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CIRCULAR LAW FOR RANDOM MATRICES

WITH EXCHANGEABLE ENTRIES

RADOS LAW ADAMCZAK, DJALI L CHAFAÏ, AND PAWE L WOLFF

Abstract. An exchangeable random matrix is a random matrix with distribution in-
variant under any permutation of the entries. For such random matrices, we show, as the
dimension tends to infinity, that the empirical spectral distribution tends to the uniform
law on the unit disc. This is an instance of the universality phenomenon known as the
circular law, for a model of random matrices with dependent entries, rows, and columns.
It is also a non-Hermitian counterpart of a result of Chatterjee on the semi-circular law
for random Hermitian matrices with exchangeable entries. The proof relies in particular
on a reduction to a simpler model given by a random shuffle of a rigid deterministic
matrix, on Hermitization, and also on combinatorial concentration of measure and com-
binatorial Central Limit Theorem. A crucial step is a polynomial bound on the smallest
singular value of exchangeable random matrices, which may be of independent interest.
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1. Introduction

The spectral measure of an n× n matrix A with real or complex entries is defined by

νA =
1

n

n
∑

k=1

δλk
,

where λ1, . . . , λn are the eigenvalues of A, in other words the roots in C of the characteristic
polynomial, counted with their algebraic multiplicities, and where δx is the Dirac mass
at the point x. Thus νA is a Borel probability measure on C, supported on R if A is
Hermitian. If A is a random matrix, then νA is a random discrete probability measure.
An extensive body of work has been devoted to the study of the behavior of the spectral

measure of large dimensional random matrices. While Wigner [33] considered Hermitian
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matrices, the non-Hermitian case has also attracted attention, starting with the early
work by Mehta [22], who proved, by using explicit formulas due to Ginibre [16], that
the average spectral measure of n × n matrices with i.i.d. standard complex Gaussian
entries scaled by

√
n converges to the uniform measure on the unit disc. We will call

this measure the circular law. In a series of subsequent developments [17, 18, 5, 26, 19],
culminating with the work of Tao and Vu [32], this result has been strengthened to
almost sure convergence and to sequences of random matrices with i.i.d. entries of unit
variance. The Tao-Vu theorem is an instance of the universality phenomenon, which
has become one of the main themes of Random Matrix Theory. Namely the limiting
spectral object depends on the actual distribution of the entries of the random matrix
only via a global scale parameter such as the variance. It is natural to ask whether this
universal behavior extends to models of random matrices with heavy-tailed entries or
with dependent entries. It has been recently shown [7, 10] that the spectral measure of
matrices with independent entries in the domain of attraction of an α-stable distribution
with 0 < α < 2 converges to a measure which depends only on α and is supported
on the whole complex plane. In particular the limiting distribution is not the circular
law. Regarding the independence assumption, several classes of random matrices have
been discussed in the literature, starting from models with i.i.d. rows such as random
Markov matrices [8], random matrices with i.i.d. log-concave rows [1, 2], and random
±1 matrices with i.i.d. rows of given sum [25]. The circular law still holds for models
with dependent rows, for instance for blocs of Haar unitary matrices [20, 15], for random
doubly stochastic matrices following the uniform distribution on the Birkhoff polytope
[23], for random matrices with log-concave unconditional distribution [3], and for random
matrices with i.i.d. quaternionic entries [24] (seen as 2× 2 i.i.d. real blocks with possible
dependencies inside the blocks).
The present work introduces first a model of randommatrices with exchangeable entries,

obtained by shuffling a globally constrained deterministic matrix using a random uniform
permutation. Such random matrices have dependent entries, rows, and columns. We show
that the asymptotic behavior of the spectral measure is governed by the circular law. The
precise formulation is given in Theorem 1.2 below. This first result is then used to deduce
the circular law for a larger class of random matrices with exchangeable entries, as stated
in Theorem 1.3 below. This second result can be seen as a counterpart of the one of
Chatterjee [13], who proved that the spectral measure of symmetric random matrices with
exchangeable entries in the upper triangle converges to Wigner’s semi-circular law, which
is the universal limit for random matrices with i.i.d. entries of finite variance. Our model
of random matrices with exchangeable entries, like all the available models belonging to
the universality class of the circular law, has symmetries related to the canonical basis. On
the other hand, we stress that the sole invariance under permutation of rows and columns,
which is weaker than full exchangeability, is not sufficient, as shown by the simple example
of Haar unitary random matrices for which the limiting spectral distribution is the uniform
distribution on the unit circle (not the unit disc!) often referred to as the arc law [15]. On
the other hand, note that the uniform law on the Birkhoff polytope of doubly stochastic
matrices is invariant by permutations of rows or columns, but is not exchangeable globally.
A main tool in our proof is a lower bound on the smallest singular value of random ma-

trices with exchangeable entries, formulated in Theorem 1.1. In recent years, an extensive
amount of work has been devoted to the analysis of the smallest singular value of ran-
dom matrices with (partially) independent entries or rows, in connection with the circular
law, but also with numerical analysis or geometry, which makes our result of independent
interest. Our approach follows the path introduced by Rudelson and Vershynin in [27]
for random matrices with i.i.d. entries, more precisely what they call the “soft approach”
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(nothing more is needed for the purpose of the circular law). However several technical
problems related to the lack of independence among the entries have to be overcome.

Main results. For any n ≥ 1, let x(n) = (x
(n)
ij )1≤i,j≤n be a deterministic real matrix,

with

(A1)
∑n

i,j=1 x
(n)
ij = 0;

(A2)
∑n

i,j=1 |x
(n)
ij |2 = n2.

Thanks to assumption (A2) we have

Kn := max
1≤i,j≤n

|x(n)
ij | ≥ 1. (1)

Of course, the entries of x(n) depend typically on n, hence the notation. The assumption
(A2) puts also a constraint on the sparsity of the vector x(n), depending on Kn.
Let now πn be a uniform random permutation of the set [n]×[n] = {(i, j) : 1 ≤ i, j ≤ n},

where [n] = {1, . . . , n}. We consider the random matrix

X(n) = (X
(n)
ij )1≤i,j≤n where X

(n)
ij := x

(n)
πn(i,j)

. (2)

The matrix X(n) inherits the structure of x(n). Namely, from (A1-A2) we get

n
∑

i,j=1

X
(n)
ij = 0 and

n
∑

i,j=1

|X(n)
ij |2 = n2 and max

1≤i,j≤n
|X(n)

ij | = Kn.

Since the uniform law on the symmetric group is invariant under translation (it is a nor-
malized Haar measure), it follows that the law of X(n) is invariant under any deterministic

permutation of its n2 coordinates, i.e. the random vector (X
(n)
ij : (i, j) ∈ [n]× [n]) of Rn2

has exchangeable coordinates. In other words, for every permutation σ of [n]× [n],

(X
(n)
σ(i,j))1≤i,j≤n

= (x
(n)
(πn◦σ)(i,j))1≤i,j≤n

d
= (x

(n)
πn(i,j)

)
1≤i,j≤n

= (X
(n)
i,j )1≤i,j≤n

.

It follows that for every (i, j) ∈ [n]× [n], and for every (k, l) ∈ [n]× [n] with (i, j) 6= (k, l),

E(X
(n)
ij ) = 0 and E(|X(n)

ij |2) = 1 and E(X
(n)
ij X

(n)
kl ) = − 1

n2 − 1
. (3)

Except for special choices of x(n), the random matrixX(n) is non-Hermitian, and even non-
normal with high probability. Normality means here commutation with the transpose-
conjugate. The random matrix X(n) has exchangeable entries obtained by shuffling the
globally constrained deterministic matrix x(n) using the random uniform permutation πn.
Such random matrices have dependent entries, dependent rows, and dependent columns.
The simulation of a random uniform permutation such as πn amouts to approximately
2n2 log2(n) bits. The randomness in X(n) is the one of πn, which should be compared
with the n2 bits needed for a standard random n× n symmetric Bernoulli ±1 matrix.
Our first main result is a bound on the smallest singular value of the matrix X(n). For

an n× n real or complex matrix A we denote by

s1(A) ≥ · · · ≥ sn(A)

the singular values of A, i.e. eigenvalues of
√
AA∗ where A∗ = A

⊤
(transpose-conjugate).

