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Abstract: In this paper we propose two analytically

tractable stochastic-geometric models of interference in ad-

hoc networks using pure (non-slotted) Aloha as the medium

access. In contrast the slotted model, the interference in

pure Aloha may vary during the transmission of a tagged

packet. We develop closed form expressions for the Laplace

transform of the empirical average of the interference

experienced during the transmission of a typical packet.

Both models assume a power-law path-loss function with

arbitrarily distributed fading and feature configurations

of transmitters randomly located in the Euclidean plane

according to a Poisson point process. Depending on the

model, these configurations vary over time or are static. We

apply our analysis of the interference to study the Signal-to-

Interference-and-Noise Ratio (SINR) outage probability for

a typical transmission in pure Aloha. The results are used

to compare the performance of non-slotted Aloha to the

slotted one, which has almost exclusively been previously

studied in the same context of mobile ad-hoc networks.

Index Terms—Pure (non-slotted) Aloha, Slotted Aloha,

SINR, Shot-Noise, MAC Layer Optimization, Throughput,

Stochastic geometry, Poisson point process.

I. INTRODUCTION

Aloha is one of the simplest multiple access com-

munication protocols. The main idea is that sources,

independently of each other, transmit packets and back-

off for random times before the next transmission. A

classical model of Aloha assumes that when two or more

transmissions overlap in time then neither of them is

successful (a collision occurs). This simple model is not

adequate in the wireless context. Indeed, the geometry of

nodes in the network may allow some simultaneous trans-

missions to be successful due to the capture (or spatial

reuse) effect. Since 1988 and the seminal paper [10], new

models have been developed to describe Aloha networks

with spatial reuse and capture effect. The model proposed

in [4], which inspired our work, falls into this category.

To the best of our knowledge, almost all of these studies

use slotted Aloha, except [8], which we revisit in this

paper. We consider a wireless ad-hoc network modeled by

homogeneous Poisson point process. We assume power-

law decay of the signal in the path-loss model as well

as a general distribution of the fading. We consider two

models for non-slotted Aloha: the Poisson rain model

with dynamic node activation and the Poisson renewal

model with a static positioning of nodes. In both of these

models, we characterize the Laplace transform of the

distribution of the empirical average of the interference

received during the reception of a typical packet. The

expressions are particularly simple for the Poisson rain

model. Next we use this characterization of the Laplace

transform of the interference to express the probability

of a successful transmission in pure Aloha. Finally, we

optimize and compare space-time and energy efficiency

of pure Aloha with the previously studied performance

of slotted Aloha. We show that the Poisson rain and the

Poisson renewal models provide comparable results and

that the Poisson renewal model converges towards the

Poisson rain model when the node density increases.

We observe that when the path-loss exponent is not

very strong both models, when appropriately optimized,

exhibit a similar performance. For stronger path-loss, slot-

ted Aloha offers a gain (due to synchronisation), which is

however much smaller than that predicted by the classical

(geometry-less) models of Aloha, which do not take into

account the spatial reuse effect but assume collisions

for all simultaneously transmitted packets. Moreover, we

observe in all path-loss scenarios that both slotted and

pure Aloha schemes exhibit the same energy efficiency.

A. Related Work

The shot noise process formed from a sum of response

functions of a Poisson process and identically distributed

random variables was already studied back in the 60s,

cf [11]. The first attempts to study interference using

the Laplace transforms of the shot noise can be found

in [16, 19]. In [13] the shot noise created in a Poisson

process with a power-law path-loss function was studied

and observed to have a stable distribution.

In [4] the authors introduce what is today called the

Poisson bipolar model of an ad-hoc network and using

the Laplace transform of the interference calculate the

SINR capture probability for a typical packet transmission

in the slotted Aloha MAC. This approach has been next

extended.

In particular in [18] the authors compute upper and

lower bounds on the transmission capacity of wireless



ad-hoc spread spectrum networks. Using these bounds,

they show that frequency hopping systems obtain higher

transmission capacity than direct sequence systems in the

order of M1−2/β , where M is the spreading factor and β
is the path loss exponent. In [12] the outage probability

of a packet in a Signal-over-Interference-Ratio model

is extensively investigated. This paper considers many

situations: Poisson point process and deterministic node

placement. Various kinds of fading are studied. The study

also varies the medium access scheme considering Aloha

and Time Division Multiple Access (TDMA). The author

computes the outage probability of a packet in all these

situations. In [5] a channel-fading opportunistic Aloha is

considered.

Although most of the studies use Aloha for the access

scheme, a few of them such as [14] adopt CSMA. Study-

ing the interference in CSMA networks is more difficult

because the pattern of the simultaneously transmitting

nodes is no longer a Poisson process even if the initial

node location is assumed to be Poisson. A natural model

is a Matern-like hard-core (or soft-core in the case of

fading) point process.

Most research papers on Aloha and its performance

concern slotted Aloha. Very few papers study pure (non-

slotted) Aloha. The early papers on pure Aloha such

as [15] do not consider spatial reuse. The present paper,

inspired by the original approach of [4], revisits and

extends the study of pure Aloha proposed in [8].

The remaining part of this paper is organized as

follows. Section II describes the two models for pure

Aloha: the Poisson rain and the Poisson renewal mod-

els. Section III analyzes the interference in our Aloha

networks by computing the Laplace transform of the

mean interference for pure Aloha in the Poisson rain

and the Poisson renewal models for a general fading. In

Section IV, we study the SINR coverage probability using

the Laplace transform of the empirically averaged inter-

ference. We can thus optimize pure Aloha and compare

the performance with the slotted version of the protocol.

