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Spectral Geometry

Bruno Iochum

Aix-Marseille Université, CNRS UMR 7332, CPT, 13288 Marseille France

Abstract

The goal of these lectures is to present some fundamentals of noncommutative geometry
looking around its spectral approach. Strongly motivated by physics, in particular by
relativity and quantum mechanics, Chamseddine and Connes have defined an action based
on spectral considerations, the so-called spectral action.
The idea here is to review the necessary tools which are behind this spectral action
to be able to compute it first in the case of Riemannian manifolds (Einstein–Hilbert
action). Then, all primary objects defined for manifolds will be generalized to reach the
level of noncommutative geometry via spectral triples, with the concrete analysis of the
noncommutative torus which is a deformation of the ordinary one.
The basics ingredients such as Dirac operators, heat equation asymptotics, zeta functions,
noncommutative residues, pseudodifferential operators, or Dixmier traces will be presented
and studied within the framework of operators on Hilbert spaces. These notions are
appropriate in noncommutative geometry to tackle the case where the space is swapped
with an algebra like for instance the noncommutative torus.

1 Motivations

Let us first expose few motivations from physics to study noncommutative geometry which is
by essence a spectral geometry. Of course, precise mathematical definitions and results will
be given in other sections.

The notion of spectrum is quite important in physics, for instance in classical mechanics,
the Fourier spectrum is essential to understand vibrations or the light spectrum in electro-
magnetism. The notion of spectral theory is also important in functional analysis, where the
spectral theorem tells us that any selfadjoint operator A can be seen as an integral over its
spectral measure A =

∫
a∈Sp(a) a dPa if Sp(A) is the spectrum of A. This is of course essential

in the axiomatic formulation of quantum mechanics, especially in the Heisenberg picture
where the observables are selfadjoint operators.
But this notion is also useful in geometry. In special relativity, we consider fields ψ(~x) for
~x ∈ R4 and the electric and magnetic fields E, B ∈ Function(M = R4,R3). Einstein intro-
duced in 1915 the gravitational field and the equation of motion of matter. But a problem
appeared: what are the physical meaning of coordinates xµ and equations of fields? Assume
the general covariance of field equation. If gµν(x) or the tetradfield eI

µ(x) is a solution (where
I is a local inertial reference frame), then, for any diffeomorphism φ of M which is active or
passive (i.e. change of coordinates), e′I

ν (x) = ∂xµ

∂φ(x)ν e
I
µ(x) is also a solution. As a consequence,

when relativity became general, the points disappeared and it remained only fields on fields
in the sense that there is no fields on a given space-time. But how to practice geometry
without space, given usually by a manifold M? In this later case, the spectral approach,
namely the control of eigenvalues of the scalar (or spinorial) Laplacian returns important
informations on M and one can address the question if they are sufficient: can one hear the
shape of M?
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There are two natural points of view on the notion of space: one is based on points (of a
manifold), this is the traditional geometrical one. The other is based on algebra and this is
the spectral one. So the idea is to use algebra of the dual spectral quantities.
This is of course more in the spirit of quantum mechanics but it remains to know what is a
quantum geometry with bosons satisfying the Klein-Gordon equation (� +m2)ψ(~x) = sb(~x)
and fermions satisfying (i∂/ − m)ψ(~x) = sf(~x) for sources sb, sf . Here ∂/ can be seen as a
square root of � and the Dirac operator will play a key role in noncommutative geometry.

In some sense, quantum forces and general relativity drive us to a spectral approach of
physics, especially of space-time.

Noncommutative geometry, mainly pioneered by A. Connes (see [24, 30]), is based on a
spectral triple (A,H,D) where the ∗-algebra A generalizes smooth functions on space-time
M (or the coordinates) with pointwise product, H generalizes the Hilbert space of above
quoted spinors ψ and D is a selfadjoint operator on H which generalizes ∂/ via a connection
on a vector bundle over M . The algebra A also acts, via a representation of ∗-algebra, on H.

Noncommutative geometry treats space-time as quantum physics does for the phase-
space since it gives a uncertainty principle: under a certain scale, phase-space points are
indistinguishable. Below the scale Λ−1, a certain renormalization is necessary. Given a
geometry, the notion of action plays an essential role in physics, for instance, the Einstein–
Hilbert action in gravity or the Yang–Mills–Higgs action in particle physics. So here, given
the data (A,H,D), the appropriate notion of action was introduced by Chamseddine and
Connes [10] and defined as S(D,Λ, f) := Tr

(
f(D/Λ)

)
where Λ ∈ R+ plays the role of a

cut-off and f is a positive even function. The asymptotic series in Λ → ∞ yields to an
effective theory. For instance, this action applied to a noncommutative model of space-time
M ×F with a fine structure for fermions encoded in a finite geometry F gives rise from pure
gravity to the standard model coupled with gravity [11, 20, 30].

The purpose of these notes is mainly to compute this spectral action on few examples like
manifolds and the noncommutative torus.
In section 2, we present standard material on pseudodifferential operators over a compact
Riemannian manifold. A description of the behavior of the kernel of a ΨDO near the diagonal
is given with the important example of elliptic operators. Then follows the notion of Wodzicki
residue and its computation. The main point being to understand why it is a residue.

In section 3, the link with the Dixmier trace is shown. Different subspaces of compact
operators are described, and in particular, the ideal L1,∞(H). Its definition is on purpose
because in renormalization theory, one has to control the logarithmic divergency of the series∑∞

n=1 n
−1. We will see that this “defect” of convergence of the Riemann zeta function (in

the sense that this generates a lot of complications of convergence in physics) is in fact an
“advantage” because it is precisely the Dixmier trace and more generally the Wodzicki residue
which are the right tools which mimics this zeta function: firstly, this controls the spectral
aspects of a manifold and secondly they can be generalized to any spectral triple.

In section 4, we recall the basic definition of a Dirac (or Dirac-like) operator on a compact
Riemannian manifold (M, g) endowed with a vector bundle E. An example is the (Clifford)
bundle E = CℓM where Cℓ T ∗

xM is the Clifford algebra for x ∈ M . This leads to the notion
of spin structure, spin connection ∇S and Dirac operator D/ = −ic ◦ ∇S where c is the
Clifford multiplication. A special focus is put on the change of metrics g under conformal
transformations.
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In section 5 is presented the fundamentals of heat kernel theory, namely the Green function
of the heat operator et∆, t ∈ R+. In particular, its expansion as t→ 0+ in terms of coefficients
of the elliptic operator ∆, with a method to compute the coefficients of this expansion is
explained. The idea being to replace the Laplacian ∆ by D2 later on.

In section 6, a noncommutative integration theory is developed around the notion of
spectral triple. This means to understand the notion of differential (or pseudodifferential)
operators in this context. Within differential calculus, the link between the one-form and the
fluctuations of the given D is outlined.

Section 7 concerns few actions in physics, such as the Einstein–Hilbert or Yang–Mills
actions. The spectral action Tr

(
f(D/Λ)

)
is justified and the link between its asymptotic

expansion in Λ and the heat kernel coefficients is given via noncommutative integrals of
powers of |D|.

For each section, we suggest references since this review is by no means original.

Notations:

N = {1, 2, . . .} is the set of positive integers and N0 = N∪{0} the set of non negative integers.
On Rd, the volume form is dx = dx1 ∧ · · · ∧ dxd.
Sd is the sphere of radius 1 in dimension d. The induced metric dξ = |∑d

j=1(−1)j−1ξj dξ1 ∧
· · · ∧ d̂ξj ∧ · · · ∧ dξd| restricts to the volume form on Sd−1.
M is a d-dimensional manifold with metric g.
U, V are open set either in M or in Rd.
We denote by dvolg the unique volume element such that dvolg(ξ1, · · · , ξd) = 1 for all posi-
tively oriented g-orthonormal basis { ξ1, · · · , ξd } of TxM for x ∈ M . Thus in a local chart√

det gx |dx| = |dvolg|.
When α ∈ Nd is a multi-index, ∂α

x := ∂α1
x1
∂α2

x2
· · ·∂αd

xd
, |α| :=

∑d
i=1 αi , α! := α1α2 · · ·αd.

For ξ ∈ Rd, |ξ| :=
( ∑d

k=1 |ξk|2
)1/2

is the Euclidean metric.
H is a separable Hilbert space and B(H),K(H),Lp(H) denote respectively the set of bounded,
compact and p-Schatten-class operators, so L1(H) are trace-class operators.

2 Wodzicki residue and kernel near the diagonal

The aim of this section is to show that the Wodzicki’s residue WRes is a trace on the set
ΨDO(M) of classical pseudodifferential operators on a compact manifold M of dimension d.

References for this section: Classical books are [99, 102]. For an orientation more in the
spirit of noncommutative geometry since here we follow [86,87] based on [3,33], see also the
excellent books [49, 82, 83, 104, 105].

2.1 A quick overview on pseudodifferential operators

Definition 2.1. In the following, m ∈ C. A symbol σ(x, ξ) of order m is a C∞ function:
(x, ξ) ∈ U ×Rd → C satisfying for any compact K ⊂ U and any x ∈ K

(i) |∂α
x ∂

β
ξ σ(x, ξ)| ≤ CKαβ (1 + |ξ|)ℜ(m)−|β|, for some constant CKαβ.

(ii) We suppose that σ(x, ξ) ≃ ∑
j≥0 σm−j(x, ξ) where σk is homogeneous of degree k in ξ

where ≃ means a controlled asymptotic behavior
|∂α

x∂
β
ξ

(
σ −∑

j<N σm−j

)
(x, ξ)| ≤ CKNαβ |ξ|ℜ(m)−N−|β| for |ξ| ≥ 1.

3



The set of symbols of order m is denoted by Sm(U ×Rd).
A function a ∈ C∞(U × U × Rd) is an amplitude of order m, if for any compact K ⊂ U

and any α, β, γ ∈ Nd there exists a constant CKαβγ such that

|∂α
x∂

γ
y ∂

β
ξ a(x, y, ξ)| ≤ CKαβγ (1 + |ξ|)ℜ(m)−|β|, ∀x, y ∈ K, ξ ∈ R

d.

The set of amplitudes is written Am(U).

For σ ∈ Sm(U × Rd), we get a continuous operator σ(·, D) : u ∈ C∞
c (U)→ C∞(U) given by

σ(·, D)(u)(x) := σ(x,D)(u) := 1
(2π)d

∫

Rd
σ(x, ξ) û(ξ) eix·ξ dξ (1)

where ̂ means the Fourier transform. This operator σ(·, D) will be also denoted by Op(σ).
For instance, if σ(x, ξ) =

∑
α aα(x) ξα, then σ(x,D) =

∑
α aα(x)Dα

x with Dx := −i∂x. Re-
mark that, by transposition, there is a natural extension of σ(·, D) from the set D′

c(U) of
distributions with compact support in U to the set of distributions D′(U).

By definition, the leading term for |α| = m is the principal symbol and the Schwartz kernel
of σ(x,D) is defined by

kσ(x,D)(x, y) := 1
(2π)d

∫

Rd
σ(x, ξ) ei(x−y)·ξ dξ = qσξ→y(x, x− y)

where q is the Fourier inverse in variable ξ. Similarly, if the kernel of the operator Op(a)
associated to the amplitude a is

ka(x, y) := 1
(2π)d

∫

Rd
a(x, y, ξ) ei(x−y)·ξ dξ. (2)

Definition 2.2. P : C∞
c (U)→ C∞(U) (or D′(U)) is said to be smoothing if its kernel is in

C∞(U × U) and ΨDO−∞(U) will denote the set of smoothing operators.
For m ∈ C, the set ΨDOm(U) of pseudodifferential operators of order m is the set of P such

that P : C∞
c (U)→ C∞(U), Pu(x) =

(
σ(x,D)+R

)
(u) where σ ∈ Sm(U×Rd), R ∈ ΨDO−∞.

σ is called the symbol of P .

It is important to quote that a smoothing operator is a pseudodifferential operator whose
amplitude is in Am(U) for all m ∈ R: by (2), a(x, y, ξ) := e−i(x−y)·ξ k(x, y)φ(ξ) where the
function φ ∈ C∞

c (Rd) satisfies
∫
Rd φ(ξ) dξ = (2π)d. The main obstruction to smoothness is

on the diagonal since kσ(x,D) is C∞ outside the diagonal.
Few remarks on the duality between symbols and a subset of pseudodifferential operators:

σ(x, ξ) ∈ Sm(U × R
d)←→ kσ(x, y) ∈ D′(U × U × R

d)←→ A = Op(σ) ∈ ΨDOm

with the definition σA(x, ξ) := e−ix·ξ A(x → eix·ξ) where A is properly supported, namely,
A and its adjoint map the dual of C∞(U) (distributions with compact support) into itself.
Moreover,

σA ≃
∑

α

(−i)α

α!
∂α

ξ ∂
α
y k

A
σ (x, y, ξ)|y=x , kA

σ (x, y) =: 1
(2π)d

∫

Rd
ei(x−y)·ξ kA(x, y, ξ) dξ ,

where kA(x, y, ξ) is the amplitude of kA
σ (x, y). Actually, σA(x, ξ) = eiDξ Dy kA(x, y, ξ)|y=x and

eiDξ Dy = 1 + iDξDy − 1
2
(DξDy)2 + · · · . Thus A = Op(σA) + R where R is a regularizing

operator on U .
There are two fundamental points about ΨDO’s: they form an algebra and this notion is

stable by diffeomorphism justifying its extension to manifolds and then to bundles:
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Theorem 2.3. (i) If P1 ∈ ΨDOm1 and P2 ∈ ΨDOm2, then P1P2 ∈ ΨDOm1+m2 with symbol

σP1P2(x, ξ) ≃
∑

α∈Nd

(−i)α

α!
∂α

ξ σ
P1(x, ξ) ∂α

xσ
P2(x, ξ).

The principal symbol of P1P2 is σP1P2
m1+m2

(x, ξ) = σP1
m1

(x, ξ) σP2
m2

(x, ξ).
(ii) Let P ∈ ΨDOm(U) and φ ∈ Diff (U, V ) where V is another open set of Rd. The

operator φ∗P : f ∈ C∞(V )→ P (f ◦ φ) ◦ φ−1 satisfies φ∗P ∈ ΨDOm(V ) and its symbol is

σφ∗P (x, ξ) = σP
m

(
φ−1(x), (dφ)tξ

)
+

∑

|α|>0

(−i)α

α!
φα(x, ξ) ∂α

ξ σ
P

(
φ−1(x), (dφ)tξ

)

where φα is a polynomial of degree α in ξ. Moreover, its principal symbol is

σφ∗P
m (x, ξ) = σP

m

(
φ−1(x), (dφ)tξ

)
.

In other terms, the principal symbol is covariant by diffeomorphism: σφ∗P
m = φ∗σ

P
m.

While the proof of formal expressions is a direct computation, the asymptotic behavior re-
quires some care, see [99, 102].

An interesting remark is in order: σP (x, ξ) = e−ix·ξ P (x→ eix·ξ), thus the dilation ξ → tξ
with t > 0 gives t−m e−itx·ξP eitx·ξ = t−mσP (x, tξ) ≃ t−m ∑

j≥0 σ
P
m−j(x, tξ) = σP

m(x, ξ)+o(t−1).
Thus, if P ∈ ΨDOm(U) with m ≥ 0,

σP
m(x, ξ) = lim

t→∞
t−m e−ith(x) P eith(x), where h ∈ C∞(U) is (almost) defined by dh(x) = ξ.