The operator norm of A is ‖A‖ = max|x|=1 |Ax| = s1(A), where |x| denotes the Euclidean
norm in Cn or in Rn. We have sn(A) = min|x|=1 |Ax|. The matrix A is invertible iff
sn(A) > 0 and in this case sn(A) = ‖A−1‖−1. The Hilbert-Schmidt norm or the Frobenius

norm of A is ‖A‖HS =
√

tr(AA∗) =
√

s1(A)2 + · · ·+ sn(A)2.
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Theorem 1.1 (Smallest singular value). If X(n) is as in (2) then for every z ∈ C, there
exists a constant CKn,z > 0 depending only on Kn (defined in (1)) and z such that for
every ε > 0,

P

(

sn(X
(n) − z

√
nId) ≤ εn−1/2

)

≤ CKn,z

(

ε+
1

n1/2

)

.

An explicit dependence of CK,z on K and z is given in Theorem 4.1.
Let (νn)n≥1 be a sequence of random probability measures on E with E = C or E = R,

and let ν be a probability measure on E. We say that the sequence (νn)n≥1 tends as
n → ∞ weakly in probability to ν, and we denote

νn  
n→∞

ν,

if for any f ∈ C(E,R) and ε > 0,

lim
n→∞

P

(
∣

∣

∣

∣

∫

f dνn −
∫

f dν

∣

∣

∣

∣

≥ ε

)

= 0,

where C(E,R) is the class of all bounded continuous real valued functions on E. This is
equivalent to saying that (νn)n≥1, seen as a sequence of random variables in the space of
Borel probability measures on E, converges in probability to ν (see [32, Definition 1.2]).
We denote by νcirc the uniform law on the unit disk ofC, with density z 7→ π−11{z∈C:|z|≤1}.

Our second main result concerns the limiting behavior of the spectral measure of X(n).

Theorem 1.2 (Circular law for shuffled matrices). Let A(n) = 1√
n
X(n) where X(n) is as

in (2). If Kn = O(n1/(10+δ)) for some δ > 0, then νA(n)  
n→∞

νcirc.

One can check easily that the normalization by n−1/2 ensures tightness, namely

∫

|λ|2 dνA(n)(λ) =
1

n

n
∑

k=1

|λk(A
(n))|2

≤ 1

n2

n
∑

k=1

sk(X
(n))2 =

1

n2
‖X(n)‖2HS =

1

n2

n
∑

i,j=1

|X(n)
ij |2 = 1.

Theorem 1.2 leads to the following result concerning more general random matrices
with exchangeable entries, beyond model (2). Namely, for every n ≫ 1, let

Y (n) = (Y
(n)
ij )1≤i,j≤n (4)

be an n× n matrix with exchangeable real entries, and define

µn :=
1

n2

n
∑

i,j=1

Y
(n)
ij and σ2

n :=
1

n2

n
∑

i,j=1

(Y
(n)
ij − µn)

2.

Theorem 1.3 (Circular law for matrices with exchangeable entries). Let Y (n) be as in
(4). If for n ≫ 1, σ2

n > 0 a.s. and for some δ > 0,

lim sup
n→∞

E

[ (

σ−1
n |Y (n)

11 − µn|
)20+δ ]

< ∞,

then, denoting

B(n) =
1√
nσn

(Y
(n)
ij − µn)1≤i,j≤n,

we have
νB(n)  

n→∞
νcirc.
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Discussion and open problems.

Assumptions. It is not enough to assume in Theorem 1.2 that Kn = O(
√
n), since

one could construct a matrix with at most n/2 nonzero entries, which would create a
substantial atom at zero in the spectral measure. It is tempting to conjecture that
Kn = O(n1/(2+δ)) is sufficient for the circular law to hold. This would allow to prove
Theorem 1.3 under the assumption on moments of order 4+ δ. On the other hand, Chat-
terjee’s counterpart [13] to Theorem 1.3 in the Hermitian case works under the assumption

which when translated to our setting would be E(|Y (n)
11 − µn|/σn)

4 = o(n2/3).

Operator norm. One way to improve our growth/integrability assumptions would be to
obtain a better bound on the operator norm of X(n) defined in (2). The simple bound
we use (Lemma 4.2) is E‖X(n)‖ ≤ CKn

√
n. By analogy with the available results for

matrices with i.i.d. entries, one may ask if for some α < 1/2 and a universal constant C,

E‖X(n)‖
?
≤

√
2n+ CKnα.

Another way of weakening our assumptions would be to improve the factor 1/
√
n in the

probability bound on the smallest singular value. This factor comes from the Combina-
torial Central Limit Theorem and cannot be further improved by our methods. In the
i.i.d. case it has been strengthened to e−cn by relating the bound on the smallest singular
value to the Littlewood-Offord problem [27, 30, 31]. While certain ingredients of this
approach can be transferred to the exchangeable setting, an important step seems to rely
on a Fourier analytic argument, related to Esseen’s inequality, involving independence of
the entries of the matrix. It would be interesting to develop tools which would allow to
use similar ideas in the exchangeable case. Note that since the right hand side in Theorem
1.1 is not summable in n, one cannot use the first Borel-Cantelli lemma in order to get
an almost sure lower bound on sn(X

(n) − z
√
nId).

Other models. One can consider a model of the form Mn = n−1/2(X(n) + Fn), where
Fn is deterministic with rank Fn = o(n), satisfying a bound on the operator norm. An
inspection of the proof of Theorem 1.2 reveals that if ‖Fn‖ = O(

√
n), then one can obtain

the convergence to the circular law for the spectral measure of Mn without changing the
assumptions on Kn. On the other hand if ‖Fn‖ = o(n/ log3/2 n), then an adaptation of our
proof gives the result for Kn = O(1). We remark that for matrices with i.i.d. entries with
mean zero and variance one it is enough to assume that ‖Fn‖HS = O(n) [11]. Improving
this part in the exchangeable case would allow to treat e.g. the adjacency matrices of
uniform random directed graphs D(n,mn). More precisely, consider a sequence mn of
positive integers. Let Dn be the adjacency matrix of the random graph D(n,mn), i.e. a
graph chosen uniformly from the set of all directed random graphs on n vertices, with
mn directed edges (including possible loops). One may ask about the limiting spectral
behavior of Dn (depending on the behavior of mn as n → ∞). In some sense, this random
graph model lies between the oriented Erdős-Rényi random graph model [9], and the
uniform random oriented regular graph model [10]. The singular values of Dn (as well
as its shifts by multiples of identity) may be analyzed using Theorem 2.1 below. More
generally, one may think about a Boltzmann-Gibbs probability distribution on the set
of oriented graphs with n vertices, with density with respect to the counting measure
proportional to exp(−βnHn) where Hn is a symmetric functional, and βn > 0.

Outline. In Section 2 we analyze the limiting distribution of the singular values of shifts
by

√
nzIdn for the model (2), which is essential for the proof of Theorem 1.3, and which

may be actually of independent interest. Section 3 is devoted to the derivation of a
combinatorial version of the Talagrand concentration inequality for convex functions and
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product measures, which may be also of independent interest. This inequality is an
important tool in the proof of Theorem 1.1 and Theorem 1.3. Theorems 1.1, 1.2, 1.3 are
proved in Sections 4, 5, 6 respectively.

Notations. We will frequently write K,x, X instead of K(n),x(n), X(n) for convenience,
when no confusion is possible. In the whole article by C, c we denote universal constants
and by Ca, ca constants depending only on the parameter a. In both cases the values of
constants may differ between occurrences.