Section V contains the simulation results which validate

our models and also provides numerical comparisons of

slotted and pure Aloha. Section VI concludes the paper.

The appendix provides the computation of the Laplace

transform of the mean interference with pure Aloha in the

Poisson renewal model. This computation is somewhat

technical, which is why we include it in the Appendix.

II. NETWORK AND ALOHA MODEL

In this section we present our models of non-slotted

Aloha for wireless ad-hoc networks. To facilitate future

comparisons, we also recall the basic spatial slotted Aloha

model.

A. Location of Nodes — The Spatial Poisson Bipolar

Network Model

We consider a Poisson bipolar network model in which

each point of the Poisson pattern represents a node of

a Mobile Ad hoc NETwork (MANET) and is hence a

potential transmitter. Each node has an associated receiver

located at distance r. This receiver is not part of the Pois-

son pattern of points. Using the formalism of the theory

of point processes, we will say that a snapshot of the

MANET can be represented by an independently marked

Poisson point process (P.p.p) Φ̃ = {(Xi, yi)}, where the

locations of nodes Φ = {Xi} form a homogeneous P.p.p.

on the plane, with an intensity of λ nodes per unit of

space, and where the mark yi denotes the location of

the receiver for node Xi. We assume here that no two

transmitters have the same receiver and that, given Φ, the

vectors {Xi − yi} are i.i.d with |Xi − yi| = r.

B. Aloha Models — Time Added

We will now consider two time-space scenarios appro-

priate for slotted and non-slotted Aloha. In both of them

the planar locations of MANET nodes and their receivers

Φ̃ remain fixed. It is the medium access control (MAC)

status of these nodes that will evolve differently over time

depending on which of the following two models is used.

1) Slotted Aloha: In this model we assume that the

time is discrete, i.e. divided into slots of length B (the

analysis will not depend on the length of the time-slot)

and labeled by integers n ∈ Z. The nodes of Φ are

perfectly synchronized to these (universal) time slots and

send packets according to the following slotted Aloha

policy: each node, at each time slot independently tosses

a coin with some bias p which will be referred to as the

medium access probability (MAP); it sends the packet

in this time slot if the outcome is heads and backs off

its transmission otherwise. This evolution of the MAC

status of each node Xi can be formalized by introducing

its further (multi-dimensional) mark (ei(n) : n ∈ Z),
where ei(n) is the medium access indicator of node i at

time n; ei(n) = 1 if node i is allowed to transmit in the

time slot considered and 0 otherwise. Following the Aloha

principle we assume that ei(n) are i.i.d. (in n and i) and

independent of everything else, with P(ei(n) = 1) = p.

We treat p as the main parameter to be tuned for slotted

Aloha. We will call the above case the slotted Aloha

model.

2) Poisson-renewal Model of Non-slotted Aloha: In

this non-slotted Aloha model all the nodes of Φ inde-

pendently, without synchronization, send packets of the

same duration B and then back off for some random

time. This can be integrated in our model by intro-

ducing marks (Ti(n) : n ∈ Z), where Ti(n) denotes



the beginning of the n th transmission of node Xi with

Ti(n + 1) = Ti(n) + B + Ei(n), where Ei(n) is the

duration of the n th back-off time of node Xi. The non-

slotted Aloha principle states that Ei(n) are i.i.d. (in i
and n) independent of everything else. In what follows

we assume that Ei(n) are exponential with mean 1/ǫ and

will consider the parameter ǫ as the main parameter to be

tuned for non-slotted Aloha (given the packet transmis-

sion time B). More precisely, the lack of synchronization

of the MAC mechanism is reflected in the assumption

that the temporal processes (Ti(n) : n ∈ Z) are time-

stationary and independent (for different i). Note also

that these processes are of the renewal type (i.e., have

i.i.d. increments Ti(n + 1) − Ti(n)). For this reason

we will call this case the Poisson-renewal model for

non-slotted Aloha. The MAC state of node Xi at (real)

time t ∈ R can be described by the on-off process

erenewal
i (t) = 1I(Ti(n) ≤ t < Ti(n)+B for some n ∈ Z).

C. Fading and External Noise

We need to complete our network model by some radio

channel conditions. We will consider the following fading

scenario: channel conditions vary from one transmission

to another and between different emitter-receiver pairs,

but remain fixed for any given transmission. To include

this in our model, we assume a further multidimensional

mark (Fi(n) : n ∈ Z) of node Xi where Fi(n) =
(F j

i (n) : j) with F j
i (n) denoting the fading in the channel

from node Xi to the receiver yj of node Xj during the n th

transmission. We assume that F j
j (n) are i.i.d. (in i, j, n)

and independent of everything else. Let us denote by F
the generic random variable of the fading. We always

assume that 0 < E[F ] = 1/µ < ∞. In the special case

of Rayleigh fading, F is exponential (with parameter µ).

(see e.g. [17, pp. 50 and 501]). We can also consider non-

exponential cases, which allow other types of fading to

be analyzed, such as e.g. Rician or Nakagami scenarios

or simply the case without any fading (when F ≡ 1/µ is

deterministic).