2.2 Case of manifolds

Let M be a (compact) Riemannian manifold of dimension d. Thanks to Theorem 2.3, the
following makes sense:

Definition 2.4. ΨDOm(M) is defined as the set of operators P : C∞
c (M) → C∞(M) such

that
(i) the kernel kP ∈ C∞(M ×M) off the diagonal,

(ii) The map : f ∈ C∞
c

(
φ(U)

)
→ P (f ◦ φ) ◦ φ−1 ∈ C∞

(
φ(U)

)
is in ΨDOm

(
φ(U)

)

for every coordinate chart (U, φ : U → Rd).
Of course, this can be generalized: Given a vector bundle E over M , a linear map P :
Γ∞

c (M,E) → Γ∞(M,E) is in ΨDOm(M,E) when kP is smooth off the diagonal, and local
expressions are ΨDO’s with matrix-valued symbols.

The covariance formula implies that σP
m is independent of the chosen local chart so is globally

defined on the bundle T ∗M →M and σP
m is defined for every P ∈ ΨDOm using overlapping

charts and patching with partition of unity.
An important class of pseudodifferential operators are those which are invertible modulo

regularizing ones:

Definition 2.5. P ∈ ΨDOm(M,E) is elliptic if σP
m(x, ξ) is invertible for all 0 6= ξ ∈ TM∗

x .

This means that |σP (x, ξ)| ≥ c1(x)|ξ|m for |ξ| ≥ c2(x), x ∈ U where c1, c2 are strictly positive
continuous functions on U . This also means that there exists a parametrix:
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Lemma 2.6. The following are equivalent:
(i) Op(σ) ∈ ΨDOm(U) is elliptic.
(ii) There exist σ′ ∈ S−m(U × Rd) such that σ ◦ σ′ = 1 or σ′ ◦ σ = 1.
(iii) Op(σ)Op(σ′) = Op(σ′)Op(σ) = 1 modulo ΨDO−∞(U).

Thus Op(σ′) ∈ ΨDO−m(U) is also elliptic.

Remark that any P ∈ ΨDO(M,E) can be extended to a bounded operator on L2(M,E)
when ℜ(m) ≤ 0 but this needs an existing scalar product for given metrics on M and E.

Theorem 2.7. (see [49]) When P ∈ ΨDO−m(M,E) is elliptic with ℜ(m) > 0, its spectrum
is discrete when M is compact.

We rephrase a previous remark (see [4, Proposition 2.1]): Let E be a vector bundle of
rank r over M . If P ∈ ΨDO−m(M,E), then for any couple of sections s ∈ Γ∞(M,E),
t∗ ∈ Γ∞(M,E∗), the operator f ∈ C∞(M) → 〈t∗, P (fs)〉 ∈ C∞(M) is in ΨDOm(M). This
means that in a local chart (U, φ), these operators are r × r matrices of pseudodifferential
operators of order −m. The total symbol is in C∞(T ∗U)⊗ End(E) with End(E) ≃Mr(C).
The principal symbol can be globally defined: σP

−m(x, ξ) : Ex → Ex for x ∈M and ξ ∈ T ∗
xM ,

can be seen as a smooth homomorphism homogeneous of degree −m on all fibers of T ∗M .
We get the simple formula which could be seen as a definition of the principal symbol

σP
−m(x, ξ) = lim

t→∞
t−m

(
e−ith · P · eith

)
(x) for x ∈M, ξ ∈ T ∗

xM (3)

where h ∈ C∞(M) is such that dxh = ξ.

2.3 Singularities of the kernel near the diagonal

The question to be solved is to define a homogeneous distribution which is an extension on
Rd of a given homogeneous symbol on Rd\{ 0 }. Such extension is a regularization used for
instance by Epstein–Glaser in quantum field theory.
The Schwartz space on Rd is denoted by S and the space of tempered distributions by S ′.

Definition 2.8. For fλ(ξ) := f(λξ), λ ∈ R∗
+, define τ ∈ S ′ → τλ by 〈τλ, f〉 := λ−d〈τ, fλ−1〉

for all f ∈ S. A distribution τ ∈ S ′ is homogeneous of order m ∈ C when τλ = λm τ .

Proposition 2.9. Let σ ∈ C∞(Rd\{ 0 }) be a homogeneous symbol of order k ∈ Z.
(i) If k > −d, then σ defines a homogeneous distribution.
(ii) If k = −d, there is a unique obstruction to an extension of σ given by cσ =

∫
Sd−1 σ(ξ) dξ,

namely, one can at best extend σ in τ ∈ S ′ such that τλ = λ−d
(
τ + cσ log(λ) δ0

)
.

In the following result, we are interested by the behavior near the diagonal of the kernel kP

for P ∈ ΨDO. For any τ ∈ S ′, we choose the decomposition as τ = φ ◦ τ + (1− φ) ◦ τ where
φ ∈ C∞

c (Rd) and φ = 1 near 0. We can look at the infrared behavior of τ near the origin and
its ultraviolet behavior near infinity. Remark first that, since φ ◦ τ has a compact support,
(φ ◦ τ)q∈ S ′, so the regularity of τq depends only of its ultraviolet part

(
(1− φ) ◦ τ

)
q.
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Proposition 2.10. Let P ∈ ΨDOm(U), m ∈ Z. Then, in local form near the diagonal,

kP (x, y) =
∑

−(m+d)≤j≤0

aj(x, x− y)− cP (x) log |x− y|+O(1)

where aj(x, y) ∈ C∞
(
U × U\{ x }

)
is homogeneous of order j in y and cP (x) ∈ C∞(U) with

cP (x) = 1
(2π)d

∫

Sd−1
σP

−d(x, ξ) dξ. (4)

We deduce readily the trace behavior of the amplitude of P :

Theorem 2.11. Let P ∈ ΨDOm(M,E), m ∈ Z. Then, for any trivializing local coordinates

tr
(
kP (x, y)

)
=

0∑

j=−(m+d)

aj(x, x− y)− cP (x) log |x− y|+O(1),

where aj is homogeneous of degree j in y, cP is intrinsically locally defined by

cP (x) := 1
(2π)d

∫

Sd−1
tr

(
σP

−d(x, ξ)
)
dξ. (5)

Moreover, cP (x)|dx| is a 1-density over M which is functorial for the diffeomorphisms φ:

cφ∗P (x) = φ∗
(
cp(x)

)
. (6)

The main difficulty is of course to prove that cP is well defined.

2.4 Wodzicki residue

The claim is that
∫

M cP (x)|dx| is a residue. For this, we embed everything in C. In the same
spirit as in Proposition 2.9, one obtains the following

Lemma 2.12. Every σ ∈ C∞
(
Rd\{ 0 }

)
which is homogeneous of degree m ∈ C\Z can be

uniquely extended to a homogeneous distribution.

Definition 2.13. Let U be an open set in R
d and Ω be a domain in C.

A map σ : Ω→ Sm(U × Rd) is said to be holomorphic when
the map z ∈ Ω→ σ(z)(x, ξ) is analytic for all x ∈ U , ξ ∈ Rd,
the order m(z) of σ(z) is analytic on Ω,
the two bounds of Definition 2.1 (i) and (ii) of the asymptotics σ(z) ≃ ∑

j σm(z)−j(z)
are locally uniform in z.

This hypothesis is sufficient to get that the map z → σm(z)−j(z) is holomorphic from Ω
to C∞

(
U × Rd\{ 0 }

)
and the map ∂zσ(z)(x, ξ) is a classical symbol on U × Rd such that

∂zσ(z)(x, ξ) ≃ ∑
j≥0 ∂zσm(z)−j(z)(x, ξ).

Definition 2.14. The map P : Ω ⊂ C → ΨDO(U) is said to be holomorphic if it has the
decomposition P (z) = σ(z)(·, D) + R(z) (see definition (1)) where σ : Ω → S(U × Rd) and
R : Ω→ C∞(U × U) are holomorphic.
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As a consequence, there exists a holomorphic map from Ω into ΨDO(M,E) with a holo-
morphic product (when M is compact).

Elliptic operators: Recall that P ∈ ΨDOm(U), m ∈ C, is elliptic essentially means that
P is invertible modulo smoothing operators. More generally, P ∈ ΨDOm(M,E) is elliptic if
its local expression in each coordinate chart is elliptic.

Let Q ∈ ΨDOm(M,E) with ℜ(m) > 0. We assume that M is compact and Q is elliptic.
Thus Q has a discrete spectrum. We assume Spectrum(Q) ∩ R

− = ∅ and the existence of a
curve Γ whose interior contains the spectrum and avoid branch points of λz at z = 0:

Γ

O

When ℜ(s) < 0, Qs := 1
i2π

∫
Γ λ

s (λ−Q)−1 dλ makes sense as operator on L2(M,E).
The map s→ Qs is a one-parameter group containing Q0 and Q1 which is holomorphic on

ℜ(s) ≤ 0. We want to integrate symbols, so we will need the set Sint of integrable symbols.
Using same type of arguments as in Proposition 2.9 and Lemma 2.12, one proves

Proposition 2.15. Let L : σ ∈ SZ

int(R
d) → L(σ) := qσ (0) = 1

(2π)d

∫
Rd σ(ξ) dξ. Then L has a

unique holomorphic extension L̃ on SC\Z(Rd). Moreover, when σ(ξ) ≃ ∑
j σm−j(ξ), m ∈ C\Z,

L̃(σ) =
(
σ −∑

j≤N τm−j

)
q(0) = 1

(2π)d

∫
Rd

(
σ −∑

j≤N τm−j

)
(ξ) dξ where m is the order of σ,

N is an integer with N > ℜ(m) + d and τm−j is the extension of σm−j of Lemma 2.12.

Corollary 2.16. If σ : C → S(Rd) is holomorphic and order
(
σ(s)

)
= s, then L̃

(
σ(s)

)
is

meromorphic with simple poles on Z and for p ∈ Z, Res
s=p

L̃
(
σ(s)

)
= − 1

(2π)d

∫
Sd−1 σ−d(p)(ξ) dξ.

We are now ready to get the main result of this section which is due to Wodzicki [109, 110].

Definition 2.17. Let D ∈ ΨDO(M,E) be an elliptic pseudodifferential operator of order 1
on a boundary-less compact manifold M endowed with a vector bundle E.
Let ΨDOint(M,E) := {Q ∈ ΨDOC(M,E) | ℜ

(
order(Q)

)
< −d } be the class of pseudodif-

ferential operators whose symbols are in Sint, i.e. integrable in the ξ-variable.
In particular, if P ∈ ΨDOint(M,E), then its kernel kP (x, x) is a smooth density on the
diagonal of M ×M with values in End(E).

For P ∈ ΨDOZ(M,E), define

WRes P := Res
s=0

Tr
(
P |D|−s

)
. (7)

This makes sense because:

Theorem 2.18. (i) Let P : Ω ⊂ C → ΨDOint(M,E) be a holomorphic family. Then the
functional map Tr : s ∈ Ω → Tr(P (s)) ∈ C has a unique analytic extension on the family
Ω→ ΨDOC\Z(M,E) still denoted by Tr.
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(ii) If P ∈ ΨDOZ(M,E), the map: s ∈ C→ Tr
(
P |D|−s

)
has at most simple poles on Z

and

WRes P = −
∫

M
cP (x) |dx| (8)

is independent of D. Recall (see Theorem 2.11) that cP (x) = 1
(2π)d

∫
Sd−1 tr

(
σP

−d(x, ξ)
)
dξ.

(iii) WRes is a trace on the algebra ΨDOZ(M,E).

Proof. The map s→ Tr
(
P |D|−s

)
is holomorphic on C and connect P ∈ ΨDOC\Z(M,E) to

the set ΨDOint(M,E) within ΨDOC\Z(M,E), so a analytic extension of Tr from ΨDOint to
ΨDOC\Z is necessarily unique.

(ii) one apply the above machinery:
(1) Notice that Tr is holomorphic on smoothing operator, so, using a partition of unity,

we can reduce to a local study of scalar ΨDO’s.
(2) First, fix s = 0. We are interested in the function Lφ(σ) := Tr

(
φ σ(x,D)

)
with

σ ∈ Sint(U ×Rd) and φ ∈ C∞(U). For instance, if P = σ(·, D),
Tr(φP ) =

∫
U φ(x) kP (x, x) |dx| = 1

(2π)d

∫
U φ(x) σ(x, ξ) dξ |dx| = ∫

U φ(x)L(σ(x, ·)) |dx|,
so one extends Lφ to SC\Z(U×Rd) with Proposition 2.15 via L̃φ(σ) =

∫
U φ(x) L̃φ

(
σ(x, ·)

)
|dx|.

(3) If now σ(x, ξ) = σ(s)(x, ξ) depends holomorphically on s, we get uniform bounds in
x, thus we get, via Lemma 2.12 applied to L̃φ

(
σ(s)(x, ·)

)
uniformly in x, yielding a natural

extension to L̃φ

(
σ(s)

)
which is holomorphic on C\Z.

When order(σ(s)) = s, the map L̃φ

(
σ(s)

)
has at most simple poles on Z and for each

p ∈ Z, Res
s=p

L̃φ

(
σ(s)

)
= − 1

(2π)d

∫
U

∫
Sd−1 φ(x) σ−d(p)(x, ξ) dξ |dx| = − ∫

U φ(x) cP p(x) |dx| where

we used (5) with P = Op
(
σp(x, ξ)

)
.

(4) In the general case, we get a unique meromorphic extension of the usual trace Tr on
ΨDOZ(M,E) that we still denoted by Tr).

When P : C→ ΨDOZ(M,E) is meromorphic with order(
(
P (s)

)
= s, then Tr

(
P (s)

)
has

at most poles on Z and Res
s=p

Tr
(
P (s)

)
= − ∫

M cP (p)(x) |dx| for p ∈ Z. So we get the claim

for the family P (s) := P |D|−s.
(iii) Let P1, P2 ∈ ΨDOZ(M,E). Since Tr is a trace on ΨDOC\Z(M,E), we get by (i),

Tr
(
P1P2|D|−s

)
= Tr

(
P2|D|−sP1

)
. Moreover

WRes
(
P1P2

)
= Res

s=0
Tr

(
P2|D|−sP1

)
= Res

s=0
Tr

(
P2P1|D|−s

)
= WRes

(
P2P1

)

where for the second equality we used (8) so the residue depends only of the value of P (s)
at s = 0.

Note that WRes is invariant by diffeomorphism:

if φ ∈ Diff(M),WRes(P ) = WRes(φ∗P ) (9)

which follows from (6). The next result is due to Guillemin and Wodzicki.

Corollary 2.19. The Wodzicki residue WRes is the only trace (up to multiplication by a
constant) on the algebra ΨDO−m(M,E), m ∈ N, when M is connected and d ≥ 2.
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Proof. The restriction to d ≥ 2 is used only in the part 3) below. When d = 1, T ∗M is
disconnected and they are two residues.

1) On symbols, derivatives are commutators: [xj , σ] = i∂ξj
σ, [ξj, σ] = −i∂xjσ.

2) If σP
−d = 0, then σP (x, ξ) is a finite sum of commutators of symbols:

If σP ≃ ∑
j σ

P
m−j with m = order(P ), by Euler’s theorem,

∑d
k=1 ξk ∂ξk

σP
m−j = (m − j) σP

m−j

(this is false for m = j!) and
∑d

k=1 [xk, ξk σ
P
m−j ] = i

∑d
k=1 ∂ξk

ξk σ
P
m−j = i(m− j + d) σP

m−j . So
σP =

∑d
k=1 [ξk τ, x

k].
Let T be another trace on ΨDOZ(M,E). Then T (P ) depends only on σP

−d because
T ([·, ·]) = 0.