2. Limiting distribution of the singular values of shifts

This section is devoted to the proof of the following result.

Theorem 2.1 (Limiting singular values distribution of shifted matrices). For every z ∈ C,
there exists a unique probability measure νz on R+, absolutely continuous with respect to
the Lebesgue measure, depending only on z, such that if X(n) is as in (2) with Kn =
o(n1/2), and if A(n) = 1√

n
X(n), then, for every z ∈ C,

(j)

ν√
(A(n)−zIdn)∗(A(n)−zIdn)

=
1

n

n
∑

k=1

δsk(A(n)−zIdn)  n→∞
νz;

(jj)

U(z) = −
∫

R+

log(s) νz(ds) =

{

− log |z| if |z| > 1;
1−|z|2

2
otherwise.

Furthermore, for z = 0, the probability distribution ν0 is the so-called Marchenko-Pastur
quarter circular law of Lebesgue density x 7→ 1

π

√
4− x21[0,2](x).

Theorem 2.1 is not valid if we only assume that Kn = O(n1/2). Indeed, one can
construct x(n) in (2) in such a way that Kn = O(n1/2) while 0 is an eigenvalue of X(n) of
multiplicity at least cn, which would contradict the fact that νz is absolutely continuous.

Proof of Theorem 2.1. First of all, note that since Kn = o(n1/2), we have

E|X(n)
11 |4 = o(n) and E|X(n)

11 |3 = o(n1/2). (5)

If Kn = O(1), the result follows from [2, Theorem 2.11 and Proposition 2.12]. In fact
one can check that the proof given there works for Kn being a small power of n.
However, to get larger range of Kn we will adapt the proof by Chatterjee [13], who

obtained the semi-circular law for symmetric random matrices with exchangeable entries,
by using the Cauchy-Stieltjes trace-resolvent transform, and a generalization of the Lin-
deberg principle for the Central Limit Theorem.
For a probability measure µ supported on R, we denote by mµ its Cauchy-Stieltjes

transform, defined for ξ ∈ C+ = {z ∈ C : ℑ(z) > 0} as (see Theorem 2.4.4 in [4])

mµ(ξ) =

∫

R

1

λ− ξ
µ(dλ).

If M is a n × n matrix with real spectrum and ξ ∈ C+, then mνM (ξ) is the normalized
trace of the resolvent G = (M − ξIdn)

−1 of M at point ξ, namely

mνM (ξ) =
1

n

n
∑

k=1

(λk(M)− ξ)−1 =
1

n
tr(G).
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Fix z ∈ C. We start by the usual linearization trick, which consists in constructing a
Hermitian matrix, depending linearly on A(n) − zIdn, and for which the eigenvalues are
the singular values of A(n) − zIdn. Namely, we consider the 2n× 2n Hermitian matrix

Bn =

(

0 A(n) − zIdn

(A(n) − zIdn)
∗ 0

)

.

The eigenvalues of Bn are the singular values of A(n) − zId multiplied with ±1. More
precisely, if λ > 0 is a singular value of A(n) − zIdn of multiplicity m, then ±λ are
both eigenvalues of Bn of multiplicity m, and if zero is a singular value of A(n) − zIdn

of multiplicity m then it is also an eigenvalue of Bn of multiplicity 2m. Thus, to prove
the proposition it is enough to show that the spectral measure of Bn converges weakly in
probability to the same measure as the spectral measure of the matrix

D̃n =

(

0 1√
n
Gn − zIdn

( 1√
n
Gn − zIdn)

∗ 0

)

,

where Gn = (gij)1≤i,j≤n is an n × n matrix with i.i.d. N (0, 1) coefficients, as it is known
[6, 10] that ν√

(n−1/2Gn−zIdn)∗(n−1/2Gn−zIdn)
converges to the measure νz satisfying (jj).

Let b = n−2
∑

1≤i,j≤n gij and let 1n ⊗ 1n be the n× n matrix with all elements equal to
one. Define now the matrix

Dn =

(

0 1√
n
Gn − b1n ⊗ 1n − zIdn

( 1√
n
Gn − b1n ⊗ 1n − zIdn)

∗ 0

)

.

Since Dn is a rank two additive perturbation of D̃n, it is well known by using interlacing
inequalities [12] that the Kolmogorov distance between νD̃n

and νDn is at most 2/n. Thus
it is enough to prove that νBn − νDn → 0 weakly in probability, which will follow if we
prove that for each ξ ∈ C+,

mνBn
(ξ)−mνDn

(ξ) → 0

in probability as n → ∞. Since mνDn
(ξ) converges in probability to the deterministic

quantity mνz(ξ), it is enough to show that for every smooth function g with compact
support we have

|Eg(ℜmνBn
(ξ))− Eg(ℜmνDn

(ξ))| → 0

and that an analogous statement holds for the imaginary parts of mνBn
and mνDn

.
To this end we will use the following Theorem, which is [13, Theorem 1.2].

Theorem 2.2 (Chatterjee-Lindeberg principle). Suppose X is a random vector in Rn

with exchangeable components of finite fourth moments and let Z be a standard Gaussian
vector in Rn, independent of X. Define

µ̂ =
1

n

n
∑

i=1

Xi, σ̂2 =
1

n

n
∑

i=1

(Xi − µ̂)2, Z̄ =
1

n

n
∑

i=1

Zi, Yi = µ̂+ σ̂(Zi − Z̄).

Let f : Rn → R be a C3 function, and let L′
r(f) be a uniform bound on all r-th partial

derivatives of f , including mixed partials. For each p, let wp = E|X1 − µ̂|p. Then

|Ef(X)− Ef(Y )| ≤ 9.5w
1/2
4 L′

2(f)n
1/2 + 13w3L

′
3(f)n.

It is easy to check that for any matrix valued differentiable function M of x ∈ R with
values in the space of Hermitian matrices and G(x) = (M(x)− ξId)−1 (ξ ∈ C+), we have

d

dx
G = −G

dM

dx
G. (6)
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Consider now for x ∈ R
n×n the 2n×2nmatrixM(x) = (Mij(x))1≤i,j≤2n, whereMij(x) =

0 if i, j ≤ n or i, j > n, Mij(x) = 1√
n
xi,j−n − z1{i=j} for i ≤ n, j > n and Mij(x) =

1√
n
xi−n,j − z̄1{i=j} for i > n, j ≤ n.

As in [13] we will write ∂α for ∂/∂xα for α = (i, j), 1 ≤ i, j ≤ n. From (6) we get

∂α
1

2n
trG = − 1

2n
tr
(

G(∂αM)G
)

.

Differentiating two more times and using again (6) together with the observation that for
any α1, α2, ∂α1∂α2M = 0, we get

∂α1∂α2

1

2n
trG =

1

2n

∑

1≤i 6=j≤2

tr
(

G(∂αi
M)G(∂αj

M)G
)

,

∂α1∂α2∂α3

1

2n
trG = − 1

2n

∑

1≤i 6=j 6=k≤3

tr
(

G(∂αi
M)G(∂αj

M)G(∂αk
M)G

)

.

Note that ∂αM has two nonzero entries, each equal to n−1/2. Moreover ‖G‖ ≤ (ℑξ)−1.
Thus

∣

∣

∣
∂α

1

2n
trG

∣

∣

∣
=

∣

∣

∣

1

2n
tr
(

(∂αM)G2
)
∣

∣

∣
≤ 1

n3/2
(ℑξ)−2.