In addition to fading we consider a non-negative ran-

dom variable W independent of Φ̃ modeling the power of

the external (thermal) noise. The Laplace transform of W
will be denoted by LW (s) = E[e−sW ]. (More generally,

we denote by LU (ξ) the Laplace transform of a random

variable U .)

The slotted Aloha model described above, when con-

sidered in a given time slot, coincides with the Poisson

Bipolar model with independent fading considered in [4].

It allows one to derive a simple, explicit evaluation of the

successful transmission probability and other characteris-

tics such as the density of successful transmissions, the

mean progress, etc.

An exact analysis of the Poisson-renewal non-slotted

Aloha model, albeit feasible, does not lead to similarly

closed form expressions. To improve upon this situation,

in what follows we propose another model for the non-

slotted case. It allows the results to be as explicit as those

of [5], which are moreover very close to those of the

Poisson-renewal model in a high node density regime.

D. Poisson Rain Model for Non-slotted Aloha

The main difference with respect to the scenario con-

sidered above is that the nodes Xi and their receivers

yi are not fixed in time. Rather, we consider a time-

space Poisson point process Ψ = {(Xi, Ti)} with Xi ∈
R
2 denoting the location of the emitter which sends a

packet during time interval [Ti, Ti + B) (indexing by i
is arbitrary and in particular does not mean successive

transmissions over time). We may think of node Xi as

being “born” at time Tn transmitting a packet during

time B and “disappearing” immediately after. Thus the

MAC state of the node Xi at (real) time t ∈ R is simply

ei(t) = 1I(Ti ≤ t < Ti +B).
We always assume that Ψ is homogeneous (in time

and space) P.p.p. with intensity λs. This parameter corre-

sponds to the space-time frequency of channel access; i.e,

the number of transmission initiations per unit of space

and time. The points (Xi, Ti) of the space-time P.p.p.

Ψ are marked by the receivers yi in the same manner

as described in Section II-A; i.e, given Ψ, {Xi − yi}
are i.i.d random vectors with |Xi − yi| = r. Moreover,

they are marked by Fi = (F j
i : j), with F j

i denoting

the fading in the channel from Xi to the yj (meaningful

only if Xi, Xj coexist for a certain time). We assume

that F j
j (n) are i.i.d. (in i, j) and of everything else, with

the same generic random fading F as in Section II-C. We

will call the above model the Poisson rain model for non-

slotted Aloha. It can be naturally justified by the mobility

of nodes.

For all the models that we have presented we define

the channel access probability τ as the probability that a

given node transmits a packet a given time. In the slotted

model τ = p, in the non-slotted Poisson renewal model

τ = B
1+1/ǫ . In the non-slotted Poisson rain model we have

τ = τs/λ.

III. INTERFERENCE ANALYSIS

A. Path-loss Model

Let us assume that all transmitters, when authorized

by Aloha, emit packets with unit signal power and that

the receiver yi of node Xi receives the power from the

node located at Xj (provided this node is transmitting)

equal to F i
j/l(|Xj−yi|), where | · | denotes the Euclidean



distance on the plane and l(·) is the path loss function.

An important special case consists in taking

l(u) = (Au)β for A > 0 and β > 2. (3.1)

Other possible choices of path-loss function avoiding the

pole at u = 0 consist in taking e.g. max(1, l(u)), l(u+1),
or l(max(u, u0)).

By interference we understand the sum of the signal

powers received by a given receiver from all the nodes

transmitting in the network except the receiver’s own

transmitter.

B. Interference

1) Slotted Aloha : Let us denote by Ii(n) the in-

terference at receiver yi at time n; i.e., the sum of

the signal powers received by yi from all the nodes in

Φ1(n) = {Xj ∈ Φ : ej(n) = 1} except Xi, namely,

Ii(n) =
∑

Xj∈Φ1(n), j 6=i

F i
j (n)/l(|Xj − yi|) . (3.2)

2) Non-slotted Aloha: When transmissions are not

synchronized (as is the case for non-slotted Aloha) the

interference may vary during a given packet transmission

because other transmissions may start or terminate during

it. In our Poisson-renewal model of Section II-B2 this

interference process Ii(n, t) during the n th transmission

to node yi can be expressed using (3.2) with Φ1(n)
replaced by Φ1

ren(t) = {Xj ∈ Φ : erenj (t) = 1}.

Similarly, in the Poisson rain model of Section II-D,

the interference process, denoted by Ii(t), during the

(unique) transmission of node Xi conforms to the above

representation (3.2) with Φ1(n) replaced by Ψ1(t) =
{Xj ∈ Ψ : ej(t) = 1}, and F i

j (n) replaced by F i
j .

Below, we propose two different ways of taking into

account the variation of the interference during the packet

reception.

• Consider the maximal interference

value during the given transmission

Imax
i (n) = maxt∈[Ti(n),Ti(n)+B] Ii(n, t) or

Imax
i = maxt∈[Ti,Ti+B] Ii(t) for the Poisson-

renewal or the Poisson rain model, respectively.

This choice corresponds to the situation where bits

of information sent within one given packet are not

repeated/interleaved so that the interference needs to

be controlled (e.g. through the SINR condition, see

Section IV) at any time of the packet transmission

(for all symbols) for the reception to be successful.

• Taking the averaged interference value over

the whole packet duration Imean
i (n) =

1/B
∫ Ti(n)+B]
Ti(n)

Ii(n, t) dt or Imean
i =

∫ Ti+B
Ti

Ii(t) dt
for the Poisson-renewal or the rain model,

respectively, corresponds to a situation where some

coding with repetition and interleaving of bits on

the whole packet duration is used.