3) We have
∫
Sd−1 σP

−d(x, ξ) d|ξ| = 0 if and only if σP
−d is sum of derivatives:

The if part is direct (less than more !).
Only if part: σP

−d is orthogonal to constant functions on the sphere Sd−1 and these are
kernels of the Laplacian: ∆Sf = 0 ⇐⇒ df = 0 ⇐⇒ f = cst. Thus ∆Sd−1h = σP

−d↾Sd−1

has a solution h on Sd−1. If h̃(ξ) := |ξ|−d+2 h
(

ξ
|ξ|

)
is its extension to Rd\{ 0 }, then we get

∆Rdh̃(ξ) = |ξ|σP
−d

(
ξ

|ξ|

)
= σP

−d(ξ) because ∆Rd = r1−d ∂r

(
rd−1 ∂r) + r−2 ∆Sd−1. This means

that h̃ is a symbol of order d − 2 and ∂ξh̃ is a symbol of order d − 1. As a consequence,
σP

−d =
∑d

k=1 ∂
2
ξk
h̃ = −i∑d

k=1[∂ξk
h̃, xk] is a sum of commutators.

4) End of proof: the symbol σP
−d(x, ξ)− |ξ|−d

Vol(Sd−1)
cP (x) is of order −d with zero integral,

thus is a sum of commutators by 3) and T (P ) = T
(
Op(|ξ|−d cp(x)

)
, ∀T ∈ ΨDOZ(M,E). So

the map µ : f ∈ C∞
c (U) → T

(
Op(f |ξ|−d)

)
is linear, continuous and satisfies µ(∂xkf) = 0

because ∂xk(f) |ξ|−d is a commutator if f has a compact support and U is homeomorphic to
Rd. As a consequence, µ is a multiple of the Lebesgue integral

T (P ) = µ
(
cP (x)

)
= c

∫
M cP (x) |dx| = cWRes(P ).

Example 2.20. Laplacian on a manifold M : Let M be a compact Riemannian manifold of
dimension d and ∆ be the scalar Laplacian which is a differential operator of order 2. Then

WRes
(
(1 + ∆)−d/2

)
= Vol

(
Sd−1

)
= 2πd/2

Γ(d/2)
.

Proof. (1 + ∆)−d/2 ∈ ΨDO(M) has order −d and its principal symbol σ(1+∆)−d/2

−d satisfies

σ
(1+∆)−d/2

−d (x, ξ) = −
(
gij

x ξiξj

)−d/2
= −||ξ||−d

x . So (8) gives

WRes
(
(1 + ∆)−d/2

)
=

∫

M
|dx|

∫

Sd−1
||ξ||−d

x dξ =
∫

M
|dx|

√
det gx Vol

(
S

d−1
)

= Vol
(
S

d−1
) ∫

M
|dvolg| = Vol

(
S

d−1
)
.

3 Dixmier trace

References for this section: [33, 49, 68, 87, 104, 105].

The trace Tr on the operators on a Hilbert space H has an interesting property, it is
normal. Recall that Tr acting on B(H) is a particular case of a weight ω acting on a von
Neumann algebra M: it is a homogeneous additive map from M+ := { aa∗ | a ∈ M} to
[0,∞].
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A state is a weight ω ∈M∗ (so ω(a) <∞, ∀a ∈M) such that ω(1) = 1.
A trace is a weight such that ω(aa∗) = ω(a∗a) for all a ∈M.
A weight ω is normal if ω(sup

α
aα) = sup

α
ω(aα) whenever (aα) ⊂ M+ is an increasing

bounded net. This is equivalent to say that ω is lower semi-continuous with respect to the
σ-weak topology.

In particular, the usual trace Tr is normal on B(H). Remark that the net (aα)α converges
in B(H) and this property looks innocent since a trace preserves positivity.
Nevertheless it is natural to address the question: are all traces (in particular on an arbitrary
von Neumann algebra) normal? In 1966, Dixmier answered by the negative [34] by exhibiting
non-normal, say singular, traces. Actually, his motivation was to answer the following related
question: is any trace ω on B(H) proportional to the usual trace on the set where ω is finite?

The aim of this section is first to define this Dixmier trace, which essentially means
TrDix(T ) “ = ” limN→∞

1
log N

∑N
n=0 µn(T ), where the µn(T ) are the singular values of T ordered

in decreasing order and then to relate this to the Wodzicki trace. It is a non-normal trace on
some set that we have to identify. Naturally, the reader can feel the link with the Wodzicki
trace via Proposition 2.10. We will see that if P ∈ ΨDO−d(M) where M is a compact
Riemannian manifold of dimension d, then,

TrDix(P ) = 1
d

WRes(P ) = 1
d

∫
M

∫
S∗M σP

−d(x, ξ) dξ|dx|
where S∗M is the cosphere bundle on M .

The physical motivation is quite essential: we know how
∑

n∈N∗
1
n

diverges and this is
related to the fact the electromagnetic or Newton gravitational potentials are in 1

r
which

has the same singularity (in one-dimension as previous series). Actually, this (logarithmic-
type) divergence appears everywhere in physics and explains the widely use of the Riemann
zeta function ζ : s ∈ C → ∑

n∈N∗
1

ns . This is also why we have already seen a logarithmic
obstruction in Theorem 2.11 and define a zeta function associated to a pseudodifferential
operator P by ζP (s) = Tr

(
P |D|−s

)
in (7).

We now have a quick review on the main properties of singular values of an operator.

3.1 Singular values of compact operators

In noncommutative geometry, infinitesimals correspond to compact operators: for T ∈ K(H)
(compact operators), let µn(T ) := inf{ ‖T↾E⊥‖ |E subspace of H with dim(E) = n }, n ∈ N.
This could looks strange but actually, by mini-max principle, µn(T ) is nothing else than the
(n + 1)th of eigenvalues of |T | sorted in decreasing order. Since limn→∞ µn(T ) = 0, for any
ǫ > 0, there exists a finite-dimensional subspace Eǫ such that

∥∥∥T↾E⊥
ǫ

∥∥∥ < ǫ and this property
being equivalent to T compact, T deserves the name of infinitesimal.

Moreover, we have following properties:
µn(T ) = µn(T ∗) = µn(|T |).
T ∈ L1(H) (meaning ‖T‖1 := Tr(|T |) <∞) ⇐⇒ ∑

n∈N µn(T ) <∞.
µn(A T B) ≤ ‖A‖µn(T ) ‖B‖ when A,B ∈ B(H).
µN(U T U∗) = µN(T ) when U is a unitary.

Definition 3.1. For T ∈ K(H), the partial trace of order N ∈ N is σN(T ) :=
∑N

n=0 µn(T ).
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Remark that ‖T‖ ≤ σN (T ) ≤ N‖T‖ which implies σn ≃ ‖·‖ on K(H). Then

σN (T1 + T2) ≤ σN(T1) + σN (T2),

σN1(T1) + σN2(T2) ≤ σN1+N2(T1 + T2) when T1, T2 ≥ 0.

This norm σN splits: σN (T ) = inf{ ‖x‖1 +N ‖y‖ | T = x+ y with x ∈ L1(H), y ∈ K(H) }.
This justifies a continuous approach with the

Definition 3.2. The partial trace of T of order λ ∈ R
+ is

σλ(T ) := inf{ ‖x‖1 + λ‖y‖ | T = x+ y with x ∈ L1(H), y ∈ K(H) }.

As before, σλ1(T1) + σλ2(T2) = σλ1+λ2(T1 + T2), for λ1, λ2 ∈ R+, 0 ≤ T1, T2 ∈ K(H). We
define a real interpolate space between L1(H) and K(H) by

L1,∞ := { T ∈ K(H) | ‖T‖1,∞ := sup
λ≥e

σλ(T )
log λ

<∞}.

If Lp(H) is the ideal of operators T such that Tr
(
|T |p

)
<∞, so σλ(T ) = O(λ1−1/p), we have

L1(H) ⊂ L1,∞ ⊂ Lp(H) for p > 1, ‖T‖ ≤ ‖T‖1,∞ ≤ ‖T‖1 . (10)

Lemma 3.3. L1,∞ is a C∗-ideal of B(H) for the norm ‖·‖1,∞. Moreover, it is equal to the

Macaev ideal L1,+ := { T ∈ K(H) | ‖T‖1,+ := supN≥2
σN (T )
log(N)

<∞}.

3.2 Dixmier trace

We begin with a Cesàro mean of σρ(T )
log ρ

with respect of the Haar measure of the group R∗
+:

Definition 3.4. For λ ≥ e and T ∈ K(H), let τλ(T ) := 1
log λ

∫ λ
e

σρ(T )
log ρ

dρ
ρ
.

Clearly, σρ(T ) ≤ log ρ ‖T‖1,∞ and τλ(T ) ≤ ‖T‖1,∞, thus the map: λ→ τλ(T ) is in Cb([e,∞]).
It is not additive on L1,∞ but this defect is under control:

τλ(T1 + T2)− τλ(T1)− τλ(T2) ≃
λ→∞

O
(

log (log λ)
log λ

)
, when 0 ≤ T1, T2 ∈ L1,∞ :

Lemma 3.5. In fact, we have

| τλ(T1 + T2)− τλ(T1)− τλ(T2) | ≤
(

log 2(2+log log λ)
log λ

)
‖T1 + T2‖1,∞, when T1, T2 ∈ L1,∞

+ .

The Dixmier’s idea was to force additivity: since the map λ→ τλ(T ) is in Cb([e,∞]) and
λ→

(
log 2(2+log log λ)

log λ

)
is in C0([e,∞[), consider the C∗-algebra A := Cb([e,∞])/C0([e,∞[).

If [τ(T )] is the class of the map λ→ τλ(T ) in A, previous lemma shows that [τ ] : T → [τ(T )]
is additive and positive homogeneous from L1,∞

+ into A satisfying [τ(UTU∗)] = [τ(T )] for
any unitary U .

Now let ω be a state on A, namely a positive linear form on A with ω(1) = 1. Then,
ω ◦ [τ(·)] is a tracial weight on L1,∞

+ . Since L1,∞ is a C∗-ideal of B(H), each of its element
is generated by (at most) four positive elements, and this map can be extended to a map
ω◦ [τ(·)] : T ∈ L1,∞ → ω([τ(T )]) ∈ C such that ω([τ(T1T2)]) = ω([τ(T2T1)]) for T1, T2 ∈ L1,∞.
This leads to the following definition and result:
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Definition 3.6. The Dixmier trace Trω associated to a state ω on A is Trω(·) := ω ◦ [τ(·)].

Theorem 3.7. Trω is a trace on L1,∞ which depends only on the locally convex topology of
H, not on its scalar product.

1) Note that Trω(T ) = 0 if T ∈ L1(H) and all Dixmier traces vanish on the closure for the
norm ‖.‖1,∞ of the ideal of finite rank operators. So Dixmier traces are not normal.

2) The C∗-algebra A is not separable, so it is impossible to exhibit any state ω! Despite
(10) and the fact that the Lp(H) are separable ideals for p ≥ 1, L1,∞ is not a separable.
Moreover, as for Lebesgue integral, there are sets which are not measurable. For instance, a
function f ∈ Cb([e,∞]) has a limit ℓ = limλ→∞ f(λ) if and only if ℓ = ω(f) for all state ω.

Definition 3.8. The operator T ∈ L1,∞ is said to be measurable if Trω(T ) is independent of
ω. In this case, Trω is denoted TrDix.

Lemma 3.9. The operator T ∈ L1,∞ is measurable and Trω(T ) = ℓ if and only if the map
λ ∈ R+ → τλ(T ) ∈ A converges at infinity to ℓ.

After Dixmier, singular (i.e. non normal) traces have been deeply investigated, see for
instance [72, 74, 75], but we quote only the following characterization of measurability:

If T ∈ K+(H), then T is measurable if and only if limN→∞
1

log N

∑N
n=0 µn(T ) exists.

Example 3.10. Computation of the Dixmier trace of the inverse Laplacian on the torus:

Let Td = Rd/2πZd be the d-dimensional torus and ∆ = −∑d
i=1 ∂

2
xi be the scalar Laplacian

seen as unbounded operator on H = L2(Td). We want to compute Trω

(
(1 + ∆)−p

)
for

d
2
≤ p ∈ N∗. We use 1 + ∆ to avoid the kernel problem with the inverse. As the following

proof shows, 1 can be replaced by any ǫ > 0 and the result does not depends on ǫ.
Notice that the functions ek(x) := 1

2π
eik·x with x ∈ Td, k ∈ Zd = (Td)∗ form a basis of H

of eigenvectors: ∆ ek = |k|2 ek. For t ∈ R∗
+, et Tr

(
e−t(1+∆)

)
=

∑
k∈Zd e−t|k|2 =

( ∑
k∈Z e

−tk2
)d
.

We know that | ∫ ∞
−∞ e−tx2

dx − ∑
k∈Z e

−tk2 | ≤ 1, and since the first integral is
√

π
t
, we get

et Tr
(
e−t(1+∆)

)
≃

t↓0+

(
π
t

)d/2
=: α t−d/2.

We will use a Tauberian theorem: µn

(
(1 + ∆)−d/2)

)
≃

n→∞
(α 1

Γ(d/2+1)

)
1
n
, see [49, 54]. Thus

limN→∞
1

log N

∑N
n=0 µn

(
(1 + ∆)−d/2

)
= α

Γ(d/2+1)
= πd/2

Γ(d/2+1)
.

So (1 + ∆)−d/2 is measurable and TrDix

(
(1 + ∆)−d/2)

)
= Trω

(
(1 + ∆)−d/2)

)
= πd/2

Γ(d/2+1)
. Since

(1 + ∆)−p is traceable for p > d
2
, TrDix

(
(1 + ∆)−p

)
= 0.

This result has been generalized in Connes’ trace theorem [23]: since WRes and TrDix are
traces on ΨDO−m(M,E), m ∈ N, we get the following

Theorem 3.11. Let M be a d-dimensional compact Riemannian manifold, E a vector bundle
over M and P ∈ ΨDO−d(M,E). Then, P ∈ L1,∞, is measurable and TrDix(P ) = 1

d
WRes(P ).
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4 Dirac operator

There are several ways to define a Dirac-like operator. The best one is to define Clifford
algebras, their representations, the notion of Clifford modules, spinc structures on orientable
manifolds M defined by Morita equivalence between the C∗-algebras C(M) and Γ(CℓM).
Then the notion of spin structure and finally, with the notion of spin and Clifford connection,
we reach the definition of a (generalized) Dirac operator.
Here we try to bypass this approach to save time.

References: a classical book is [70], but I suggest [46]. Here we follow [86], see also [49].

4.1 Definition and main properties

Let (M, g) be a compact Riemannian manifold with metric g, of dimension d and E be a
vector bundle over M . An example is the (Clifford) bundle E = Cℓ T ∗M where the fiber
Cℓ T ∗

xM is the Clifford algebra of the real vector space T ∗
xM for x ∈ M endowed with the

nondegenerate quadratic form g.
Given a connection ∇ on E, a differential operator P of order m ∈ N on E is an element

of Diffm(M,E) := Γ
(
M,End(E)

)
· V ect{∇X1 · · ·∇Xj

|Xj ∈ Γ(M,TM), j ≤ m }.
In particular, Diffm(M,E) is a subalgebra of End

(
Γ(M,E)

)
and the operator P has a prin-

cipal symbol σP
m in Γ

(
T ∗M,π∗End(E)

)
where π : T ∗M → M is the canonical submersion

and σP
m(x, ξ) is given by (3).

Example: Let E =
∧
T ∗M . The exterior product and the contraction given on ω, ωj ∈ E by

ǫ(ω1)ω2 := ω1 ∧ ω2, ι(ω) (ω1 ∧ · · · ∧ ωm) :=
∑m

j=1(−1)j−1g(ω, ωj)ω1 ∧ · · · ∧ ω̂j ∧ · · · ∧ ωm

suggest the following definition c(ω) := ǫ(ω) + ι(ω) and one checks that

c(ω1) c(ω2) + c(ω2)c(ω1) = 2g(ω1, ω2) idE . (11)

E has a natural scalar product: if e1, · · · , ed is an orthonormal basis of T ∗
xM , then the scalar

product is chosen such that ei1 ∧ · · · ∧ eip for i1 < · · · < ip is an orthonormal basis.
If d ∈ Diff 1 is the exterior derivative and d∗ is its adjoint for the deduced scalar product on
Γ(M,E), then their principal symbols are

σd
1(ω) = iǫ(ω), σd∗

1 (ω) = −iι(ω). (12)

This follows from σd
1(x, ξ) = limt→∞

1
t

(
e−ith(x)deith(x

)
(x) = limt→∞

1
t
it dxh = i dxh = i ξ

where h is such that dxh = ξ, so σd
1(x, ξ) = i ξ and similarly for σd∗

1 .
More generally, if P ∈ Diffm(M), then σP

m(dh) = 1
imm!

