequence of Z,[A]-modules
([12, Corollary 13.6])

(p) is unramified < By ,,-1 =0 (mod p).

0—-U/E—X— A—0.

Let p € A and observe that:
o if p = 1,w then X(p) ~ Z,,
e if p is even, p # 1, then &X(p) ~ Torz, X(p),
e if p is odd, p # w, then X(p) ~ Z, ® Torz, X(p).

LEMMA 4.1. Let ) € A, ¢ odd, 1 # w. Then
dy, Torz, X (¢) = dpA(wyp™").

Proof. This is a consequence of the proof of Leopoldt’s reflection theorem
([12, Theorem 10.9]). For the convenience of the reader, we give the proof.

Let H be the Galois group of the maximal abelian extension of L which
is unramified outside p and of exponent p. Then H is a Z,[A]-module and
we have:

e H(1) ~ T, and corresponds to L((y2)/L,

e H(w) ~IF, and corresponds to L({/p)/L,

e if p is even, p # 1, then d,H (p) = d,Torz, X (p),

e if p is odd, p # w, then d,H(p) = 1 + d,Torz, X (p).

Let V' be the Z[A]-submodule of L*/(L*)P which corresponds to H, i.e.

H = Gal(L(¥/V)/L). Let M be the Z[A]-submodule of L*/(L*)? generated
by E and 1 — (. We have an exact sequence

0—-M—V — Alp] — 0.
Let ¢ € AA, 1 odd, 1 # w. By Kummer theory we have
1+ dp, Torz, X () = d,V (wp™ ),
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and, by the above exact sequence,
dpV (™) =1+ dyA(wyp™).
The lemma follows. =

LEMMA 4.2. Let p € A, p even and p # 1. If %(p) is ramified then
dyA(p) = dyA(wp™).
Proof. We keep the notations of the proof of Lemma Let V' C V
correspond via Kummer theory to A/pA. Then
unr A -1
V(M—ﬂ@ﬂ)

But £ (p) is ramified if and only if V' (p) — A[p](p). Now recall that
dpA(p) < dpA(wp™'). The lemma follows. m

LEMMA 4.3. There exists a unique Z[A]-morphism ¢ : K* — Zp[A] such
that
Vo e K*,  ¢(x)(p = Log,().

Imyp = @ pLpe, ® @ Lpey.

p=lw p#Flw
Proof. Let A\ € K* be such that \A»~! = —p. Then

Furthermore,

K* =N x iy X iy x U,
Recall that:
e the kernel of Log, on K* is equal to N x Hp—1 X fhp,
e Log,(U) = mZy ().
For p € A\, set
p—1
T(p) = Zp(a)Cp € Zp[Gp)-

a=1
Then e,(, = 7(p~'). But recall that Z,[(,] = Zy[A]¢,. Thus
epLp|Cp) = Zpr(p~1).
If p=w”, ke{0,...,p— 2}, we have
_ k
vp(T(p™h)) = p—1
Therefore

7T2Zp[<p] = @ prT(P_l) ® @ ZpT(P_l)-
p=lw pAlw
The lemma follows. =
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Let P be a prime in Z. We fix a generator rp € F} such that

xp(rp) = Gp.
For z € Fy, let Ind(P,z) € {0,..., NP — 2} be such that
_ TI;ld(P,x).

We recall the following theorem (see also [10] for a statement similar but
weaker than part (2) below):

THEOREM 4.4.
(1) (1= ) = 3 0c 3 ptt peven —® = D)7 Ly(L, pey
(2) Let i € A, 9 odd, ¢ # w. Write ) =wF, k€ {2,...,p—2}. Then

epe(n(P)) = 2kInd <P, j]i < 11__C§>a“> ey (mod p).

Proof. (1) Let p € A, p even, p # 1. By [12, Theorem 5.18], we have
Lp(la p)T(p_l) = 7(p - 1)69 Logp(l - Cp)
Thus the first assertion follows.

(2) Let ¥ € AA, Y odd, ¥ # w. By a beautiful result of Uehara ([11]
Theorem 1]), we have

p—1 1— Cp—a
ey Log,(n(P)) = 2k Ind <P, H< =, )

ak—l

)7t mod )

a=1

This implies the second assertion. m
THEOREM 4.5. Let 9 € A\, ¥ # w, Y odd. We have exact sequences
0 — Torz, X(4) — A(¥) — W(@)/U"" (1) =0,
0 — Torz, X () — A(¥) — T(¥)/U""" (¥) — 0.