In what follows we will be able to express, in closed

form expressions, the Laplace transform of the averaged

interference in our non-slotted models.

C. Laplace transform of the interference

In what follows we consider the interference experi-

enced by an “extra” receiver added to the network (say at

the origin) during the reception of a virtual packet which

starts at time 0. In slotted Aloha, this will be just the

interference I received at the origin during slot 0. For

non-slotted Aloha, this will be the interference Imean

empirically averaged over the time interval [0, B].

The general expression of the Laplace transform LI of

I in the slotted Aloha scheme has already been studied.

Here we recall the result assuming a general fading law,

cf [4, 7, 9].

Result 3.1: For the slotted Aloha model with path-loss

function (3.1) and a general distribution of fading F with

mean 1, we have

LI(ξ) = exp{−λpA−2ξ2/βκslottedE[F
2

β ]} , (3.3)

where κslotted = πΓ(1 − 2/β) is called the spatial

contention factor for slotted Aloha1. In particular

– E[F
2

β ] = 1 in the no-fading scenario F ≡ 1,

– E[F
2

β ] = 2Γ(2/β)/β with Rayleigh fading (F exponen-

tial) and µ = 1.

– E[F
2

β ] = exp(σ2(2 − β)/β2) with F log-normal

shadow-fading of mean 12.

– E[F
2

β ] = Γ(k+2/β)
Γ(k)22/β with F a Nakagami distribution3.

Regarding the distribution of the averaged interference

Imean in non-slotted Aloha, we have the following new

general result.

Proposition 3.2: Let us consider the Poisson rain

model of non-slotted Aloha with space-time intensity

of packet transmissions λs = λτ and the path-loss

function (3.1). Let us assume a general distribution of

fading F . Then the Laplace transform LImean(ξ) of the

averaged interference Imean is given by (3.3) with the

spatial contention factor κ = κnon−slotted equal to:

κnon−slotted =
2β

2 + β
κslotted ,

where κslotted is the spatial contention factor evaluated

for slotted Aloha under the same channel assumptions.

1The term spatial contention factor was introduced in [12].
2F = exp(−σ2/2+σZ) with Z standard normal random variable.
3the density of F is f(x, k) = kk

Γ(k)
xk−1e−kx, note that this

corresponds to Nakagami (k, 1) fading.



Proof: By (3.2) and by the definition of Imean , if

we exchange the order of integration and summation we

can express Imean in the following form:

Imean =
∑

Xj∈Φ,Xj 6=Xi

Fj,yi
Hj/l(|Xj − yi|) ,

where Hj = 1
B

∫ u+B
u 1I(Xj emits at time t) dt. In the

Poisson rain model we have 1I(Xj emits at time t) =
1I(t − B ≤ Tj ≤ t), where Tj is the time at which

Xj starts emitting. Integrating the previous function we

obtain Hj = h(Tj), where h(s) = (B − |s|)+/B and

t+ = max(0, t). Consequently, for the Poisson rain

model represented by Poisson p.p. Ψ = {Xi, Ti} (cf.

Section II-D) the averaged interference at the typical

transmission receiver is equal in distribution to:

Imean distr.
=

∑

Xj ,Tj∈Ψ

Fjh(Tj)/l(|Xj |) ,

where Fj are i.i.d. copies of the fading. Using the general

expression for the Laplace transform of the Poisson

shot-noise (see e.g. [2, Prop. 2.2.4]), for the path-loss

function (3.1) we obtain:

LImean(ξ)

= exp
{
−2πλs

∫ ∞

−∞

∫ ∞

0
r
(
1− LF

(
ξh(t)(Ar)−β

))
dr dt

}
,

where LF is the Laplace transform of F . Substituting

r := Ar(ξh(t))−1/β for a given fixed t in the inner inte-

gral we factorize the two integrals and obtain LImean(ξ) =
exp{λsA

−2ξ2/βζη}, where ζ =
∫∞
−∞(h(t))2/β dt and

η = 2π
∫∞
0 r(1−LF (r

−β)) dr = κslottedE[F
2

β ]. A direct

calculation yields ζ = 2β/(2 + β). This completes the

proof.

Remark 3.3: Recall that

ζ = ζ(β) =
κnon−slotted

κslotted
= 2β/(2 + β)

is the ratio of the spatial contention parameters between

non-slotted and slotted Aloha models. It can be seen as

the contention cost of non-synchronization in Aloha (cf

Remark 4.5 below). We plot its value as a function of β in

Figure 1. Note that in the free-space propagation model

(where β = 2) it is equal to 1 (which means that the

interference distribution in slotted and non-slotted Aloha

are the same. Moreover, ζ(β) increases with the path-loss

exponent and asymptotically (for β = ∞) approaches the

value 2 (as conjectured in [8]).

D. Interference in the Poisson-Renewal Model

We now consider the mean interference Imean =
Imean
0 (0) experienced by the receiver located at the

origin 0, during the transmission of the packet, which

starts at time T0 = 0.
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Fig. 1. Ratio of the spatial contention parameters between non-slotted

and slotted Aloha models versus β.