As for higher order derivatives, using the inequalities |trAB| ≤ ‖A‖HS‖B‖HS and
‖AB‖HS ≤ ‖A‖‖B‖HS, we get

|∂α1∂α2

1

2n
trG| ≤ 1

2n

∑

1≤i 6=j≤2

‖G∂αi
M‖HS‖G(∂αj

M)G‖HS

≤ 1

2n

∑

1≤i 6=j≤2

‖G‖3‖∂αi
M‖HS‖∂αj

M‖HS

≤ 2

n2
(ℑξ)−3

and similarly

|∂α1∂α2∂α3

1

2n
trG| ≤ 6

√
2

n
‖G‖4n−3/2 ≤ 9n−5/2(ℑξ)−4.

Moreover, since xij are real, we have ∂αℜG = ℜ(∂αG) and a similar equality for the
imaginary parts. Using this together with the above estimates on the derivatives, we get
that for any smooth function g on R, with compact support, the function f : Rn2 → R,
defined as f(x) = g( 1

2n
ℜtrG(x)), satisfies

L′
2(f) ≤ Cg,ξn

−2, L′
3(f) ≤ Cg,ξn

−5/2.

Thus, by Theorem 2.2 (applied with n2 instead of n) and (5),

|Eg(ℜmνBn
(ξ))− Eg(ℜmνDn

(ξ))| ≤ Cg,ξ(n
−1(E|X(n)

11 |4)1/2 + n−1/2
E|X(n)

11 |3) → 0

as n → ∞. Since an analogous convergence holds for the imaginary parts, this ends the
proof of Theorem 2.1. �

Remark 2.3 (Assumptions). One can see from the above proof that the theorem remains
true under an assumption weaker than Kn = o(n1/2), since it is enough to assume (5).
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3. Combinatorial Talagrand’s concentration inequality

The following result is a combinatorial analogue of the Talagrand concentration of
measure inequality for convex functions under product measures. It plays a crucial role
in our approach, and may be of independent interest. We give a proof for completeness.

Theorem 3.1 (Concentration inequality for convex functions). Let x1, . . . , xn ∈ [0, 1]
and let ϕ : [0, 1]n → R be an L-Lipschitz convex function. Let π be a random uniform
permutation of the set [n] and let Z = ϕ(xπ(1), . . . , xπ(n)). Then for all t > 0,

P(|Z − EZ| ≥ t) ≤ 2 exp(−ct2/L2). (7)

Proof of Theorem 3.1. The randomness of Z comes entirely from π. Let Pn be the uniform
measure on the symmetric group Sn. The proof follows closely the original argument given
by Talagrand in the case of product measures [29] and is based on the following theorem.

Theorem 3.2 (Talagrand [28]). For π ∈ Sn and A ⊆ Sn define

UA(π) = {s ∈ {0, 1}n : ∃τ∈A∀l≤nsl = 0 =⇒ τ(l) = π(l)}.
Let VA(π) = ConvexHull(UA(π)) and f(A, π) = inf{|s|2 : s ∈ VA(π)}. Then

∫

Sn

exp
( 1

16
f(A, π)

)

dPn(π) ≤
1

Pn(A)
.

In what follows, for τ ∈ Sn and x ∈ Rn, we will denote xτ = (xτ(1), . . . , xτ(n)). It
is well known that up to universal constants it is enough to prove (7) with the median
instead of the mean [21]. Let Z(τ) = ϕ(xτ ) and A = {τ ∈ Sn : Z(τ) ≤ MedZ}. We have
Pn(A) ≥ 1/2, so by Theorem 3.2 and Chebyshev’s inequality we get

Pn(π : f(A, π) ≥ t2) ≤ 2 exp(−ct2).

If f(A, π) < t2, then there exist s1, . . . , sm ∈ UA(π), p1, . . . , pm ≥ 0, p1 + · · · + pm = 1,
such that

∣

∣

∣

m
∑

i=1

sipi

∣

∣

∣
< t.

Let τi ∈ A be such that sij = 0 =⇒ τi(j) = π(j). We have for j = 1, . . . , n,

∣

∣

∣
xπ(j) −

m
∑

i=1

xτi(j)pi

∣

∣

∣
≤

m
∑

i=1

|xπ(j) − xτi(j)|pi ≤ 2

m
∑

i=1

sijpi,

so
∣

∣

∣
xπ −

m
∑

i=1

pixτi

∣

∣

∣
≤ 2

∣

∣

∣

m
∑

i=1

sipi

∣

∣

∣
< 2t.

Moreover, by convexity ϕ(
∑

i pixτi) ≤ ∑m
i=1 piϕ(xτi) ≤ MedZ and so by the Lipschitz

condition ϕ(xπ) < MedZ + 2Lt. This shows that

Pn(π : ϕ(xπ) ≥ MedZ + 2Lt) ≤ Pn(π : f(A, π) ≥ t2) ≤ 2 exp(−ct2).

To prove the bound on the lower tail let us now denote

A = {τ ∈ Sn : Z(τ) ≤ MedZ − 2Lt}.
By Theorem 3.2 we have

∫

Sn

exp
(

cf(A, π)
)

dPn(π) ≤
1

Pn(A)

But if f(A, π) < t2, then by a similar argument as above ϕ(xπ) < MedZ, so the left hand
side above is bounded from below by 1

2
exp(ct2), which gives Pn(A) ≤ 2 exp(−ct2). �
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Using integration by parts and the triangle inequality in Lp, we obtain the following.

Corollary 3.3 (Moments). In the setting of Theorem 3.1 we have for any p ≥ 2,

‖Z‖p ≤ ‖Z‖1 + CL
√
p.

4. Proof of Theorem 1.1 (smallest singular value)

Throughout this section, X(n) is as in (2). We will prove the following more precise
version of Theorem 1.1, which is actually used in the proof of Theorem 1.2.

Theorem 4.1. Under the assumptions of Theorem 1.1, for any ε ∈ (0, 1),

P(sn(X
(n) −√

nzId) ≤ 1

Kn + |z|εn
−1/2)

≤ CK2
n(Kn + |z|) log(1 +Kn + |z|)ε

+ C
K4

n(Kn + |z|) log3/2(1 +Kn + |z|)
n1/2

.

Let us first introduce some tools we will need in the proof of Theorem 4.1. One of our
main tools is a version of Talagrand’s concentration inequality for convex functions stated
in Theorem 3.1, and Corollary 3.3. The next two lemmas are rather standard corollaries.
We denote by Sn−1

C
= {z ∈ Cn : |z| = 1} the unit Euclidean ball in Cn.

Lemma 4.2 (Operator norm). For all t > 0 with probability at least 1− exp(−ct2/K2
n),

‖X(n)‖ ≤ CKn

√
n + t.

Proof of Lemma 4.2. Let us consider a (1/4)-net N in Sn−1
C

of cardinality 92n (it exists
by standard volumetric estimates). We have

‖X(n)‖ ≤ 16

7
sup
x,y∈N

|〈X(n)x, y〉|.

Note that E〈X(n)x, y〉 = 0. Since for x, y ∈ Sn−1
C

, A 7→ |〈Ax, y〉| is a 1-Lipschitz function
with respect to the Hilbert-Schmidt norm, we get by Theorem 3.1 and the union bound

∀t ≥ CKn, P(‖X(n)‖ ≥ t
√
n) ≤ 2 · 94n exp(−ct2n/K2

n) ≤ exp(−ct2n/K2
n).

Integrating the above inequality by parts, we get E‖X(n)‖ ≤ CKn

√
n. The lemma now

follows by another application of Theorem 3.1, this time to the function X 7→ ‖X‖. �

Let Sparse(δ) = {x ∈ C
n :

∑n
k=1 1xk 6=0 ≤ δn} be the set of δn sparse vectors in

Cn. Similarly as in [27] we partition the unit sphere Sn−1
C

into compressible vectors and
incompressible vectors:

Comp(δ, ρ) = {x ∈ Sn−1
C

: dist(x, Sparse(δ)) ≤ ρ} and Incomp(δ, ε) = Sn−1
C

\Comp(δ, ε).