(ad h)m(P ) with ad h = [·, h] and
σP ∗

m (ω) = σP
m(ω)∗ where the adjoint P ∗ is for the scalar product on Γ(M,E) associated to an

hermitean metric on E: 〈ψ, ψ′〉 :=
∫

M〈ψ(x), ψ′(x)〉x |dx| is a scalar product on Γ(M,E).

Definition 4.1. The operator P ∈ Diff 2(M,E) is called a generalized Laplacian when its
symbol satisfies σP

2 (x, ξ) = |ξ|2x idEx for x ∈M, ξ ∈ T ∗
xM .

This is equivalent to say that, in local coordinates, P = −∑
i,j g

ij(x)∂xi∂xj + bj(x)∂xj + c(x)
where the bj are smooth and c is in Γ

(
M,End(E)

)
.
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Definition 4.2. Assume that E = E+ ⊕ E− is a Z2-graded vector bundle.
When D ∈ Diff 1(M,E) and D =

(
0 D+

D− 0

)
(D is odd) where D± : Γ(M,E∓) → Γ(M,E±),

D is called a Dirac operator if D2 =
(

D−D+ 0
0 D+D−

)
is a generalized Laplacian.

A good example is given by E =
∧
T ∗M =

∧even T ∗M⊕∧odd T ∗M and the de Rham operator
D := d+ d∗. It is a Dirac operator since D2 = dd∗ + d∗d is a generalized Laplacian according
to (12). D2 is also called the Laplace–Beltrami operator.

Definition 4.3. Define CℓM as the vector bundle over M whose fiber in x ∈ M is the
Clifford algebra Cℓ T ∗

xM (or Cℓ TxM using the musical isomorphism X ∈ TM ↔ X♭ ∈ T ∗M).
A bundle E is called a Clifford bundle over M when there exists a Z2-graduate action

c : Γ(M, CℓM)→ End
(
Γ(M,E)

)
.

The main idea which drives this definition is that Clifford actions correspond to principal
symbols of Dirac operators:

Proposition 4.4. If E is a Clifford module, every odd D ∈ Diff 1 such that [D, f ] = i c(df)
for f ∈ C∞(M) is a Dirac operator.
Conversely, if D is a Dirac operator, there exists a Clifford action c with c(df) = −i [D, f ].

Consider previous example: E =
∧
T ∗M =

∧even T ∗M ⊕ ∧odd T ∗M is a Clifford module for
c := i(ǫ+ ι) coming from the Dirac operator D = d+ d∗: by (12)

i[D, f ] = i[d+ d∗, f ] = i
(
iσd

1(df)− iσd∗

1 (df)
)

= −i(ǫ+ ι)(df).

Definition 4.5. Let E be a Clifford module over M . A connection ∇ on E is a Clifford
connection if for a ∈ Γ(M, CℓM) and X ∈ Γ(M,TM), [∇X , c(a)] = c(∇LC

X a) where ∇LC
X is

the Levi-Civita connection after its extension to the bundle CℓM (here CℓM is the bundle
with fiber Cℓ TxM). A Dirac operator D∇ is associated to a Clifford connection ∇:

D∇ := −i c ◦ ∇, Γ(M,E) ∇−→ Γ(M,T ∗M ⊗ E) c⊗1−−→ Γ(M,E),
where we use c for c⊗ 1.

Thus if in local coordinates, ∇ =
∑d

j=1 dx
j ⊗∇∂j

, the associated Dirac operator is given
by D∇ = −i∑

j c(dxj)∇∂i
. In particular, for f ∈ C∞(M),

[D∇, f idE] = −i∑d
i=1 c(dx

i) [∇∂j
, f ] =

∑d
j=1−i c(dxj) ∂jf = −ic(df).

By Proposition 4.4, D∇ deserves the name of Dirac operator!
Examples:
1) For the previous example E =

∧
T ∗M , the Levi-Civita connection is indeed a Clifford

connection whose associated Dirac operator coincides with the de Rham operator D = d+d∗.
2) The spinor bundle: Recall that the spin group Spind is the non-trivial two-fold covering

of SOd, so we have 0 −→ Z2 −→ Spind
ξ−→ SOd −→ 1.

Let SO(TM)→M be the SOd-principal bundle of positively oriented orthonormal frames
on TM of an oriented Riemannian manifold M of dimension d.

A spin structure on an oriented d-dimensional Riemannian manifold (M, g) is a Spind-
principal bundle Spin(TM) π−→ M with a two-fold covering map Spin(TM)

η−→ SO(TM)
such that the following diagram commutes:
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Spin(TM)× Spind
//

η×ξ
��

Spin(TM)
η
��

π
++XXX

XX
XX

XX

M

SO(TM)× SOd
// SO(TM) π

33fffffffff

where the horizontal maps are the actions of Spind and SOd on the principal fiber bundles
Spin(TM) and SO(TM).

A spin manifold is an oriented Riemannian manifold admitting a spin structure.
In above definition, one can replace Spind by the group Spinc

d which is a central extension of

SOd by T: 0 −→ T −→ Spinc
d

ξ−→ SOd −→ 1.
An oriented Riemannian manifold (M, g) is spin if and only if the second Stiefel–Whitney

class of its tangent bundle vanishes. Thus a manifold is spin if and only both its first and
second Stiefel–Whitney classes vanish. In this case, the set of spin structures on (M, g) stands
in one-to-one correspondence with H1(M,Z2). In particular the existence of a spin structure
does not depend on the metric or the orientation of a given manifold.

Let ρ be an irreducible representation of CℓCd → EndC(Σd) with Σd ≃ C2⌊d/2⌋
as set of

complex spinors. Of course, CℓCd is endowed with its canonical complex bilinear form.
The spinor bundle S of M is the complex vector bundle associated to the principal bundle

Spin(TM) with the spinor representation, namely S := Spin(TM) ×ρd
Σd. Here ρd is a

representation of Spind on Aut(Σd) which is the restriction of ρ.
More precisely, if d = 2m is even, ρd = ρ+ +ρ− where ρ± are two nonequivalent irreducible

complex representations of Spin2m and Σ2m = Σ+
2m ⊕ Σ−

2m, while for d = 2m + 1 odd, the
spinor representation ρd is irreducible.
In practice, M is a spin manifold means that there exists a Clifford bundle S = S+ ⊕ S−

such that S ≃ ∧
T ∗M . Due to the dimension of M , the Clifford bundle has fiber

CℓxM =

{
M2m(C) when d = 2m is even,
M2m(C)⊕M2m(C) when d = 2m+ 1.

Locally, the spinor bundle satisfies S ≃M × Cd/2.
A spin connection ∇S : Γ∞(M,S) → Γ∞(M,S) ⊗ Γ∞(M,T ∗M) is any connection which is
compatible with Clifford action: [∇S, c(·)] = c(∇LC ·). It is uniquely determined by the choice
of a spin structure on M (once an orientation of M is chosen).

Definition 4.6. The Dirac (called Atiyah–Singer) operator given by the spin structure is

D/ := −i c ◦ ∇S. (13)

In coordinates, D/ = −ic(dxj)
(
∂j −ωj(x)

)
where ωj is the spin connection part which can be

computed in the coordinate basis ωj = 1
4

(
Γk

ji gkl − ∂i(hα
j )δαβh

β
l

)
c(dxi) c(dxl) and the matrix

H := [hα
j ] is such that H tH = [gij] (we use Latin letters for coordinate basis indices and

Greek letters for orthonormal basis indices).
This gives σD

1 (x, ξ) = c(ξ) + ic(dxj)ωj(x). Thus in normal coordinates around x0,
c(dxj)(x0) = γj, σD

1 (x0, ξ) = c(ξ) = γjξj

where the γ’s are constant hermitean matrices.
The Hilbert space of spinors is

H = L2
(
(M, g), S)

)
:= {ψ ∈ Γ∞(M,S) |

∫

M
〈ψ, ψ〉x dvolg(x) <∞} (14)
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where we have a scalar product which is C∞(M)-valued. On its domain Γ∞(M,S), D/ is
symmetric: 〈ψ,D/φ〉 = 〈D/ψ, φ〉. Moreover, it has a selfadjoint closure (which is D/ ∗∗):

Theorem 4.7. (see [49, 70, 104, 105]) Let (M, g) be an oriented compact Riemannian spin
manifold without boundary. By extension to H, D/ is essentially selfadjoint on its original
domain Γ∞(M,S). It is a differential (unbounded) operator of order one which is elliptic.

There is a nice formula which relates the Dirac operator D/ to the spinor Laplacian
∆S := −Trg(∇S ◦ ∇S) : Γ∞(M,S)→ Γ∞(M,S).

Before to give it, we need to fix few notations: let R ∈ Γ∞
(
M,

∧2 T ∗M ⊗ End(TM)
)

be
the Riemann curvature tensor with components Rijkl := g(∂i, R(∂k, ∂l)∂j), the Ricci tensor
components are Rjl := gikTijkl and the scalar curvature is s := gjlRjl.

Proposition 4.8. Schrödinger–Lichnerowicz formula: if s is the scalar curvature of M ,
D/ 2 = ∆S + 1

4
s.

The proof is just a lengthy computation (see for instance [49]).
We already know via Theorems 2.7 and 4.7 that D/−1 is compact so has a discrete spectrum.
For T ∈ K+(H), we denote by {λn(T )}n∈N its spectrum sorted in decreasing order including
multiplicity (and in increasing order for an unbounded positive operator T such that T−1 is
compact) and by NT (λ) := #{ λn(T ) | λn ≤ λ } its counting function.

Theorem 4.9. With same hypothesis, the asymptotics of the Dirac operator counting func-

tion is N|D/ |(λ) ∼
λ→∞

2d
Vol(Sd−1)
d(2π)d Vol(M)λd where Vol(M) =

∫
M dvol.

We already encounter such computation in Example 3.10.

4.2 Dirac operators and change of metrics

Recall that the spinor bundle Sg and square integrable spinors Hg defined in (14) depends
on the chosen metric g, so we note Mg instead of M and Hg := L2(Mg, Sg) and a natural
question is: what happens to a Dirac operator when the metric changes?

Let g′ be another Riemannian metric on M . Since the space of d-forms is one-dimensional,
there exists a positive function fg,g′ : M → R+ such that dvolg′ = fg′,g dvolg.

Let Ig,g′(x) : Sg → Sg′ the natural injection on the spinors spaces above point x ∈M which
is a pointwise linear isometry: |Ig,g′(x)ψ(x)|g′ = |ψ(x)|g. Let us first see its construction:
there always exists a g-symmetric automorphism Hg,g′ of the 2⌊d/2⌋- dimensional vector space
TM such that g′(X, Y ) = g(Hg,g′X, Y ) for X, Y ∈ TM so define ιg,g′ X := H

−1/2
g,g′ X. Note

that ιg,g′ commutes with right action of the orthogonal group Od and can be lifted up to a
diffeomorphism Pind-equivariant on the spin structures associated to g and g′ and this lift
is denoted by Ig,g′ (see [6]). This isometry is extended as operator on the Hilbert spaces
Ig,g′ : Hg →Hg′ with (Ig,g′ ψ)(x) := Ig,g′(x)ψ(x).

Now define
Ug′,g :=

√
fg,g′ Ig′,g : Hg′ →Hg .

Then by construction, Ug′,g is a unitary operator from Hg′ onto Hg: for ψ′ ∈ Hg′,

〈Ug′,gψ
′, Ug′,gψ

′〉Hg =
∫

M
|Ug,g′ψ′|2g dvolg =

∫

M
|Ig′,gψ

′|2g fg′,g dvolg =
∫

M
|ψ′|2g′ dvolg′

= 〈ψg′ , ψg′〉Hg′ .
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So we can realize D/ g′ as an operator Dg′ acting on Hg with

Dg′ : Hg →Hg, Dg′ := U−1
g,g′ D/ g′ Ug,g′. (15)

This is an unbounded operator on Hg which has the same eigenvalues as D/ g′ .
In the same vein, the k-th Sobolev space Hk(Mg, Sg) (which is the completion of the space

Γ∞(Mg, Sg) under the norm ‖ψ‖2
k =

∑k
j=0

∫
M |∇jψ(x)|2 dx; be careful, ∇ applied to ∇ψ is

the tensor product connection on T ∗Mg ⊗ Sg etc, see Theorem 2.7) can be transported: the
map Ug,g′ : Hk(Mg, Sg)→ Hk(Mg′ , Sg′) is an isomorphism, see [96]. In particular, (after the
transport map U), the domain of Dg′ and D/ g′ are the same.

A nice example of this situation is when g′ is in the conformal class of g where we can
compute explicitly D/ g′ and Dg′ [2, 6, 46, 56].

Theorem 4.10. Let g′ = e2hg with h ∈ C∞(M,R). Then there exists an isometry Ig,g′

between the spinor bundle Sg and Sg′ such that for ψ ∈ Γ∞(M,Sg),

D/ g′ Ig,g′ ψ = e−h Ig,g′

(
D/ g ψ − id−1

2
cg(grad h)ψ

)
,

D/ g′ = e− d+1
2

h Ig,g′ D/ g I
−1
g,g′ e

d−1
2

h,

Dg′ = e−h/2 D/ g e
−h/2.

Note that Dg′ is not a Dirac operator as defined in (13) since its principal symbol has an
x-dependence: σDg′ (x, ξ) = e−h(x) cg(ξ). The principal symbols of D/ g′ and D/ g are related by

σ
D/ g′

d (x, ξ) = e−h(x)/2 U−1
g′,g(x) σ

D/ g

d (x, ξ)Ug′,g(x) e−h(x)/2, ξ ∈ T ∗
xM.

Thus cg′(ξ) = e−h(x) U−1
g′,g(x) cg(ξ)Ug′,g(x), ξ ∈ T ∗

xM. This formula gives a verification of
g′(ξ, η) = e−2hg(ξ, η) using cg(ξ)cg(η) + cg(η)cg(ξ) = 2g(ξ, η) idSg .

It is also natural to look at the changes on a Dirac operator when the metric g is modified
by a diffeomorphism α which preserves the spin structure. The diffeomorphism α can be lifted
to a diffeomorphism Od-equivariant on the Od-principal bundle of g-orthonormal frames with
α̃ := H

−1/2
α∗g,g Tα, and this lift also exists on Sg when α preserves both the orientation and the

spin structure. However, the last lift is defined up to a Z2-action which disappears if α is
connected to the identity.

The pull-back g′ := α∗g of the metric g is defined by (α∗g)x(ξ, η) = gα(x)(α∗(ξ), α∗η),
x ∈M , where α∗ is the push-forward map : TxM → Tα(x)M . Of course, the metric g′ and g
are different but the geodesic distances are the same and one checks that dg′ = α∗dg.

The principal symbol of a Dirac operator D is σD
d (x, ξ) = cg(ξ) so gives the metric g by

(11). This information will be used in the definition of a spectral triple. A commutative
spectral triple associated to a manifold generates the so-called Connes’ distance which is
nothing else but the metric distance; see the remark after (24). The link between dα∗g and dg

is explained by (15), since the unitary induces an automorphism of the C∗-algebra C∞(M).