Proof. This is a consequence of the method developed by Iwasawa [5].
We briefly recall it.
Let f e W. For n > 2, set P, = {aO : a =1 (mod 7n™)}. Observe that

f(Pn) C1+7"Zy[Cpl-
Let

X =lmZ/Py.

If F is the maximal abelian extension of L which is unramified outside D,
then, by class field theory,

X ~ Gal(F/L).
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By [12, Theorem 13.4], the natural surjective map X — X has a finite kernel
of order prime to p. Thus f induces a map

f:xX—=U.
Furthermore, B B
fU)=U"D ¢ f(x).
Now let ¢ € AA, 1 odd, 1 # w. We have a map
FiXW) = UW).
But
X () ~ Ly @ Torg, X(¢) and U(y) ~ Z.
Thus, if e, 3(f) # 0, we get
Ker(f : X(9) — U(w)) = Torz, X(1).
Therefore, if e, 3(f) # 0, we get the following exact sequence induced by f:
0 — Torz, X(v) — A(w) — F(X)(¥)/U" () = 0.

It remains to apply this construction to fy and 1 to get the desired exact
sequences. m

COROLLARY 4.6.

(1) Let € A, ¥ odd, 1 # w. Then

dpA(Yp) =14+ dpA(wy™") & Bjy-1 =0 (mod p) and W(¢) =U(¥).
(2) Let p € A, p even and p # 1. Assume that By p,-1 =0 (mod p) and

that W (wp™!) = U(wp™'). Then the converse of Kummer’s Lemma is true
for the character p.

Proof. (1) We apply Theorem We identify Torz, X () with its image
in A(¢). We can write A(¢)) = B @ C, where C is cyclic of order p*(¥) and
B C Torg, X(¢). Now,

(C': C'NTorz, X(¥)) = (W () : UP (1))

It remains to apply Lemma [£.1] to get the desired result.

(2) We apply the first assertion and Lemma 4.1/ to deduce that d,A(p) =
dpA(wp™t) — 1. It remains to apply Lemma .

We set

k(w(

Wi ={a e W:aeUP}.
Let ¢ € AA, ¥ odd, ¥ # w. We assume that By ;-1 =0 (mod p). Write
AW) =Z/p"2& - S L/p"Z,
where t = d,A() and 1 <e; <--- < e = k(1)). Set
n() =[Hie{l,....t} : e = k(¥)}].
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COROLLARY 4.7. We have
n() — 1 < dimg, W™ (L7 /(L) < n(p).
Furthermore,
dimg, W (L*)P /(L) = n(y) < W() #U®).
Proof. By Theorems and we have
WLy L = Ker(AWw) — W(w) /U ().
The corollary follows. =

COROLLARY 4.8. Assume that pA~ = {0}. Then we have an isomor-
phism of groups

Gal(L(VWunr) /L) ~ At /pAT.

Proof. This is a consequence of Kummer theory, Corollary[4.7]and Corol-
lary [4.6] =

Note that the above results lead to the following problem (which is a
restatement of the converse of Kummer’s Lemma): do we have o(W ) =

(Im )~ 7 Observe that e,o(W ) = e,(Imy)~, and since K4(Z) = {0}, we
have A(w™2) = {0} (see [7]) and therefore e sp(W ) = e 3(Im¢)~.

5. Remarks on the jacobian of the Fermat curve over a finite
field. First we fix some notations and recall some basic facts about global
function fields.

Let F, be a finite field having ¢ elements. Let ¢ be the characteris-
tic of Fy, £ # p. Let F, be a fixed algebraic closure of F, and let I/qu =

Un>1, 20 (modp) Far C F,. Let k/F, be a global function field such that F,
is algebraically closed in k. We set:

Dy the group of divisors of k,

DY: the group of divisors of degree zero of k,
Py: the group of principal divisors of k,

Ji: the jacobian of k; note that

vn>1,  Jp(Fgn) = Dy i/ Pk,

gr: the genus of k,
Li(Z) € Z|Z]: the numerator of the zeta function of k; we recall that

Lz
-2 -az - L 0797

v placeof k

furthermore degy Ly(Z) = 2gi, and Ly (1) = |J(Fy)|,
Cyp(Fgn) = Jp(Fgn) @z Zp,
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. Jka = d,C}, (E); observe that there exists an integer m # 0 (mod p)
such that Cy(Fy) = Ci(Fgm).

Write
295
Ly(Z) =[] - a:2).
i=1
For simplicity, we assume that v,(c; —1) > 0 for i = 1,...,2g;. In this case,

Cr(Fy) = Cu(Fy).
Set Py(Z) = [12%(Z — (o — 1)). Let ~ be the Frobenius of F,, and set
Clk) = Cu(F ).
Let Coo(k) = U, >0 Cn(k), and set
My, = Hom(Qp/Zyp, Cos (K)).