Proposition 3.4: The Laplace transform of the inter-

ference Imean in the Poisson-renewal model with arbi-

trary distribution of fading F satisfying E[F 2/β ] < ∞ is

given by the following expression:

Lmean
I (ξ) = exp

[
−

∫ ∞

0

(
1−

ǫB(e−ξ/v − e−Bǫ)

(1 + ǫB)(ǫB − ξ/v)

−
(ǫB)2

(1 + ǫB)(ξ/v − ǫB)

∫ 1

0
eǫBt(1− e(ξ/v−ǫB)(t−1))L̃(ξt/v)dt

−
ǫBe−ǫB

(1 + ǫB)

∫ 1

0
eǫBtL̃(ξt/v)dt−

e−ǫB

(1 + ǫB)

)
Λ(dv)

]
,

where

Λ(dv) =
2λπE[F 2/β ]

A2β
vβ/2−1 dv

L̃(η) =
1

E[F 2/β ]
E[F ′2/βLF (η/F

′)]

The proof of this proposition in given in the Appendix.

The following two results consider two special cases:

constant (F ≡ 1) and Rayleigh (F exponential) fading.

Proposition 3.5: Under the assumptions of Proposi-

tion 3.4, with F ≡ 1

LImean(ξ) = exp
{
−
2πλ

A2β

∫ ∞

0
i(ξ/v)v2/β−1dv

}

with

i(ξ/v) = 1−
e−ǫB(ǫBeǫB−ξ/v − ξ/v)

(1 + ǫB)(ǫB − ξ/v)

−
ǫB(ǫ2B2e−ξ/v − ǫBe−ξ/vξ/v − e−ξ/vξ/v + e−ǫBξ/v)

(1 + ǫB)(ǫB − ξ/v)2
.

Proof: When F ≡ 1 we have L̃(η) = e−η and

Λ(dv) = 2λπ
A2β v

β/2−1dv. Inserting the values of L̃(η) and

Λ(dv) in the expression given in Proposition 3.4 and after



some algebra, one obtains the result.

Proposition 3.6: Under the assumptions of Proposi-

tion 3.4, with exponential fading F of mean 1 (which

corresponds to Rayleigh fading) we have:

LImean(ξ) = exp
{
−λ

∫

x∈R2

(
1−

1

1 + ǫB

∫ ∞

0

ǫe−ǫs

1 + (B−s)+ξ
Bl(|x|)

ds

−
ǫB

1 + ǫB

1

B

∫ B

0

1

1 + (B−t)ξ
Bl(|x|)

∫ ∞

0

ǫe−ǫs

1 + (t−s)+ξ
Bl(|x|)

dsdt
)

dx
}
.

The proof of this formula can be found in [8].

IV. SINR ANALYSIS

In the slotted Aloha model it is natural to assume that

transmitter Xi covers its receiver yi in time slot n if

SINRi(n) =
F i
i (n)/l(|Xi − yi|)

W + Ii(n)
≥ T , (4.4)

where T is some SINR threshold. When condition (4.4)

is satisfied we say that Xi can be successfully received by

yi or, equivalently, that yi is not in outage with respect

to Xi in time slot n. We will say that in non-slotted

Aloha with maximal interference constraint, Xi can be

successfully received by yi (in time slot n in the case

of the Poisson-renewal model), if condition (4.4) holds

with Ii(n) replaced by Imax
i (n) or Imax

i in the Poisson-

renewal or the Poisson rain models, respectively. Simi-

larly, we will say that in non-slotted Aloha with average

interference constraint, Xi can be successfully received

by yi (in time slot n in the case of the Poisson-renewal

model), if condition (4.4) holds with Ii(n) replaced by

Imean
i (n) or Imean

i in the Poisson-renewal or Poisson rain

models, respectively.

We will see that the coverage probability with the av-

erage interference constraint (in both the Poisson-renewal

and the Poisson rain model), can be easily derived from

the Laplace transform of interference Imean. We have not

been able to derive closed formulas when the maximal

interference constraint is used; this case is studied by

simulations in Section V.

A. Coverage probability

Let us define the coverage probability pc in the three

models considered as the probability that the SINR value

in the typical transmission exceeds the threshold T . More

formally, we have

pc := P
(0,0){SINR0(0) ≥ T }

= P
(0,0){F 0

0 (0) ≥ l(r)T (W + I0(0) }

where P
(0,0) denotes the Palm probability of Φ (given a

node X0 = 0 at the origin) and given that it starts its

transmission at time 0 (indexed by n = 0), and where

I0(0) = Imean
0 (0) for the non-slotted case. The basic

observation allowing explicit analysis of the coverage

probability for all our Poisson models of Aloha is that

the distribution of the interference I0(0) and Imean
0 (0)

and under P
(0,0) is independent of W and F 0

0 (0), and

corresponds to the distribution of the interference “ex-

perienced” by an extra receiver in the respective model,

studied in Section III. This is a consequence of Slivnyak’s

theorem; cf. [2, Theorem 1.4.5]. Consequently, for all

three (slotted, non-slotted rain or renewal) Aloha models,

in the special case of Rayleigh fading we have: pc =
LW (T l(r))LI(T l(r)), where I is the interference in the

respective model (I = Imean for the non-slotted models).

By 3.1 and 3.2 we have the following result.