5 Heat kernel expansion

References for this section: [4, 43, 44] and especially [107].
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The heat kernel is a Green function of the heat operator et∆ (recall that −∆ is a positive
operator) which measures the temperature evolution in a domain whose boundary has a given
temperature. For instance, the heat kernel of the Euclidean space Rd is

kt(x, y) = 1
(4πt)d/2 e

−|x−y|2/4t for x 6= y (16)

and it solves the heat equation
∂tkt(x, y) = ∆xkt(x, y), ∀t > 0, x, y ∈ Rd, initial condition: limt↓0 kt(x, y) = δ(x− y).

Actually, kt(x, y) = 1
2π

∫ ∞
−∞ e−ts2

eis(x−y) ds when d = 1.
Note that for f ∈ D(Rd), we have limt↓0

∫
Rd kt(x, y) f(y) dy = f(x).

For a connected domain (or manifold with boundary with vector bundle V ) U , let λn be the
eigenvalues for the Dirichlet problem of minus the Laplacian

−∆φ = λψ in U, ψ = 0 on ∂U.
If ψn ∈ L2(U) are the normalized eigenfunctions, the inverse Dirichlet Laplacian ∆−1 is a
selfadjoint compact operator, 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · , λn →∞.

The interest for the heat kernel is that, if f(x) =
∫ ∞

0 dt e−tx φ(x) is the Laplace transform
of φ, then Tr

(
f(−∆)

)
=

∫ ∞
0 dt φ(t) Tr

(
et ∆

)
(if everything makes sense) is controlled by

Tr
(
et∆

)
=

∫
M dvol(x) trVxkt(x, x) since Tr

(
e t ∆

)
=

∑∞
n=1 e

t λn and

kt(x, y) = 〈x, et ∆ y〉 =
∑∞

n,m=1〈x, ψm〉 〈ψm, e
t ∆ψn〉 〈ψn, y〉 =

∑∞
n,m=1 ψn(x)ψn(y) et λn .

So it is useful to know the asymptotics of the heat kernel kt on the diagonal of M × M
especially near t = 0.

5.1 The asymptotics of heat kernel

Let now M be a smooth compact Riemannian manifold without boundary, V be a vector
bundle over M and P ∈ ΨDOm(M,V ) be a positive elliptic operator of order m > 0. If
kt(x, y) is the kernel of the heat operator e−tP , then the following asymptotics exits on the
diagonal:

kt(x, x) ∼
t↓0+

∞∑

k=0

ak(x) t(−d+k)/m

which means that
∣∣∣kt(x, x) −∑

k≤k(n) ak(x) t(−d+k)/m
∣∣∣
∞,n

< cn t
n for 0 < t < 1 where we used

|f |∞,n := supx∈M

∑
|α|≤n |∂α

x f | (since P is elliptic, kt(x, y) is a smooth function of (t, x, y) for
t > 0, see [43, section 1.6, 1.7]).

More generally, we will use k(t, f, P ) := Tr
(
f e−tP

)
where f is a smooth function. We

have similarly

k(t, f, P ) ∼
t↓0+

∞∑

k=0

ak(f, P ) t(−d+k)/m. (17)

The utility of function f will appear later for the computation of coefficients ak.
The following points are of importance:

1) The existence of this asymptotics is non-trivial [43, 44].
2) The coefficients a2k(f, P ) can be computed locally as integral of local invariants:

Recall that a locally computable quantity is the integral on the manifold of a local frame-
independent smooth function of one variable, depending only on a finite number of derivatives
of a finite number of terms in the asymptotic expansion of the total symbol of P .
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In noncommutative geometry, local generally means that it is concentrated at infinity in
momentum space.

3) The odd coefficients are zero: a2k+1(f, P ) = 0.
For instance, let us assume from now on that P is a Laplace type operator of the form

P = −(gµν∂µ∂ν + A
µ∂µ + B) (18)

where (gµν)1≤µ,ν≤d is the inverse matrix associated to the metric g on M , and Aµ and B are
smooth L(V )-sections onM (endomorphisms) (see also Definition 4.1). Then (see [44, Lemma
1.2.1]) there is a unique connection ∇ on V and a unique endomorphism E such that

P = −(Trg∇2 + E), ∇2(X, Y ) := [∇X ,∇Y ]−∇∇LC
X Y ,

X, Y are vector fields on M and ∇LC is the Levi-Civita connection on M . Locally
Trg∇2 := gµν(∇µ∇ν − Γρ

µν∇ρ)
where Γρ

µν are the Christoffel coefficients of ∇LC . Moreover (with local frames of T ∗M and
V ), ∇ = dxµ ⊗ (∂µ + ωµ) and E are related to gµν , Aµ and B through

ων = 1
2
gνµ(Aµ + gσεΓµ

σε idV ) ,

E = B− gνµ(∂νωµ + ωνωµ − ωσΓσ
νµ) .

In this case, the coefficients ak(f, P ) =
∫

M dvolg trE

(
f(x) ak(P )(x)

)
and the ak(P ) = ci α

i
k(P )

are linear combination with constants ci of all possible independent invariants αi
k(P ) of di-

mension k constructed from E,Ω, R and their derivatives (Ω is the curvature of the connection
ω, and R is the Riemann curvature tensor). As an example, for k = 2, E and s are the only
independent invariants.
Point 3) follow since there is no odd-dimension invariant.

If s is the scalar curvature and ‘;’ denote multiple covariant derivative with respect to
Levi-Civita connection on M , one finds, using variational methods

a0(f, P ) = (4π)−d/2
∫

M
dvolg trV (f) ,

a2(f, P ) = (4π)−d/2

6

∫

M
dvolg trV

[
(f(6E + s)

]
, (19)

a4(f, P ) = (4π)−d/2

360

∫

M
dvolg trV

[
f(60E;kk + 60Es+ 180E2 + 12R;kk + 5s2

− 2RijRij + 2RijklRijkl + 30ΩijΩij)
]
.

The coefficient a6 was computed by Gilkey, a8 by Amsterdamski, Berkin and O’Connor
and a10 in 1998 by van de Ven [108]. Some higher coefficients are known in flat spaces.

5.2 Wodzicki residue and heat expansion

Wodzicki has proved that, in (17), ak(P )(x) = 1
m
cP (k−d)/m(x) is true not only for k = 0 as

seen in Theorem 3.11 (where P ↔ P−1), but for all k ∈ N. In this section, we will prove this
result when P is is the inverse of a Dirac operator and this will be generalized in the next
section.

Let M be a compact Riemannian manifold of dimension d even, E a Clifford module over
M and D be the Dirac operator (definition 4.2) given by a Clifford connection on E. By
Theorem 4.7, D is a selfadjoint (unbounded) operator on H := L2(M,S).
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We are going to use the heat operator e−tD2
since D2 is related to the Laplacian via the

Schrödinger–Lichnerowicz formula (4.2) and since the asymptotics of the heat kernel of this
Laplacian is known.

For t > 0, e−tD2 ∈ L1: follows from e−tD2
= (1 + D2)(d+1)/2 e−tD2

(1 + D2)−(d+1)/2, since
(1+D2)−(d+1)/2 ∈ L1 and λ→ (1+λ2)(d+1)/2e−tλ2

is bounded. So Tr
(
e−tD2

)
=

∑
n e

−tλ2
n <∞.

Moreover, the operator e−tD2
has a smooth kernel since it is regularizing ( [70]) and the

asymptotics of its kernel is, see (16): kt(x, y) ∼
t↓0+

1
(4πt)d/2

√
det gx

∑
j≥0 kj(x, y) tj e−dg(x,y)2/4t

where kj is a smooth section on E∗ ⊗ E. Thus

Tr
(
e−tD2

)
∼

t↓0+

∑

j≥0

t(j−d)/2 aj(D2) (20)

with for j ∈ N, a2j(D2) := 1
(4π)d/2

∫
M tr

(
kj(x, x)

)√
det gx |dx|, a2j+1(D2) = 0.

Theorem 5.1. For any integer p, 0 ≤ p ≤ d, D−p ∈ ΨDO−p(M,E) and

WRes
(
D−p

)
= 2

Γ(p/2)
ad−p(D2) = 2

(4π)d/2Γ(p/2)

∫

M
tr

(
k(d−p)/2(x, x)

)
dvolg(x).

Few remarks are in order:
1) If p = d, WRes

(
D−d

)
= 2

Γ(p/2)
a0(D2) = 2

Γ(p/2)
Rank(E)
(4π)d/2 Vol(M).

Since Tr(e−tD2
) ∼

t↓0+
a0(D2) t−d/2, the Tauberian theorem used in Example 3.10 implies that

D−d = (D−2)d/2 is measurable and we obtain Connes’ trace Theorem 3.11
TrDix(D−d) = Trω(D−d) = a0(D2)

Γ(d/2+1)
= 1

d
WRes(D−d).

2) When D = D/ and E is the spinor bundle, the Seeley-deWit coefficient a2(D2) (see (19)
with f = 1) can be easily computed (see [43, 49]): if s is the scalar curvature,

a2(D/ 2) = − 1
12(4π)d/2

∫

M
s(x) dvolg(x). (21)

So WRes
(
D/−d+2

)
= 2

Γ(d/2−1)
a2(D/

2) = c
∫

M s(x) dvolg(x). This is a quite important result
since this last integral is nothing else but the Einstein–Hilbert action. In dimension 4, this
is an example of invariant by diffeomorphisms, see (9).

6 Noncommutative integration

The Wodzicki residue is a trace so can be viewed as an integral. But of course, it is quite
natural to relate this integral to zeta functions used in (7): with notations of Section 2.4, let
P ∈ ΨDOZ(M,E) and D ∈ ΨDO1(M,E) which is elliptic. The definition of zeta function
ζP

D(s) := Tr
(
P |D|−s

)
has been useful to prove that WResP = Res

s=0
ζP

D(s) = − ∫
M cP (x) |dx|.

The aim now is to extend this notion to noncommutative spaces encoded in the notion of
spectral triple. References: [24, 30, 33, 36, 49].

6.1 Notion of spectral triple

The main properties of a compact spin Riemannian manifold M can be recaptured using
the following triple (A = C∞(M),H = L2(M,S), D/ ). The coordinates x = (x1, · · · , xd) are
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exchanged with the algebra C∞(M), the Dirac operator D gives the dimension d as seen in
Theorem 4.9, but also the metric of M via Connes formula and more generally generates
a quantized calculus. The idea is to forget about the commutativity of the algebra and to
impose axioms on a triplet (A,H,D) to generalize the above one in order to be able to
obtain appropriate definitions of other notions: pseudodifferential operators, measure and
integration theory, KO-theory, orientability, Poincaré duality, Hochschild (co)homology etc.

Definition 6.1. A spectral triple (A,H,D) is the data of an involutive (unital) algebra A
with a faithful representation π on a Hilbert spaceH and a selfadjoint operator D with compact
resolvent (thus with discrete spectrum) such that [D, π(a)] is bounded for any a ∈ A.

We could impose the existence of a C∗-algebra A where A := { a ∈ A | [D, π(a)] is bounded }
is norm dense in A so A is a pre-C∗-algebra stable by holomorphic calculus.

When there is no confusion, we will write a instead of π(a).
We now give useful definitions:

Definition 6.2. Let (A,H,D) be a spectral triple.
It is even if there is a grading operator χ s.t. χ = χ∗, [χ, π(a)] = 0, ∀a ∈ A,Dχ = −χD.
It is real of KO-dimension d ∈ Z/8 if there is an antilinear isometry J : H → H such

that JD = ǫDJ, J2 = ǫ′, Jχ = ǫ′′ χJ with the following table for the signs ǫ, ǫ′, ǫ′′

d 0 1 2 3 4 5 6 7
ǫ 1 -1 1 1 1 -1 1 1
ǫ′ 1 1 -1 -1 -1 -1 1 1
ǫ′′ 1 -1 1 -1

(22)

and the following commutation rules

[π(a), π(b)◦) = 0,
[
[D, π(a)], π(b)◦

]
= 0, ∀a, b ∈ A (23)

where π(a)◦ := Jπ(a∗)J−1 is a representation of the opposite algebra A◦.
It is d-summable (or has metric dimension d) if the singular values of D behave like

µn(D−1) = O(n−1/d).
It is regular if A and [D,A] are in the domain of δn for all n ∈ N where δ(T ) := [|D|, T ].
It satisfies the finiteness condition if the space of smooth vectors H∞ :=

⋂
k DomDk is a

finitely projective left A-module.
It satisfies the orientation condition if there is a Hochschild cycle c ∈ Zd(A,A⊗A◦) such

that πD(c) = χ, where πD
(
(a ⊗ b◦) ⊗ a1 ⊗ · · · ⊗ ad

)
:= π(a)π(b)◦[D, π(a1)] · · · [D, π(ad)] and

d is its metric dimension.

An interesting example of noncommutative space of non-zero KO-dimension is given by
the finite part of the noncommutative standard model [20, 27,30].

Moreover, the reality (or charge conjugation in the commutative case) operator J is related
to Tomita theory [101].

A reconstruction of the manifold is possible, starting only with a spectral triple where
the algebra is commutative (see [28] for a more precise formulation, and also [92]):

Theorem 6.3. [28] Given a commutative spectral triple (A,H,D) satisfying the above ax-
ioms, then there exists a compact spinc manifold M such that A ≃ C∞(M) and D is a Dirac
operator.
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The manifold is known as a set, M = Sp(A) = Sp(A). Notice that D is known only via its
principal symbol, so is not unique. J encodes the nuance between spin and spinc structures.
The spectral action selects the Levi-Civita connection so the Dirac operator D/ .

The way, the operator D recaptures the original Riemannian metric g of M is via the
Connes’ distance: the map

d(φ1, φ2) := sup{ |φ1(a)− φ2(a)| | ‖[D, π(a)]‖ ≤ 1, a ∈ A} (24)

defines a distance (eventually infinite) between two states φ1, φ2 on the C∗-algebra A.
The role of D is non only to provide a metric by (24), but its homotopy class represents

the K-homology fundamental class of the noncommutative space A.
It is known that one cannot hear the shape of a drum since the knowledge of the spectrum

of a Laplacian does not determine the metric of the manifold, even if its conformal class is
given [7]. But Theorem 6.3 shows that one can hear the shape of a spinorial drum (or better
say, of a spectral triple) since the knowledge of the spectrum of the Dirac operator and the
volume form, via its cohomological content, is sufficient to recapture the metric and spin
structure. See however the more precise refinement made in [29].

6.2 Notion of pseudodifferential operators

Definition 6.4. Let (A,H,D) be a spectral triple.
For t ∈ R define the map Ft : T ∈ B(H)→ eit|D|Te−it|D| and for α ∈ R

OP 0 := { T | t→ Ft(T ) ∈ C∞
(
R,B(H)

)
} is the set of operators or order ≤ 0,

OP α := { T | T |D|−α ∈ OP 0 } is the set of operators of order ≤ α.

Moreover, we set δ(T ) := [|D|, T ], ∇(T ) := [D2, T ].

For instance, C∞(M) = OP 0 ⋂
L∞(M) and L∞(M) is the von Neumann algebra gener-

ated by A = C∞(M). The spaces OP α have the expected properties:

Proposition 6.5. Assume that (A,H,D) is regular so A ⊂ OP 0 =
⋂

k≥0 Dom δk ⊂ B(H).
Then, for any α, β ∈ R,

OP αOP β ⊂ OP α+β, OP α ⊂ OP β if α ≤ β, δ(OP α) ⊂ OP α, ∇(OP α) ⊂ OP α+1.

As an example, let us compute the order of X = a |D| [D, b]D−3: since the order of a is 0, of
|D| is 1, of [D, b] is 0 and of D−3 is -3, we get X ∈ OP−2.

Definition 6.6. Let (A,H,D) be a spectral triple and D(A) be the polynomial algebra gen-
erated by A, A◦, D and |D|. Define the set of pseudodifferential operators as

Ψ(A) := { T | ∀N ∈ N, ∃P ∈ D(A), R ∈ OP−N , p ∈ N such that T = P |D|−p +R }

The idea behind this definition is that we want to work modulo the set OP−∞ of smoothing
operators. This explains the presence of the arbitrary N and R. In the commutative case
where D ∈ Diff 1(M,E), we get the natural inclusion Ψ

(
C∞(M)

)
⊂ ΨDO(M,E).