Then Mj, is isomorphic to the p-adic Tate module of Jy. Set A = Z,[[Z]]
where Z corresponds to v — 1. Then it is well-known that:

M, is a A-module of finite type and of torsion,

as a Zy-module, M, is isomorphic to Z%gk,

My, Jwn My, ~ Cp(k), where w, = (1 + Z)P" —1,

CharA Mk = Pk(Z)/l,

the action of Z on My, is semisimple, i.e. the minimal polynomial of
the action of Z on M} has only simple roots.

Now, let £ be a prime number, £ # p. We fix a prime P of O above ¢ and
we view O/ P as a subfield of Fy, thus F, = O/P C F,. We identify ¢, with its
image in ;. Let X be an indeterminate over F,. We set k = F;(X,Y’) where
XP+YP =1, and we set T = XP. For a,b € Z, let 7, € Gal(F/k/Fy(T)) be
such that

Tap(X) = X and  74(Y) = G

Let a € {1,...,p—2}. Let H, be the subgroup of Gal(IF/k/F,(T)) generated
by T1,[—a—1] Set
E, = Fy(T, XY).

If weset U =T and V = XY, then VP — U(1 — U)* = 0 and of course
E,=F,U,V). We set

E=F.E,, F =Ty,
and observe that IfF; = Hf;. It is clear that FHe = E. Finally, we set
G = Gal(E/Fy(T)).
Note that gp = (p — 1)/2.
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LEMMA 5.1. We have

Lp(Z) = [T = jra(P)72).

oc€EA
Proof. Let x € G be such that x(g) = Cp_l, where g € G is such that
g(XY9) = (,X Y. Note that
Lp(Z) =[] L(Zx°), where L(Zx)= ]  (1—x(w)z)™
ocA v place of Fy(T)

Since 2g, = p — 1, we get deg, L(Z, x) = 1.
For b € F, \ {0,1}, we denote the Frobenius of T'— b in E/F,(T) by
Frob,. We have

Froby(XY?) = (b(1 — b)®)a- /P xye,
But

L(Zx)=1+( > x(Froby))X (mod X?).
beF,\{0,1}

Thus

L(Z,X):1+( 3 X(F‘robb)>X.
bEF,\{0,1}

But we can write

p—1

Jra(P) ==Y NG,

1=0

where N; = [{a € F,\{0,1} : (a(1—a)®)a=1/P = ¢, " (mod P)}|. Therefore
j1a(P)=—=Y_  x(Froby).
belF,\{0,1}

The lemma follows. =

THEOREM 5.2. Let n be the smallest integer (if it exists) such that 3 <
n<p-—2,nis odd and e,njiq(P) ¢ UP. Then

Ju(F ) @5 7, ~ (Z/pZ)™.
If such an integer does not exist then:

(1) dpJi* =p—1,
(2) we have

Jo(F ) e @y 2, ~ (Z/pZ)P~" < P71 £ 1 (mod p?).

Proof. The proof is based on ideas developed by Greenberg [4]. Write
H = H,. Let Py be the prime of E¥ above T', P; the prime of E above T'— 1
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and Py, the prime of E above 1/T. Recall that in Dg we have
p(FPo — Pxo) = (T),
p(Pr — Po) = (T' = 1),
Py — P +a(P1 — Px) = (XY?).

Thus, by [4, Sec. 2],
Jg(F,)¢ ~ Z/pZ,

and Jg(F,)¢ is generated by the class of Py — Ps,. Observe also that F/FE
is unramified and cyclic of order p. Let us start with the exact sequence

0—>IFZ—>F*—>PF—>O.

We get
Pl [Py ~ Z/pZ,

and P{;{ /Pr is generated by the image of Py — Py, in Dp. In particular,
PH Py ~ Jp(F,)C.
Note that we also have
0— H'(H,Pr) — H*(H,F}) — H*(H,F*).
But F'/E is unramified and cyclic, therefore every element of Fy is a norm
in the extension F//E. Thus
HY(H, Pr) ~ Z/pZ.
Now, we look at the exact sequence
0 — Pr — D% — Jp(F,) — 0.
Since F'/E is unramified,
HY(H, DY) = {0}.
Therefore, we have obtained the following exact sequence:
0 — Jp(F)¢ = Je(F,) — Jr(F)" — 2/pZ — 0.
Now, it is not difficult to deduce that, for all n > 1, we have the exact
sequence
0 — Z/pZ — Jg(Fgn) — Jp(Fgp)? — Z/pZ — 0.
From this, we get the following exact sequence of Z,[G]-modules and A-

modules:
0— Mg — ME - 7/p7. — 0.