IfM = (Mij)1≤i≤n,1≤j≤k and I ⊆ [n], then we denote byM|I the submatrix (Mij)i∈I,1≤j≤k

of M formed by the rows of M labeled by I.

Lemma 4.3 (Compressible vectors). For all α ∈ (0, 1], for all I ⊆ [n], such that #I ≥ αn,
for every z ∈ C, if n ≥ CαK

2
n, then

a) for any x ∈ Sn−1
C

, with probability at least 1− exp(cαn/K
2
n),

|X(n)
|I x−√

nzx|I | ≥ cα
√
n,
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b) with probability at least 1− exp(−cαn/K
2
n), for all x ∈ Comp(δ, ρ),

|X(n)
|I x−√

nzx|I | ≥ cα
√
n,

where

ρ =
c′α

Kn + |z| and δ =
c′′α

K2
n log(1 +Kn + |z|) . (8)

Proof of Lemma 4.3. We abridge Kn and X(n) into X and K. Consider first an arbitrary
x ∈ Sn−1

C
. Using (3) and |x|1 := |x1|+ . . .+ |xn| ≤

√
n, we get

E|X|Ix−√
nzx|I |2 =

∑

i∈I
E

∣

∣

∣

n
∑

j=1

Xijxj −
√
nzxi

∣

∣

∣

2

≥
∑

i∈I
E

∣

∣

∣

n
∑

j=1

Xijxj

∣

∣

∣

2

=
∑

i∈I

n
∑

j=1

EX2
ij |xj |2 +

∑

i∈I

∑

1≤j 6=k≤n

EXijXikxj x̄k

≥ #I − #I

n2 − 1
|x|21 ≥ #I/3.

Since the function X 7→ |X|Ix − zx|I | is convex and 1-Lipschitz with respect to the
Hilbert-Schmidt norm, by Corollary 3.3 and the assumption on I we get, for n ≥ CαK

2,

E|X|Ix−√
nzx|I | ≥ c

√
αn− CK ≥ cα

√
n.

By Theorem 3.1 we get

P(|X|Ix−√
nzx|I | ≤ cα

√
n
)

≤ 2 exp(−cαn/K
2), (9)

which proves the first part of the lemma. Now, for each δ, ρ ∈ (0, 1], the set Sparse(δ) ∩
Sn−1
C

admits a ρ-net of cardinality
(

n

⌊δn⌋

)

(3/ρ)2δn ≤
( C

ρ2δ

)δn

.

Thus for ρ = c′α
K+|z| and δ = c′′α

K2 log(1+K+|z|) by the union bound, the inequality (9), Lemma

4.2, the estimate K ≥ 1, and the triangle inequality, we get with probability at least

1− exp(−cαn/K
2),

for all x ∈ Comp(δ, ρ),

|X|Ix−√
nzx|I | ≥ cα

√
n− Cρ(CK + |z|)√n ≥ 1

2
cα
√
n.

�

The final ingredient is a Berry-Esseen type estimate for linear combinations of ex-
changeable random variables.

Lemma 4.4 (Berry-Esseen type estimate for exchangeable variables). Consider two se-
quences of real numbers x = (x1, . . . , xn) and a = (a1, . . . , an), such that for some con-
stants K,L > 0,

• ∑n
i=1 xi = 0,

∑n
i=1 x

2
i = n, |xi| ≤ K,

• |ai| ≤ L|a|√
n
, a 6= ±n−1/2(|a|, . . . , |a|).
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Let π be a random (uniform) permutation of [n] and define

W :=

n
∑

i=1

aixπ(i).

Then σ2 := EW 2 = 1
n−1

(n
∑n

i=1 a
2
i − (

∑n
i=1 ai)

2) > 0 and

sup
t∈R

∣

∣

∣
P(W ≤ t)− 1√

2πσ

∫ t

−∞
e−x2/2σ2

dx
∣

∣

∣
≤ 34LK|a|

σ
√
n

. (10)

Proof of Lemma 4.4. The result follows from the combinatorial Central Limit Theorem
(CLT) [14, equation (4.105) and Theorem 6.1]. Namely, let (cij)i,j≤n be an array of real
numbers and let

W =

n
∑

i=1

ciπ(i),

where π is a random (uniform) permutation of [n]. Then

σ2 := VarW =
1

n− 1

n
∑

i,j=1

(

cij −
1

n

n
∑

k=1

cik −
1

n

n
∑

k=1

ckj +
1

n2

n
∑

k,l=1

ckl

)2

.

Moreover, if σ > 0, then for every ε > 0,

sup
t∈R

∣

∣

∣

∣

∣

P(σ−1(W − 1

n

n
∑

i,j=1

cij) ≤ t)− 1√
2π

∫ t

−∞
exp(−x2/2)dx)

∣

∣

∣

∣

∣

≤ 16.3A

σ
,

where

A = max
1≤i,j≤n

∣

∣

∣
cij −

1

n

n
∑

k=1

cik −
1

n

n
∑

k=1

ckj +
1

n2

n
∑

k,l=1

ckl

∣

∣

∣
.

The lemma follows by setting cij = aixj and elementary calculations. �

Remark 4.5 (Conditional expectation). Before we proceed with the proof let us make a
comment concerning conditional expectation. Namely, in the proof of Theorem 4.1 as well
as in other proofs in the article we will encounter a situation in which a deterministic set
E ⊂ [n] × [n] is given and in addition one considers a random set F ⊆ ([n] × [n]) \ E,
measurable with respect to F ′ = σ((π(i, j))(i,j)∈E). One can then consider the σ-field
F = σ(F ′, (π(i, j))(i,j)∈F ) and the random vector π′ = (π(i, j))(i,j)∈(E∪F )c (this notation is
slightly informal as the set F itself is random, but this should not lead to misunderstand-
ing). One can then see that conditionally on F , (π(i, j))(i,j)∈(E∪F )c is distributed as a ran-
dom (uniform) bijection from the set (E∪F )c to the set ([n]×[n])\{π(i, j) : (i, j) ∈ E∪F}.
In particular the vector (Xij)(i,j)∈(E∪F )c is distributed as a random permutation of the se-
quence obtained from (xij)

n
i,j=1 after removing the elements (Xij)(i,j)∈E∪F and one can

apply to it conditionally e.g. Theorem 3.1 or Lemma 4.4.

Proof of Theorem 4.1. Again we will write X instead of X(n) and K instead of Kn. We
may and will assume that

n ≥ CK2 log(1 +K + |z|) (11)

(otherwise the bounds of the theorem become trivial as the right-hand side exceeds one).
Let B = X −√

nzId and sn = sn(B). Since sn = infx∈Sn−1
C

|Bx|, it is enough to bound

from below the quantities

β = inf
x∈Comp(δ,ρ)

|Bx|, ζ = inf
x∈Incomp(δ,ρ)

|Bx|
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for some δ = δK,z, ρ = ρK,z. By Lemma 4.3 for

ρ =
c

K + |z| and δ =
c

K2 log(1 +K + |z|) , (12)

we have for n ≥ CK2,

β ≥ c
√
n (13)

with probability at least 1− exp(−cn/K2). By Lemma 3.5 from [27],

P(ζ ≤ ρεn−1/2) ≤ 1

δn

n
∑

i=1

P(dist(Xi − z
√
nei, Hi) ≤ ε),

where Xi’s are the columns of X and Hi = span(Xk : k 6= i).
Let now ηi be a random (unit) normal to Hi defined as a measurable function of

(X1, . . . , Xi−1, Xi+1, . . . , Xn). We have dist(Xi − z
√
nei, Hi) ≥ |〈Xi − z

√
nei, η

i〉|, so by
exchangeability of the entries of X ,

P(ζ ≤ ρεn−1/2) ≤ 1

δ
P(|〈Xn, η

n〉 − z
√
n〈en, ηn〉| ≤ ε). (14)

To estimate the right hand side we will use Lemma 4.4. To be able to apply it, we have
to prove certain properties of the vector η = ηn. Let us define for θ, r ∈ [0, 1],

G(θ, r) =
⋃

I⊆[n],#I≥(1−θ)n

GI(θ, r),

where

GI(θ, r) = {x ∈ Sn−1
C

: ∃ξ∈C,|ξ|≤1|x|I −
ξ√
#I

1I | ≤ r}

(here 1I = (ui)
#I
i=1 with ui = 1 for all i). We will show that with high probability

η /∈ G(θ, r) for certain r = rK,z and θ = θK,z. Note that if #I ≥ (1 − θ)n, then GI(θ, r)
admits a 3r-net NI , such that

#NI ≤
C

r2

(3

r

)2θn

.