Result 4.1: For the slotted and Poisson-rain non-

slotted Aloha models with the path-loss function (3.1) and

Rayleigh fading of mean 1/µ = 1, we have

pc = exp
{
−λτr2T 2/βκ

}
, (4.5)

where

– κ = κslotted Γ(2/β+1) = πΓ(1−2/β)Γ(1+2/β)/β =
2πΓ(2/β)Γ(1− 2/β)/β and τ = p for slotted Aloha,

– κ = κnon−slotted Γ(2/β + 1) = 4πΓ(2/β)Γ(1 −
2/β)/(2 + β) for the non-slotted Poisson Aloha model.

For a general distribution of fading the evaluation

of pc from the Laplace transform LI (or LImean) is

not so straightforward. Some integral formula, based on

the Plancherel-Parseval theorem, was proposed in [5]

when F has a square integrable density. This approach

however does not apply to the no-fading case F ≡ 1.

Here we suggest another, numerical approach, based on

the Bromwich contour inversion integral and developed

in [1], which is particularly efficient in this case.

Proposition 4.2: For the (slotted, non-slotted rain and

renewal) Aloha model with constant fading F ≡ 1 we

have

pc =
2 exp{δ/(T l(r))}

π

∫ ∞

0
R
(1− LI(δ + iu)

δ + iu

)
cos(uT ) du ,

(4.6)

where δ > 0 is an arbitrary constant and R(z) denotes

the real part of the complex number z, with LI being

the Laplace transform of the (mean) interference in the

respective Aloha model.

As stated in [1], the integral in (4.6) can be numerically

evaluated using the trapezoidal rule and the Euler sum-

mation rule can be used to truncate the infinite series; the

authors also explain how to set fδ in order to control the

approximation error.



B. Space-time efficiency

Spatial density of successful transmission (spatial

throughput) is usually defined as d = λτpc and it repre-

sents the average number of successful transmissions per

unit of time and space. In what follows we optimize this

quantity for slotted and non-slotted Poisson-rain Aloha

models assuming exponential Rayleigh fading.

The following result follows immediately from (4.1).

Proposition 4.3: We assume that there is no noise

W = 0, Rayleigh fading and path-loss (3.1). The max-

imum value of the density of successful transmissions

is dmax = 1/(er2T 2/βκ) in slotted and non-slotted

rain Aloha. This maximum is attained for the space-time

density of channel access λτ = 1/r2T 2/βκ. Moreover,

given the spatial density of nodes λ the optimal mean

channel-access-time-fraction τ per node τmax for dsuc is

equal to

τmax =
1

λr2T 2/βκ
.

if λ > 1/r2T 2/βκ and 1 (interpreted as no back-off; i.e.,

immediate retransmission) otherwise.

Remark 4.4: Since κ is larger for non-slotted Poisson

rain Aloha than for slotted Aloha when we optimally tune

the two protocols we have τ slottedmax > τnon−slotted
max . This

means that optimally tuned non-slotted Aloha occupies

less channel than optimally tuned slotted Aloha.

The following result compares the optimal densities of

transmission in slotted and non-slotted Aloha.

Proposition 4.5: Under the assumptions of Result 4.3,

the ratio of density of successful transmission for slotted

and non-slotted Poisson rain Aloha is

dslottedmax

dnon−slotted
max

=
κnon−slotted

κslotted
=

1

ζ(β)
=

2β

β + 2
.

In Figure 4 we present this good-put ratio for the opti-

mized systems as a function of β (note that it does not

depend on other parameters such as λ, r, T ). We observe

that for small values of path-loss exponent β (close to

2) the performances of slotted and non-slotted Aloha

are similar, but for large values of β non-slotted Aloha

performs significantly worse than slotted Aloha. However

even for β = 6 the ratio still remains significantly

larger than 50% foreseen by the ’well-known’ (simplified

collision) model (See [6, Section 4.2]).

C. Energy efficiency

Note that both slotted Aloha and non-slotted Aloha (in

the rain model), when optimally tuned for the density of

successful transmission τ = τmax, have the same prob-

ability of successful transmission pc = 1/e. This means

that both schemes exhibit the same energy efficiency. If
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Fig. 2. Density of successful transmissions versus τ = B
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Comparison of the Poisson-renewal and the Poisson rain models with

simulation results. Rayleigh fading.

one assumes that each transmission requires one energy

unit, the number of successful transmissions per unit of

energy consumed is pc = 1/e. Let us remark that this

comparison does not take into account the energy used

to maintain synchronization in the slotted scheme. Taking

this fact into account we can say that non-slotted Aloha

out-performs slotted Aloha in terms of energy efficiency.

V. NUMERICAL RESULTS

In this section we validate our models by comparing

them with simulation results. We also compare the perfor-

mance of slotted and non-slotted Aloha. If not otherwise

defined we use the following numerical assumptions :

λ = 1, r = 1, T = 10 and β = 4. The simulations are

carried out in a square of 300 m × 300 m with the same

numerical assumptions.

A. Non-slotted Aloha, Renewal versus Rain model

In this section we validate our Poisson rain and re-

newal models by comparing the density of successful

transmissions λτpc obtained with these two models and

with simulations. We adopt Rayleigh fading. For the rain

model we have a closed formula but for the renewal

model pc is evaluated numerically using Proposition 4.2

and the Laplace transform derived from Proposition 3.4.

We use the same numerical assumptions as previously:

λ = 1, r = 1, T = 10 and β = 4. In Figure 2 we observe

a very good matching of the two models with simulations.

We perform the same comparison between the two

models and the simulations for β = 5 and β = 3. For

β = 5 the matching of the two models and the simulation

is perfect. For β = 3 the two models provide the same

results whereas the simulations give a larger density of

throughput. This can be explained by the fact that the
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simulation network is of finite length, and the border

effects have a stronger impact for small values of β.