The reader should be aware that Definition 6.6 is not exactly the same as in [30,33,49] since
it pays attention to the reality operator J when it is present.
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6.3 Zeta-functions and dimension spectrum

Definition 6.7. For P ∈ Ψ∗(A), we define the zeta-function associated to P (and D) by

ζP
D : s ∈ C→ Tr

(
P |D|−s

)
(25)

which makes sense since for ℜ(s)≫ 1, P |D|−s ∈ L1(H).
The dimension spectrum Sd of (A,H,D) is the set { poles of ζP

D (s) |P ∈ Ψ(A) ∩ OP 0 }.
It is said simple if it contains poles of order at most one.

The noncommutative integral of P is defined by −
∫
P := Res

s=0
ζP

D (s).

In (25), we assume D invertible since otherwise, one can replace D by the invertible operator
D + P , P being the projection on KerD. This change does not modify the computation of
the integrals −

∫
which follow since −

∫
X = 0 when X is a trace-class operator.

6.4 One-forms and fluctuations of D
The unitary group U(A) of A gives rise to the automorphism αu : a ∈ A → uau∗ ∈ A.
This defines the inner automorphisms group Inn(A) which is a normal subgroup of the
automorphisms Aut(A) := {α ∈ Aut(A) |α(A) ⊂ A}. For instance, in case of a gauge
theory, the algebra A = C∞

(
M,Mn(C)

)
≃ C∞(M) ⊗ Mn(C) is typically used. Then,

Inn(A) is locally isomorphic to G = C∞
(
M,PSU(n)

)
. Since Aut

(
C∞(M)

)
≃ Diff(M), we

get a complete parallel analogy between following two exact sequences:
1 −→ Inn(A) −→ Aut(A) −→ Aut(A)/Inn(A) −→ 1,
1 −→ G −→ G ⋊ Diff(M) −→ Diff(M) −→ 1.

Thus the internal symmetries of physics have to be replaced by the inner automorphisms.
The appropriate framework for inner fluctuations of a spectral triple (A,H,D) is Morita
equivalence, see [24,49].

Definition 6.8. Let (A,H,D) be a spectral triple.
One-forms are defined as Ω1

D(A) := span{ adb | a, b ∈ A}, db := [D, b] which is a A-bimodule.

The Morita equivalence which does not change neither the algebra A nor the Hilbert space
H, gives a natural hermitean fluctuation of D: D → DA := D + A with A = A∗ ∈ Ω1

D(A).
For instance, in commutative geometries, Ω1

D/

(
C∞(M)

)
= { c(da) | a ∈ C∞(M) }.

When a reality operator J exists, we also want DAJ = ǫ JDA, so we choose

D
Ã

:= D + Ã, Ã := A + ǫJAJ−1, A = A∗. (26)

The next two results show that, with the same algebra A and Hilbert space H, a fluctu-
ation of D still give rise to a spectral triple (A,H,DA) or (A,H,D

Ã
).

Lemma 6.9. Let (A,H,D) be a spectral triple with a reality operator J and chirality χ. If
A ∈ Ω1

D, the fluctuated Dirac operator DA or D
Ã

is an operator with compact resolvent, and
in particular its kernel is a finite dimensional space. This space is invariant by J and χ.

Note that U(A) acts on D by D → Du = uDu∗ leaving invariant the spectrum of D. Since
Du = D+u[D, u∗] and in a C∗-algebra, any element a is a linear combination of at most four
unitaries, Definition 6.8 is quite natural.
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The inner automorphisms of a spectral triple correspond to inner fluctuation of the metric
defined by (24).

One checks directly that a fluctuation of a fluctuation is a fluctuation and that the unitary
group U(A) is gauge compatible for the adjoint representation but to be an inner fluctuation
is not a symmetric relation. It can append that DA = 0 with D 6= 0.

Lemma 6.10. Let (A,D,H) be a spectral triple and X ∈ Ψ(A). Then −
∫
X∗ = −

∫
X. If the

spectral triple is real, then, for X ∈ Ψ(A), JXJ−1 ∈ Ψ(A) and −
∫
JXJ−1 = −

∫
X∗ = −

∫
X.

If A = A∗, then for k, l ∈ N, the integrals −
∫
AlD−k, −

∫ (
AD−1

)k
, −

∫
Al |D|−k, −

∫
χAl |D|−k,

−
∫
AlD |D|−k are real valued.

We remark that the fluctuations leave invariant the first term of the spectral action (33).
This is a generalization of the fact that in the commutative case, the noncommutative integral
depends only on the principal symbol of the Dirac operator D and this symbol is stable by
adding a gauge potential like in D + A. Note however that the symmetrized gauge potential
A+ ǫJAJ−1 is always zero in this commutative case for any selfadjoint one-form A.

Theorem 6.11. Let (A,H,D) be a regular spectral triple which is simple and of dimension d.

Let A ∈ Ω1
D(A) be a selfadjoint gauge potential. Then, ζD

Ã
(0) = ζD(0)+

∑d
q=1

(−1)q

q
−
∫

(ÃD−1)q.

The proof of this result, necessary for spectral action computation, needs few preliminaries.

Definition 6.12. For an operator T , define the one-parameter group and notation

σz(T ) := |D|zT |D|−z, z ∈ C. ǫ(T ) := ∇(T )D−2, (recall that ∇(T ) = [D2, T ]).

The expansion of the one-parameter group σz gives for T ∈ OP q

σz(T ) ∼
N∑

r=0

g(z, r) εr(T ) mod OP−N−1+q (27)

where g(z, r) := 1
r!

( z
2
) · · · ( z

2
− (r − 1)) =

(
z/2
r

)
with the convention g(z, 0) := 1.

We fix a regular spectral triple (A,H,D) of dimension d and a self-adjoint 1-form A.
Despite previous remark before Lemma 6.10, we pay attention here to the kernel of DA since
this operator can be non-invertible even if D is, so we define

DA := D + Ã where Ã := A+ εJAJ−1, DA := DA + PA (28)

where PA is the projection on KerDA. Remark that Ã ∈ D(A)∩OP 0 and DA ∈ D(A)∩OP 1.
We note VA := PA − P0 . and as the following lemma shows, VA is a smoothing operator:

Lemma 6.13. (i)
⋂

k≥1 Dom(DA)k ⊆ ⋂
k≥1 Dom |D|k.

(ii) KerDA ⊆
⋂

k≥1 Dom |D|k.
(iii) For any α, β ∈ R, |D|βPA|D|α is bounded.
(iv) PA ∈ OP−∞.

Let us define X := D2
A − D2 = ÃD + DÃ + Ã2, XV := X + VA, thus X ∈ D1(A) ∩ OP 1

and by Lemma 6.13, XV ∼ X mod OP−∞. Now let Y := log(D2
A) − log(D2) which makes

sense since D2
A = D2

A + PA is invertible for any A.
By definition of XV , we get Y = log(D2 +XV )− log(D2).
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Lemma 6.14. Y is a pseudodifferential operator in OP−1 with the expansion for any N ∈ N

Y ∼
N∑

p=1

N−p∑

k1,··· ,kp=0

(−1)|k|1+p+1

|k|1+p
∇kp(X∇kp−1(· · ·X∇k1(X) · · · ))D−2(|k|1+p) mod OP−N−1.

For any N ∈ N and s ∈ C,

|DA|−s ∼ |D|−s +
N∑

p=1

Kp(Y, s)|D|−s mod OP−N−1−ℜ(s) (29)

with Kp(Y, s) ∈ OP−p. For any p ∈ N and r1, · · · , rp ∈ N0, ε
r1(Y ) · · · εrp(Y ) ∈ Ψ(A).

Proof of Theorem 6.11. See [12]. Since the spectral triple is simple, equation (29) entails that
ζDA

(0)− ζD(0) = Tr(K1(Y, s)|D|−s)|s=0 . Thus, with (27), we get ζDA
(0)− ζD(0) = −1

2
−
∫
Y .

Now the conclusion follows from −
∫

log
(
(1 + S)(1 + T )

)
= −

∫
log(1 + S) + −

∫
log(1 + T ) for

S, T ∈ Ψ(A) ∩ OP−1 (since log(1 + S) =
∑∞

n=1
(−1)n+1

n
Sn) with S = D−1A and T = AD−1;

so −
∫

log(1 +XD−2) = 2−
∫

log(1 +AD−1) and −1
2

−
∫
Y =

∑d
q=1

(−1)q

q
−
∫
(ÃD−1)q.

Lemma 6.15. For any k ∈ N0,

Res
s=d−k

ζDA
(s) = Res

s=d−k
ζD(s) +

k∑

p=1

k−p∑

r1,··· ,rp=0

Res
s=d−k

h(s, r, p) Tr
(
εr1(Y ) · · · εrp(Y )|D|−s

)
,

where h(s, r, p) := (−s/2)p
∫

0≤t1≤···≤tp≤1 g(−st1, r1) · · · g(−stp, rp) dt .

Our operators |DA|k are pseudodifferential operators: for any k ∈ Z, |DA|k ∈ Ψk(A).
The following result is quite important since it shows that one can use −

∫
for D or DA:

Proposition 6.16. If the spectral triple is simple, Res
s=0

Tr
(
P |DA|−s

)
= −

∫
P for any pseudod-

ifferential operator P . In particular, for any k ∈ N0 −
∫ |DA|−(d−k) = Res

s=d−k
ζDA

(s). Moreover,

−
∫
|DA|−d = −

∫
|D|−d, (30)

−
∫
|DA|−(d−1) = −

∫
|D|−(d−1) − (d−1

2
)−
∫
X|D|−d−1,

−
∫
|DA|−(d−2) = −

∫
|D|−(d−2) + d−2

2

(
−−

∫
X|D|−d + d

4
−
∫
X2|D|−2−d

)
.

6.5 Tadpole

In [30], the following definition is introduced inspired by the quantum field theory.

Definition 6.17. In (A, H, D), the tadpole TadD+A(k) of order k, for k ∈ { d− l : l ∈ N }
is the term linear in A = A∗ ∈ Ω1

D, in the Λk term of (33) where D → D + A.
If moreover, the triple (A, H, D, J) is real, the tadpole TadD+Ã(k) is the term linear in

A, in the Λk term of (33) where D → D + Ã.
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Proposition 6.18. Let (A, H, D) be a spectral triple of dimension d with simple dimension
spectrum. Then

TadD+A(d− k) = −(d− k)−
∫
AD|D|−(d−k)−2, ∀k 6= d, TadD+A(0) = −−

∫
AD−1.

Moreover, if the triple is real, TadD+Ã
= 2 TadD+A.

Corollary 6.19. In a real spectral triple (A,H,D), if A = A∗ ∈ Ω1
D(A) is such that Ã = 0,

then TadD+A(k) = 0 for any k ∈ Z, k ≤ d.

The vanishing tadpole of order 0 has the following equivalence (see [12])
−
∫
AD−1 = 0, ∀A ∈ Ω1

D(A) ⇐⇒ −
∫
ab = −

∫
aα(b), ∀a, b ∈ A, α(b) := DbD−1.

The existence of tadpoles is important since, for instance, A = 0 is not necessarily a stable
solution of the classical field equation deduced from spectral action expansion, [50].

6.6 Commutative geometry

Definition 6.20. Consider a commutative spectral triple given by a compact Riemannian
spin manifold M of dimension d without boundary and its Dirac operator D/ associated to

the Levi–Civita connection. This means
(
A := C∞(M), H := L2(M,S), D/

)
where S is

the spinor bundle over M . This triple is real since, due to the existence of a spin struc-
ture, the charge conjugation operator generates an anti-linear isometry J on H such that
JaJ−1 = a∗, ∀a ∈ A, and when d is even, the grading is given by the chirality matrix
χ := (−i)d/2 γ1γ2 · · · γd. Such triple is said to be a commutative geometry.

In the polynomial algebra D(A) of Definition 6.6, we added A◦. In the commutative case,
A◦ ≃ JAJ−1 ≃ A which also gives JAJ−1 = −ǫA∗, ∀A ∈ Ω1

D(A) or Ã = 0 when A = A∗.
As noticed by Wodzicki, −

∫
P is equal to −2 times the coefficient in log t of the asymptotics

of Tr(P e−t D/ 2

) as t→ 0. It is remarkable that this coefficient is independent of D/ as seen in
Theorem 2.18 and this gives a close relation between the ζ function and heat kernel expansion
with WRes. Actually, by [47, Theorem 2.7]

Tr(P e−t D/ 2

) ∼
t↓0+

∑∞
k=0 ak t

(k−ord(P )−d)/2 +
∑∞

k=0(−a′
k log t+ bk) tk,

so −
∫
P = 2a′

0. Since −
∫
, WRes are traces on Ψ

(
C∞(M)

)
, Corollary 2.19 gives −

∫
P = cWRes P.

Because Tr(P D/ −2s) = 1
Γ(s)

∫ ∞
0 ts−1 Tr(P e−t D/ 2

) dt, the non-zero coefficient a′
k, k 6= 0 creates a

pole of Tr(P D/−2s) of order k+2 as we get
∫ 1

0 t
s−1 log(t)k dt = (−1)kk!

sk+1 and Γ(s) = 1
s
+γ+s g(s)

where γ is the Euler constant and the function g is also holomorphic around zero.

Proposition 6.21. Let Sp(M) be the dimension spectrum of a commutative geometry of
dimension d. Then Sp(M) is simple and Sp(M) = { d− k | k ∈ N }.
Remark 6.22. When the dimension spectrum is not simple, the analog of WRes is no longer
a trace.

The equation (30) can be obtained via (8) as σ
|DA|−d

d = σ
|D|−d

d .
In dimension d = 4, the computation in (19) of coefficient a4(1,D2

A) gives

ζDA
(0) = c1

∫

M
(5R2 − 8Rµνrµν − 7RµνρσR

µνρσ dvol + c2

∫

M
tr(FµνF

µν) dvol,

see Corollary 7.4 to see precise correspondence between ak(1,D2
A) and ζDA

(0). One recognizes
the Yang–Mills action which will be generalized in Section 7.1.3 to arbitrary spectral triples.

According to Corollary 6.19, a commutative geometry has no tadpoles [58].
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6.7 Scalar curvature

What could be the scalar curvature of a spectral triple (A,H,D)? Of course, we consider
first the case of a commutative geometry of dimension d = 4: if s is the scalar curvature and
f ∈ C∞(M), we know that −

∫
f(x)D/−d+2 =

∫
M f(x) s(x) dvol(x). This suggests the

Definition 6.23. Let (A,H,D) be a spectral triple of dimension d. The scalar curvature is
the map R : a ∈ A → C defined by R(a) := −

∫
aD−d+2.

In the commutative case, R is a trace on the algebra. More generally

Proposition 6.24. [30, Proposition 1.153] If R is a trace on A and the tadpoles −
∫
AD−d+1

are zero for all A ∈ Ω1
D, R is invariant by inner fluctuations D → D + A.

6.8 Tensor product of spectral triples

There is a natural notion of tensor for spectral triples which corresponds to direct product
of manifolds in the commutative case. Let (Ai,Di,Hi), i = 1, 2, be two spectral triples of
dimension di with simple dimension spectrum. Assume the first to be of even dimension,
with grading χ1. The spectral triple (A,D,H) associated to the tensor product is defined by

A := A1 ⊗A2, D := D1 ⊗ 1 + χ1 ⊗D2, H := H1 ⊗H2.
The interest of χ1 is to guarantee additivity: D2 = D2

1 ⊗ 1 + 1⊗D2
2.