Indeed, for any x ∈ GI(θ, r), x|I can be approximated up to 2r by one of the vectors ξ√
#I

1I ,

where ξ comes from an r-net in the unit disk in C, whereas x|Ic can be approximated by
a vector from an r-net in the unit ball of CIc . Thus the set G(θ, r) admits a 3r net N of
cardinality

#N ≤
⌊θn⌋
∑

k=0

(

n

k

)

C

r2

(3

r

)2θn

≤ C

r2

( en

⌊θn⌋
)θn(3

r

)2θn

≤ exp
(

Cnθ log
( 2

θr

))

for n ≥ 1/θ. Let B′′ = (B′)∗, where B′ is the matrix obtained by removing the last column
of B. By exchangeability, B′′ has the same distribution as (X − z̄

√
nId)|{1,...,n−1} and so

by the first part of Lemma 4.3, the union bound and Lemma 4.2 we get with probability
at least 1− exp(−cn/K2),

inf
x∈G(θ,r)

|B′′x| ≥ c
√
n

for

r =
c

K + |z| , θ =
c

K2 log(1 +K + |z|) (15)
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(note that (11) implies that n ≥ 1/θ). We may and will assume that θ ≤ 1/2. Combining
the above estimate with the equality B′′η = 0, we get that with probability at least
1− exp(−cn/K2),

η /∈ G(θ, r). (16)

Now let I = {i ∈ [n] : |ηi| ≤ 1√
θn
} and note that by Markov’s inequality #I ≥ n(1− θ).

Let F ′ be the σ-field generated by (π(i, j))1≤i≤n,1≤j≤n−1. In particular η is F ′-measurable.
Let also F = σ(F ′, {π(i, n)}i/∈I).
Note that

∑

i∈I Xin and
∑

i∈I X
2
in are F -measurable. We will use this fact together

with Remark 4.5 to estimate the conditional distribution

P(|〈Xn, η〉 − Y | ≤ ε|F),

where Y is any F -measurable random variable, by another random variable measurable
with respect to F . To this end we will use Lemma 4.4.
Let us define µ̂ = 1

#I

∑

i∈I Xin, Σ̂
2 = 1

#I

∑

i∈I(Xin − µ̂)2.

Let γ be a small constant which will be fixed later on. Note that by Theorem 3.1 we
have

P(|
n

∑

i=1

Xin| ≥ γn) ≤ 2 exp(−cγ2n/K2). (17)

Now, by exchangeability of Xin, i = 1, . . . , n with respect to P(·|F ′), we get that on the
set ∆1 = {|∑n

i=1Xin| ≤ γn} ∈ F ′,

|E(
∑

i∈I
Xin|F ′)| = |#I

n

n
∑

i=1

Xin| ≤ γn.

Thus, again by Theorem 3.1 we get on ∆1,

P(|
∑

i∈I
Xin| ≥ 2γn|F ′) ≤ 2 exp(−cγ2n2/(K2#I)) ≤ 2 exp(−cγ2n/K2). (18)

Let now ∆2 = {|µ̂| ≤ 4γ} ∈ F . Combining (17), (18) and the inequality #I ≥ (1− θ)n ≥
n/2, we get

P(∆2) ≥ 1− 4 exp(−cγ2n/K2). (19)

Now, by Corollary 3.3 applied to Z =
√

∑n
i=1X

2
in, for n ≥ 4C2K2 we get

√
n =

√

√

√

√E

n
∑

i=1

X2
in ≥ E

√

√

√

√

n
∑

i=1

X2
in ≥ √

n− CK ≥ 1

2

√
n

and by Theorem 3.1 the set ∆3 = {Cn ≥ ∑n
i=1X

2
in ≥ cn} ∈ F ′ satisfies

P(∆3) ≥ 1− 2 exp(−cn/K2). (20)

On ∆3, E(
∑

i∈I X
2
in|F ′) ≥ c(1− θ)n and by Corollary 3.3,

E(

√

∑

i∈I
X2

in|F ′) ≥
√

c(1− θ)n− CK ≥ c
√
n,

for n ≥ C ′K2, so yet another application of Theorem 3.1 yields that on ∆3,

P(
∑

i∈I
X2

in ≤ cn|F ′) ≤ 2 exp(−cn/K2).
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Combining this with (20) we get

P(Cn ≥
∑

i∈I
X2

in ≥ cn) ≥ 1− 2 exp(−cn/K2). (21)

Since Σ̂2 = 1
#I

∑

i∈I X
2
in− µ̂2, by the above inequality and (19) (applied with a sufficiently

small universal constant γ adjusted to the constant c in (21)) we get

P(Σ̂2 ≥ c) ≥ 1− 2 exp(−cn/K2).

Let

∆ = {
∑

i∈I
X2

ni ≤ Cn, Σ̂2 ≥ c, µ̂ ≤ 1 and η /∈ G(θ, r)) ∈ F .

By the above inequality together with (16),(19),(21) we have

P(∆) ≥ 1− 2 exp(−cn/K2). (22)

On ∆ we have dist(η|I , { ξ√
#I

1I : ξ ∈ C, |ξ| ≤ 1}) ≥ r. Let η′ and η′′ be resp. the real and

imaginary part of η. Thus at least one of the vectors η′|I , η
′′
|I is at distance at least r/

√
2

from {ξ1I : ξ ∈ R}). Indeed, otherwise we would have |η′|I − ξ′√
#I

1I |, |η′′|I − ξ′′√
#I

1I | ≤ r/
√
2

for some ξ′, ξ′′ ∈ R, and so

|η|I −
ξ′ + iξ′′√

#I
1I | ≤ r,

which implies that dist(η|I , y) ≤ r, where y is the orthogonal projection of η|I onto

span(1I). Since |η|I | ≤ 1 we have |y| ≤ 1, so y = ξ√
#I

1I for some ξ with |ξ| ≤ 1,

which gives a contradiction.
We will consider the case

dist(η′|I , {ξ1I : ξ ∈ R}) ≥ r/
√
2, (23)

the other one is analogous.
Assume now that for some F -measurable complex random variable Y = Y ′ + iY ′′,

|〈η,Xn〉 − Y | ≤ ε. Then |〈η′, Xn〉 − Y ′| ≤ ε. Define xi = (Xin − µ̂)Σ̂−1 for i ∈ I.
Since η′, Xin, i /∈ I and µ̂ are F -measurable we have on ∆,

P(|〈η,Xn〉 − Y | ≤ ε|F) ≤ sup
u∈R

P(|
∑

i∈I
η′ixi − u| ≤ εΣ̂−1|F) ≤ sup

u∈R
P(|

∑

i∈I
η′ixi − u| ≤ Cε|F),

(24)

where in the second inequality we used the fact that on ∆, Σ̂2 ≥ c. Moreover, by Remark
4.5, the right-hand side above equals

sup
u∈R

P(|
∑

i∈I
η′ixτ(i) − u| ≤ Cε|F),

where τ is a random permutation of I, distributed (conditionally on F) uniformly, and
so we are in position to use Lemma 4.4. Denote W =