We then compare the Poisson rain and renewal models

with no fading i.e. F ≡ 1. The result of this comparison

is shown in Figure 3. We vary λ from 1 to 100 in the

renewal model. We observe that the rain and the renewal

models for λ = 100 show similar performances. This is

because when λ is large, the transmitting node changes

at every transmission, which is very close to the Poisson

rain model. For small values of λ the two models show

slightly different results.

B. Slotted versus non slotted Aloha

In Figure 4, we present the ratio of density of success-

ful transmissions for non-slotted Aloha and slotted Aloha.

We use the analytical model of slotted-Aloha and the

Poisson rain model for non-slotted Aloha. We optimize

non-slotted Aloha and slotted Aloha with respect to p
and τ . We observe that for small values of the path loss

exponent (close to 2) the performances of slotted and non-

slotted Aloha are similar, but for large values of β slotted

Aloha significantly outperforms non-slotted Aloha.

In Figure 5 we compare the density of successful trans-

missions for slotted Aloha and non-slotted Aloha when

τ = p = ǫ
1+ǫ = 0.05. We observe that for small values

of the path loss exponent (close to 2) the performances

of slotted and non-slotted Aloha are similar when T
is small but that slotted Aloha significantly outperforms

non-slotted Aloha for medium to large values of T . For

large values of T , slotted Aloha still outperforms non-

slotted Aloha but the difference remains less than when

T is small, non-slotted Aloha provides more than 80%

of slotted Aloha throughput. We observe that in contrast

to the case where the protocols are tuned to offer the
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maximum throughput, the ratio of throughput for non-

slotted/slotted Aloha does depend on T (and of course

on τ or p).

C. Mean Versus Maximum Interference Constraint in

SINR

In this section, we show the impact of the assumption

on the maximum interference constraint in the SINR on

the probability of a successful transmission. In Figure 6,

we compare the density of successful transmissions for

non slotted Aloha, we still have λ = 1, r = 1, T = 10 and

β = 4. When the SINR is computed with the maximum

interference instead of the mean interference the loss in

performance is large and may be up to 45%. But if the

throughput is optimized in ǫ, the loss in performance is

only 26%. We observe that the throughput is optimized in

both cases for the same value of Bǫ ≃ 0.045, this value
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is also optimal for the Poison rain model.

In Figure 7 we compare the density of successful

transmissions for slotted Aloha and non-slotted Aloha

when the maximum or average SINR is considered. For

slotted Aloha we use the analytical model and optimize

the density of throughput in p. For non-slotted Aloha

we use simulation results and the Poison rain model to

optimize the schemes in B
1+1/ǫ = τ . We observe that

for β ≤ 4 non-slotted Aloha with the averaged SINR

provides 50% more throughput than with the maximum

SINR. For β ≥ 5 non-slotted Aloha with the averaged

SINR provides only around 35% more throughput than

with the maximum SINR. When we compare slotted

Aloha with non-slotted Aloha with maximum SINR, we

find that slotted Aloha offers 66% more throughput for

β = 3 and 100% for β = 6.

VI. CONCLUSION

Following on from previous studies of slotted Aloha,

we propose two models for pure Aloha: the Poisson rain

and the Poisson renewal models. We provide simulation

results to prove the validity of both models. We show

that the Poisson renewal model converges towards the

Poisson rain model when the density of nodes becomes

large. As the main theoretical contribution we derive

closed form expressions for the Laplace transform of

the interference observed in both models with a general

fading distribution. For the Poisson Rain model these

expressions are very simple and particularly amenable to

comparison with the previously well studied slotted Aloha

model. Using this approach we express the gain in density

of throughput for slotted Aloha (due to synchronisation)

as a simple function of the path-loss exponent. It indicates

that for small values of the path-loss exponent (close to

2) there is no gain from synchronisation, and that this

gain very slowly increases with the increase in the path

loss exponent (theoretically up to the factor of 2, when

the path-loss exponent approaches infinity).

APPENDIX

A. Proof of Proposition 3.4

Each node Xj , j 6= 0, sends only two packets which

can potentially interfere with the transmission of the

packet of node X0 = 0, which starts at time T0(0) = 0.

These are the last transmission which starts before time 0

and the first one which starts after time 0. Let us

denote these times Tj(0) and Tj(1) respectively, with

Tj(0) ≤ 0 < Tj(1). With this notation we have:

Imean =
∑

Xj∈Φ

F 0
j h(Tj(0))/l(|Xj |)+F 1

j h(Tj(1))/l(|Xj |) .

(1.7)

To simplify let us denote Fj(0) = F 0
j (0), Fj(1) = F 0

j (1),
Hj(0) = h(Tj(0)), Hj(1) = h(Tj(1)). Let us consider

the marked point process

Φ̃ = {Xj ,
(
(Fj(0), Fj(1), H(0), H(1)

)
: j 6= 0} .