Recall that in our situation, by Lemma [5.1
Pp(Z) = [](Z = (j1a(P)7 = 1)).
oc€EA

Furthermore the actions of G and Z commute on M g . Now, we have:
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e CharyMH = CharyMg = Pg(2)A,

o MH ~ Zg_l as Zp-modules,

o MH Jw, ~ C,(F)H.
Observe that s

Co(F)H = J.(Fp ) @7 Z,.
Note also that the minimal polynomial of the action of Z on M I{EI is
1 (j1a(P) — 1,Qp: 2) i= G(Z),
Set N =} 5c; 0. Then one can see that
NMg = NM{ = {o0}.
Thus M¥ is a Z,[G]/NZ,[G]-module. Now, we identify Z,[G]/NZ,[G] with
Zyp[Cp). Since ME ~ 757" there exists m € ME such that
Mﬁ =~ Zp[Cpl-m,

i.e. MH is a free Zp[(p]-module of rank one. Therefore there exists an element
x € Zp|Cp] such that Zm = xm. Now set

D(2)=[][(Zz-2") e A
oc€eA
Then D(Z)ME = {0}. Therefore G(Z) divides D(Z) in A. Thus there exists
o € A such that
27 = j14(P) — L.
But
Co(F)" =~ MF JZMf ~ Zp Cp) /2L [Gp)-

Therefore, we get

Tu(Fe ) @7 Zy = Z[Gp) /(1,0 (P) = 1)Zp G-
Recall that ji o(P) =1 (mod 72). Thus

p(J1,a(P) = 1) = vp(Log,(j1,4(P)))-

Now

. 1 ,

Log,(j1a(P)) = 5 fLog,() + Y ey Log,(jra(P)),
YeA, 1 odd

where f is the order of ¢ in (Z/pZ)*. Let ¢ € A, ¢ = w", n odd. If
€y Logp(jlja(P)) # 0, then
. n
vp(ey Logy,(j1,0(P))) =

p—1

(mod Z),

and furthermore

. n .
vp(ey Log,, (j1,a(P))) > o1 epjia(P) € UP.
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Note also that

vp(€w Log,(j1,0(P))) > p—

The theorem follows. =

Observe that the proof of the above theorem implies that we have an
isomorphism of Z[G]-modules

T, (Fy) 2 Ju(Fe ).

COROLLARY 5.3. Letn € {3,...,p—2}, n odd. Let a € {1,...,p— 2}
be such that 1 +a"™ — (1 + a)” # 0 (mod p). The following assertions are
equivalent:

(1) A(w'™™) = {0}, -

(2) there exists a prime number ¢ # p such that d,Jg, = n, where

E,=FyU, V) and VP —-U(1-U)* = 0.

Proof. Observe that (2) implies (1) by Theorems and Write

¥ = w™. Let £ be a prime number, ¢ # p. Write

F(@) = 0/60 and Dg = ]F&)/( &))p.
Observe that Dy, is a Zpy[A]-module. Let Cyc be the group of cyclotomic
units of L. We denote the image of Cyc in D, by Ciycg. Then Theorem
asserts that ewCiycg = {1} in Dy if and only if eyj1,4(P) € UP, where P is a

prime of O above £. Let
B = L(}/Cyc).

We assume that (1) holds. By the Chebotarev density theorem applied to
the extension B/L, there exist infinitely many primes ¢ such that:

* e,Cyc = {1} for p £,
o ¢, Cyc # {1}.
It remains to apply Theorem and the above remarks to get (2). =

Now, let £ be a prime number. Let p be an odd prime number, p # £. Let
T be an indeterminate over F, and let E,,/F;(T") be the imaginary quadratic
extension defined by

E,=TF(T,X) where X?—X+TP=0.

Let n be an odd integer, n > 3. Let S, (¢) denote the set of primes p such
that cijEp = n. By our results above, if p € S,(¢) then A(w'™") = {0}.
Observe that if /" Z 1 (mod p) then p & S,,(¢), and therefore S, (¢) is a finite
set. Set S(¢) = U,, Sn(£), where n runs through the odd integers. Observe
that if the order of £ modulo p is even then p ¢ S(¢). Therefore, by a classical
result of Hasse (see [§]) there exist infinitely many primes p not in S(¢) (in
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fact at least “2/3 of the prime numbers” are not in S(¢)). Thus, we ask the
following question: is S(¢) infinite?
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