∑

i∈I η
′
ixτ(i), σ

2 = E(W 2|F). Note
that

∑

i∈I xi = 0 and
∑

i∈I x
2
i = #I. Moreover on ∆ we have |xi| ≤ CK. Using the fact

that the density of a Gaussian distribution with variance σ2 is bounded from above by
σ−1 and #I ≥ n/2, we get by Lemma 4.4 that on ∆,

P(|
∑

i∈I
η′ixτ(i) − u| ≤ ε|F) ≤ Cεσ−1 + C

KL|η′|I |
σn1/2

,
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where L = maxi∈I
√
#I |η′i|/|η′|I| ≤ maxi∈I

√
n|η′i|/|η′|I |. Note that by the definition of I,

we have |η′i| ≤ 1/
√
θn, so L ≤ 1√

θ|η′
|I
| and the above bound implies that on ∆,

P(|
∑

i∈I
η′ixτ(i) − u| ≤ ε|F) ≤ Cεσ−1 + C

K

σθ1/2n1/2
. (25)

It remains to estimate σ from below on the set ∆.
By Lemma 4.4 we have

σ2 =
#I

#I − 1

(

∑

i∈I
η′2i − 1

#I
(
∑

i∈I
η′i)

2
)

≥
∑

i∈I
η′2i − 1

#I
(
∑

i∈I
η′i)

2.

The function t 7→
√
t is C/|η′|I | Lipschitz on (|η′|I |2/2,∞), so we get that if

∑

i∈I(η
′
i)
2 −

1
#I

(
∑

i∈I ηi)
2 ≤ κ with κ < |η′|I |2/4, then

(
∑

i∈I
(η′i)

2)1/2 − 1√
#I

|
∑

i∈I
ηi| ≤ C

κ

|η′|I |
,

which can be rewritten as

|η′|I | − |〈η′|I ,
1√
#I

1I〉| ≤ C
κ

|η′|I |
.

Multiplying both sides by 2|η′|I | and using that | 1I√
#I

| = 1, we get

|η′|I −
h√
#I

1I |2 ≤ Cκ (26)

where h = |η′|I |sgn(〈η′|I , 1√
#I

1I〉). From (23) it follows, that |η′|I |2 ≥ r2/2. For κ = cr2 with

a sufficiently small absolute constant c (in particular we want to assure that κ ≤ |η′|I |2/4),
the right hand side of (26) is smaller than r2/2 and so (again by (23)) the inequality (26)
cannot hold on ∆.
Thus, on ∆ we have

σ ≥ cr,

which, when combined with (25) gives

P(|
∑

i∈I
η′ixτ(i) − u| ≤ ε|F) ≤ C

ε

r
+ C

K

rθ1/2n1/2

on ∆. Going now back to (24), (22) and (14) we get

P(ζ ≤ ρεn−1/2) ≤ C
ε

δr
+ C

K

δrθ1/2n1/2
+

2

δ
exp(−cn/K2).

Together with (13) this gives (after adjusting c)

P(sn(B) ≤ ρεn−1/2) ≤ C
ε

δr
+ C

K

δrθ1/2n1/2
+ 2 exp(−cn/K2).

Plugging in the values of ρ, δ (equation (12)) and θ, r (equation (15)) we get

P(sn(B) ≤ 1

K + |z|εn
−1/2)

≤2 exp(−cn/K2) + CK2(K + |z|) log(1 +K + |z|)ε+ C
K4(K + |z|) log3/2(1 +K + |z|)

n1/2
,

which ends the proof (we again adjust the constants to remove the first term on the
right-hand side). �
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5. Proof of Theorem 1.2 (circular law for the first model)

By [7, Lemma A2] or [10], to prove that νA(n) converges weakly in probability to the
uniform measure on the unit disc, it is enough to show that the following is true:

(i) Singular values of shifts. For all z ∈ C, there exists a non random probability
measure νz on R+, absolutely continuous with respect to the Lebesgue measure,
depending only on z, and such that

νz,n :=
1

n

n
∑

k=1

δsk(A(n)−zIdn)  n→∞
νz.

Moreover, for almost all z ∈ C,

U(z) := −
∫

R+

log(s)νz(ds) =

{

− log |z| if |z| > 1,
1
2
(1− |z|2) otherwise;

(ii) Uniform integrability. For all z ∈ C, the function s 7→ log(s) is uniformly
integrable in probability with respect to the family of measures {νz,n}n≥1, i.e.

∀ε > 0, lim
t→∞

lim sup
n→∞

P

(

∫

R+

| log s|1{| log s|>t}dνz,n(s) > ε
)

= 0.

The first item (i) is settled by Theorem 2.1. It remains to prove assertion (ii), which
is the aim of the rest of this section. We follow the Tao and Vu approach [32]. We will
combine estimates on the smallest singular value coming from Section 4 with a rougher
bound on intermediate singular values of the matrix, obtained in the following lemmas.

Lemma 5.1 (Distance to a random subspace). Let R be a deterministic n × n matrix.
Denote the rows of X(n) +R by Z1, . . . , Zn. Consider k ≤ n− 1 and let H be the random
subspace of Cn spanned by Z1, . . . , Zk. Then with probability at least 1 − 2 exp(−c(n −
k)/K2

n),

dist(Zk+1, H) ≥ c
√
n− k.

Proof of Lemma 5.1. In what follows we will suppress the superscript (n) and write simply
Xij for the entries of the matrix X(n). The rows of X(n) will be denoted by X1, . . . , Xn.
We can assume that k ≤ n−CK2

n for some absolute constant C, otherwise the estimate
on probability given in the lemma becomes trivial for c sufficiently small. Consider the
σ-field F generated by (π(i, j))1≤i≤k,1≤j≤n.

We will first replace H by H̃ = span(H, 1, Y ) where 1 is the vector of ones and Y is the
(k+1)-st row of R. We can assume that with probability one H̃ is of dimension l = k+2

(otherwise we may enlarge H̃ to a subspace of dimension l in an F -measurable way). Let
X = Xk+1 − µ̂1, where µ̂ = 1

n(n−k)

∑n
i=k+1

∑n
j=1Xij (note that µ̂ is F -measurable) and

denote the coordinates of X by x1, . . . , xn. Note that dist(Zk+1, H) ≥ dist(Zk+1, H̃) =
dist(X, H̃).
We have E(xi|F) = 0. Moreover, since Eµ̂ = 0, by Theorem 3.1 we have

P(|µ̂| ≥ γ) ≤ 2 exp(−cγ2n(n− k)/K2
n). (27)

Consider now M2 :=
∑n

i=k+1

∑n
j=1X

2
ij (which is F -measurable) and note that by Corol-

lary 3.3, EM ≥
√
EM2 −CKn ≥ 2−1

√

n(n− k) (where we used the assumption n− k ≥
CK2

n). Thus again by Theorem 3.1 we have

P(M2 ≤ cn(n− k)) ≤ 2 exp(−cn(n− k)/K2
n). (28)
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Define Σ̂2 = E(x2
j |F) = 1

n(n−k)

∑n
i=k+1

∑n
j=1(Xij − µ̂)2 = 1

n(n−k)
M2 − µ̂2 and

∆ = {Σ̂ ≥ c}.
Combining (28) and (27) with γ small enough we obtain

P(∆) ≥ 1− 2 exp(−cn(n− k)/K2
n). (29)

Let P be the orthogonal projection on H̃⊥ and let e1, . . . , en−l be an orthonormal basis
in H̃⊥. Denote ei = (eij)1≤j≤n. We have

E(dist(X, H̃)2|F) = E(|PX|2|F) =

n−l
∑

i=1

E

(
∣

∣

∣

n
∑

j=1

xj ēij

∣

∣

∣

2

|F
)

=

n−l
∑

i=1

n
∑

j=1

|eij|2E(x2
j |F) +

n−l
∑

i=1

∑

1≤j 6=t≤n

ēijeitE(xjxt|F).