It is an independently marked Poisson process with points

{Xj : j 6= 0}, and marks {((Fj(0), Fj(1), H(0), H(1))}
(independent across j, given points). Note that for given j,

Fj(0), Fj(1) and the vector (Hj(0), Hj(1)) are mutually

independent, however, Hj(0) and Hj(1) are not indepen-

dent from each other (we describe their joint distribution

below). Let us consider the following mapping of Φ̃

Ψ̃ = {(Fj(0)/l(Xj))
−1,

(
(Fj(1)/l(Xj))

−1, Hj(0), Hj(1)
)
}

considered again as a marked point process,

with points {Vj := Fj(0)/l(Xj))
−1} and marks(

(Fj(1)/l(Xj))
−1, Hj(0), Hj(1)

)
. By the displacement

theorem it is again an independently marked Poisson

point process, with intensity (of points) Λ(0, s) = as2/β

where a = λπE[F
2
β ]

A2 . Regarding its marks, (Hj(0), Hj(1))



are identically distributed vectors (as in Φ̃). However,

(Fj(1)/l(Xj))
−1, being independent of (Hj(0), Hj(1)),

has a distribution which depends on the value of Vj .

This distribution can be represented as follows: the law

of (Fj(1)/l(Xj))
−1 given Vj = v is equal to the law of

l(Rv)/F where

P(Rv ≤ r) =
1

E[F ′ 2
β ]
E
[
1I(F ′ ≤

l(r)

v

)
F ′ 2

β ] ,

with F, F ′ having the distribution of fading (hence the

same as Fj(0) and Fj(1)). Using these observations and

the well known formula for the Laplace transform of the

Poisson point process we obtain

LImean(ξ) = E
[
e−ξI

]

= exp
(
−

∫ ∞

0
(1−E

[Hi(0)

v
+

Hi(1)F

l(Rv)

]
Λ(dv))

)
.

We focus now on the joint distribution of (Hj(0), Hj(1)).
Let U [x, y] be the uniform law on [x, y] and ǫ0, ǫ1 two

independent exponential variables of rate ǫ. According to

the renewal theory (see e.g. [3, eq. 1.4.3]), we have the

following result. T (0) = U [−B, 0] with probability ǫB
1+ǫB

and T (0) = −(B + ǫ0) with probability 1
1+ǫB . T (1) =

B + T (0) + ǫ1 if T (0) > −B and T (1) = ǫ1 otherwise.

Thus we have H(0) = h(−U) and H(1) = h(−U +B+
ǫ1) with probability ǫB

1+ǫB and H(0) = h(−U − ǫ0) and

H(1) = h(ǫ1) with probability 1
1+ǫB , where U is U [0, B].

Consequently,

LImean = E
[
E[e

−ξ(H(0)

v
+H(1)F

l(Rv)
|H)

)]
]

= E
[
e−ξH(−U)

v LF/lRv
(ξH(1))

]

=
ǫB

1 + ǫB
E
[
e−ξ h(−U)

v LF/lRv
(ξh(−U +B + ǫ1))

]

+
1

1 + ǫB
E
[
e−ξ

h(−B−ǫ0)

v LF/lRv
(ξh(ǫ1))

]

where

LF/lRv
(ξ) = E

[
E[e−ξF/l(Rv)]

]

= E
[
F ′2/βe−ξF/l(vF ′)1/β

]
.

Note that LF/lRv
(ξ) = L̃(ξ/v), where L̃(ξ) =

E
[
F ′2/βLF (ξ/F

′)
]
. Thus, we have:

LImean(ξ)

=
ǫB

(1 + ǫB)B

∫ B

0
e−ξh(−u)/v

E[L̃(ξh(−u+B + ǫ1)/v]du

+
1

1 + ǫB
E[e−ξh((−B−ǫ0)/v)]E[L̃(ξh(ǫ1)/v]

=
ǫB

(1 + ǫB)B

∫ B

0
e−ξh(−u)/v

E[L̃(ξh(−u+B + ǫ1)/v]du

+
1

1 + ǫB
E[e−ξh((−B−ǫ0)/v)]E[L̃(ξh(ǫ1)/v]

+
1

1 + ǫB
E[L̃(ξh(ǫ1)/v].

We set :

E1 = E[L̃(ξh(−u+B + ǫ1)/v]

E2 = E[L̃(ξh(ǫ1)/v]

F1 =
1

B

∫ B

0
e−ξh(−u)/vE1du.

Let us denote η = ξ/v and calculate:

E1 = ǫ

∫ u

0
e−ǫsL̃

(η(u− s)

B

)
ds+ e−ǫu

E2 = ǫ

∫ B

0
e−ǫsL̃

(η(B − s)

B

)
ds+ e−ǫB

and

F1 =
ǫ

B

∫ B

0
e−η(1−u/B)

∫ u

0
e−ǫsL̃

(
η
u− s

B

)
dsdu

+
1

B

∫ B

0
e−η(1−u/B)e−ǫudu .

Using the change of variable u−s
B = t we obtain:

F1 =

∫ 1

0

ǫB

η − ǫB

(
eη−ǫB − etη−tǫB

)
L(ηt)dt

+
e−η

ǫB − η
(1− eη−ǫB)

=
ǫBeη−ǫB

η − ǫB

∫ 1

0
e−ǫBt(1− e(η−ǫB)(t−1))L(ηt)dt

+
e−η

ǫB − η
(1− eη−ǫB).

Denoting

F2 = E2 = ǫBe−ǫB

∫ 1

0
eǫtBL(ηt)dt+ e−ǫB

we have:

LImean(ξ)

= exp
[
−

∫ ∞

0

(
1−

ǫB

(1 + ǫB)
F1 −

1

(1 + ǫB)
F2

)
Λ(dv)

]

which gives the result presented.
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