Lemma 6.25. Assume that Tr(e−tD2
1 ) ∼t→0 a1 t

−d1/2 and Tr(e−tD2
2 ) ∼t→0 a2 t

−d2/2.
The triple (A,D,H) has dimension d = d1 + d2.
Moreover, the function ζD(s) = Tr(|D|−s) has a simple pole at s = d1 + d2 with

Ress=d1+d2

(
ζD(s)

)
= 1

2
Γ(d1/2)Γ(d2/2)

Γ(d/2)
Ress=d1

(
ζD1(s)

)
Ress=d2

(
ζD2(s)

)
.

Proof. We get ζD(2s) =
∑∞

n=0 µn(D2
1 ⊗ 1 + 1⊗D2

2)−s =
∑∞

n,m=0

(
µn(D2

1) + µm(D2
2)

)−s
. Since

(
µn(D1)2 +µm(D2)2

)−(c1+c2)/2 ≤ µn(D1)−c1µm(D2)−c2 , ζD(c1 + c2) ≤ ζD1(c1)ζD2(c2) if ci > di,
so d := inf{ c ∈ R+ : ζD(c) < ∞} ≤ d1 + d2. We claim that d = d1 + d2: recall first that
ai := Res

s=di/2

(
Γ(s)ζDi

(2s)
)

= Γ(di/2) Res
s=di/2

(
ζDi

(2s)
)

= 1
2
Γ(di/2) Res

s=di

(
ζDi

(s)
)
. If

f(s) := Γ(s) ζD(2s), f(s) =
∫ 1

0 Tr
(
e−tD2

)
ts−1 dt+g(s) =

∫ 1
0 Tr

(
e−tD2

1

)
Tr

(
e−tD2

2

)
ts−1 dt+g(s)

where g is holomorphic since the map x ∈ R→ ∫ ∞
1 e−tx2

tx−1 dt is in Schwartz space.
Since Tr

(
e−tD2

1

)
Tr

(
e−tD2

2

)
∼t→0 a1a2 t

−(d1+d2)/2, the function f(s) has a simple pole at
s = (d1 + d2)/2. We conclude that ζD(s) has a simple pole at s = d1 + d2. Moreover, using
ai, 1

2
Γ((d1 + d2)/2)Res

s=d

(
ζD(s)

)
= 1

2
Γ(d1/2)Res

s=d1

(
ζD1(s)

)
1
2
Γ(d2/2)Res

s=d2

(
ζD2(s)

)
.

7 Spectral action

7.1 On the search for a good action functional

We would like to obtain a good action for any spectral triple and for this it is useful to look
at some examples in physics. In any physical theory based on geometry, the interest of an
action functional is, by a minimization process, to exhibit a particular geometry, for instance,
trying to distinguish between different metrics. This is the case in general relativity with the
Einstein–Hilbert action (with its Riemannian signature).
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7.1.1 Einstein–Hilbert action

This action is SEH(g) := − ∫
M sg(x) dvolg(x) where s is the scalar curvature (chosen positive

for the sphere). Up to a constant, this is −
∫
D/−2 in dimension 4 as quoted after (21).

This action is interesting for the following reason: LetM1 be the set of Riemannian metrics
g on M such that

∫
M dvolg = 1. By a theorem of Hilbert [5], g ∈ M1 is a critical point of

SEH(g) restricted to M1 if and only if (M, g) is an Einstein manifold (the Ricci curvature
R of g is proportional by a constant to g: R = c g). Taking the trace, this means that
sg = c dim(M) and such manifold have a constant scalar curvature.

But in the search for invariants under diffeomorphisms, they are more quantities than the
Einstein–Hilbert action, a trivial example being

∫
M f

(
sg(x)

)
dvolg(x) and they are others [42].

In this desire to implement gravity in noncommutative geometry, the eigenvalues of the Dirac
operator look as natural variables [69]. However we are looking for observables which add up
under disjoint unions of different geometries.

7.1.2 Quantum approach and spectral action

In a way, a spectral triple fits quantum field theory since D−1 can be seen as the propagator
(or line element ds) for (Euclidean) fermions and we can compute Feynman graphs with
fermionic internal lines. As glimpsed in section 6.4, the gauge bosons are only derived objects
obtained from internal fluctuations via Morita equivalence given by a choice of a connection
which is associated to a one-form in Ω1

D(A). Thus, the guiding principle followed by Connes
and Chamseddine is to use a theory which is pure gravity with a functional action based on
the spectral triple, namely which depends on the spectrum of D [10]. They proposed the

Definition 7.1. The spectral action of (A,H,D) is defined by S(D, f,Λ) := Tr
(
f(D2/Λ2)

)

where Λ ∈ R+ plays the role of a cut-off and f is any positive function (such that f(D2/Λ2)
is a trace-class operator).

Remark 7.2. We can also define S(D, f,Λ) = Tr
(
f(D/Λ)

)
when f is positive and even.

With this second definition, S(D, g,Λ) = Tr
(
f(D2/Λ2)

)
with g(x) := f(x2).

For f , one can think of the characteristic function of [−1, 1], thus f(D/Λ) is nothing else
but the number of eigenvalues of D within [−Λ,Λ].

When this action has an asymptotic series in Λ → ∞, we deal with an effective theory.
Naturally, D has to be replaced by DA which is a just a decoration. To this bosonic part of the
action, one adds a fermionic term 1

2
〈Jψ,Dψ〉 for ψ ∈ H to get a full action. In the standard

model of particle physics, this latter corresponds to the integration of the Lagrangian part
for the coupling between gauge bosons and Higgs bosons with fermions. Actually, the finite
dimension part of the noncommutative standard model is of KO-dimension 6, thus 〈ψ,Dψ〉
has to be replaced by 1

2
〈Jψ,Dψ〉 for ψ = χψ ∈ H, see [30].

7.1.3 Yang–Mills action

This action plays an important role in physics so recall first the classical situation: let G
be a compact Lie group with its Lie algebra g and let A ∈ Ω1(M, g) be a connection. If
F := da + 1

2
[A,A] ∈ Ω2(M, g) is the curvature (or field strength) of A, then the Yang-Mills
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action is SY M(A) =
∫

M tr(F∧⋆F ) dvolg. In the abelian caseG = U(1), it is the Maxwell action
and its quantum version is the quantum electrodynamics (QED) since the un-gauged U(1) of
electric charge conservation can be gauged and its gauging produces electromagnetism [97].
It is conformally invariant when dim(M) = 4.

The study of its minima and its critical values can also been made for a spectral triple
(A,H,D) of dimension d [23, 24]: let A ∈ Ω1

D(A) and curvature θ = dA + A2; then it is
natural to consider I(A) := TrDix(θ2|D|−d) since it coincides (up to a constant) with the
previous Yang-Mills action in the commutative case: if P = θ2|D|−d, then Theorems 2.18
and 3.11 give the claim since for the principal symbol, tr

(
σP (x, ξ)

)
= c tr(F ∧ ⋆F )(x).

There is nevertheless a problem with the definition of dA: if A =
∑

j π(aj)[D, π(bj)],
then dA =

∑
j[D, π(aj)][D, π(bj)] can be non-zero while A = 0. This ambiguity means

that, to get a graded differential algebra Ω∗
D(A), one must divide by a junk, for instance

Ω2
D ≃ π(Ω2/π

(
δ(Ker(π) ∩ Ω1)

)
where Ωk(A) is the set of universal k-forms over A given by

the set of a0δa1 · · · δak (before representation on H: π(a0δa1 · · · δak) := a0[D, a1] · · · [D, ak]).
Let Hk be the Hilbert space completion of π(Ωk(A)) with the scalar product defined by
〈A1, A2〉k := TrDix(A∗

2A1|D|−d) for Aj ∈ π(Ωk(A)).
The Yang–Mills action on Ω1(A) is SY M(V ) := 〈δV + V 2, δV + V 2〉. It is positive, quartic
and gauge invariant under V → π(u)V π(u∗) + π(u)[D, π(u∗)] when u ∈ U(A). Moreover,
SY M(V ) = inf{ I(ω) |ω ∈ Ω1(A), π(ω) = V } since the above ambiguity disappears when
taking the infimum.

This Yang–Mills action can be extended to the equivalent of Hermitean vector bundles
on M , namely finitely projective modules over A.

The spectral action is more conceptual than the Yang–Mills action since it gives no
fundamental role to the distinction between gravity and matter in the artificial decomposition
DA = D+A. For instance, for the minimally coupled standard model, the Yang–Mills action
for the vector potential is part of the spectral action, as far as the Einstein–Hilbert action
for the Riemannian metric [11].

As quoted in [16], the spectral action has conceptual advantages:
- Simplicity: when f is a cutoff function, the spectral action is just the counting function.
- Positivity: when f is positive (which is the case for a cutoff function), the action

Tr
(
f(D/Λ)

)
≥ 0 has the correct sign for a Euclidean action: the positivity of the function f

will insure that the actions for gravity, Yang-Mills, Higgs couplings are all positive and the
Higgs mass term is negative.

- Invariance: the spectral action has a much stronger invariance group than the usual
diffeomorphism group as for the gravitational action; this is the unitary group of the Hilbert
space H.
However, this action is not local but becomes local when replaced by its asymptotic expansion:

7.2 Asymptotic expansion for Λ→∞
The heat kernel method already used in previous sections will give a control of spectral action
S(D, f,Λ) when Λ goes to infinity.

Theorem 7.3. Let (A,H,D) be a spectral triple with a simple dimension spectrum Sd.
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We assume that

Tr
(
e−tD2

)
∼

t ↓ 0

∑

α∈Sd

aα t
α with aα 6= 0. (31)

Then, for the zeta function ζD defined in (25)

aα = 1
2

Ress=−2α

(
Γ(s/2)ζD(s)

)
. (32)

(i) If α < 0, ζD has a pole at −2α with aα = 1
2
Γ(−α) Res

s=−2α
ζD(s).

(ii) For α = 0, we get a0 = ζD(0) + dim Ker D.
(iii) If α > 0, aα = ζ(−2α) Res

s=−α
Γ(s).

(iv) The spectral action has the asymptotic expansion over the positive part Sd+of Sd:

Tr
(
f(D/Λ)

)
∼

Λ →+∞

∑

β∈Sd+

fβ Λβ−
∫
|D|β + f(0) ζD(0) + · · · (33)

where the dependence of the even function f is fβ :=
∫ ∞

0 f(x) xβ−1 dx and · · · involves the
full Taylor expansion of f at 0.

Proof. (i) Since Γ(s/2) |D|−s =
∫ ∞

0 e−tD2
ts/2−1 dt =

∫ 1
0 e

−tD2
ts/2−1 dt+ f(s), where the func-

tion f is holomorphic (since the map x → ∫ ∞
1 e−tx2

xs/2−1 dt is in the Schwartz space), the
swap of Tr

(
e−tD2

)
with a sum of aα t

α and aα

∫ 1
0 t

α+s/2−1 dt = 2αa

s+2α
yields (32).

(ii) The regularity of Γ(s/2)−1 ∼
s→0

s/2 around zero implies that only the pole part at

s = 0 of
∫ ∞

0 Tr
(
e−tD2

)
ts/2−1 dt contributes to ζD(0). This contribution is a0

∫ 1
0 t

s/2−1 dt = 2a0

s
.

(iii) follows from (32).
(iv) Assume f(x) = g(x2) where g is a Laplace transform: g(x) :=

∫ ∞
0 e−sx φ(s) ds. We

will see in Section 7.3 how to relax this hypothesis.
Since g(tD2) =

∫ ∞
0 e−stD2

φ(s) ds, Tr
(
g(tD2)

)
∼

t ↓ 0

∑
α∈Sp+ aα t

α
∫ ∞

0 sα g(s) ds. When α < 0,

sα = Γ(−α)−1
∫ ∞

0 e−sy y−α−1 dy and
∫ ∞

0 sα φ(s) ds = Γ(−α)−1
∫ ∞

0 g(y) y−α−1 dy. Thus
Tr

(
g(tD2)

)
∼

t ↓ 0

∑
α∈Sp−

[
1
2

Res
s=−2α

ζD(s)
∫ ∞

0 g(y) y−α−1 dy
]
tα.

Thus (33) follows from (i), (ii) and 1
2

∫ ∞
0 g(y) yβ/2−1 dy =

∫ ∞
0 f(x) xβ−1 dx.

It can be useful to make a connection with (20) of Section 5.2:

Corollary 7.4. Assume that the spectral triple (A,H,D) has dimension d. If

Tr
(
e−t D2

)
∼

t ↓ 0

∑

k∈{ 0,··· ,d }
t(k−d)/2 ak(D2) + · · · , (34)

then S(D, f,Λ) ∼
t ↓ 0

∑
k∈{ 1,··· ,d } fk Λk ad−k(D2) + f(0) ad(D2) + · · · with

fk := 1
Γ(k/2)

∫ ∞
0 f(s)sk/2−1ds. Moreover,

ak(D2) = 1
2

Γ(d−k
2

)−
∫
|D|−d+k for k = 0, · · · , d− 1, ad(D2) = dim KerD + ζD2(0). (35)

The asymptotics (33) uses the value of ζD(0) in the constant term Λ0, so it is fundamental
to look at its variation under a gauge fluctuation D → D + A as we saw in Theorem 6.11.
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7.3 Remark on the use of Laplace transform

The spectral action asymptotic behavior S(D, f,Λ) ∼
Λ →+∞

∑∞
n=0 cn Λd−n an(D2) has been

proved for a smooth function f which is a Laplace transform for an arbitrary spectral triple
(with simple dimension spectrum) satisfying (31). However, this hypothesis is too restrictive
since it does not cover the heat kernel case where f(x) = e−x.
When the triple is commutative and D2 is a generalized Laplacian on sections of a vector
bundle over a manifold of dimension 4, Estrada–Gracia-Bondía–Várilly proved in [37] that
previous asymptotics is

Tr
(
f(D2/Λ2)

)
∼ 1

(4π)2

[
rk(E)

∫ ∞

0
xf(x) dxΛ4 + b2(D2)

∫ ∞

0
f(x) dxΛ2

+
∞∑

m=0

(−1)m f (m)(0) b2m+4(D2) Λ−2m
]
, Λ→∞

where (−1)mb2m+4(D2) = (4π)2

m!
µm(D2) are suitably normalized, integrated moment terms of

the spectral density of D2.
The main point is that this asymptotics makes sense in the Cesàro sense (see [37] for

definition) for f in K′(R), which is the dual of K(R). This latter is the space of smooth
functions φ such that for some a ∈ R, φ(k)(x) = O(|x|a−k) as |x| → ∞, for each k ∈ N. In
particular, the Schwartz functions are in K(R) (and even dense).

Of course, the counting function is not smooth but is in K′(R), so the given asymptotic
behavior is wrong beyond the first term, but is correct in the Cesàro sense. Actually there
are more derivatives of f at 0 as explained on examples in [37, p. 243].

7.4 About convergence and divergence, local and global aspects of

the asymptotic expansion

The asymptotic expansion series (34) of the spectral action may or may not converge. It is
known that each function g(Λ−1) defines at most a unique expansion series when Λ → ∞
but the converse is not true since several functions have the same asymptotic series. We give
here examples of convergent and divergent series of this kind.

When M = Td as in Example 3.10 with ∆ = δµν∂µ∂ν , Tr(et∆) = (4π)−d/2 Vol(Td)
td/2 +

O(t−d/2 e−1/4t), so the asymptotic series Tr(et∆) ≃ (4π)−d/2 Vol(T d)

td/2 , t→ 0, has only one term.
In the opposite direction, let now M be the unit four-sphere S4 and D/ be the usual Dirac

operator. By Proposition 6.21, equation (31) yields (see [19]):

Tr(e−tD/ 2

) = 1
t2

(
2
3

+ 2
3
t+

n∑

k=0

ak t
k+2 +O(tn+3)

)
, ak := (−1)k 4

3 k!