We have

E(x2
j |F) = Σ̂2

and for j 6= t,

E(xjxt|F) =
1

n(n− k)[n(n− k)− 1]

∑

(a,b) 6=(r,s)

k+1≤a,r≤n,1≤b,s≤n

(Xab − µ̂)(Xrs − µ̂)

= − 1

n(n− k)[n(n− k)− 1]

n
∑

a=k+1

n
∑

b=1

(Xab − µ̂)2 = − 1

n(n− k)− 1
Σ̂2.

Thus

E(dist(X, H̃)2|F) = Σ̂2
n−l
∑

i=1

(

n
∑

j=1

|eij |2 −
1

n(n− k)− 1

∑

1≤j 6=t≤n

ēijeit

)

= Σ̂2

n−l
∑

i=1

(

n
∑

j=1

|eij |2 −
1

n(n− k)− 1

∣

∣

∣

n
∑

j=1

ēij

∣

∣

∣

2

+
1

n(n− k)− 1

n
∑

j=1

|eij|2
)

≥ Σ̂2

n−l
∑

i=1

( n(n− k)

n(n− k)− 1
− n

n(n− k)− 1

)

= Σ̂2(n− l)
n2 − kn− n

n2 − kn− 1
.

Thus, using the assumption that k ≤ n− C we get for n ≥ C that on ∆,

E(dist(X, H̃)2|F) ≥ c(n− k).

Using now Corollary 3.3, the fact that P is 1-Lipschitz and the assumption n−k ≥ CK2
n,

we get on ∆,

E(dist(X, H̃)|F) ≥ c
√
n− k.

Applying Theorem 3.1 we obtain on ∆,

P(dist(X, H̃) ≥ c
√
n− k|F) ≥ 1− 2 exp(−c(n− k)/K2

n),

which when combined with (29) gives

P(dist(X, H̃) ≥ c
√
n− k) ≥ 1− 2 exp(−c(n− k)/K2

n).

�
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Lemma 5.2 (Lower bound on the intermediate singular values). Let s1 ≥ . . . ≥ sn be
the singular values of A(n) − zIdn. If Kn = O(n1/(2+δ)) for some δ > 0, then there exists
γ ∈ (0, 1) such that for every z ∈ C we have

lim
n→∞

P

(

∃nγ≤i≤n−1 sn−i ≤ c
i

n

)

= 0.

Proof of Lemma 5.2. The proof follows an argument due to Tao and Vu [32]. Let R =
−√

nzId and recall the notation of Lemma 5.1. For some γ ∈ (0, 1) to be chosen later on,
consider i ≥ nγ . Let k = n− ⌊i/2⌋ and let B be the k × n matrix with rows Z1, . . . , Zk.
By Cauchy interlacing inequalities we have

√
nsn−j = sn−j(X

(n) + R) ≥ sn−j(B) for
j ≥ ⌊i/2⌋. Let Hj , j = 1, . . . , k be the subspace of Cn spanned by all the rows of B
except for the j-th one. By [32, Lemma A4],

k
∑

j=1

sj(B)−2 =
k

∑

j=1

dist(Zj , Hj)
−2.

By Lemma 5.1, for each j ≤ k, dist(Zj, Hj) ≥ c
√
n− k + 1 ≥ c

√
i with probability at least

1− 2 exp(−ci/K2
n) ≥ 1− 2 exp(−cnγ/K2

n). (Note that we can use the lemma here thanks
to exchangeability of the rows of the matrix). By the union bound, with probability at
least 1− 2n exp(−cnγ/K2

n), we get

k
∑

j=1

sj(B)−2 ≤ C
k

i
.

On the other hand, the left-hand side above is at least sn−i(B)−2(k−n+i) ≥ sn−i(B)−2i/2.
This gives that with probability at least 1− 2n exp(−cnγ/K2

n),

ns2n−i ≥ sn−i(B)2 ≥ c
i2

n− ⌊nγ/2⌋ ,

which implies that sn−i ≥ c i
n
. Taking another union bound over all i ≥ nγ we obtain that

sn−i ≥ c i
n
for all nγ ≤ i ≤ n − 1 with probability at least 1 − 2n2 exp(−cnγ/K2

n). For
some γ ∈ (0, 1), we have γ − 2/(2 + δ) > 0 and so by the assumption on Kn,

2n2 exp(−cnγ/K2
n) → 0,

which ends the proof. �

Conclusion of the proof of Theorem 1.2. Recall that we have to prove (ii). By Markov’s
inequality it suffices to show that for some α > 0 and some constant Cz,

lim
n→∞

P

(

∫ ∞

0

(sα + s−α)dνz,n(s) > Cz

)

= 0.

Note that, using the notation of Lemma 5.2, we have

∫ ∞

0

(sα + s−α)dνz,n(s) =
1

n

n
∑

i=1

(sαi + s−α
i ).
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Note also that for all α ∈ (0, 2] we have

(1

n

n
∑

i=1

sαi

)2/α

≤ 1

n

n
∑

i=1

s2i

= n−1‖A(n) − zIdn‖2HS

≤ 2|z|2 + 2n−2

n
∑

i,j=1

|x(n)
ij |2

= 2|z|2 + 2. (30)

As for the other sum, by the estimate of Theorem 4.1 together with the assumption on
Kn we have with probability tending to one for some finite constant β > 0, sn ≥ n−β.
Combining this with Lemma 5.2 we get with probability tending to one,

1

n

n
∑

i=1

s−α
i =

1

n

⌊nγ⌋
∑

i=0

s−α
n−i +

1

n

n−1
∑

i=⌊nγ⌋+1

s−α
n−i

≤ 1

n
nβαnγ +

1

n
C

n−1
∑

i=⌊nγ⌋+1

(n

i

)α

≤ nβα+γ−1 + Cαn
α−1n1−α ≤ Cα

for α small enough. Together with (30) this gives (ii), and Theorem 1.2 is proved. �

6. Proof of Theorem 1.3 (circular law for the second model)

Proof of Theorem 1.3. Let d be any distance metrizing the weak convergence of prob-
ability measures on C, such as the bounded-Lipschitz distance (also referred to as the
Fortet-Mourier distance by some authors). Let Mn(δ) be the set of all n× n matrices x,
satisfying (A1-A2) with Kn ≤ n1/(10+δ/3). Let us denote by A(n)(x) = n−1/2X(n)(x) the
matrix constructed from x as in (2). Theorem 1.2 implies that for any δ > 0 and ε > 0

sup
x∈Mn(δ)

P(d(νA(n)(x), ν
circ) > ε) → 0

as n → ∞. Indeed if for some ε there exists a sequence nk → ∞ and nk × nk matrices
xnk

such that P(d(νA(nk)(xnk
), ν

circ) > ε) > ε, then we can complete this sequence to a

sequence xn, n ≥ 1, violating Theorem 1.2.
Consider now the matrices B(n) and for any n define the event

∆n = {max
i,j≤n

σ−1
n |Y (n)

ij − µn| ≤ n1/(10+δ/3)}.

Note that by the union bound, Markov’s inequality and exchangeability

P(∆′
n) ≤

n2 supm E

(

σ−1
m |Y (m)

11 − µm|
)20+δ

n
20+δ

10+δ/3

→ 0.

Let πn be a random (uniform) permutation of [n]× [n], independent of B(n). Since

B̄(n) =
1√
nσn

(Y
(n)
πn(i,j)

− µn)1≤i,j≤n
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has the same distribution as B(n), it is enough to show that νB̄(n) converges weakly in
probability to the circular law. By the Fubini theorem we have for any ε > 0,

P(d(νB̄(n) , νcirc) > ε) ≤ P(∆′
n) + EB

(

Pπn(d(νB̄(n), νcirc) > ε)1∆n

)

≤ P(∆′
n) + sup

x∈Mn(δ)

P(d(νA(n)(x), ν
circ) > ε) → 0.

�
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