(
B2k+2

2k+2
− B2k+4

2k+4

)

with Bernoulli numbers B2k. Thus t2 Tr(e−tD/ 2

) ≃ 2
3

+ 2
3
t+

∑∞
k=0 ak t

k+2 when t→ 0 and this
series is a not convergent but only asymptotic:

ak >
4

3 k!
|B2k+4|
2k+4

> 0 and |B2k+4| = 2 (2k+4)!
(2π)2k+4 ζ(2k+4) ≃ 4

√
π(k + 2)

(
k+2
πe

)2k+4 →∞ if k →∞.
More generally, in the commutative case considered above and when D is a differential

operator—like a Dirac operator, the coefficients of the asymptotic series of Tr(e−tD2
) are

locally defined by the symbol of D2 at point x ∈ M but this is not true in general: in [45]
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is given a positive elliptic pseudodifferential such that non-locally computable coefficients
especially appear in (34) when 2k > d. Nevertheless, all coefficients are local for 2k ≤ d.

Recall that a locally computable quantity is the integral on the manifold of a local frame-
independent smooth function of one variable, depending only on a finite number of derivatives
of a finite number of terms in the asymptotic expansion of the total symbol of D2. For
instance, some nonlocal information contained in the ultraviolet asymptotics can be recovered
if one looks at the (integral) kernel of e−t

√
−∆: in T

1, with Vol(T1) = 2π, we get [38]

Tr(e−t
√

−∆) = sinh(t)
cosh(t)−1

= coth( t
2
) = 2

t

∞∑

k=0

B2k

(2k)!
t2k = 2

t
[1 + t2

12
− t4

720
+O(t6)]

so the series converges when t < 2π as B2k

(2k)!
= (−1)k+1 2 ζ(2k)

(2π)2k , thus |B2k|
(2k)!
≃ 2

(2π)2k when k →∞.
Thus we have an example where t→∞ cannot be used with the asymptotic series.
Thus the spectral action of Corollary 7.4 precisely encodes these local and nonlocal be-

havior which appear or not in its asymptotics for different f . The coefficient of the action
for the positive part (at least) of the dimension spectrum correspond to renormalized traces,
namely the noncommutative integrals of (35). In conclusion, the asymptotics of spectral
action may or may not have nonlocal coefficients.

For the flat torus Td, the difference between Tr(et∆) and its asymptotic series is an term
which is related to periodic orbits of the geodesic flow on Td. Similarly, the counting func-
tion N(λ) (number of eigenvalues including multiplicities of ∆ less than λ) obeys Weyl’s law:
N(λ) = (4π)−d/2 Vol(Td)

Γ(d/2+1)
λd/2 + o(λd/2) — see [1] for a nice historical review on these funda-

mental points. The relationship between the asymptotic expansion of the heat kernel and
the formal expansion of the spectral measure is clear: the small-t asymptotics of heat kernel
is determined by the large-λ asymptotics of the density of eigenvalues (and eigenvectors).
However, the latter is defined modulo some average: Cesàro sense as reminded in Section
7.3, or Riesz mean of the measure which washes out ultraviolet oscillations, but also gives
informations on intermediate values of λ [38].

In [16, 76] are examples of spectral actions on commutative geometries of dimension 4
whose asymptotics have only two terms. In the quantum group SUq(2), the spectral action
itself has only 4 terms, independently of the choice of function f . See [62] for more examples.

7.5 On the physical meaning of the asymptotics of spectral action

The spectral action is non-local. Its localization does not cover all situations: consider for
instance the commutative geometry of a spin manifold M of dimension 4. One adds a gauge
connection A ∈ Γ∞

(
M,End(S)

)
to D/ such that D = iγµ(∂µ +Aµ), thus with a field strength

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. We apply (18) with P = D2 and find the coefficients ai(1, P )
of (19) with i = 0, 2, 4. The asymptotic expansion corresponds to a weak field expansion.

Moreover a commutative geometry times a finite one where the finite one is algebra is
a sum of matrices has been deeply and intensively investigated for the noncommutative
approach to standard model of particle physics, see [20, 30]. This approach offers a lot of
interesting perspectives, for instance, the possibility to compute the Higgs representations and
mass (for each noncommutative model) is particularly instructive [10,15,17,57,63,64,71,79].
Of course, since the first term in (33) is a cosmological term, one may be worried by its
large value (for instance in the noncommutative standard model where the cutoff is, roughly
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speaking the Planck scale). At the classical level, one can work with unimodular gravity where
the metric (so the Dirac operator) D varies within the set M1 of metrics which preserve the
volume as in Section 7.1.1. Thus it remains only (!) to control the inflaton: see [13].

The spectral action has been computed in [60] for the quantum group SUq(2) which is
not a deformation of SU(2) of the type considered on the Moyal plane. It is quite peculiar
since (33) has only a finite number of terms.

Due to the difficulties to deal with non-compact manifolds, the case of spheres S
4 or

S3×S1 has been investigated in [16,19] for instance in the case of Robertson–Walker metrics.
All the machinery of spectral geometry as been recently applied to cosmology, computing

the spectral action in few cosmological models related to inflation, see [66, 76–78,81, 95].
Spectral triples associated to manifolds with boundary have been considered in [14,18,18,

58,59,61]. The main difficulty is precisely to put nice boundary conditions to the operator D
to still get a selfadjoint operator and then, to define a compatible algebra A. This is probably
a must to obtain a result in a noncommutative Hamiltonian theory in dimension 1+3.

The case of manifolds with torsion has also been studied in [53, 84, 85], and even with
boundary in [61]. These works show that the Holst action appears in spectral actions and
that torsion could be detected in a noncommutative world.

8 The noncommutative torus

The aim of this section is to compute the spectral action of the noncommutative torus. Due to
a fundamental appearance of small divisors, the number theory is involved via a Diophantine
condition. As a consequence, the result which essentially says that the spectral action of the
noncommutative torus coincide with the action of the ordinary torus (up few constants) is
awfully technical and this shows how life can be hard in noncommutative geometry!

Reference: [36].

8.1 Definition of the nc-torus

Let C∞(Tn
Θ) be the smooth noncommutative n-torus associated to a non-zero skew-symmetric

deformation matrix Θ ∈ Mn(R). It was introduced by Rieffel [93] and Connes [21] to gen-
eralize the n-torus Tn. This means that C∞(Tn

Θ) is the algebra generated by n unitaries ui,
i = 1, . . . , n subject to the relations ul uj = ei Θlj uj ul, and with Schwartz coefficients: an
element a ∈ C∞(Tn

Θ) can be written as a =
∑

k∈Zn ak Uk, where {ak} ∈ S(Zn) with the Weyl
elements defined by Uk := e− i

2
k.χk uk1

1 · · ·ukn
n , k ∈ Z

n, the constraint relation reads
UkUq = e− i

2
k.Θq Uk+q, and UkUq = e−ik.Θq UqUk

where χ is the matrix restriction of Θ to its upper triangular part. Thus unitary operators
Uk satisfy U∗

k = U−k and [Uk, Ul] = −2i sin(1
2
k.Θl)Uk+l.

Let τ be the trace on C∞(Tn
Θ) defined by τ

( ∑
k∈Zn ak Uk

)
:= a0 and Hτ be the GNS

Hilbert space obtained by completion of C∞(Tn
Θ) with respect of the norm induced by the

scalar product 〈a, b〉 := τ(a∗b).
On Hτ = {∑

k∈Zn ak Uk | {ak}k ∈ l2(Zn) }, we consider the left and right regular repre-
sentations of C∞(Tn

Θ) by bounded operators, that we denote respectively by L(.) and R(.).
Let also δµ, µ ∈ { 1, . . . , n }, be the n (pairwise commuting) canonical derivations, defined

by δµ(Uk) := ikµUk.
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We need to fix notations: let AΘ := C∞(Tn
Θ) acting on H := Hτ ⊗ C2m

with n = 2m or
n = 2m + 1 (i.e., m = ⌊n

2
⌋ is the integer part of n

2
), the square integrable sections of the

trivial spin bundle over Tn and each element of AΘ is represented on H as L(a)⊗ 12m . The
Tomita conjugation J0(a) := a∗ satisfies [J0, δµ] = 0 and we define J := J0 ⊗ C0 where C0 is
an operator on C2m

. The Dirac-like operator is given by
D := −i δµ ⊗ γµ,

where we use hermitian Dirac matrices γ. It is defined and symmetric on the dense subset
of H given by C∞(Tn

Θ)⊗C2m
and D denotes its selfadjoint extension. Thus C0γ

α = −εγαC0,
and D Uk⊗ ei = kµUk⊗ γµei, where (ei) is the canonical basis of C2m

. Moreover, C2
0 = ±12m

depending on the parity of m. Finally, the chirality in the even case is χ := id⊗(−i)mγ1 · · · γn.
This yields a spectral triple:

Theorem 8.1. [24, 49] The 5-tuple (AΘ,H,D, J, χ) is a real regular spectral triple of di-
mension n. It satisfies the finiteness and orientability conditions of Definition 6.2. It is
n-summable and its KO-dimension is also n.

For every unitary u ∈ A, uu∗ = u∗u = U0, the perturbed operator VuD V ∗
u by the unitary

Vu :=
(
L(u) ⊗ 12m

)
J

(
L(u) ⊗ 12m

)
J−1, must satisfy condition JD = ǫDJ . The yields the

necessity of a symmetrized covariant Dirac operator DA := D+A+ ǫJ AJ−1 since VuD V ∗
u =

DL(u)⊗12m [D,L(u∗)⊗12m ]. Moreover, we get the gauge transformation VuDAV
∗

u = Dγu(A) where
the gauged transform one-form of A is γu(A) := u[D, u∗] + uAu∗, with the shorthand L(u)⊗
12m −→ u. So the spectral action is gauge invariant: S(DA, f,Λ) = S(Dγu(A), f,Λ).

Any selfadjoint one-form A ∈ Ω1
D(A), is written as A = L(−iAα)⊗γα, Aα = −A∗

α ∈ AΘ,

thus DA = −i
(
δα + L(Aα)− R(Aα)

)
⊗ γα. Defining Ãα := L(Aα)−R(Aα), we get

D2
A = −gα1α2(δα1 + Ãα1)(δα2 + Ãα2)⊗ 12m − 1

2
Ωα1α2 ⊗ γα1α2 where

γα1α2 := 1
2
(γα1γα2 − γα2γα1),

Ωα1α2
:= [δα1 + Ãα1 , δα2 + Ãα2 ] = L(Fα1α2)− R(Fα1α2)

Fα1α2
:= δα1(Aα2)− δα2(Aα1) + [Aα1 , Aα2 ].

8.2 Kernels and dimension spectrum

Since the dimension of the kernel appears in the coefficients (35) of the spectral action, we
now compute the kernel of the perturbed Dirac operator:

Proposition 8.2. KerD = U0 ⊗ C
2m

, so dim KerD = 2m. For any selfadjoint one-form A,
KerD ⊆ KerDA and or any unitary u ∈ A, KerDγu(A) = Vu KerDA.

One shows that KerDA = KerD in the following cases:
(i) A = Au := L(u)⊗ 12m [D, L(u∗)⊗ 12m ] when u is a unitary in A.
(ii) ||A|| < 1

2
.

(iii) The matrix 1
2π

Θ has only integral coefficients.
Conjecture: KerD = KerDA at least for generic Θ’s.
We will use freely the notation (28) about the difference between D and D.
Since we will have to control small divisors, we give first some Diophantine condition:
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Definition 8.3. Let δ > 0. A vector a ∈ Rn is said to be δ-badly approximable if there exists
c > 0 such that |q.a−m| ≥ c |q|−δ, ∀q ∈ Zn \ { 0 } and ∀m ∈ Z.
We note BV(δ) the set of δ-badly approximable vectors and BV := ∪δ>0BV(δ) the set of badly
approximable vectors.

A matrix Θ ∈Mn(R) (real n× n matrices) will be said to be badly approximable if there
exists u ∈ Zn such that tΘ(u) is a badly approximable vector of Rn.

Remark. A result from Diophantine approximation asserts that for δ > n, the Lebesgue
measure of Rn \ BV(δ) is zero (i.e almost any element of Rn is δ−badly approximable.)

Let Θ ∈ Mn(R). If its row of index i is a badly approximable vector of Rn (i.e. if
Li ∈ BV) then tΘ(ei) ∈ BV and thus Θ is a badly approximable matrix. It follows that
almost any matrix of Mn(R) ≈ Rn2

is badly approximable.

Proposition 8.4. When 1
2π

Θ is badly approximable, the spectrum dimension of the spectral

triple
(
C∞(Tn

Θ),H,D
)

is equal to the set {n− k : k ∈ N0 } and all these poles are simple.

Moreover ζD(0) = 0.

To get this result, we must compute the residues of infinite series of functions on C and the
commutation between residues and series works under the sufficient Diophantine condition.

We can compute ζD(0) easily but the main difficulty is precisely to calculate ζDA
(0).

8.3 The spectral action

We fix a self-adjoint one-form A on the noncommutative torus of dimension n.

Proposition 8.5. If 1
2π

Θ is badly approximable, then the first elements of the spectral action
expansion (33) are given by

−
∫ |DA|−n = −

∫ |D|−n = 2m+1πn/2 Γ(n
2
)−1, −

∫ |DA|−n+k = 0 for k odd, −
∫ |DA|−n+2 = 0.

Here is the main result of this section.

Theorem 8.6. Consider the noncommutative torus
(
C∞(Tn

Θ),H,D
)

of dimension n ∈ N

where 1
2π

Θ is a real n× n real skew-symmetric badly approximable matrix, and a selfadjoint
one-form A = L(−iAα)⊗ γα. Then, the full spectral action of DA = D + A+ ǫJAJ−1 is
(i) for n = 2, S(DA, f,Λ) = 4π f2 Λ2 +O(Λ−2),

(ii) for n = 4, S(DA, f,Λ) = 8π2 f4 Λ4 − 4π2

3
f(0) τ(FµνF

µν) +O(Λ−2),
(iii) More generally, in S(DA, f,Λ) =

∑n
k=0 fn−k cn−k(A) Λn−k + O(Λ−1), cn−2(A) = 0,

cn−k(A) = 0 for k odd. In particular, c0(A) = 0 when n is odd.

This result (for n = 4) has also been obtained in [41] using the heat kernel method. It is
however interesting to get the result via direct computations of (33) since it shows how this
formula is efficient.

Remark 8.7. Note that all terms must be gauge invariants, namely invariant by Aα −→
γu(Aα) = uAαu

∗ + uδα(u∗). A particular case is u = Uk where Ukδα(U∗
k ) = −ikαU0.

In the same way, note that there is no contradiction with the commutative case where, for
any selfadjoint one-form A, DA = D (so A is equivalent to 0!), since we assume in Theorem
8.6 that Θ is badly approximable, so A cannot be commutative.
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Conjecture 8.8. The constant term of the spectral action of DA on the noncommutative n-
torus is proportional to the constant term of the spectral action of D+A on the commutative
n-torus.

Remark 8.9. The appearance of a Diophantine condition for Θ has been characterized in
dimension 2 by Connes [22, Prop. 49] where in this case, Θ = θ

(
0 1
−1 0

)
with θ ∈ R. In

fact, the Hochschild cohomology H(AΘ,AΘ
∗) satisfies dim Hj(AΘ,AΘ

∗) = 2 (or 1) for j = 1
(or j = 2) if and only if the irrational number θ satisfies a Diophantine condition like
|1− ei2πnθ|−1 = O(nk) for some k.
The result of Theorem 8.6 without this Diophantine condition is unknown.
Recall that when the matrix Θ is quite irrational (the lattice generated by its columns is dense
after translation by Zn, see [49, Def. 12.8]), then the C∗-algebra generated by AΘ is simple.
It is possible to go beyond the Diophantine condition: see [41].
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